Contracts: Specification
and Verification

Pavel Parizek

http://d3s.mff.cuni.cz

Department of
Distributed and
Dependable

A== FACULTY
< OF MATHEMATICS

= AND PHYSICS
Charles University

Behavior specification using contracts

°* Target: program fragment
= class, object, method (procedure), loop body

®* Purpose: define responsibilities
" Implementation (provider, method, object)
= Client (caller method, another component)

* Method contract
* Object contract

Pavel Parizek Contracts: Specification and Verification 2

Method contract

® Precondition

= Specifies constraints on parameter values and valid states
of a target object

" Logic formula that must hold at the entry to the method
= “caller responsibility”

® Postcondition

= Specifies constraints on the return value and side effects
® Captures relation between the initial and final state of the method

" [ogic formula that must hold at the exit from the method
= “implementation responsibility”

Pavel Parizek Contracts: Specification and Verification 3

Method contract: example

® Program
public class ArrayList {
public void add(int index, Object obj) {

}

public int size() { ... }

* Textual documentation

“Value of the index parameter has to be greater than or equal to zero.
Successful call of add increases the size of the array by one.”

® Formal contract
public void add(int index, Object obj)
requires index >= 0;
ensures size = old(size) + 1;

{ ...}

Pavel Parizek Contracts: Specification and Verification

Object contract

°* Object invariant
= Specifies valid object states (e.g., values of fields)

= |ogic formula that must hold at the entry and exit
of each method defined for the object

Pavel Parizek Contracts: Specification and Verification 5

How to define contracts

°* Three ways
= Source code comments
= Explicit annotations
= Built-in language constructs

* Contract specification languages
= Spec#, JML, Dafny, Code Contracts, Viper, ...

Pavel Parizek Contracts: Specification and Verification 6

Spec#

® Programming system

= Developed by Microsoft Research
= https://www.microsoft.com/en-us/research/project/spec/

®* Main components
= Programming language
® Extension of C# with contracts

= Spec#t compiler
® |nserts run-time checks for contracts into the code

= Verifier: Boogie

Pavel Parizek Contracts: Specification and Verification 7

https://www.microsoft.com/en-us/research/project/spec/

Spec# language

class ArraylList {
public virtual object Insert(int index, object value)

fé}iéii?é???Eiﬁé:ié:t:ﬁfézf indexi; " precondition

‘ensures Count == old(Count) + 1; P

‘ensures result == old(thls[lndex])ﬁ el .
T DR RNt e Eahs - postcondition

return value initial value
int 1 = count;
while (1 >= index)
loop invariant i1 >= index - 1;

datal[i+1l] = data[ij;\\\\

. ---.__ must hold before and
11—y .

after each iteration

Pavel Parizek Contracts: Specification and Verification 8

JML: Java Modeling Language

® Contract definition language for Java
= http://www.eecs.ucf.edu/~leavens/JML/index.shtml

* Differences from Spec#
= Contracts defined in source comments
* No built-in Java language constructs
= Example
/*@
@ requires E1;
@ ensures E2;
@*/
public int doSmth() { ... }

® \lerification tool: ESC/Java2
= http://kindsoftware.com/products/opensource/ESClava2/

Pavel Parizek Contracts: Specification and Verification 9

http://www.eecs.ucf.edu/~leavens/JML/index.shtml
http://kindsoftware.com/products/opensource/ESCJava2/

Advanced features of Spec# and JML

® Exceptional behavior

= Constraints on the resulting state when an exception
is thrown inside the method

* Model fields (“ghost”)

= Abstract fields visible only in the contracts
® Quantifiers (3,V)
" Spec#: Existsand Forall

®* Behavioral subtyping
" |Inheritance of contracts

®* Frame conditions
= List of fields which the method can modify

Pavel Parizek Contracts: Specification and Verification 10

Verification of program against contracts

Pavel Parizek Contracts: Specification and Verification 11

Verification of program against contracts

° Goal

= Checking consistency between the method’s
implementation and its contract

® p: precondition A implementation - postcondition

®* Approach
" Intermediate verification language (IVL)

= Robust and efficient verification engine
* Based on symbolic exec or verification condition generator

®* Example (target platform)
= Spec#: Boogie program verifier, SMT solver Z3

Pavel Parizek Contracts: Specification and Verification 12

Verifying Spec# contracts with Boogie

Spec#
°* |nput P |
= Spec# program (C# annotated with contracts) Spect
: : : il
= Set of axioms that describe semantics of Spec# Comf' il
CIL
|
byte code
. translation
®* Axioms I
= Semantics BooiiePL
* Type system (subtyping)
® Size of constants Boogie
= Examples |
® All classes are subtypes of System.Object result

e Forall T:type . T <: superclass(T)

Pavel Parizek Contracts: Specification and Verification 13

Verifying Speci# contracts with Boogie

* Algorithm
= Translate Spec# program into BoogiePL

= Generate verification condition (VC) from
the BoogiePL program

= Run the SMT solver on the VC
® Result: “no error found” or counterexample

= Post-processing of the result

®* Mapping counterexample back to the source
language (Spec#)

Pavel Parizek Contracts: Specification and Verification

Spec#
|

Spec#
compiler

'
CIL

|

byte code
translation

!

BoogiePL

|

Boogie

Generating VC

SMT solver Z3

Post-processing

!

result

14

Running example (Spec# program)

int M(int x)

requires 100 <= x; // precondition
ensures result == 0; // postcondition
{
while (0 < Xx)
invariant 0 <= x; // loop invariant
{
X = x — 1;
}
return Xx;
}

Example program in Spec# taken from:
M. Barnett and R. Leino. Weakest-Precondition of Unstructured Programs.
PASTE 2005, ACM Press

Pavel Parizek Contracts: Specification and Verification 15

Translation from Speci# to BoogiePL

int M(int x)
requires 100 <= x; // precondition
ensures result == 0; // postcondition

while (0 < x)
invariant 0 <= x; // loop invariant

X = x - 1;
}

return Xx;

J Start: assume 100 <= x;
goto Head;
Head: assert 0 <= x;
goto Body, After;
Body: assume 0 < x;
X = x - 1;
goto Head;

After: assume not (0 < x);

r = X;
assert r = 0;
goto ;

Pavel Parizek Contracts: Specification and Verification

//

//

//

//

//
//

precondition
loop invariant
loop guard

neg loop guard

return
postcondition

16

BoogiePL

® Program structure
= Directed graph of basic blocks (label, statements)
= Successor blocks are targets of the goto statement

® Semantics
= Program defines a large set of execution traces
= State = values of all variables + program counter
= Arbitrary initial values of all program variables

® Important statements
s goto labell, label2 =@ non-deterministic choice
s goto ; =@ the execution trace terminates successfully
= assume E =@ filters out execution traces not satisfying E
"= assert E =@ if Eis false, then a trace ends with an error

Pavel Parizek Contracts: Specification and Verification 17

Generating verification condition (VC)

® Construction of an acyclic program (AP)
= Eliminating loops (back edges in control-flow)

* Transforming into an acyclic passive program (APP)
= No assignments allowed in APP

® Generating verification condition from the APP

Pavel Parizek Contracts: Specification and Verification 18

Construction of acyclic program

* \WWhat must be still checked in AP

= Loop invariant holds before the loop starts
= Any iteration does not break the invariant

®* Consequence

= Loop invariant holds at the exit from the loop

* Eliminating loops
= Abstraction of an arbitrary number of loop iterations
= Unrolling the loop body

Pavel Parizek Contracts: Specification and Verification 19

Abstracting loop iterations

Start: assume 100 <= x;
assert 0 <= x; // check loop invariant
goto Head;

Head: havoc x; // reset variables used in the loop
assume 0 <= x; // assume loop invariant
goto Body, After;

Body : assume 0 < x;

X 1= x - 1;
assert 0 <= x;
goto ;

After: assume not (0 < x);
r := X;
assert r = 0;

goto ;

Pavel Parizek Contracts: Specification and Verification 20

Unrolling loop body

Start: assume 100 <= x;
assert 0 <= x; // check loop invariant
goto Head;

Head: havoc x; // reset variables used in the loop
assume 0 <= x; // assume loop invariant
goto Body, After;

Body: assume 0 < x;

X 1= x - 1;
assert 0 <= x; // check loop invariant
goto ; // back edge removed

After: assume not (0 < x);

r 1= X;
assert r = 0;

goto ;

Pavel Parizek Contracts: Specification and Verification 21

AP: acyclic program

Start:

Head:

Body:

After:

Pavel Parizek

assume 100 <= x;

assert 0 <= x; // check loop invariant

goto Head;

havoc x; // reset variables used in the loop
assume 0 <= x; // assume loop invariant

goto Body, After;

assume 0 < x;

X 1= x - 1;

assert 0 <= x; // check loop invariant
goto ; // back edge removed
assume not (0 < x);

r := X;

assert r = 0;

goto ;

Contracts: Specification and Verification 22

Transforming into acyclic passive programs

® Passive program

= No destructive update allowed

®* Two steps
= Rewrite into a single-assignment form
= Removing all assighment statements

Pavel Parizek Contracts: Specification and Verification 23

Rewriting into single-assignment form

Start: assume 100 <= x0;
assert 0 <= x0;
goto Head;
Head: skip; // "havoc x1” not necessary anymore
assume 0 <= x1;
goto Body, After;
Body: assume 0 < x1;
x2 = x1 - 1;
assert 0 <= x2;

goto ;

After: assume not (0 < x1);
rl := x1;
assert rl = 0O;

goto ;

Pavel Parizek Contracts: Specification and Verification 24

Rewriting into single-assignment form

°* Problem
= Join points (after choice)

x0 = ...,
if (E) { %1 := ...}
else { %2 := ...}

Q: how to solve this problem ?

Pavel Parizek Contracts: Specification and Verification 25

Rewriting into single-assignment form

°* Problem
= Join points (after choice)

x0 = ...,
if (E) { %1 := ...}
else { %2 := ...}

* Solution (¢p-functions)
x0 = ...;
1if (BE) { x1 := ...; %3 := x1 }
else { x2 = ...; X3 = x2 }

Pavel Parizek Contracts: Specification and Verification 26

Removing assignment statements

Start: assume 100 <= x0;
assert 0 <= x0;
goto Head;

Head: skip;
assume 0 <= x1;.
goto Body, After;

Body: assume 0 < x1;
assume x2 = x1 - 1;
assert 0 <= x2;
goto ;

After: assume not (0 < x1);
assume rl = x1;
assert rl = 0;
goto ;

Pavel Parizek Contracts: Specification and Verification 27

APP: acyclic passive program

Start: assume 100 <= x0;
assert 0 <= x0;
goto Head;

Head: skip;
assume 0 <= x1;.
goto Body, After;

Body: assume 0 < x1;
assume x2 = x1 - 1;
assert 0 <= x2;
goto ;

After: assume not (0 < x1);
assume rl = x1;
assert rl = 0;

goto ;

Pavel Parizek Contracts: Specification and Verification 28

Encoding control flow into logic formula

° Boolean variable B, is defined for each basic block B

= B, =true =» all possible executions of B and its successors
from the current state are correct

* Block equation B, is defined for each basic block B

Start,,: Start,, <> 100 <= x0 = (0 <= x0 A Head,,)
Head,,: Head,, <> 0 <= x1 = (Body,, N After,,)
Body,.: Body,, <> 0 < x1 = (x2 =x1 -1 = 0 <= x2)

After,,: After,, < -(0 < x1) = (rl = x1 = rl = 0)

Pavel Parizek Contracts: Specification and Verification 29

Generating verification condition

Start,,: Start,, <> 100 <= x0 > (0 <= x0 A Head,,)
Head,,: Head,, <> 0 <= x1 = (Body, A After,,)
Body,,: Body,, <> 0 < x1 = (x2 =x1 -1 = 0 <= x2)
After,,: After,, < -(0 < x1) = (rl = x1 = rl = 0)

VC: Axioms A Start,, A\ Head,, A\ Body,, \ After,, = Start,

Pavel Parizek Contracts: Specification and Verification 30

What does the verification condition mean

a run of the program according to semantics of Spec#

postcondition not violated

Pavel Parizek Contracts: Specification and Verification 31

Contracts and procedure calls

* |dea: use contracts of individual procedures

® Procedure calls

c .. assert precondition of M
call M —) havoc fields modified by M
assume postcondition of M

Pavel Parizek Contracts: Specification and Verification 32

Verification of contracts: limitations

°* |[ncompleteness
= First-order predicate calculus is semi-decidable

* Verification tool may run forever on some inputs (programs)
= Making tools less precise =2 spurious warnings

® Modular verification

= Analyze procedures separately (one at a time)

= Cannot detect errors depending on internal behavior
of other procedures (with partial contracts)

= Better performance and scalability
* Verification applicable to real-world programs

Pavel Parizek Contracts: Specification and Verification 33

Tools

°* Dafny
= Verification-ready programming language
= Builds upon the ideas (algorithm) of Spec#
= https://dafny.org/
= https://github.com/dafny-lang/dafny

® \/CC: Verifier for Concurrent C

= https://www.microsoft.com/en-us/research/project/vcc-a-verifier-for-concurrent-c/

= Target domain: low-level concurrent systems (e.g., OS)
= Challenge: verify programs with threads and pointers

= Solution: object ownership
®* Thread can write only to objects that it owns in the given state
®* Thread can read only objects that it owns or does not change

Pavel Parizek Contracts: Specification and Verification 34

https://dafny.org/
https://github.com/dafny-lang/dafny
https://www.microsoft.com/en-us/research/project/vcc-a-verifier-for-concurrent-c/

Tools

* Viper: Verification Infrastructure for
Permission-based Reasoning

= http://viper.ethz.ch/
= Contract language + set of verification tools

* Limited support for object-oriented programming
= Features: ownership, access permissions
= Usage: plugin for VSCode, online interface

= Examples: http://viper.ethz.ch/examples/
* Sorted List (basic access permissions)

* Linked List (with recursive predicates)

Pavel Parizek Contracts: Specification and Verification 35

http://viper.ethz.ch/
http://viper.ethz.ch/examples/

Tools

* KeY program verifier
= Java programs with JML spec
= Developer support (nice IDE)
= https://www.key-project.org/
= https://github.com/KeYProject/key

Pavel Parizek Contracts: Specification and Verification 36

https://www.key-project.org/
https://github.com/KeYProject/key

Disclaimer

®* Code Contracts
= Similar definition language
* Method preconditions and postconditions, invariants

= Different verification algorithm
* Mostly based on abstract interpretation (lecture 9)

Pavel Parizek Contracts: Specification and Verification 37

Automated inference of contracts

* Backward symbolic analysis (execution)
= Propagating weakest preconditions
" From desired property (negated error)

° Bi-abduction
= Enables modular compositional verification
" https://cacm.acm.org/research/separation-logic/

Pavel Parizek Contracts: Specification and Verification 38

https://cacm.acm.org/research/separation-logic/

Deductive methods in SW verification

* Mechanized program verification
= Proofs for complicated algorithms

= Languages and tool support
* Coq proof assistant: https://coa.inria.fr/

Pavel Parizek Contracts: Specification and Verification 39

https://coq.inria.fr/

Further reading

°* M. Barnett, K.R.M. Leino, and W. Schulte. The Spec# Programming
System: An Overview. CASSIS 2004

°* M. Barnett, B.-Y. E. Chang, R. Deline, B. Jacobs, and K.R.M. Leino.
Boogie: A Modular Reusable Verifier for Object-Oriented
Programs. FMCO 2005

* M. Barnett and K.R.M. Leino. Weakest-Precondition of
Unstructured Programs. PASTE 2005, ACM

°* K.R.M. Leino. Dafny: An Automatic Program Verifier for Functional
Correctness. LPAR 2010

= https://www.microsoft.com/en-us/research/project/dafny-a-
language-and-program-verifier-for-functional-correctness/

* P. Muller, M. Schwerhoff, and A.J. Summers. Viper: A Verification
Infrastructure for Permission-Based Reasoning. VMCAI 2016

Pavel Parizek Contracts: Specification and Verification 40

https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/

Literature (books)

e Software Foundations

" https://softwarefoundations.cis.upenn.edu/

®* Formal Reasoning about Programs
" http://adam.chlipala.net/frap/

Pavel Parizek Contracts: Specification and Verification 41

https://softwarefoundations.cis.upenn.edu/
http://adam.chlipala.net/frap/

