Abstract Interpretation

http://d3s.mff.cuni.cz

=Depasntet s Pavel Parizek

Dependable

FACULTY
OF MATHEMATICS

AND PHYSICS
Charles University




Abstract interpretation

* Theoretical framework unifying different
program analyses

°* Formal underpinning of sound and correct
static analyses

* Practice: Code Contracts, Astree, Polyspace

Pavel Parizek Abstract Interpretation 2



Reusing concepts from static analysis
e ——
* Control-flow graphs
° Finite lattices
° Transfer functions
° Fixed points
= |terative computation
= Work list algorithm

Pavel Parizek Abstract Interpretation 3



New concepts

* Explicit abstraction

® Concrete domain
® Abstract domain

® Galois connections

* Purpose: constructing sound abstractions

Pavel Parizek Abstract Interpretation 4



Example program

int compute(int x, int y) {
Requires (x >= 0 && y >= 0);

y =y + 1
Z = X + VY;

Assert (z >= 1);

return z;

}

Pavel Parizek Abstract Interpretation 5



Concrete domain

* Finite lattice C= (E, C°)
= Set of concrete elements E.
= Partial order E€ on E

® Notation abuse

= Symbol C means both the finite lattice and the set of
concrete elements

°* Example
= Possible values of an integer variable
= E.=2N (all possible subsets)
s E¢=C (plain subset ordering)

Pavel Parizek Abstract Interpretation 6



Abstract domain

* Finite lattice A=(E,, EA L, T, U, M)

= Set of abstract elements E,

= Partial order C*on E,

= Least abstract element L

= Greatest abstract element T
= Join operator LI

" Meet operator I'

Pavel Parizek Abstract Interpretation 7



Abstract domain: Intervals

® Definition
"Ex={Ixyl | xy€ZU/{-x,+0}}
= Partial order CA: interval inclusion
= | is empty interval

=T = {-OO’+OO}

°* Examples
= [0, 2] EA O, 4]
= [0, 2] £7[1, 3]

Pavel Parizek Abstract Interpretation 8



Relation between domains

® Abstraction functiona :CH A

= Computes the most precise abstract representation

® Concretization functiony: A C

°* Example: interval domain
= a(S) = [min(S), max(S)], S = {sy, ---, S\}
" V([u,v])={x€ Z|usx<v}

Pavel Parizek Abstract Interpretation 9



Galois connection

* Necessary conditions
= Both functions @ and y are monotone
s VYaeA ceC:a(c)E*a © cCCy(a)

* Relation between partially ordered sets A and C

® Characterizes sound abstraction
= We can lose precision (over-approximating)
cCtyoa(c) aovy(a)Cha

Pavel Parizek Abstract Interpretation 10



Transfer functions

®* Goal: represent effects of program statements

® Concrete transfer function T.: C— C
= Expresses concrete semantics of program statements

® Abstract transfer function T,: AP A
= Expresses abstract semantics of program statements

° Relation:Va€A: T.oy(a) S Yo T,la)

® Concrete program P
® Abstract program P,

Pavel Parizek Abstract Interpretation 11



How to compute solution

° |[nput problem
= Concrete program P
= Abstract domain A
= Functions @ and y

= Transfer function T,

* Representing information
= Separate analysis value for each program variable
= One large set with values for all program variables

Pavel Parizek Abstract Interpretation 12



How to compute solution

° Input analysis problem
®* Representing information

° Approach: find Ifp(P,)
= Symbol Ifp ~ least fixed point

= Using the work-list algorithm

* Result: Ifp(Pc) E Y(Ifp(Py))

Pavel Parizek Abstract Interpretation 13



Divergence

* Problem: fixpoint computation may diverge

= Why: infinite increasing chains (sequences)

* Ascending Chain Condition (ACC)

= Strictly ascending sequence of elements reaches
some fixed point (terminates)

= Example:a;, E a,Ea,E ... Ea,=0a,,,=0,,,

* Solution: Widening operator

Pavel Parizek Abstract Interpretation 14



Widening

°* Widening operatorv: AxA B A
“"Va,0,€A:(0,Ea,va,)A(a,Ea,va,)

®* Sequence w, =aq,, ..., Wi,; = W; vV a,, hot
strictly increasing

=>» fixed point computation will terminate

* Other benefit: faster convergence

Pavel Parizek Abstract Interpretation 15



Widening: Intervals

°* “Intervals” does not satisfy ACC

°® Option 1
= Keep stable bounds (preserve the value)
= Extrapolate unstable bounds ({-c0,+})

® Option 2
= Keep valid bounds from the first operand
= Extrapolate bounds otherwise ({-o,+x})

Pavel Parizek Abstract Interpretation 16



Widening

°* Consequence: losing precision

® Practice

= Use widening operator
® on backward edges in CFG
* for really too big intervals

°* Remedy: Narrowing
= Complementary operator
= Goal: improving precision

Pavel Parizek Abstract Interpretation 17



Numerical abstract domains

* Non-relational domains
= Program variables treated separately
= Examples: signs, intervals

®* Relational domains
= Consider relations between variables
= Example: predicate abstraction

Pavel Parizek Abstract Interpretation 18



Cartesian abstraction

* Very important special case

* Key idea
= . flattening the analysis information
= y: restores all possible combinations

® Pros: better scalability
® Cons: loses precision

°* Example: predicate abstraction

Pavel Parizek Abstract Interpretation 19



Other abstract domains

® QOctagon
= Values represented as constraints . x £ y<c

* Polyhedral

" Values represented as constraints 2, a; * x; <

® Linear equations

® Strings: Prefix, Suffix, Character inclusion, ...

Pavel Parizek Abstract Interpretation 20



Using abstract interpretation
R R RRRRRRRRRRRRRRRRRRRRRRRRRRAARERERERERCEERAWAA—AAR =
1) Design the abstract domains
2) Define abstraction functions

3) Design widening operators

4) Define all transfer functions

Pavel Parizek Abstract Interpretation 21



Multiple abstract domains

°* Combination
= Two abstract domains A;, A,
= Cartesian product: A; x A,

= Y <0,,0,> € A XA, YAle2(<a1iaz>) S (VAl(al) n VAZ(GZ))

® Composition
= One concrete domain C
= Abstract domains A, A,

" Galois connection
° a,, Y, between Cand A,
° a,, Y, between A, and A,

= We get the connection between Cand A,
® Functions: a,° a,, V,° VY,

Pavel Parizek Abstract Interpretation 22



Tools

®* C(Clousot
= Program analyzer for Code Contracts (C#/.NET)
= Verifies method contracts and low-level errors
= https://www.microsoft.com/en-us/research/project/code-contracts/

® Astrée

= Static analyzer for programs written in C
® Programs without dynamic memory allocation and recursion

= |ndustrial applications (Airbus A340 SW)
= http://www.astree.ens.fr/

* Polyspace
= Static analysis toolset for programs in C/C++/Ada
= http://www.mathworks.com/products/polyspace/

Pavel Parizek Abstract Interpretation 23


http://research.microsoft.com/en-us/projects/contracts/
http://www.astree.ens.fr/
http://www.mathworks.com/products/polyspace/

Further reading

m

® F. Nielson, H. R. Nielson, and Chris Hankin.
Principles of Program Analysis. Springer, 2005

®* P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A.
Mine, and X. Rival. Why does Astrée Scale Up?
Formal Methods in System Design, 35(3), 2009

®* P, Ferrara, F. Logozzo, and M. Fahndrich. Safer
Unsafe Code for .NET. OOPSLA 2008

Pavel Parizek Abstract Interpretation 24



