NSWI183: SEMANTIKA PROGRAMU

12. DAFNY V — ABSTRAKCE, TRIDENI

Jan Kofron

MATEMATICKO-FYZIKALNI o?ft‘r’ﬁmi";ﬂ
FAKULTA ributed an
Univerzita Karlova

Abstrakce

Jan Kofrori: Sémantika programa 2

ABSTRAKCE — MODULY

@ Abstrakce je klicova pro dobry ndvrh programt

@ V praxi to znamend vytvareni objektl na vyssi trovni abstrakce: funkce, metody,
tridy, moduly

@ V DAFNY existuje na nejvyssi irovni koncept moduld, které [ze importovat mezi
zdrojovymi soubory:

module ListLibrary {
datatype List<T> = Nil | Cons(head: T, tail: List<T>)

function Append(xs: List, ys: List): List
/] ...

lemma

Jan Kofrori: Sémantika programa 3

IMPORT

@ Pokud chceme pouzit kdd z jiného modulu — a to i v pfipadé, Ze se jednd o stejny
soubor -, musime modul explicitné importovat:

module Sorting {
import ListLibrary

function Sort<T>(xs: ListLibrary.List): ListLibrary.List {
// using lists here as e.g., ListLibrary.Nil
}

}

Jan Kofrori: Sémantika programi 4

IMPORT

@ Nazev modulu mze byt neprakticky dlouhy, mdzeme ho importovat pod vlastnim
jménem:
module Sorting {
import LL = ListLibrary
function Sort<T>(xs: LL.List): LL.List {
// using lists here as e.g., LL.Nil
}

}

@ Nebo mdzeme pouzit klicové slovo opened a pak pouzivat identifikatory bez
prefixu:

module Sorting {
import opened ListlLibrary
var list := Nil

}

Jan Kofrori: Sémantika programti 5

IMPORT-EXPORT

@ Importy nesméji byt cyklické, tvori tedy hierarchii moduld

@ Moduly nejen Ze rozdéluji jmenny prostor programu, ale umozriuji i skryvani
informaci (o implementaci), vytvérejice tak rozhrani (interface)

@ To samozrejmé dava volnost implementaci, kterd se mdze v ¢ase ménit bez
poruseni kontraktd, které ma modul se svymi klienty (moduly, které tento modul
pouzivaiji)

@ V DAFNY se to, co modul ,,vystavuje‘“ navenek, specifikuje pomoci deklarace
export

@ Exportovat typ (datovy typ, funkce, lemma, metoda) pak mdze modul pomoci
provides (pouze signatura), nebo reveals (signaturaitélo)

Jan Kofrori: Sémantika programti 6

IMPORT-EXPORT

@ Predpokladejme nasleduijici specifikaci modulu:

module ModuleC {
export
provides Color
reveals Double

datatype Color = Blue | Yellow | Green | Red
function Double(x: int): nat
requires 0 <= X
ensures Double(x) % 2

{

if x == 0 then 0 else 2 + Double(x - 1)
}

}

=0

Jan Kofrori: Sémantika programa 7

IMPORT-EXPORT

@ Predpokladejme nasleduijici specifikaci modulu:

module ModuleC {
export
provides Color
reveals Double

datatype Color |= Blue | Yellow | Green | Red
function Double(x: int): nat
requires 0 <= X
ensures Double(x) % 2

=0
{

if x == 0 then 0 else 2 + Double(x - 1)
}

Jan Kofrori: Sémantika programti 8

IMPORT-EXPORT

@ Modul pak importujeme nasledovné:

module ModuleD {
import MC = ModuleC

method Test() {
var c: MC.Color;
c := MC.Yellow;
assert MC.Double(3) == 6;
}
}

@ Pokud se modul nachazi v jiném souboru, musime tento soubor ,,inkludovat*
pomoci:

include "filename.dfy"

Jan Kofrori: Sémantika programa 9

IMPORT-EXPORT

@ Modul pak importujeme nasledovné:

module ModuleD {
import MC = ModuleC

method Test() {
var c: MC.Color; // OK protoZe Color je provided
c := MC.Yellow;
assert MC.Double(3) == 6;
}
}

@ Pokud se modul nachazi v jiném souboru, musime tento soubor ,,inkludovat*
pomoci:

include "filename.dfy"

Jan Kofrori: Sémantika programi

IMPORT-EXPORT

@ Modul pak importujeme nasledovné:

module ModuleD {
import MC = ModuleC

method Test() {
var c: MC.Color; // OK protoZe Color je provided
c := MC.Yellow; // chyba: unresolved identifier 'Yellow'
assert MC.Double(3) == 6;
}
}

@ Pokud se modul nachazi v jiném souboru, musime tento soubor ,,inkludovat*
pomoci:

include "filename.dfy"

Jan Kofrori: Sémantika programi

IMPORT-EXPORT

@ Modul pak importujeme nasledovné:

module ModuleD {
import MC = ModuleC

method Test() {
var c: MC.Color; // OK protoZe Color je provided
c := MC.Yellow; // chyba: unresolved identifier 'Yellow'

assert MC.Double(3) == 6; // verifikuje se, Double je revealed
}
}
@ Pokud se modul nachazi v jiném souboru, musime tento soubor ,,inkludovat*
pomoci:

include "filename.dfy"

Jan Kofrori: Sémantika programi

KONZISTENCE EXPORTU

@ Exporty museji byt konzistentni — kdyZ smaZeme (3sti, které nejsou exportované,
program musi byt stdle typové spravny
@ Predpokladejme nasledujici definici modulu:

module ModuleC {
datatype Parity = Even | 0dd
function F(x: int): Parity

{
if x % 2 == 0 then Even else 0dd

}
}

Jan Kofrori: Sémantika programa

KONZISTENCE EXPORTU

module ModuleC {
datatype Parity = Even | 0dd
function F(x: int): Parity

{

if x % 2 == 0 then Even else 0dd

}

Nekonzistentni exporty

Jan Kofrori: Sémantika programa

Konzistentni exporty

KONZISTENCE EXPORTU

module ModuleC {
datatype Parity = Even | 0dd
\function F(x: int): Parity

if x % 2 == 0 then Even else 0dd
}

Nekonzistentni exporty Konzistentni exporty

export provides F

Jan Kofrori: Sémantika programti

KONZISTENCE EXPORTU

module ModuleC {
datatype Parity|= Even | 0dd

function F(x: int): Parity

{
}

if x % 2 == 0 then Even else 0dd

Nekonzistentni exporty

export provides F
export provides Parity
reveals F

Jan Kofrori: Sémantika programti

Konzistentni exporty

KONZISTENCE EXPORTU

module ModuleC {
datatype Parity|= Even | 0dd
function F(x: int): Parity

{

if x % 2 == 0 then Even else 0dd

}

Nekonzistentni exporty

export provides F
export provides Parity
reveals F

Jan Kofrori: Sémantika programti

Konzistentni exporty

export provides Parity, F

KONZISTENCE EXPORTU

module ModuleC {

datatype Parity = Even | 0dd

function F(x: int): Parity

{
}

if x % 2 == 0 then Even else

0dd

Nekonzistentni exporty

export provides F
export provides Parity
reveals F

Jan Kofrori: Sémantika programti

Konzistentni exporty

export provides Parity, F
export reveals Parity, F
export reveals =*

Jan Kofrori: Sémantika programa

Tridéni

@ Prirozenou operaci nad seznamy je setridéni prvki (u ¢isel podle velikosti)

©

UkdZeme si, jak postupovat pfi specifikaci a implementaci takové operace

@ Specifikace oznadime jako ghost, aby bylo jasné, Ze se jedna o nekompilovany
kdd pouzity jen pro ovéreni vlastnosti

@ Definice seznamu (pro pripomenuti):

datatype List<T> = Nil | Cons(head: T, tail: List<T>)

Jan Kofrori: Sémantika programa

PREDIKAT ORDERED

@ Ksetridéni (a ovéreni setrfidénosti) seznami potrebujeme tentokrat vic, nez jen
schopnost porovnat (na rovnost) jednotlivé prvky seznamu - potrebujeme
testovat, ktery je vétsi

@ Proto se omezime natyp int:

ghost predicate Ordered(xs: List<int>) {
match xs
case Nil => true
case Cons(x, Nil) => true
case Cons(x, Cons(y, _)) => x <=y &§& Ordered(xs.tail)

Jan Kofrori: Sémantika programa

OVERENi PREDIKATU ORDERED

vvvvvv

vlastnosti, které ocekdvame, Ze ma
@ V pripadé predikatu Ordered to mize byt napfiklad nasledujici lemma:
lemma AllOrdered(xs: List<int>, i: nat, j: nat)
requires Ordered(xs) &5 i <= j < Length(xs)
ensures At(xs, i) <= At(xs, j)

{
}

Jan Kofrori: Sémantika programa

PERMUTACE

@ Ne kazda funkce, kterd vraci setfidény seznam, je tfidici funkce
@ napriklad funkce vZdy vracejici prdzdny nebo jednoprvkovy seznam

@ Dalsi ddlezitou vlastnosti je, Ze navratova hodnota je permutaci vstupu

@ piimé vyjadreni a dokazani permutace jsou ale sloZité — to jsme uz vidéli v PiVC
@ vyuZijeme princip projekce

Jan Kofrori: Sémantika programa

PERMUTACE

ghost function Count(xs: List<int>, p: int): nat {
match xs
case Nil => 0
case Cons(x, tail) =>
if x == p then (1 + Count(tail, p)) else Count(tail, p)
}

ghost function Project(xs: List<int>, p: int): List<int> {
match xs
case Nil => Nil
case Cons(x, tail) => if x == p then Cons(x, Project(tail, p))
else Project(tail, p)

Jan Kofrori: Sémantika programa

PERMUTACE

ghost function Count(xs: List<int>, p: int): nat {
match xs
case Nil => 0
case Cons(x, tail) =>
if x == p then (1 + Count(tail, p)) else Count(tail, p)
}

ghost function Project(xs: List<int>, p: int): List<int> {
match xs
case Nil => Nil
case Cons(x, tail) => if x == p then Cons(x, Project(tail, p))
else Project(tail, p)
}

lemma SortingCorrectness(xs: List<int>, p: int)
ensures Project(xs, p) == Project(WhateverSort(xs), p)

Jan Kofrori: Sémantika programa

INSERTION SORT

@ Tridéni vkladanim (insertion sort) je zaloZzeno na postupném zatrid'ovani
jednotlivych prvkd do uz setfidéného seznamu, jeho slozitost je O(n?)
@ Funkciondlni implementace je pfimocara:

Jan Kofrori: Sémantika programa

INSERTION SORT

@ Tridéni vkladanim (insertion sort) je zaloZzeno na postupném zatrid'ovani
jednotlivych prvkd do uz setfidéného seznamu, jeho slozitost je O(n?)
@ Funkciondlni implementace je pfimocara:

function InsertionSort(xs: List<int>): List<int> {
match xs
case Nil => Nil
case Cons(x, tail) => Insert(x, InsertionSort(tail))

}

function Insert(y: int, xs: List<int>): List<int> {
match xs
case Nil => Cons(y, Nil)
case Cons(x, tail) => if y < x then Cons(y, xs)
else Cons(x, Insert(y, tail))
}

Jan Kofrori: Sémantika programa

OVERENI INSERTION SORT

@ Nyni vyuzijeme drive definovanych predikatd a funkci k ovéreni spravnosti
insertion sortu:

lemma InsertionSortOrdered(xs: List<int>)
ensures Ordered(InsertionSort(xs))

lemma InsertOrdered(y: int, xs: List<int>)
requires Ordered(xs)
ensures Ordered(Insert(y, xs))

lemma InsertionSortSameElements(xs: List<int>, p: int)
ensures Project(xs, p) == Project(InsertionSort(xs), p)

lemma InsertSameElements(y: int, xs: List<int>, p: int)
ensures Project(Cons(y, xs), p) == Project(Insert(y, xs), p)

Jan Kofrori: Sémantika programa 28

SHRNUTI

@ Vidé€lijsme, jak je abstrakce pro ¢lenéni a zapouzdreni kddu realizovana v DAFNY
pomoci moduld

@ Specifikovali, implementovali a ovérili jsme spravnost tfidiciho algoritmu
InsertionSort ve funkciondInim prostredi

Jan Kofrori: Sémantika programa

	Abstrakce
	Třídění

