
http://d3s.mff.cuni.cz

Static Analysis:
Overview, Data-Flow

Pavel Parízek

Static analysis

Pavel Parízek Static Analysis: Overview, Data-Flow 2

Purpose

Gather information about run-time behavior of
programs without executing them

Information

Does the variable x have a constant value?

Is the value of the variable x always positive?

May the pointer p be null at a code location?

What are possible values of the variable y?

Static analysis: characteristics

Pavel Parízek Static Analysis: Overview, Data-Flow 3

Target model of program behavior
some kind of Control Flow Graph (CFG)

Provides approximate answers
Decision problems: yes / no / don’t know
Collecting some values: superset / subset

Information valid for all possible runs

Summarizing different execution paths
branches of the if-else statement, loop iterations

Does not know run-time values (inputs)

Comparison

Pavel Parízek Static Analysis: Overview, Data-Flow 4

Static analysis

control-flow graph

summarizes information

from different paths

approximation

scalability

Model checking

program state space

reasons about execution

paths independently

path-sensitivity

precision

Static analysis in practice

Pavel Parízek Static Analysis: Overview, Data-Flow 5

Optimizing compilers

Detect superfluous evaluations of the same expression

Detect unused local variables or dead code fragments

Program verification

Search for possible runtime errors

Example: null pointer dereference, unsynchronized access

Constructing abstraction for model checking

Slicing: identify statements irrelevant for a given property

Approximation

Pavel Parízek Static Analysis: Overview, Data-Flow 6

Q: What important restrictions there are?

Restrictions

Pavel Parízek Static Analysis: Overview, Data-Flow 7

Approximation must be safe
That precisely means “imprecise on the safe side”

Target domain: optimizing compilers
Under-approximation

Optimization performed on the basis of analysis results
must not violate semantics of a given program

Example: constant propagation
Sound analysis identifies a program variable as a
constant only when it is really certain (100%)

Restrictions

Pavel Parízek Static Analysis: Overview, Data-Flow 8

Approximation must be safe
That precisely means “imprecise on the safe side”

Target domain: search for errors
Over-approximation

Safe analysis reports all real errors and also some
spurious errors (false positives)

Example: possible null dereferences
We want to know about all of them so we can add
runtime checks (if (v != null) ...)

Basic concepts (theory and examples)

Pavel Parízek Static Analysis: Overview, Data-Flow 9

Running example

Pavel Parízek Static Analysis: Overview, Data-Flow 10

Program
int factorial(int n) {

int r;
if (n == 0) r = 0;
int f = 1;
while (n > 0) {

f = f * n;
n = n - 1;
if (n == 0) r = f;

}
return r;

}

Static analysis: possibly uninitialized variables

Control flow graph (CFG)

Pavel Parízek Static Analysis: Overview, Data-Flow 11

Directed graph with labels

Nodes: program points (statements)

Edges: possible flow of control
pred(n) and succ(n) for each node n in a CFG

Single point of entry

Single point of exit

CFG: modeling control structures

Pavel Parízek Static Analysis: Overview, Data-Flow 12

sequence
S1;S2

if (E) {S}
if (E) {S1}

else {S2}
while (E) {S}

Analysis domain

Pavel Parízek Static Analysis: Overview, Data-Flow 13

Set of possible values (facts)

Finite lattice over the set

Partial order

Pavel Parízek Static Analysis: Overview, Data-Flow 14

Mathematical structure L = (S, ⊑)

S is a set of values (e.g., analysis facts)

⊑ is a binary relation (e.g., is-subset)
Reflexivity: ∀x ∊ S : x ⊑ x

Transitivity: ∀x,y,z ∊ S : x ⊑ y ∧ y ⊑ z ⇒ x ⊑ z

Anti-symmetry: ∀x,y ∊ S : x ⊑ y ∧ y ⊑ x ⇒ x = y

Examples

Bounds

Pavel Parízek Static Analysis: Overview, Data-Flow 15

Lets have a partial order L = (S, ⊑) and X ⊆ S

Upper bound
y ∊ S is an upper bound for X, i.e. X ⊑ y, if ∀x ∊ X : x ⊑ y

Lower bound
y ∊ S is a lower bound for X, i.e. y ⊑ X, if ∀x ∊ X : y ⊑ x

Least upper bound of X, denoted as ⊔X
X ⊑ ⊔X ∧ ∀y ∊ S : X ⊑ y ⇒ ⊔X ⊑ y

Greatest lower bound of X, denoted as ⊓X
⊓X ⊑ X ∧ ∀y ∊ S : y ⊑ X ⇒ y ⊑ ⊓X

Bounds: example 1

Pavel Parízek Static Analysis: Overview, Data-Flow 16

Lets have a partial order L = (S, ⊑) and

the set S = {a, b, c, d, e}

The upper bounds of X = {a, b} are the elements {c, e}

a b

e

d

c

Bounds: example 2

Pavel Parízek Static Analysis: Overview, Data-Flow 17

Lets have a partial order L = (S, ⊑) and

the set S = {a, b, c, d, e}

The greatest lower bound of X = {b, e} is the element b

a b

e

d

c

Lattice

Pavel Parízek Static Analysis: Overview, Data-Flow 18

Partial order L = (S, ⊑) such that

⊔X and ⊓X exist for ∀X ⊆ S

Unique greatest element ⊤ = ⊔S = ⊓∅

Unique least element ⊥ = ⊓S = ⊔∅

Height of a lattice

Length of the longest path from ⊥ to ⊤

Finite lattice

Pavel Parízek Static Analysis: Overview, Data-Flow 19

Partial order L = (S, ⊑) such that

∀x,y ∊ S there is

Least upper bound x ⊔ y

Greatest lower bound x ⊓ y

Lattice: examples

Pavel Parízek Static Analysis: Overview, Data-Flow 20

Using finite lattices in static analysis

Pavel Parízek Static Analysis: Overview, Data-Flow 21

Lattice L = (S, ⊑)

Set S of analysis facts (units of information)

Relation ⊑ defines an ordering with respect
to precision of the abstraction

x ⊑ y ⇒ x is more precise than y

x ⊑ y ⇒ y approximates x

Example

Sign abstraction: x = { POS }, y = { POS, ZERO }

How to construct lattices

Pavel Parízek Static Analysis: Overview, Data-Flow 22

Finite set R induces a lattice (2R, ⊑)
⊥ = ⊔∅

No information available

⊤ = R
Any possible value

x ⊔ y = x ∪ y
join

x ⊓ y = x ∩ y
meet

Height |R|

Example
Set R = {0, 1, 2}
Height = 3 ⊥ = { }

{0} {1} {2}

{0,1} {0,2} {1,2}

⊤ = {0,1,2}

Running example

Pavel Parízek Static Analysis: Overview, Data-Flow 23

Program
int factorial(int n) {

int r;
if (n == 0) r = 0;
int f = 1;
while (n > 0) {

f = f * n;
n = n - 1;
if (n == 0) r = f;

}
return r;

}

Static analysis: possibly uninitialized variables

Encoding program statements

Pavel Parízek Static Analysis: Overview, Data-Flow 24

Data for each node in the CFG

IN: valid before the program statement

OUT: valid after the program statement

Merge operator ⊔

CFG nodes with multiple predecessors

Typical approach: union or intersection

Transfer functions

Transfer functions

Pavel Parízek Static Analysis: Overview, Data-Flow 25

For each node in CFG (statement), we must
define a transfer function

OUT = (IN \ kill) ∪ gen

Examples

Statement int r;

kill = {}, gen = { r }

Statement r = f;

kill = { r }, gen = {}

Monotone functions

Pavel Parízek Static Analysis: Overview, Data-Flow 26

Function f : S → S is monotone if

∀x, y ∊ S : x ⊑ y ⇒ f(x) ⊑ f(y)

Examples

Constant functions

Operators ⊓ and ⊔

Their compositions

Computing static analysis

Pavel Parízek Static Analysis: Overview, Data-Flow 27

Input

Control flow graph of the given program

Initial value for each CFG node (⊥ or ∅)

Value is the set of known analysis facts (information)

Merge operator defined as the set union

Transfer functions Fi for each node in CFG

Approach: compute fixed points

Information associated with the CFG nodes

Duality

Pavel Parízek Static Analysis: Overview, Data-Flow 28

(S, ⊑) is a lattice ⇔ (S, ⊒) is a lattice

∐(S, ⊑) = ∏(S, ⊒) ⊤(S, ⊑) = ⊥(S, ⊒)

∏(S, ⊑) = ∐(S, ⊒) ⊥(S, ⊑) = ⊤(S, ⊒)

We focus just on ⊑ and initial values ⊥

Computing fixed points

Pavel Parízek Static Analysis: Overview, Data-Flow 29

Motto: “walk up the lattice starting at ⊥, until
you reach a fixed point”

In the worst case, ⊤ is the fixed point (if exists)

Three algorithms

Naive (brute force)

Chaotic iteration

Worklist algorithm

Worklist algorithm

Pavel Parízek Static Analysis: Overview, Data-Flow 30

u1 = ⊥; ..., un = ⊥;

q = [1, ..., n];

while (q ≠ []) {

i = head(q);

vIN = merge(pred(i));

vOUT = Fi(vIN);

q = tail(q);

if (vOUT ≠ ui) {

append(q, succ(i));

ui = vOUT;

}

}

Classification

Pavel Parízek Static Analysis: Overview, Data-Flow 31

Static analysis categories

Pavel Parízek Static Analysis: Overview, Data-Flow 32

Data-flow analysis

Call graph construction

Pointer analysis (aliasing)

Escape analysis (threads)

Side effect analysis

Data-flow analysis

Pavel Parízek Static Analysis: Overview, Data-Flow 33

Available expressions

Reaching definitions

Live variables (values)

Available expressions

Pavel Parízek Static Analysis: Overview, Data-Flow 34

var x,y,a,b;

y = a - b;

while (y < a + b) {

a = a - 1;

x = a + b;

}

var x,y,a,b,t;

y = a - b;

t = a + b;

while (y < t) {

a = a - 1;

t = a + b;

x = t;

}

Direction

Pavel Parízek Static Analysis: Overview, Data-Flow 35

Forward analysis

Computes information about the past behavior

Starts at the entry node (CFG) and goes forward

Backward analysis

Computes information about the future behavior

Starts at the exit CFG node and moves backwards

Approximation level

Pavel Parízek Static Analysis: Overview, Data-Flow 36

May analysis
Computes information that may be true (over-approximation)

Information for P that is true at least for one path coming into P

Merge operator: set union

Must analysis
Computes information that must be true (under-approximation)

Information for P that is true for all execution paths coming into P

Merge operator: set intersection

Flow sensitivity

Pavel Parízek Static Analysis: Overview, Data-Flow 37

Flow-sensitive analysis
Considers the program’s control flow (CFG) and the order
of individual statements

Example: available expressions

Flow-insensitive analysis
Program seen as an unordered collection of statements

Results are valid for any order of program statements
S1 ; S2 versus S2 ; S1

Example: type analysis (inference)

Scope

Pavel Parízek Static Analysis: Overview, Data-Flow 38

Intra-procedural

Every single procedure analyzed separately

Maximally pessimistic assumptions about side
effects of procedure calls

Inter-procedural

Whole program analyzed together

Sometimes without libraries (huge)

Context sensitivity

Pavel Parízek Static Analysis: Overview, Data-Flow 39

Context-sensitive analysis

Call site: source code location for the call

Call stack: procedure calls and returns

Receiver objects for method calls (“this”)

Analysis results for the method M depend on the
specific caller of M

Context-insensitive analysis

Same analysis results for every call site of M

Tools

Pavel Parízek Static Analysis: Overview, Data-Flow 40

WALA
Java, JavaScript, JVM (bytecode)
https://wala.github.io/
https://github.com/wala

Soot
Java, JVM-based languages (bytecode)
https://soot-oss.github.io/soot/

CIL
Only for programs written in C
http://www.cs.berkeley.edu/~necula/cil/
https://github.com/cil-project/cil

LLVM
C, C++, Objective-C
Clang static analyzer
http://llvm.org/

Roslyn: .NET compiler platform
https://github.com/dotnet/roslyn

https://wala.github.io/
https://github.com/wala
https://soot-oss.github.io/soot/
http://www.cs.berkeley.edu/~necula/cil/
https://github.com/cil-project/cil
http://llvm.org/
https://github.com/dotnet/roslyn

Further reading

Pavel Parízek Static Analysis: Overview, Data-Flow 41

M. Schwartzbach. Lecture Notes on Static
Analysis. Department of CS, Aarhus University

A. Møller and M. Schwartzbach. Static Program
Analysis. Department of CS, Aarhus University

https://cs.au.dk/~amoeller/spa/

F. Nielson, H. R. Nielson, and Chris Hankin.
Principles of Program Analysis. Springer, 2005

https://cs.au.dk/~amoeller/spa/

