Abstract Interpretation

http://d3s.mff.cuni.cz

Pavel Parízek

Department of
Distributed and
Dependable
Systems

FACULTY
OF MATHEMATICS
AND PHYSICS
Charles University
Abstract interpretation

- Theoretical framework unifying different program analyses
- Formal underpinning of sound and correct static analyses

- Practice: Code Contracts, Astree, Polyspace
Reusing concepts from static analysis

- Control-flow graphs
- Finite lattices
- Transfer functions
- Fixed points
 - Iterative computation
 - Work list algorithm
New concepts

- Explicit abstraction
- Concrete domain
- Abstract domain
- Galois connections

Purpose: constructing sound abstractions
int compute(int x, int y) {
 Requires (x \geq 0 \&\& y \geq 0);

 y = y + 1;
 z = x + y;

 Assert (z \geq 1);

 return z;
}
Concrete domain

• Finite lattice $C = (E_C, \sqsubseteq^C)$
 - Set of concrete elements E_C
 - Partial order \sqsubseteq^C on E_C

• Notation abuse
 - Symbol C means both the finite lattice and the set of concrete elements

• Example
 - Possible values of an integer variable
 - $E_C = 2^\mathbb{N}$ (all possible subsets)
 - $\sqsubseteq^C = \subseteq$ (plain subset ordering)
Abstract domain

- Finite lattice $A = (E_A, \sqsubseteq^A, \bot, \top, \sqcup, \sqcap)$
 - Set of abstract elements E_A
 - Partial order \sqsubseteq^A on E_A
 - Least abstract element \bot
 - Greatest abstract element \top
 - Join operator \sqcup
 - Meet operator \sqcap
Abstract domain: Intervals

- **Definition**
 - $E_A = \{ [x, y] \mid x, y \in \mathbb{Z} \cup \{-\infty, +\infty\} \}$
 - Partial order \subseteq^A: interval inclusion
 - \bot is empty interval
 - $\top = \{-\infty, +\infty\}$

- **Examples**
 - $[0, 2] \sqsubseteq^A [0, 4]$
 - $[0, 2] \not\subseteq^A [1, 3]$
Relation between domains

- Abstraction function \(\alpha : C \mapsto A \)
 - Computes the most precise abstract representation

- Concretization function \(\gamma : A \mapsto C \)

- Example: interval domain
 - \(\alpha(S) = [\min(S), \max(S)] \), \(S = \{s_1, \ldots, s_N\} \)
 - \(\gamma([u, v]) = \{ x \in \mathbb{Z} | u \leq x \leq v \} \)
Galois connection

• Necessary conditions
 ▪ Both functions α and γ are monotone
 ▪ $\forall a \in A, c \in C : \alpha(c) \sqsubseteq^A a \iff c \sqsubseteq^C \gamma(a)$

• Relation between partially ordered sets A and C

• Characterizes sound abstraction
 ▪ We can lose precision (over-approximating)
 $$c \sqsubseteq^C \gamma \circ \alpha(c) \quad \alpha \circ \gamma(a) \sqsubseteq^A a$$
Transfer functions

- Goal: represent effects of program statements

- Concrete transfer function $\tau_C : C \mapsto C$
 - Expresses concrete semantics of program statements

- Abstract transfer function $\tau_A : A \mapsto A$
 - Expresses abstract semantics of program statements

- Relation: $\forall a \in A : \tau_C \circ \gamma(a) \subseteq \gamma \circ \tau_A(a)$

- Concrete program P_C
- Abstract program P_A
How to compute solution

- Input problem
 - Concrete program P_C
 - Abstract domain A
 - Functions α and γ
 - Transfer function τ_A

- Representing information
 - Separate analysis value for each program variable
 - One large set with values for all program variables
How to compute solution

- Input analysis problem
- Representing information

- Approach: find $lfp(P_A)$
 - Symbol $lfp \sim$ least fixed point
 - Using the work-list algorithm

- Result: $lfp(P_C) \sqsubseteq^C \gamma(lfp(P_A))$
Problem: **fixpoint computation may diverge**
- Why: infinite increasing chains (sequences)

Ascending Chain Condition (ACC)
- Strictly ascending sequence of elements reaches some fixed point (terminates)
- Example: $a_1 \subseteq a_2 \subseteq a_3 \subseteq \ldots \subseteq a_n = a_{n+1} = a_{n+2}$

Solution: **Widening operator**
Widening operator \(\triangledown : A \times A \mapsto A \)

- \(\forall a_1, a_2 \in A : (a_1 \sqsubseteq a_1 \triangledown a_2) \land (a_2 \sqsubseteq a_1 \triangledown a_2) \)

Sequence \(w_0 = a_0, \ldots, w_{i+1} = w_i \triangledown a_{i+1} \) not strictly increasing

\(\rightarrow\) fixed point computation will terminate

Other benefit: faster convergence
• “Intervals” does not satisfy ACC

• Option 1
 - Keep stable bounds (preserve the value)
 - Extrapolate unstable bounds (\([-\infty, +\infty]\))

• Option 2
 - Keep valid bounds from the first operand
 - Extrapolate bounds otherwise (\([-\infty, +\infty]\))
Widening

• Consequence: losing precision

• Practice
 □ Use widening operator
 • on backward edges in CFG
 • for really too big intervals

• Remedy: Narrowing
 □ Complementary operator
 □ Goal: improving precision
Numerical abstract domains

- Non-relational domains
 - Program variables treated separately
 - **Examples: signs, intervals**

- Relational domains
 - Consider relations between variables
 - **Example: predicate abstraction**
Cartesian abstraction

• Very important special case

• Key idea
 - \(\alpha \): flattening the analysis information
 - \(\gamma \): restores all possible combinations

• Pros: better scalability
• Cons: loses precision

• Example: predicate abstraction
Other abstract domains

- **Octagon**
 - Values represented as constraints $\pm x \pm y \leq c$

- **Polyhedral**
 - Values represented as constraints $\sum_i a_{ij} \ast x_i \leq c_j$

- **Linear equations**

- **Strings**: Prefix, Suffix, Character inclusion, ...
Using abstract interpretation

1) Design the abstract domains

2) Define abstraction functions

3) Design widening operators

4) Define all transfer functions
Multiple abstract domains

- **Combination**
 - Two abstract domains A_1, A_2
 - Cartesian product: $A_1 \times A_2$
 - $\forall <a_1, a_2> \in A_1 \times A_2 : \gamma_{A_1 \times A_2}(<a_1, a_2>) \subseteq (\gamma_{A_1}(a_1) \cap \gamma_{A_2}(a_2))$

- **Composition**
 - One concrete domain C
 - Abstract domains A_1, A_2
 - Galois connection
 - α_1, γ_1 between C and A_1
 - α_2, γ_2 between A_1 and A_2
 - We get the connection between C and A_2
 - Functions: $\alpha_2 \circ \alpha_1, \gamma_1 \circ \gamma_2$
Tools

- **Clousot**
 - Program analyzer for Code Contracts (C#/.NET)
 - Verifies method contracts and low-level errors

- **Astrée**
 - Static analyzer for programs written in C
 - Programs without dynamic memory allocation and recursion
 - Industrial applications (Airbus A340 SW)

- **Polyspace**
 - Static analysis toolset for programs in C/C++/Ada
Further reading

