Static Analysis: Overview, Data-Flow

Pavel Parízek

http://d3s.mff.cuni.cz
Static analysis

- **Purpose**
 - Gather information about run-time behavior of programs without executing them

- **Information**
 - Does the variable x have a constant value?
 - Is the value of the variable x always positive?
 - May the pointer p be null at a code location?
 - What are possible values of the variable y?
Static analysis: characteristics

- Target model of program behavior
 - some kind of **Control Flow Graph (CFG)**

- Provides **approximate** answers
 - Decision problems: yes / no / don’t know
 - Collecting some values: superset / subset

- Information valid for all possible runs

- Summarizing different execution paths
 - branches of the `if-else` statement, loop iterations

- Does not know run-time values (inputs)
Comparison

<table>
<thead>
<tr>
<th>Static analysis</th>
<th>Model checking</th>
</tr>
</thead>
<tbody>
<tr>
<td>control-flow graph</td>
<td>program state space</td>
</tr>
<tr>
<td>summarizes information from different paths</td>
<td>reasons about execution paths independently</td>
</tr>
<tr>
<td>approximation</td>
<td>path-sensitivity</td>
</tr>
<tr>
<td>scalability</td>
<td>precision</td>
</tr>
</tbody>
</table>
Static analysis in practice

- Optimizing compilers
 - Detect superfluous evaluations of the same expression
 - Detect unused local variables or dead code fragments

- Program verification
 - Search for possible runtime errors
 - Example: null pointer dereference, unsynchronized access
 - Constructing abstraction for model checking
 - Slicing: identify statements irrelevant for a given property
Q: What important restrictions there are?
Restrictions

- Approximation must be safe
 - That precisely means “imprecise on the safe side”

- Target domain: **optimizing compilers**
 - Under-approximation
 - Optimization performed on the basis of analysis results must not violate semantics of a given program
 - Example: constant propagation
 - Sound analysis identifies a program variable as a constant only when it is really certain (100%)
Restrictions

• Approximation must be safe
 ▪ That precisely means “imprecise on the safe side”

• Target domain: search for errors
 ▪ Over-approximation
 • Safe analysis reports all real errors and also some spurious errors (false positives)
 ▪ Example: possible null dereferences
 • We want to know about all of them so we can add runtime checks \(\text{if} \ (v \neq \text{null}) \ldots \)
Basic concepts (theory and examples)
Running example

- Program
  ```c
  int factorial(int n) {
    int r;
    if (n == 0) r = 0;
    int f = 1;
    while (n > 0) {
      f = f * n;
      n = n - 1;
      if (n == 0) r = f;
    }
    return r;
  }
  ```

- Static analysis: **possibly uninitialized variables**
Control flow graph (CFG)

- Directed graph with labels
- Nodes: program points (statements)
- Edges: possible flow of control
 - $\text{pred}(n)$ and $\text{succ}(n)$ for each node n in a CFG
- Single point of entry
- Single point of exit
CFG: modeling control structures

sequence
\(S_1; S_2 \)

if (E) \{ S \}

if (E) \{ S_1 \}
else \{ S_2 \}

while (E) \{ S \}
Analysis domain

- Set of possible values (facts)
- Finite lattice over the set
Partial order

- Mathematical structure $L = (S, \sqsubseteq)$
 - S is a set of values (e.g., analysis facts)
 - \sqsubseteq is a binary relation (e.g., is-subset)
 - Reflexivity: $\forall x \in S : x \sqsubseteq x$
 - Transitivity: $\forall x, y, z \in S : x \sqsubseteq y \land y \sqsubseteq z \Rightarrow x \sqsubseteq z$
 - Anti-symmetry: $\forall x, y \in S : x \sqsubseteq y \land y \sqsubseteq x \Rightarrow x = y$

- Examples

![Graph Example 1](image1)

![Graph Example 2](image2)
Bounds

Lets have a partial order \(L = (S, \sqsubseteq) \) and \(X \subseteq S \)

- **Upper bound**
 - \(y \in S \) is an upper bound for \(X \), i.e. \(X \sqsubseteq y \), if \(\forall x \in X : x \sqsubseteq y \)

- **Lower bound**
 - \(y \in S \) is a lower bound for \(X \), i.e. \(y \sqsubseteq X \), if \(\forall x \in X : y \sqsubseteq x \)

- **Least upper bound of** \(X \), **denoted as** \(\sqcup X \)
 - \(X \sqsubseteq \sqcup X \land \forall y \in S : X \sqsubseteq y \Rightarrow \sqcup X \sqsubseteq y \)

- **Greatest lower bound of** \(X \), **denoted as** \(\sqcap X \)
 - \(\sqcap X \subseteq X \land \forall y \in S : y \subseteq X \Rightarrow y \subseteq \sqcap X \)
Bounds: example 1

Let's have a partial order $L = (S, \sqsubseteq)$ and the set $S = \{a, b, c, d, e\}$.

The upper bounds of $X = \{a, b\}$ are the elements $\{c, e\}$.
Bounds: example 2

Lets have a partial order $L = (S, \sqsubseteq)$ and the set $S = \{a, b, c, d, e\}$

The greatest lower bound of $X = \{b, e\}$ is the element b
Lattice

• Partial order $L = (S, \sqsubseteq)$ such that
 - $\sqcup X$ and $\sqcap X$ exist for $\forall X \subseteq S$
 - Unique greatest element $\top = \sqcup S = \sqcap \emptyset$
 - Unique least element $\bot = \sqcap S = \sqcup \emptyset$

• Height of a lattice
 - Length of the longest path from \bot to \top
Partial order $L = (S, \sqsubseteq)$ such that

- $\forall x, y \in S$ there is
 - Least upper bound $x \sqcup y$
 - Greatest lower bound $x \sqcap y$
Lattice: examples
Using finite lattices in static analysis

- Lattice $L = (S, \sqsubseteq)$
 - Set S of analysis facts (units of information)
 - Relation \sqsubseteq defines an ordering with respect to precision of the abstraction
 - $x \sqsubseteq y \Rightarrow x$ is more precise than y
 - $x \sqsubseteq y \Rightarrow y$ approximates x

- Example
 - Sign abstraction: $x = \{\text{POS}\}$, $y = \{\text{POS, ZERO}\}$
How to construct lattices

- Finite set R induces a lattice $(2^R, \sqsubseteq)$
 - $\bot = \cup \emptyset$
 - No information available
 - $\top = R$
 - Any possible value
 - $x \sqcup y = x \cup y$
 - join
 - $x \sqcap y = x \cap y$
 - meet
 - Height $|R|$

- Example
 - Set $R = \{0, 1, 2\}$
 - Height = 3

\[
\begin{align*}
\top &= \{0, 1, 2\} \\
\{0,1\} &\text{ } \{0,2\} \text{ } \{1,2\} \\
\{0\} &\text{ } \{1\} \text{ } \{2\} \\
\bot &\text{ } \{\}\text{ } \{\}\text{ } \{\}\text{ } \{\}
\end{align*}
\]
Running example

- **Program**
  ```c
  int factorial(int n) {
    int r;
    if (n == 0) r = 0;
    int f = 1;
    while (n > 0) {
      f = f * n;
      n = n - 1;
      if (n == 0) r = f;
    }
    return r;
  }
  ```

- **Static analysis:** possibly uninitialized variables
Encoding program statements

- Data for each node in the CFG
 - IN: valid before the program statement
 - OUT: valid after the program statement

- Merge operator \sqcup
 - CFG nodes with multiple predecessors
 - Typical approach: union or intersection

- Transfer functions
Transfer functions

- For each node in CFG (statement), we must define a transfer function

\[\text{OUT} = (\text{IN} \setminus \text{kill}) \cup \text{gen} \]

- Examples
 - Statement `int r;`
 \[\text{kill} = \{\}, \text{gen} = \{ r \} \]
 - Statement `r = f;`
 \[\text{kill} = \{ r \}, \text{gen} = \{\} \]
Monotone functions

- Function $f : S \rightarrow S$ is **monotone** if
 - $\forall x, y \in S : x \subseteq y \Rightarrow f(x) \subseteq f(y)$

- **Examples**
 - Constant functions
 - Operators \sqcap and \sqcup
 - Their compositions
Computing static analysis

- **Input**
 - Control flow graph of the given program
 - Initial value for each CFG node (⊥ or ∅)
 - Value is the set of known analysis facts (information)
 - Merge operator defined as the set union
 - Transfer functions F_i for each node in CFG

- **Approach:** *compute fixed points*
 - Information associated with the CFG nodes
Duality

\((S, \sqsubseteq)\) is a lattice \iff \((S, \sqsupseteq)\) is a lattice

\[
\begin{align*}
\bigcup (S, \sqsubseteq) &= \bigodot (S, \sqsupseteq) \\
\bigcap (S, \sqsubseteq) &= \bigvee (S, \sqsupseteq)
\end{align*}
\]

\[
\begin{align*}
\top (S, \sqsubseteq) &= \bot (S, \sqsupseteq) \\
\bot (S, \sqsubseteq) &= \top (S, \sqsupseteq)
\end{align*}
\]

- We focus just on \(\sqsubseteq\) and initial values \(\bot\)
Computing fixed points

• Motto: “walk up the lattice starting at ⊥, until you reach a fixed point”
 • In the worst case, ⊤ is the fixed point (if exists)

• Three algorithms
 • Naive (brute force)
 • Chaotic iteration
 • Worklist algorithm
Worklist algorithm

\[u_1 = \bot; \ldots, u_n = \bot; \]
\[q = [1, \ldots, n]; \]
\[\text{while } (q \neq []) \{ \]
\[\quad i = \text{head}(q); \]
\[\quad v_{IN} = \text{merge}(\text{pred}(i)); \]
\[\quad v_{OUT} = F_i(v_{IN}); \]
\[\quad q = \text{tail}(q); \]
\[\quad \text{if } (v_{OUT} \neq u_i) \{ \]
\[\quad \quad \text{append}(q, \text{succ}(i)); \]
\[\quad \quad u_i = v_{OUT}; \]
\[\quad \}
\[\}
\]
Classification
Static analysis categories

- Data-flow analysis
- Call graph construction
- Pointer analysis (aliasing)
- Escape analysis (threads)
- Side effect analysis
Data-flow analysis

- Available expressions
- Reaching definitions
- Live variables (values)
Available expressions

```
var x, y, a, b;
y = a - b;
while (y < a + b) {
    a = a - 1;
    x = a + b;
}
```

```
var x, y, a, b, t;
y = a - b;
t = a + b;
while (y < t) {
    a = a - 1;
    t = a + b;
    x = t;
}
```
Direction

• Forward analysis
 - Computes information about the past behavior
 - Starts at the entry node (CFG) and goes forward

• Backward analysis
 - Computes information about the future behavior
 - Starts at the exit CFG node and moves backwards
Approximation level

• May analysis
 - Computes information that may be true (over-approximation)
 • Information for P that is true at least for one path coming into P
 - Merge operator: set union

• Must analysis
 - Computes information that must be true (under-approximation)
 • Information for P that is true for all execution paths coming into P
 - Merge operator: set intersection
Flow sensitivity

- Flow-sensitive analysis
 - Considers the program’s control flow (CFG) and the order of individual statements
 - Example: available expressions

- Flow-insensitive analysis
 - Program seen as an unordered collection of statements
 - Results are valid for any order of program statements
 - $S1; S2$ versus $S2; S1$
 - Example: type analysis (inference)
Scope

• Intra-procedural
 ▪ Every single procedure analyzed separately
 ▪ Maximally pessimistic assumptions about side effects of procedure calls

• Inter-procedural
 ▪ Whole program analyzed together
 ▪ Sometimes without libraries (huge)
Context sensitivity

- Context-sensitive analysis
 - Call site: source code location for the call
 - Call stack: procedure calls and returns
 - Receiver objects for method calls ("this")
 - Analysis results for the method M depend on the specific caller of M

- Context-insensitive analysis
 - Same analysis results for every call site of M
Tools

- WALA
 - Java, JavaScript, JVM (bytecode)
 - http://wala.sourceforge.net/
 - https://wala.github.io/

- Soot
 - Java, JVM-based languages (bytecode)
 - http://sable.github.io/soot/

- CIL
 - Only for programs written in C
 - http://www.cs.berkeley.edu/~necula/cil/
 - https://github.com/cil-project/cil

- LLVM
 - C, C++, Objective-C
 - Clang static analyzer
 - http://llvm.org/

- Roslyn: .NET compiler platform
 - https://github.com/dotnet/roslyn
Further reading

- M. Schwartzbach. *Lecture Notes on Static Analysis*. Department of CS, Aarhus University

- A. Møller and M. Schwartzbach. *Static Program Analysis*. Department of CS, Aarhus University
 - https://cs.au.dk/~amoeller/spa/