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Behavior specification using contracts
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Target: program fragment
class, object, method (procedure), loop body

Purpose: define responsibilities
Implementation (provider, method, object)

Client (caller method, another component)

Method contract

Object contract



Method contract
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Precondition
Specifies constraints on parameter values and valid states 
of a target object

Logic formula that must hold at the entry to the method

“caller responsibility”

Postcondition
Specifies constraints on the return value and side effects

Captures relation between the initial and final state of the method

Logic formula that must hold at the exit from the method

“implementation responsibility”



Method contract: example
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Program
public class ArrayList {

public void add(int index, Object obj) {

...

}

public int size() { ... }

}

Textual documentation
“Value of the index parameter has to be greater than or equal to zero.

Successful call of add increases the size of the array by one.”

Formal contract
public void add(int index, Object obj)

requires index >= 0;

ensures size = old(size) + 1;

{ ... }



Object contract
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Object invariant

Specifies valid object states (e.g., values of fields)

Logic formula that must hold at the entry and exit 
of each method defined for the object



How to define contracts
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Three ways

Source code comments

Explicit annotations

Built-in language constructs

Contract specification languages

Spec#, JML, Dafny, Code Contracts, Viper, ...



Spec#
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Programming system
Developed by Microsoft Research
https://www.microsoft.com/en-us/research/project/spec/

Main components
Programming language

Extension of C# with contracts

Spec# compiler
Inserts run-time checks for contracts into the code

Verifier: Boogie

https://www.microsoft.com/en-us/research/project/spec/


Spec# language
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class ArrayList {

public virtual object Insert(int index, object value)

requires 0 <= index && index <= Count;

ensures value == this[index];

ensures Count == old(Count) + 1;

ensures result == old(this[index]);

{

...

int i = count;

while (i >= index)

loop invariant i >= index - 1;

{

data[i+1] = data[i];

i--;

}

}

}

precondition

postcondition

initial valuereturn value

must hold before and
after each iteration



JML: Java Modeling Language
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Contract definition language for Java
http://www.eecs.ucf.edu/~leavens/JML/index.shtml

Differences from Spec#
Contracts defined in source comments

No built-in Java language constructs

Example
/*@

@ requires E1;

@ ensures E2;

@*/

public int doSmth() { ... }

Verification tool: ESC/Java2
http://kindsoftware.com/products/opensource/ESCJava2/

http://www.eecs.ucf.edu/~leavens/JML/index.shtml
http://kindsoftware.com/products/opensource/ESCJava2/


Advanced features of Spec# and JML
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Exceptional behavior
Constraints on the resulting state when an exception 
is thrown inside the method

Model fields (“ghost”)
Abstract fields visible only in the contracts

Quantifiers (∃,∀)
Spec#: Exists and Forall

Behavioral subtyping
Inheritance of contracts

Frame conditions
List of fields which the method can modify



Verification of program against contracts
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Verification of program against contracts
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Goal
Checking consistency between the method’s 
implementation and its contract

ϕ: precondition ∧ implementation → postcondition

Approach
Intermediate verification language (IVL)
Robust and efficient verification engine

Based on symbolic exec or verification condition generator

Example (target platform)
Spec#: Boogie program verifier, SMT solver Z3



Verifying Spec# contracts with Boogie
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Input
Spec# program (C# annotated with contracts)

Set of axioms that describe semantics of Spec#

Axioms
Semantics

Type system (subtyping)

Size of constants

Examples
All classes are subtypes of System.Object

Forall T:type . T <: superclass(T)

result

Boogie

Spec#
compiler

Spec#

CIL

byte code
translation

BoogiePL



Verifying Spec# contracts with Boogie
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Algorithm

Translate Spec# program into BoogiePL

Generate verification condition (VC) from 
the BoogiePL program

Run the SMT solver on the VC

Result: “no error found” or counterexample

Post-processing of the result

Mapping counterexample back to the source 
language (Spec#)

Spec#
compiler

Spec#

CIL

byte code
translation

BoogiePL

Generating VC

SMT solver Z3

Post-processing

result

Boogie



Running example (Spec# program)
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int M(int x)

requires 100 <= x;    // precondition

ensures result == 0;  // postcondition

{

while (0 < x)

invariant 0 <= x;   // loop invariant

{

x = x – 1;

}

return x;

}

Example program in Spec# taken from: 
M. Barnett and R. Leino. Weakest-Precondition of Unstructured Programs.
PASTE 2005, ACM Press



Translation from Spec# to BoogiePL

Pavel Parízek Contracts: Specification and Verification 16

int M(int x)

requires 100 <= x;    // precondition

ensures result == 0;  // postcondition

{

while (0 < x)

invariant 0 <= x;   // loop invariant

{

x = x – 1;

}

return x;

} Start: assume 100 <= x;    // precondition

goto Head;

Head: assert 0 <= x;      // loop invariant

goto Body, After;

Body: assume 0 < x;       // loop guard

x := x - 1;

goto Head;

After: assume not(0 < x);  // neg loop guard

r := x;             // return

assert r = 0;       // postcondition

goto ;



BoogiePL
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Program structure
Directed graph of basic blocks (label, statements)
Successor blocks are targets of the goto statement

Semantics
Program defines a large set of execution traces
State = values of all variables + program counter
Arbitrary initial values of all program variables

Important statements
goto label1, label2➔ non-deterministic choice
goto ;➔ the execution trace terminates successfully
assume E➔ filters out execution traces not satisfying E
assert E➔ if E is false, then a trace ends with an error



Generating verification condition (VC)
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Construction of an acyclic program (AP)

Eliminating loops (back edges in control-flow)

Transforming into an acyclic passive program (APP)

No assignments allowed in APP

Generating verification condition from the APP



Construction of acyclic program
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What must be still checked in AP

Loop invariant holds before the loop starts

Any iteration does not break the invariant

Consequence

Loop invariant holds at the exit from the loop

Eliminating loops

Abstraction of an arbitrary number of loop iterations

Unrolling the loop body



Abstracting loop iterations
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Start: assume 100 <= x;

assert 0 <= x; // check loop invariant

goto Head;

Head: havoc x; // reset variables used in the loop

assume 0 <= x;     // assume loop invariant

goto Body, After;

Body: assume 0 < x;

x := x - 1;

assert 0 <= x;

goto ;

After: assume not(0 < x);

r := x;

assert r = 0;

goto ;



Unrolling loop body
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Start: assume 100 <= x;

assert 0 <= x;     // check loop invariant

goto Head;

Head: havoc x;           // reset variables used in the loop

assume 0 <= x;     // assume loop invariant

goto Body, After;

Body: assume 0 < x;

x := x - 1;

assert 0 <= x; // check loop invariant

goto ; // back edge removed

After: assume not(0 < x);

r := x;

assert r = 0;

goto ;



AP: acyclic program
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Start: assume 100 <= x;

assert 0 <= x;     // check loop invariant

goto Head;

Head: havoc x;           // reset variables used in the loop

assume 0 <= x;     // assume loop invariant

goto Body, After;

Body: assume 0 < x;

x := x - 1;

assert 0 <= x;     // check loop invariant

goto ;             // back edge removed

After: assume not(0 < x);

r := x;

assert r = 0;

goto ;



Transforming into acyclic passive programs
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Passive program

No destructive update allowed

Two steps

Rewrite into a single-assignment form

Removing all assignment statements



Rewriting into single-assignment form
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Start: assume 100 <= x0;

assert 0 <= x0;

goto Head;

Head: skip; // ”havoc x1” not necessary anymore

assume 0 <= x1;

goto Body, After;

Body: assume 0 < x1;

x2 := x1 - 1;

assert 0 <= x2;

goto ; 

After: assume not(0 < x1);

r1 := x1;

assert r1 = 0;

goto ;



Rewriting into single-assignment form
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Problem
Join points (after choice)
x0 := ...;

if (E) { x1 := ...}

else { x2 := ...}

Q: how to solve this problem ?



Rewriting into single-assignment form
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Problem
Join points (after choice)
x0 := ...;

if (E) { x1 := ...}

else { x2 := ...}

Solution (φ-functions)
x0 := ...;

if (E) { x1 := ...; x3 := x1 }

else { x2 := ...; x3 := x2 }



Removing assignment statements
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Start: assume 100 <= x0;

assert 0 <= x0;

goto Head;

Head: skip; 

assume 0 <= x1;.

goto Body, After;

Body: assume 0 < x1;

assume x2 = x1 - 1;

assert 0 <= x2;

goto ; 

After: assume not(0 < x1);

assume r1 = x1;

assert r1 = 0;

goto ;



APP: acyclic passive program
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Start: assume 100 <= x0;

assert 0 <= x0;

goto Head;

Head: skip; 

assume 0 <= x1;.

goto Body, After;

Body: assume 0 < x1;

assume x2 = x1 - 1;

assert 0 <= x2;

goto ; 

After: assume not(0 < x1);

assume r1 = x1;

assert r1 = 0;

goto ;



Encoding control flow into logic formula
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Boolean variable Bok is defined for each basic block B
Bok = true➔ all possible executions of B and its successors 
from the current state are correct

Block equation Bbe is defined for each basic block B

Startbe: Startok ↔ 100 <= x0 ⇒ (0 <= x0 ∧ Headok)

Headbe:  Headok ↔ 0 <= x1 ⇒ (Bodyok ∧ Afterok)

Bodybe: Bodyok ↔ 0 < x1 ⇒ (x2 = x1 – 1 ⇒ 0 <= x2)

Afterbe: Afterok ↔ ¬(0 < x1) ⇒ (r1 = x1 ⇒ r1 = 0)



Generating verification condition
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Startbe: Startok ↔ 100 <= x0 ⇒ (0 <= x0 ∧ Headok)
Headbe:  Headok ↔ 0 <= x1 ⇒ (Bodyok ∧ Afterok)
Bodybe: Bodyok ↔ 0 < x1 ⇒ (x2 = x1 – 1 ⇒ 0 <= x2)
Afterbe: Afterok ↔ ¬(0 < x1) ⇒ (r1 = x1 ⇒ r1 = 0)

VC:  Axioms ∧ Startbe ∧ Headbe ∧ Bodybe ∧ Afterbe⇒ Startok



What does the verification condition mean
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Axioms ∧ Startbe ∧ Headbe ∧ Bodybe ∧ Afterbe ⇒ Startok

a run of the program according to semantics of Spec#

postcondition not violated



Contracts and procedure calls
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Idea: use contracts of individual procedures

Procedure calls

... 

call M 

...

assert precondition of M

havoc fields modified by M

assume postcondition of M



Verification of contracts: limitations
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Incompleteness
First-order predicate calculus is semi-decidable

Verification tool may run forever on some inputs (programs)

Making tools less precise ➔ spurious warnings

Modular verification
Analyze procedures separately (one at a time)

Cannot detect errors depending on internal behavior 
of other procedures (with partial contracts)

Better performance and scalability
Verification applicable to real-world programs



Tools
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Dafny
Verification-ready programming language
Builds upon the ideas (algorithm) of Spec#
https://dafny.org/
https://github.com/dafny-lang/dafny

VCC: Verifier for Concurrent C
https://www.microsoft.com/en-us/research/project/vcc-a-verifier-for-concurrent-c/

Target domain: low-level concurrent systems (e.g., OS)
Challenge: verify programs with threads and pointers
Solution: object ownership

Thread can write only to objects that it owns in the given state
Thread can read only objects that it owns or does not change

https://dafny.org/
https://github.com/dafny-lang/dafny
https://www.microsoft.com/en-us/research/project/vcc-a-verifier-for-concurrent-c/


Tools
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Viper: Verification Infrastructure for 
Permission-based Reasoning

http://viper.ethz.ch/

Contract language + set of verification tools

Limited support for object-oriented programming

Features: ownership, access permissions

Usage: plugin for VSCode, online interface

Examples: http://viper.ethz.ch/examples/

Sorted List (basic access permissions)

Linked List (with recursive predicates)

http://viper.ethz.ch/
http://viper.ethz.ch/examples/


Tools
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KeY program verifier

Java programs with JML spec

Developer support (nice IDE)

https://www.key-project.org/

https://github.com/KeYProject/key

https://www.key-project.org/
https://github.com/KeYProject/key


Disclaimer
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Code Contracts

Similar definition language

Method preconditions and postconditions, invariants

Different verification algorithm

Mostly based on abstract interpretation (lecture 9)



Automated inference of contracts
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Backward symbolic analysis (execution)

Propagating weakest preconditions

From desired property (negated error)

Bi-abduction

Enables modular compositional verification

https://cacm.acm.org/research/separation-logic/

https://cacm.acm.org/research/separation-logic/


Deductive methods in SW verification
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Mechanized program verification

Proofs for complicated algorithms

Languages and tool support

Coq proof assistant: https://coq.inria.fr/

https://coq.inria.fr/


Further reading
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M. Barnett, K.R.M. Leino, and W. Schulte. The Spec# Programming 
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M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K.R.M. Leino. 
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Programs. FMCO 2005
M. Barnett and K.R.M. Leino. Weakest-Precondition of 
Unstructured Programs. PASTE 2005, ACM
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Software Foundations

https://softwarefoundations.cis.upenn.edu/

Formal Reasoning about Programs

http://adam.chlipala.net/frap/

https://softwarefoundations.cis.upenn.edu/
http://adam.chlipala.net/frap/

