
NSWI183: SÉMANTIKA PROGRAMŮ

12. DAFNY V – ABSTRAKCE, TŘÍDĚNÍ

Jan Kofroň



Abstrakce

Jan Kofroň: Sémantika programů 2



ABSTRAKCE – MODULY

Abstrakce je klíčová pro dobrý návrh programů

V praxi to znamená vytváření objektů na vyšší úrovni abstrakce: funkce, metody,

třídy, moduly

V DAFNY existuje na nejvyšší úrovni konceptmodulů, které lze importovat mezi

zdrojovými soubory:

module ListLibrary {
datatype List<T> = Nil | Cons(head: T, tail: List<T>)

function Append(xs: List, ys: List): List
// ....

lemma ....
}

Jan Kofroň: Sémantika programů 3



IMPORT

Pokud chceme použít kód z jiného modulu – a to i v případě, že se jedná o stejný

soubor –, musíme modul explicitně importovat:

module Sorting {
import ListLibrary

function Sort<T>(xs: ListLibrary.List): ListLibrary.List {
// using lists here as e.g., ListLibrary.Nil

}
}

Jan Kofroň: Sémantika programů 4



IMPORT

Název modulu může být neprakticky dlouhý, můžeme ho importovat pod vlastním

jménem:

module Sorting {
import LL = ListLibrary
function Sort<T>(xs: LL.List): LL.List {

// using lists here as e.g., LL.Nil
}

}

Nebo můžeme použít klíčové slovo opened a pak používat identifikátory bez

prefixu:

module Sorting {
import opened ListLibrary
var list := Nil

}

Jan Kofroň: Sémantika programů 5



IMPORT–EXPORT

Importy nesmějí být cyklické, tvoří tedy hierarchii modulů

Moduly nejen že rozdělují jmenný prostor programu, ale umožňují i skrývání

informací (o implementaci), vytvářejíce tak rozhraní (interface)

To samozřejmě dává volnost implementaci, která se může v čase měnit bez

porušení kontraktů, které má modul se svými klienty (moduly, které tento modul

používají)

V DAFNY se to, co modul „vystavuje“ navenek, specifikuje pomocí deklarace

export
Exportovat typ (datový typ, funkce, lemma, metoda) pak může modul pomocí

provides (pouze signatura), nebo reveals (signatura i tělo)

Jan Kofroň: Sémantika programů 6



IMPORT–EXPORT

Předpokládejme následující specifikaci modulu:

module ModuleC {
export

provides Color
reveals Double

datatype Color = Blue | Yellow | Green | Red
function Double(x: int): nat

requires 0 <= x
ensures Double(x) % 2 == 0

{
if x == 0 then 0 else 2 + Double(x − 1)

}
}

Jan Kofroň: Sémantika programů 7



IMPORT–EXPORT

Předpokládejme následující specifikaci modulu:

module ModuleC {
export

provides Color
reveals Double

datatype Color = Blue | Yellow | Green | Red
function Double(x: int): nat

requires 0 <= x
ensures Double(x) % 2 == 0

{
if x == 0 then 0 else 2 + Double(x − 1)

}
}

Jan Kofroň: Sémantika programů 8



IMPORT–EXPORT

Modul pak importujeme následovně:

module ModuleD {
import MC = ModuleC

method Test() {
var c: MC.Color;
c := MC.Yellow;
assert MC.Double(3) == 6;

}
}

Pokud se modul nachází v jiném souboru, musíme tento soubor „inkludovat“

pomocí:

include "filename.dfy"

Jan Kofroň: Sémantika programů 9



IMPORT–EXPORT

Modul pak importujeme následovně:

module ModuleD {
import MC = ModuleC

method Test() {
var c: MC.Color; // OK protože Color je provided
c := MC.Yellow;
assert MC.Double(3) == 6;

}
}

Pokud se modul nachází v jiném souboru, musíme tento soubor „inkludovat“

pomocí:

include "filename.dfy"

Jan Kofroň: Sémantika programů 10



IMPORT–EXPORT

Modul pak importujeme následovně:

module ModuleD {
import MC = ModuleC

method Test() {
var c: MC.Color; // OK protože Color je provided
c := MC.Yellow; // chyba: unresolved identifier 'Yellow'
assert MC.Double(3) == 6;

}
}

Pokud se modul nachází v jiném souboru, musíme tento soubor „inkludovat“

pomocí:

include "filename.dfy"

Jan Kofroň: Sémantika programů 11



IMPORT–EXPORT

Modul pak importujeme následovně:

module ModuleD {
import MC = ModuleC

method Test() {
var c: MC.Color; // OK protože Color je provided
c := MC.Yellow; // chyba: unresolved identifier 'Yellow'
assert MC.Double(3) == 6; // verifikuje se, Double je revealed

}
}

Pokud se modul nachází v jiném souboru, musíme tento soubor „inkludovat“

pomocí:

include "filename.dfy"

Jan Kofroň: Sémantika programů 12



KONZISTENCE EXPORTŮ

Exporty musejí být konzistentní – když smažeme části, které nejsou exportované,

programmusí být stále typově správný

Předpokládejme následující definici modulu:

module ModuleC {
datatype Parity = Even | Odd
function F(x: int): Parity
{

if x % 2 == 0 then Even else Odd
}

}

Jan Kofroň: Sémantika programů 13



KONZISTENCE EXPORTŮ

module ModuleC {
datatype Parity = Even | Odd
function F(x: int): Parity
{

if x % 2 == 0 then Even else Odd
}

}

Nekonzistentní exporty Konzistentní exporty

Jan Kofroň: Sémantika programů 14



KONZISTENCE EXPORTŮ

module ModuleC {
datatype Parity = Even | Odd
function F(x: int): Parity
{

if x % 2 == 0 then Even else Odd
}

}

Nekonzistentní exporty

export provides F

Konzistentní exporty

Jan Kofroň: Sémantika programů 15



KONZISTENCE EXPORTŮ

module ModuleC {
datatype Parity = Even | Odd
function F(x: int): Parity
{

if x % 2 == 0 then Even else Odd
}

}

Nekonzistentní exporty

export provides F
export provides Parity

reveals F

Konzistentní exporty

Jan Kofroň: Sémantika programů 16



KONZISTENCE EXPORTŮ

module ModuleC {
datatype Parity = Even | Odd
function F(x: int): Parity
{

if x % 2 == 0 then Even else Odd
}

}

Nekonzistentní exporty

export provides F
export provides Parity

reveals F

Konzistentní exporty

export provides Parity, F

Jan Kofroň: Sémantika programů 17



KONZISTENCE EXPORTŮ

module ModuleC {
datatype Parity = Even | Odd
function F(x: int): Parity
{

if x % 2 == 0 then Even else Odd
}

}

Nekonzistentní exporty

export provides F
export provides Parity

reveals F

Konzistentní exporty

export provides Parity, F
export reveals Parity, F
export reveals *

Jan Kofroň: Sémantika programů 18



Třídění

Jan Kofroň: Sémantika programů 19



TŘÍDĚNÍ

Přirozenou operací nad seznamy je setřídění prvků (u čísel podle velikosti)

Ukážeme si, jak postupovat při specifikaci a implementaci takové operace

Specifikace označíme jako ghost, aby bylo jasné, že se jedná o nekompilovaný

kód použitý jen pro ověření vlastností

Definice seznamu (pro připomenutí):

datatype List<T> = Nil | Cons(head: T, tail: List<T>)

Jan Kofroň: Sémantika programů 20



PREDIKÁT ORDERED

K setřídění (a ověření setříděnosti) seznamů potřebujeme tentokrát víc, než jen

schopnost porovnat (na rovnost) jednotlivé prvky seznamu – potřebujeme

testovat, který je větší

Proto se omezíme na typ int:

ghost predicate Ordered(xs: List<int>) {
match xs
case Nil => true
case Cons(x, Nil) => true
case Cons(x, Cons(y, _)) => x <= y && Ordered(xs.tail)

}

Jan Kofroň: Sémantika programů 21



OVĚŘENÍ PREDIKÁTU ORDERED

Pokud máme složitější predikát nebo obecně nějakou definici, je dobré ověřit její

vlastnosti, které očekáváme, že má

V případě predikátu Ordered to může být například následující lemma:

lemma AllOrdered(xs: List<int>, i: nat, j: nat)
requires Ordered(xs) && i <= j < Length(xs)
ensures At(xs, i) <= At(xs, j)

{
...

}

Jan Kofroň: Sémantika programů 22



PERMUTACE

Ne každá funkce, která vrací setříděný seznam, je třídící funkce

například funkce vždy vracející prázdný nebo jednoprvkový seznam

Další důležitou vlastností je, že návratová hodnota je permutací vstupu

přímé vyjádření a dokázání permutace jsou ale složité – to jsme už viděli v PiVC

využijeme princip projekce

Jan Kofroň: Sémantika programů 23



PERMUTACE

ghost function Count(xs: List<int>, p: int): nat {
match xs
case Nil => 0
case Cons(x, tail) =>

if x == p then (1 + Count(tail, p)) else Count(tail, p)
}

ghost function Project(xs: List<int>, p: int): List<int> {
match xs
case Nil => Nil
case Cons(x, tail) => if x == p then Cons(x, Project(tail, p))

else Project(tail, p)
}

lemma SortingCorrectness(xs: List<int>, p: int)
ensures Project(xs, p) == Project(WhateverSort(xs), p)

Jan Kofroň: Sémantika programů 24



PERMUTACE

ghost function Count(xs: List<int>, p: int): nat {
match xs
case Nil => 0
case Cons(x, tail) =>

if x == p then (1 + Count(tail, p)) else Count(tail, p)
}

ghost function Project(xs: List<int>, p: int): List<int> {
match xs
case Nil => Nil
case Cons(x, tail) => if x == p then Cons(x, Project(tail, p))

else Project(tail, p)
}

lemma SortingCorrectness(xs: List<int>, p: int)
ensures Project(xs, p) == Project(WhateverSort(xs), p)

Jan Kofroň: Sémantika programů 25



INSERTION SORT

Třídění vkládáním (insertion sort) je založeno na postupném zatřiďování

jednotlivých prvků do už setříděného seznamu, jeho složitost je 𝒪(𝑛2)

Funkcionální implementace je přímočará:

function InsertionSort(xs: List<int>): List<int> {
match xs
case Nil => Nil
case Cons(x, tail) => Insert(x, InsertionSort(tail))

}

function Insert(y: int, xs: List<int>): List<int> {
match xs
case Nil => Cons(y, Nil)
case Cons(x, tail) => if y < x then Cons(y, xs)

else Cons(x, Insert(y, tail))
}

Jan Kofroň: Sémantika programů 26



INSERTION SORT

Třídění vkládáním (insertion sort) je založeno na postupném zatřiďování

jednotlivých prvků do už setříděného seznamu, jeho složitost je 𝒪(𝑛2)

Funkcionální implementace je přímočará:

function InsertionSort(xs: List<int>): List<int> {
match xs
case Nil => Nil
case Cons(x, tail) => Insert(x, InsertionSort(tail))

}

function Insert(y: int, xs: List<int>): List<int> {
match xs
case Nil => Cons(y, Nil)
case Cons(x, tail) => if y < x then Cons(y, xs)

else Cons(x, Insert(y, tail))
}

Jan Kofroň: Sémantika programů 27



OVĚŘENÍ INSERTION SORT

Nyní využijeme dříve definovaných predikátů a funkcí k ověření správnosti

insertion sortu:

lemma InsertionSortOrdered(xs: List<int>)
ensures Ordered(InsertionSort(xs))

lemma InsertOrdered(y: int, xs: List<int>)
requires Ordered(xs)
ensures Ordered(Insert(y, xs))

lemma InsertionSortSameElements(xs: List<int>, p: int)
ensures Project(xs, p) == Project(InsertionSort(xs), p)

lemma InsertSameElements(y: int, xs: List<int>, p: int)
ensures Project(Cons(y, xs), p) == Project(Insert(y, xs), p)

Jan Kofroň: Sémantika programů 28



SHRNUTÍ

Viděli jsme, jak je abstrakce pro členění a zapouzdření kódu realizovaná v DAFNY

pomocí modulů

Specifikovali, implementovali a ověřili jsme správnost třídícího algoritmu

InsertionSort ve funkcionálním prostředí

Jan Kofroň: Sémantika programů 29


	Abstrakce
	Třídění

