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Static analysis
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Purpose

Gather information about run-time behavior of 
programs without executing them

Information

Does the variable x have a constant value?

Is the value of the variable x always positive?

May the pointer p be null at a code location?

What are possible values of the variable y?



Static analysis: characteristics
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Target model of program behavior
some kind of Control Flow Graph (CFG)

Provides approximate answers
Decision problems: yes / no / don’t know
Collecting some values: superset / subset

Information valid for all possible runs

Summarizing different execution paths
branches of the if-else statement, loop iterations

Does not know run-time values (inputs)



Comparison
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Static analysis

control-flow graph

summarizes information

from different paths

approximation

scalability

Model checking

program state space

reasons about execution

paths independently

path-sensitivity

precision



Static analysis in practice
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Optimizing compilers

Detect superfluous evaluations of the same expression

Detect unused local variables or dead code fragments

Program verification

Search for possible runtime errors

Example: null pointer dereference, unsynchronized access

Constructing abstraction for model checking

Slicing: identify statements irrelevant for a given property



Approximation
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Q: What important restrictions there are?



Restrictions
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Approximation must be safe
That precisely means “imprecise on the safe side”

Target domain: optimizing compilers
Under-approximation

Optimization performed on the basis of analysis results 
must not violate semantics of a given program

Example: constant propagation
Sound analysis identifies a program variable as a 
constant only when it is really certain (100%)



Restrictions
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Approximation must be safe
That precisely means “imprecise on the safe side”

Target domain: search for errors
Over-approximation

Safe analysis reports all real errors and also some 
spurious errors (false positives)

Example: possible null dereferences
We want to know about all of them so we can add 
runtime checks (if (v != null) ...)



Basic concepts (theory and examples)
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Running example
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Program
int factorial(int n) {

int r;
if (n == 0) r = 0;
int f = 1;
while (n > 0) {

f = f * n;
n = n - 1;
if (n == 0) r = f;

}
return r;

}

Static analysis: possibly uninitialized variables



Control flow graph (CFG)
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Directed graph with labels

Nodes: program points (statements)

Edges: possible flow of control
pred(n) and succ(n) for each node n in a CFG

Single point of entry

Single point of exit



CFG: modeling control structures 

Pavel Parízek Static Analysis: Overview, Data-Flow 12

sequence
S1;S2

if (E) {S}
if (E) {S1}

else {S2}
while (E) {S}



Analysis domain
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Set of possible values (facts)

Finite lattice over the set



Partial order
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Mathematical structure L = (S, ⊑)

S is a set of values (e.g., analysis facts)

⊑ is a binary relation (e.g., is-subset)
Reflexivity: ∀x ∊ S : x ⊑ x

Transitivity: ∀x,y,z ∊ S : x ⊑ y ∧ y ⊑ z ⇒ x ⊑ z

Anti-symmetry: ∀x,y ∊ S : x ⊑ y ∧ y ⊑ x ⇒ x = y

Examples



Bounds
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Lets have a partial order L = (S, ⊑) and X ⊆ S

Upper bound
y ∊ S is an upper bound for X, i.e. X ⊑ y, if ∀x ∊ X : x ⊑ y

Lower bound
y ∊ S is a lower bound for X, i.e. y ⊑ X, if ∀x ∊ X : y ⊑ x

Least upper bound of X, denoted as ⊔X
X ⊑ ⊔X ∧ ∀y ∊ S : X ⊑ y ⇒ ⊔X ⊑ y

Greatest lower bound of X, denoted as ⊓X
⊓X ⊑ X ∧ ∀y ∊ S : y ⊑ X ⇒ y ⊑ ⊓X



Bounds: example 1
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Lets have a partial order L = (S, ⊑) and

the set S = {a, b, c, d, e}

The upper bounds of X = {a, b} are the elements {c, e}

a b

e

d

c



Bounds: example 2
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Lets have a partial order L = (S, ⊑) and

the set S = {a, b, c, d, e}

The greatest lower bound of X = {b, e} is the element b

a b

e

d

c



Lattice
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Partial order L = (S, ⊑) such that

⊔X and ⊓X exist for ∀X ⊆ S

Unique greatest element ⊤ = ⊔S = ⊓∅

Unique least element ⊥ = ⊓S = ⊔∅

Height of a lattice

Length of the longest path from ⊥ to ⊤



Finite lattice
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Partial order L = (S, ⊑) such that

∀x,y ∊ S there is

Least upper bound x ⊔ y

Greatest lower bound x ⊓ y



Lattice: examples
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Using finite lattices in static analysis
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Lattice L = (S, ⊑)

Set S of analysis facts (units of information)

Relation ⊑ defines an ordering with respect
to precision of the abstraction

x ⊑ y ⇒ x is more precise than y

x ⊑ y ⇒ y approximates x

Example

Sign abstraction: x = { POS }, y = { POS, ZERO }



How to construct lattices
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Finite set R induces a lattice (2R, ⊑)
⊥ = ⊔∅

No information available

⊤ = R
Any possible value

x ⊔ y = x ∪ y
join

x ⊓ y = x ∩ y
meet

Height |R|

Example
Set R = {0, 1, 2}
Height = 3 ⊥ = { }

{0} {1} {2}

{0,1} {0,2} {1,2}

⊤ = {0,1,2}



Running example
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Program
int factorial(int n) {

int r;
if (n == 0) r = 0;
int f = 1;
while (n > 0) {

f = f * n;
n = n - 1;
if (n == 0) r = f;

}
return r;

}

Static analysis: possibly uninitialized variables



Encoding program statements
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Data for each node in the CFG

IN: valid before the program statement

OUT: valid after the program statement

Merge operator ⊔

CFG nodes with multiple predecessors

Typical approach: union or intersection

Transfer functions



Transfer functions
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For each node in CFG (statement), we must 
define a transfer function

OUT = (IN \ kill) ∪ gen

Examples

Statement int r;

kill = {}, gen = { r }

Statement r = f;

kill = { r }, gen = {}



Monotone functions
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Function f : S → S is monotone if

∀x, y ∊ S : x ⊑ y ⇒ f(x) ⊑ f(y)

Examples

Constant functions

Operators ⊓ and ⊔

Their compositions



Computing static analysis
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Input

Control flow graph of the given program

Initial value for each CFG node (⊥ or ∅)

Value is the set of known analysis facts (information)

Merge operator defined as the set union

Transfer functions Fi for each node in CFG

Approach: compute fixed points

Information associated with the CFG nodes



Duality
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(S, ⊑) is a lattice ⇔ (S, ⊒) is a lattice

∐(S, ⊑) = ∏(S, ⊒) ⊤(S, ⊑) = ⊥(S, ⊒)

∏(S, ⊑) = ∐(S, ⊒) ⊥(S, ⊑) = ⊤(S, ⊒)

We focus just on ⊑ and initial values ⊥



Computing fixed points
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Motto: “walk up the lattice starting at ⊥, until 
you reach a fixed point”

In the worst case, ⊤ is the fixed point (if exists)

Three algorithms

Naive (brute force)

Chaotic iteration

Worklist algorithm



Worklist algorithm
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u1 = ⊥; ..., un = ⊥;

q = [1, ..., n];

while (q ≠ []) {

i = head(q);

vIN = merge(pred(i));

vOUT = Fi(vIN);

q = tail(q);

if (vOUT ≠ ui) {

append(q, succ(i));

ui = vOUT;

}

}



Classification
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Static analysis categories
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Data-flow analysis

Call graph construction

Pointer analysis (aliasing)

Escape analysis (threads)

Side effect analysis



Data-flow analysis
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Available expressions

Reaching definitions

Live variables (values)



Available expressions
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var x,y,a,b;

y = a - b;

while (y < a + b) {

a = a - 1;

x = a + b;

}

var x,y,a,b,t;

y = a - b;

t = a + b;

while (y < t) {

a = a - 1;

t = a + b;

x = t;

}



Direction
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Forward analysis

Computes information about the past behavior

Starts at the entry node (CFG) and goes forward

Backward analysis

Computes information about the future behavior

Starts at the exit CFG node and moves backwards



Approximation level
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May analysis
Computes information that may be true (over-approximation)

Information for P that is true at least for one path coming into P

Merge operator: set union

Must analysis
Computes information that must be true (under-approximation)

Information for P that is true for all execution paths coming into P

Merge operator: set intersection



Flow sensitivity
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Flow-sensitive analysis
Considers the program’s control flow (CFG) and the order 
of individual statements

Example: available expressions

Flow-insensitive analysis
Program seen as an unordered collection of statements

Results are valid for any order of program statements
S1 ; S2 versus   S2 ; S1

Example: type analysis (inference)



Scope
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Intra-procedural

Every single procedure analyzed separately

Maximally pessimistic assumptions about side 
effects of procedure calls

Inter-procedural

Whole program analyzed together

Sometimes without libraries (huge)



Context sensitivity
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Context-sensitive analysis

Call site: source code location for the call

Call stack: procedure calls and returns

Receiver objects for method calls (“this”)

Analysis results for the method M depend on the 
specific caller of M

Context-insensitive analysis

Same analysis results for every call site of M



Tools
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WALA
Java, JavaScript, JVM (bytecode)
https://wala.github.io/
https://github.com/wala

Soot
Java, JVM-based languages (bytecode)
https://soot-oss.github.io/soot/

CIL
Only for programs written in C
http://www.cs.berkeley.edu/~necula/cil/
https://github.com/cil-project/cil

LLVM
C, C++, Objective-C
Clang static analyzer
http://llvm.org/

Roslyn: .NET compiler platform
https://github.com/dotnet/roslyn

https://wala.github.io/
https://github.com/wala
https://soot-oss.github.io/soot/
http://www.cs.berkeley.edu/~necula/cil/
https://github.com/cil-project/cil
http://llvm.org/
https://github.com/dotnet/roslyn


Further reading
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M. Schwartzbach. Lecture Notes on Static 
Analysis. Department of CS, Aarhus University

A. Møller and M. Schwartzbach. Static Program 
Analysis. Department of CS, Aarhus University

https://cs.au.dk/~amoeller/spa/

F. Nielson, H. R. Nielson, and Chris Hankin. 
Principles of Program Analysis. Springer, 2005

https://cs.au.dk/~amoeller/spa/

