
http://d3s.mff.cuni.cz

Contracts: Specification 
and Verification

Pavel Parízek



Behavior specification using contracts

Pavel Parízek Contracts: Specification and Verification 2

Target: program fragment
class, object, method (procedure), loop body

Purpose: define responsibilities
Implementation (provider, method, object)

Client (caller method, another component)

Method contract

Object contract



Method contract

Pavel Parízek Contracts: Specification and Verification 3

Precondition
Specifies constraints on parameter values and valid states 
of a target object

Logic formula that must hold at the entry to the method

“caller responsibility”

Postcondition
Specifies constraints on the return value and side effects

Captures relation between the initial and final state of the method

Logic formula that must hold at the exit from the method

“implementation responsibility”



Method contract: example

Pavel Parízek Contracts: Specification and Verification 4

Program
public class ArrayList {

public void add(int index, Object obj) {

...

}

public int size() { ... }

}

Textual documentation
“Value of the index parameter has to be greater than or equal to zero.

Successful call of add increases the size of the array by one.”

Formal contract
public void add(int index, Object obj)

requires index >= 0;

ensures size = old(size) + 1;

{ ... }



Object contract

Pavel Parízek Contracts: Specification and Verification 5

Object invariant

Specifies valid object states (e.g., values of fields)

Logic formula that must hold at the entry and exit 
of each method defined for the object



How to define contracts

Pavel Parízek Contracts: Specification and Verification 6

Three ways

Source code comments

Explicit annotations

Built-in language constructs

Contract specification languages

Spec#, JML, Dafny, Code Contracts, Viper, ...



Spec#

Pavel Parízek Contracts: Specification and Verification 7

Programming system
Developed by Microsoft Research
https://www.microsoft.com/en-us/research/project/spec/

Main components
Programming language

Extension of C# with contracts

Spec# compiler
Inserts run-time checks for contracts into the code

Verifier: Boogie

https://www.microsoft.com/en-us/research/project/spec/


Spec# language

Pavel Parízek Contracts: Specification and Verification 8

class ArrayList {

public virtual object Insert(int index, object value)

requires 0 <= index && index <= Count;

ensures value == this[index];

ensures Count == old(Count) + 1;

ensures result == old(this[index]);

{

...

int i = count;

while (i >= index)

loop invariant i >= index - 1;

{

data[i+1] = data[i];

i--;

}

}

}

precondition

postcondition

initial valuereturn value

must hold before and
after each iteration



JML: Java Modeling Language

Pavel Parízek Contracts: Specification and Verification 9

Contract definition language for Java
http://www.eecs.ucf.edu/~leavens/JML/index.shtml

Differences from Spec#
Contracts defined in source comments

No built-in Java language constructs

Example
/*@

@ requires E1;

@ ensures E2;

@*/

public int doSmth() { ... }

Verification tool: ESC/Java2
http://kindsoftware.com/products/opensource/ESCJava2/

http://www.eecs.ucf.edu/~leavens/JML/index.shtml
http://kindsoftware.com/products/opensource/ESCJava2/


Advanced features of Spec# and JML

Pavel Parízek Contracts: Specification and Verification 10

Exceptional behavior
Constraints on the resulting state when an exception 
is thrown inside the method

Model fields (“ghost”)
Abstract fields visible only in the contracts

Quantifiers (∃,∀)
Spec#: Exists and Forall

Behavioral subtyping
Inheritance of contracts

Frame conditions
List of fields which the method can modify



Verification of program against contracts

Pavel Parízek Contracts: Specification and Verification 11



Verification of program against contracts

Pavel Parízek Contracts: Specification and Verification 12

Goal
Checking consistency between the method’s 
implementation and its contract

ϕ: precondition ∧ implementation → postcondition

Approach
Intermediate verification language (IVL)
Robust and efficient verification engine

Based on symbolic exec or verification condition generator

Example (target platform)
Spec#: Boogie program verifier, SMT solver Z3



Verifying Spec# contracts with Boogie

Pavel Parízek Contracts: Specification and Verification 13

Input
Spec# program (C# annotated with contracts)

Set of axioms that describe semantics of Spec#

Axioms
Semantics

Type system (subtyping)

Size of constants

Examples
All classes are subtypes of System.Object

Forall T:type . T <: superclass(T)

result

Boogie

Spec#
compiler

Spec#

CIL

byte code
translation

BoogiePL



Verifying Spec# contracts with Boogie

Pavel Parízek Contracts: Specification and Verification 14

Algorithm

Translate Spec# program into BoogiePL

Generate verification condition (VC) from 
the BoogiePL program

Run the SMT solver on the VC

Result: “no error found” or counterexample

Post-processing of the result

Mapping counterexample back to the source 
language (Spec#)

Spec#
compiler

Spec#

CIL

byte code
translation

BoogiePL

Generating VC

SMT solver Z3

Post-processing

result

Boogie



Running example (Spec# program)

Pavel Parízek Contracts: Specification and Verification 15

int M(int x)

requires 100 <= x;    // precondition

ensures result == 0;  // postcondition

{

while (0 < x)

invariant 0 <= x;   // loop invariant

{

x = x – 1;

}

return x;

}

Example program in Spec# taken from: 
M. Barnett and R. Leino. Weakest-Precondition of Unstructured Programs.
PASTE 2005, ACM Press



Translation from Spec# to BoogiePL

Pavel Parízek Contracts: Specification and Verification 16

int M(int x)

requires 100 <= x;    // precondition

ensures result == 0;  // postcondition

{

while (0 < x)

invariant 0 <= x;   // loop invariant

{

x = x – 1;

}

return x;

} Start: assume 100 <= x;    // precondition

goto Head;

Head: assert 0 <= x;      // loop invariant

goto Body, After;

Body: assume 0 < x;       // loop guard

x := x - 1;

goto Head;

After: assume not(0 < x);  // neg loop guard

r := x;             // return

assert r = 0;       // postcondition

goto ;



BoogiePL

Pavel Parízek Contracts: Specification and Verification 17

Program structure
Directed graph of basic blocks (label, statements)
Successor blocks are targets of the goto statement

Semantics
Program defines a large set of execution traces
State = values of all variables + program counter
Arbitrary initial values of all program variables

Important statements
goto label1, label2➔ non-deterministic choice
goto ;➔ the execution trace terminates successfully
assume E➔ filters out execution traces not satisfying E
assert E➔ if E is false, then a trace ends with an error



Generating verification condition (VC)

Pavel Parízek Contracts: Specification and Verification 18

Construction of an acyclic program (AP)

Eliminating loops (back edges in control-flow)

Transforming into an acyclic passive program (APP)

No assignments allowed in APP

Generating verification condition from the APP



Construction of acyclic program

Pavel Parízek Contracts: Specification and Verification 19

What must be still checked in AP

Loop invariant holds before the loop starts

Any iteration does not break the invariant

Consequence

Loop invariant holds at the exit from the loop

Eliminating loops

Abstraction of an arbitrary number of loop iterations

Unrolling the loop body



Abstracting loop iterations

Pavel Parízek Contracts: Specification and Verification 20

Start: assume 100 <= x;

assert 0 <= x; // check loop invariant

goto Head;

Head: havoc x; // reset variables used in the loop

assume 0 <= x;     // assume loop invariant

goto Body, After;

Body: assume 0 < x;

x := x - 1;

assert 0 <= x;

goto ;

After: assume not(0 < x);

r := x;

assert r = 0;

goto ;



Unrolling loop body

Pavel Parízek Contracts: Specification and Verification 21

Start: assume 100 <= x;

assert 0 <= x;     // check loop invariant

goto Head;

Head: havoc x;           // reset variables used in the loop

assume 0 <= x;     // assume loop invariant

goto Body, After;

Body: assume 0 < x;

x := x - 1;

assert 0 <= x; // check loop invariant

goto ; // back edge removed

After: assume not(0 < x);

r := x;

assert r = 0;

goto ;



AP: acyclic program

Pavel Parízek Contracts: Specification and Verification 22

Start: assume 100 <= x;

assert 0 <= x;     // check loop invariant

goto Head;

Head: havoc x;           // reset variables used in the loop

assume 0 <= x;     // assume loop invariant

goto Body, After;

Body: assume 0 < x;

x := x - 1;

assert 0 <= x;     // check loop invariant

goto ;             // back edge removed

After: assume not(0 < x);

r := x;

assert r = 0;

goto ;



Transforming into acyclic passive programs

Pavel Parízek Contracts: Specification and Verification 23

Passive program

No destructive update allowed

Two steps

Rewrite into a single-assignment form

Removing all assignment statements



Rewriting into single-assignment form

Pavel Parízek Contracts: Specification and Verification 24

Start: assume 100 <= x0;

assert 0 <= x0;

goto Head;

Head: skip; // ”havoc x1” not necessary anymore

assume 0 <= x1;

goto Body, After;

Body: assume 0 < x1;

x2 := x1 - 1;

assert 0 <= x2;

goto ; 

After: assume not(0 < x1);

r1 := x1;

assert r1 = 0;

goto ;



Rewriting into single-assignment form

Pavel Parízek Contracts: Specification and Verification 25

Problem
Join points (after choice)
x0 := ...;

if (E) { x1 := ...}

else { x2 := ...}

Q: how to solve this problem ?



Rewriting into single-assignment form

Pavel Parízek Contracts: Specification and Verification 26

Problem
Join points (after choice)
x0 := ...;

if (E) { x1 := ...}

else { x2 := ...}

Solution (φ-functions)
x0 := ...;

if (E) { x1 := ...; x3 := x1 }

else { x2 := ...; x3 := x2 }



Removing assignment statements

Pavel Parízek Contracts: Specification and Verification 27

Start: assume 100 <= x0;

assert 0 <= x0;

goto Head;

Head: skip; 

assume 0 <= x1;.

goto Body, After;

Body: assume 0 < x1;

assume x2 = x1 - 1;

assert 0 <= x2;

goto ; 

After: assume not(0 < x1);

assume r1 = x1;

assert r1 = 0;

goto ;



APP: acyclic passive program

Pavel Parízek Contracts: Specification and Verification 28

Start: assume 100 <= x0;

assert 0 <= x0;

goto Head;

Head: skip; 

assume 0 <= x1;.

goto Body, After;

Body: assume 0 < x1;

assume x2 = x1 - 1;

assert 0 <= x2;

goto ; 

After: assume not(0 < x1);

assume r1 = x1;

assert r1 = 0;

goto ;



Encoding control flow into logic formula

Pavel Parízek Contracts: Specification and Verification 29

Boolean variable Bok is defined for each basic block B
Bok = true➔ all possible executions of B and its successors 
from the current state are correct

Block equation Bbe is defined for each basic block B

Startbe: Startok ↔ 100 <= x0 ⇒ (0 <= x0 ∧ Headok)

Headbe:  Headok ↔ 0 <= x1 ⇒ (Bodyok ∧ Afterok)

Bodybe: Bodyok ↔ 0 < x1 ⇒ (x2 = x1 – 1 ⇒ 0 <= x2)

Afterbe: Afterok ↔ ¬(0 < x1) ⇒ (r1 = x1 ⇒ r1 = 0)



Generating verification condition

Pavel Parízek Contracts: Specification and Verification 30

Startbe: Startok ↔ 100 <= x0 ⇒ (0 <= x0 ∧ Headok)
Headbe:  Headok ↔ 0 <= x1 ⇒ (Bodyok ∧ Afterok)
Bodybe: Bodyok ↔ 0 < x1 ⇒ (x2 = x1 – 1 ⇒ 0 <= x2)
Afterbe: Afterok ↔ ¬(0 < x1) ⇒ (r1 = x1 ⇒ r1 = 0)

VC:  Axioms ∧ Startbe ∧ Headbe ∧ Bodybe ∧ Afterbe⇒ Startok



What does the verification condition mean

Pavel Parízek Contracts: Specification and Verification 31

Axioms ∧ Startbe ∧ Headbe ∧ Bodybe ∧ Afterbe ⇒ Startok

a run of the program according to semantics of Spec#

postcondition not violated



Contracts and procedure calls

Pavel Parízek Contracts: Specification and Verification 32

Idea: use contracts of individual procedures

Procedure calls

... 

call M 

...

assert precondition of M

havoc fields modified by M

assume postcondition of M



Verification of contracts: limitations

Pavel Parízek Contracts: Specification and Verification 33

Incompleteness
First-order predicate calculus is semi-decidable

Verification tool may run forever on some inputs (programs)

Making tools less precise ➔ spurious warnings

Modular verification
Analyze procedures separately (one at a time)

Cannot detect errors depending on internal behavior 
of other procedures (with partial contracts)

Better performance and scalability
Verification applicable to real-world programs



Tools

Pavel Parízek Contracts: Specification and Verification 34

Dafny
Verification-ready programming language
Builds upon the ideas (algorithm) of Spec#
https://dafny.org/
https://github.com/dafny-lang/dafny

VCC: Verifier for Concurrent C
https://www.microsoft.com/en-us/research/project/vcc-a-verifier-for-concurrent-c/

Target domain: low-level concurrent systems (e.g., OS)
Challenge: verify programs with threads and pointers
Solution: object ownership

Thread can write only to objects that it owns in the given state
Thread can read only objects that it owns or does not change

https://dafny.org/
https://github.com/dafny-lang/dafny
https://www.microsoft.com/en-us/research/project/vcc-a-verifier-for-concurrent-c/


Tools

Pavel Parízek Contracts: Specification and Verification 35

Viper: Verification Infrastructure for 
Permission-based Reasoning

http://viper.ethz.ch/

Contract language + set of verification tools

Limited support for object-oriented programming

Features: ownership, access permissions

Usage: plugin for VSCode, online interface

Examples: http://viper.ethz.ch/examples/

Sorted List (basic access permissions)

Linked List (with recursive predicates)

http://viper.ethz.ch/
http://viper.ethz.ch/examples/


Tools

Pavel Parízek Contracts: Specification and Verification 36

KeY program verifier

Java programs with JML spec

Developer support (nice IDE)

https://www.key-project.org/

https://github.com/KeYProject/key

https://www.key-project.org/
https://github.com/KeYProject/key


Disclaimer

Pavel Parízek Contracts: Specification and Verification 37

Code Contracts

Similar definition language

Method preconditions and postconditions, invariants

Different verification algorithm

Mostly based on abstract interpretation (lecture 9)



Automated inference of contracts

Pavel Parízek Contracts: Specification and Verification 38

Backward symbolic analysis (execution)

Propagating weakest preconditions

From desired property (negated error)

Bi-abduction

Enables modular compositional verification

https://cacm.acm.org/research/separation-logic/

https://cacm.acm.org/research/separation-logic/


Deductive methods in SW verification

Pavel Parízek Contracts: Specification and Verification 39

Mechanized program verification

Proofs for complicated algorithms

Languages and tool support

Coq proof assistant: https://coq.inria.fr/

https://coq.inria.fr/


Further reading

Pavel Parízek Contracts: Specification and Verification 40

M. Barnett, K.R.M. Leino, and W. Schulte. The Spec# Programming 
System: An Overview. CASSIS 2004
M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K.R.M. Leino. 
Boogie: A Modular Reusable Verifier for Object-Oriented 
Programs. FMCO 2005
M. Barnett and K.R.M. Leino. Weakest-Precondition of 
Unstructured Programs. PASTE 2005, ACM

K.R.M. Leino. Dafny: An Automatic Program Verifier for Functional 
Correctness. LPAR 2010

https://www.microsoft.com/en-us/research/project/dafny-a-
language-and-program-verifier-for-functional-correctness/

P. Muller, M. Schwerhoff, and A.J. Summers. Viper: A Verification 
Infrastructure for Permission-Based Reasoning. VMCAI 2016

https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/


Literature (books)

Pavel Parízek Contracts: Specification and Verification 41

Software Foundations

https://softwarefoundations.cis.upenn.edu/

Formal Reasoning about Programs

http://adam.chlipala.net/frap/

https://softwarefoundations.cis.upenn.edu/
http://adam.chlipala.net/frap/

