Static Analysis: Overview, Data-Flow

http://d3s.mff.cuni.cz

Pavel Parízek
Static analysis

• Purpose
 - Gather information about run-time behavior of programs without executing them

• Information
 - Does the variable x have a constant value?
 - Is the value of the variable x always positive?
 - May the pointer p be null at a code location?
 - What are possible values of the variable y?
Static analysis: characteristics

- Target model of program behavior
 - some kind of *Control Flow Graph (CFG)*

- Provides *approximate* answers
 - Decision problems: yes / no / don’t know
 - Collecting some values: superset / subset

- Information valid for all possible runs

- Summarizing different execution paths
 - branches of the *if–else* statement, loop iterations

- Does not know run-time values (inputs)
Comparison

Static analysis

control-flow graph
summarizes information from different paths
approximation
scalability

Model checking

program state space
reasons about execution paths independently
path-sensitivity
precision
Static analysis in practice

- Optimizing compilers
 - Detect superfluous evaluations of the same expression
 - Detect unused local variables or dead code fragments

- Program verification
 - Search for possible runtime errors
 - Example: null pointer dereference, unsynchronized access
 - Constructing abstraction for model checking
 - Slicing: identify statements irrelevant for a given property
Q: What important restrictions there are?
Restrictions

• Approximation must be safe
 ▪ That precisely means “imprecise on the safe side”

• Target domain: **optimizing compilers**
 ▪ Under-approximation
 • Optimization performed on the basis of analysis results must not violate semantics of a given program
 ▪ Example: constant propagation
 • Sound analysis identifies a program variable as a constant only when it is really certain (100%)
Restrictions

- Approximation must be safe
 - That precisely means “imprecise on the safe side”

- Target domain: search for errors
 - Over-approximation
 - Safe analysis reports all real errors and also some spurious errors (false positives)
 - Example: possible null dereferences
 - We want to know about all of them so we can add runtime checks (`if (v != null) ...`)
Basic concepts (theory and examples)
Program

```c
int factorial(int n) {
    int r;
    if (n == 0) r = 0;
    int f = 1;
    while (n > 0) {
        f = f * n;
        n = n - 1;
        if (n == 0) r = f;
    }
    return r;
}
```

Static analysis: possibly uninitialized variables
Control flow graph (CFG)

- Directed graph with labels

- Nodes: program points (statements)

- Edges: possible flow of control
 - \(\text{pred}(n) \) and \(\text{succ}(n) \) for each node \(n \) in a CFG

- Single point of entry

- Single point of exit
CFG: modeling control structures

sequence
\[S_1; S_2 \]

if (E) \{ S \}

if (E) \{ S_1 \}
else \{ S_2 \}

while (E) \{ S \}
Analysis domain

- Set of possible values (facts)

- Finite lattice over the set
Partial order

- Mathematical structure $L = (S, \subseteq)$
 - S is a set of values (e.g., analysis facts)
 - \subseteq is a binary relation (e.g., is-subset)
 - Reflexivity: $\forall x \in S : x \subseteq x$
 - Transitivity: $\forall x, y, z \in S : x \subseteq y \land y \subseteq z \Rightarrow x \subseteq z$
 - Anti-symmetry: $\forall x, y \in S : x \subseteq y \land y \subseteq x \Rightarrow x = y$

- Examples
Bounds

Let's have a partial order \(L = (S, \sqsubseteq) \) and \(X \subseteq S \)

- **Upper bound**
 - \(y \in S \) is an upper bound for \(X \), i.e. \(X \sqsubseteq y \), if \(\forall x \in X : x \sqsubseteq y \)

- **Lower bound**
 - \(y \in S \) is a lower bound for \(X \), i.e. \(y \sqsubseteq X \), if \(\forall x \in X : y \sqsubseteq x \)

- **Least upper bound of \(X \), denoted as \(\sqcup X \)**
 - \(X \sqsubseteq \sqcup X \land \forall y \in S : X \sqsubseteq y \Rightarrow \sqcup X \sqsubseteq y \)

- **Greatest lower bound of \(X \), denoted as \(\sqcap X \)**
 - \(\sqcap X \sqsubseteq X \land \forall y \in S : y \sqsubseteq X \Rightarrow y \sqsubseteq \sqcap X \)
Bounds: example 1

Let's have a partial order $L = (S, \sqsubseteq)$ and the set $S = \{a, b, c, d, e\}$.

The upper bounds of $X = \{a, b\}$ are the elements $\{c, e\}$.
Bounds: example 2

Let's have a partial order \(L = (S, \sqsubseteq) \) and the set \(S = \{a, b, c, d, e\} \)

The greatest lower bound of \(X = \{b, e\} \) is the element \(b \)
Partial order $L = (S, \sqsubseteq)$ such that

- $\sqcup X$ and $\sqcap X$ exist for $\forall X \subseteq S$
- Unique greatest element $\top = \sqcup S = \sqcap \emptyset$
- Unique least element $\bot = \sqcap S = \sqcup \emptyset$

Height of a lattice

- Length of the longest path from \bot to \top
• Partial order $L = (S, \sqsubseteq)$ such that

 $\forall x, y \in S$ there is

 • Least upper bound $x \sqcup y$
 • Greatest lower bound $x \sqcap y$
Lattice: examples

[Diagram of lattice examples]
Using finite lattices in static analysis

- Lattice $L = (S, \sqsubseteq)$
 - Set S of analysis facts (units of information)
 - Relation \sqsubseteq defines an ordering with respect to precision of the abstraction
 - $x \sqsubseteq y \Rightarrow x$ is more precise than y
 - $x \sqsubseteq y \Rightarrow y$ approximates x

- Example
 - Sign abstraction: $x = \{\text{POS}\}$, $y = \{\text{POS, ZERO}\}$
How to construct lattices

- Finite set R induces a lattice $(2^R, \sqsubseteq)$
 - $\bot = \cup \emptyset$
 - No information available
 - $\top = R$
 - Any possible value
 - $x \sqcup y = x \cup y$
 - $x \sqcap y = x \cap y$
 - Height $|R|$

- Example
 - Set $R = \{0, 1, 2\}$
 - Height $= 3$
Running example

- Program

```c
int factorial(int n) {
    int r;
    if (n == 0) r = 0;
    int f = 1;
    while (n > 0) {
        f = f * n;
        n = n - 1;
        if (n == 0) r = f;
    }
    return r;
}
```

- Static analysis: possibly uninitialized variables
Encoding program statements

- Data for each node in the CFG
 - IN: valid before the program statement
 - OUT: valid after the program statement

- Merge operator \sqcup
 - CFG nodes with multiple predecessors
 - Typical approach: union or intersection

- Transfer functions
Transfer functions

- For each node in CFG (statement), we must define a transfer function

\[
\text{OUT} = (\text{IN} \setminus \text{kill}) \cup \text{gen}
\]

- Examples
 - Statement `int r;`

 \[
 \text{kill} = \{\} , \text{gen} = \{ r \}
 \]
 - Statement `r = f;`

 \[
 \text{kill} = \{ r \} , \text{gen} = \{\}
 \]
Monotone functions

• Function $f : S \rightarrow S$ is monotone if
 $\forall x, y \in S : x \subseteq y \Rightarrow f(x) \subseteq f(y)$

• Examples
 • Constant functions
 • Operators \cap and \cup
 • Their compositions
Computing static analysis

- **Input**
 - Control flow graph of the given program
 - Initial value for each CFG node (⊥ or ∅)
 - Value is the set of known analysis facts (information)
 - Merge operator defined as the set union
 - Transfer functions F_i for each node in CFG

- **Approach**: *compute fixed points*
 - Information associated with the CFG nodes
(\mathcal{S}, \sqsubseteq) \text{ is a lattice } \iff (\mathcal{S}, \sqsupseteq) \text{ is a lattice} \iff \\
\mathcal{U}_{\mathcal{S}, \sqsubseteq} = \mathcal{P}_{\mathcal{S}, \sqsupseteq} \quad \mathcal{T}_{\mathcal{S}, \sqsubseteq} = \bot_{\mathcal{S}, \sqsupseteq} \\
\mathcal{P}_{\mathcal{S}, \sqsubseteq} = \mathcal{U}_{\mathcal{S}, \sqsupseteq} \quad \bot_{\mathcal{S}, \sqsubseteq} = \top_{\mathcal{S}, \sqsupseteq} \\

\begin{itemize}
 \item We focus just on \sqsubseteq and initial values \bot
\end{itemize}
Computing fixed points

- Motto: “walk up the lattice starting at ⊥, until you reach a fixed point”
 - In the worst case, ⊤ is the fixed point (if exists)

- Three algorithms
 - Naive (brute force)
 - Chaotic iteration
 - Worklist algorithm
Worklist algorithm

\[u_1 = \bot; \ldots, u_n = \bot; \]
\[q = [1, \ldots, n]; \]
\[\text{while } (q \neq []) \{ \]
\[\quad i = \text{head}(q); \]
\[\quad v_{\text{IN}} = \text{merge}(\text{pred}(i)); \]
\[\quad v_{\text{OUT}} = F_i(v_{\text{IN}}); \]
\[\quad q = \text{tail}(q); \]
\[\quad \text{if } (v_{\text{OUT}} \neq u_i) \{ \]
\[\quad \quad \text{append}(q, \text{succ}(i)); \]
\[\quad \quad u_i = v_{\text{OUT}}; \]
\[\quad \} \]
\[\} \]
Classification
Static analysis categories

- Data-flow analysis
- Call graph construction
- Pointer analysis (aliasing)
- Escape analysis (threads)
- Side effect analysis
Data-flow analysis

- Available expressions
- Reaching definitions
- Live variables (values)
Available expressions

```javascript
var x, y, a, b;
y = a - b;
while (y < a + b) {
    a = a - 1;
    x = a + b;
}

var x, y, a, b, t;
y = a - b;
t = a + b;
while (y < t) {
    a = a - 1;
    t = a + b;
    x = t;
}
```
Direction

- **Forward analysis**
 - Computes information about the past behavior
 - Starts at the entry node (CFG) and goes forward

- **Backward analysis**
 - Computes information about the future behavior
 - Starts at the exit CFG node and moves backwards
Approximation level

- **May analysis**
 - Computes information that **may be true** (over-approximation)
 - Information for P that is true at least for one path coming into P
 - Merge operator: set union

- **Must analysis**
 - Computes information that **must be true** (under-approximation)
 - Information for P that is true for all execution paths coming into P
 - Merge operator: set intersection
Flow sensitivity

• Flow-sensitive analysis
 - Considers the program’s control flow (CFG) and the order of individual statements
 - Example: available expressions

• Flow-insensitive analysis
 - Program seen as an unordered collection of statements
 - Results are valid for any order of program statements
 • $S_1 ; S_2$ versus $S_2 ; S_1$
 - Example: type analysis (inference)
Scope

- **Intra-procedural**
 - Every single procedure analyzed separately
 - Maximally pessimistic assumptions about side effects of procedure calls

- **Inter-procedural**
 - Whole program analyzed together
 - Sometimes without libraries (huge)
Context sensitivity

- Context-sensitive analysis
 - Call site: source code location for the call
 - Call stack: procedure calls and returns
 - Receiver objects for method calls (“this”)
 - Analysis results for the method M depend on the specific caller of M

- Context-insensitive analysis
 - Same analysis results for every call site of M
Tools

- **WALA**
 - Java, JavaScript, JVM (bytecode)
 - https://wala.github.io/

- **Soot**
 - Java, JVM-based languages (bytecode)

- **CIL**
 - Only for programs written in C
 - http://www.cs.berkeley.edu/~necula/cil/
 - https://github.com/cil-project/cil

- **LLVM**
 - C, C++, Objective-C
 - Clang static analyzer
 - http://llvm.org/
Further reading

- M. Schwartzbach. *Lecture Notes on Static Analysis*. Department of CS, Aarhus University

- A. Møller and M. Schwartzbach. *Static Program Analysis*. Department of CS, Aarhus University
 - https://cs.au.dk/~amoeller/spa/