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ABSTRAKCE – MODULY

Abstrakce je klíčová pro dobrý návrh programů

V praxi to znamená vytváření objektů na vyšší úrovni abstrakce: funkce, metody,

třídy, moduly

V DAFNY existuje na nejvyšší úrovni konceptmodulů, které lze importovat mezi

zdrojovými soubory:

module ListLibrary {
datatype List<T> = Nil | Cons(head: T, tail: List<T>)

function Append(xs: List, ys: List): List
// ....

lemma ....
}
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IMPORT

Pokud chceme použít kód z jiného modulu – a to i v případě, že se jedná o stejný

soubor –, musíme modul explicitně importovat:

module Sorting {
import ListLibrary

function Sort<T>(xs: ListLibrary.List): ListLibrary.List {
// using lists here as e.g., ListLibrary.Nil

}
}
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IMPORT

Název modulu může být neprakticky dlouhý, můžeme ho importovat pod vlastním

jménem:

module Sorting {
import LL = ListLibrary
function Sort<T>(xs: LL.List): LL.List {

// using lists here as e.g., LL.Nil
}

}

Nebo můžeme použít klíčové slovo opened a pak používat identifikátory bez

prefixu:

module Sorting {
import opened ListLibrary
var list := Nil

}
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IMPORT–EXPORT

Importy nesmějí být cyklické, tvoří tedy hierarchii modulů

Moduly nejen že rozdělují jmenný prostor programu, ale umožňují i skrývání

informací (o implementaci), vytvářejíce tak rozhraní (interface)

To samozřejmě dává volnost implementaci, která se může v čase měnit bez

porušení kontraktů, které má modul se svými klienty (moduly, které tento modul

používají)

V DAFNY se to, co modul „vystavuje“ navenek, specifikuje pomocí deklarace

export
Exportovat typ (datový typ, funkce, lemma, metoda) pak může modul pomocí

provides (pouze signatura), nebo reveals (signatura i tělo)
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IMPORT–EXPORT

Předpokládejme následující specifikaci modulu:

module ModuleC {
export

provides Color
reveals Double

datatype Color = Blue | Yellow | Green | Red
function Double(x: int): nat

requires 0 <= x
ensures Double(x) % 2 == 0

{
if x == 0 then 0 else 2 + Double(x − 1)

}
}
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IMPORT–EXPORT

Předpokládejme následující specifikaci modulu:

module ModuleC {
export

provides Color
reveals Double

datatype Color = Blue | Yellow | Green | Red
function Double(x: int): nat

requires 0 <= x
ensures Double(x) % 2 == 0

{
if x == 0 then 0 else 2 + Double(x − 1)

}
}
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IMPORT–EXPORT

Modul pak importujeme následovně:

module ModuleD {
import MC = ModuleC

method Test() {
var c: MC.Color;
c := MC.Yellow;
assert MC.Double(3) == 6;

}
}

Pokud se modul nachází v jiném souboru, musíme tento soubor „inkludovat“

pomocí:

include "filename.dfy"
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IMPORT–EXPORT

Modul pak importujeme následovně:

module ModuleD {
import MC = ModuleC

method Test() {
var c: MC.Color; // OK protože Color je provided
c := MC.Yellow;
assert MC.Double(3) == 6;

}
}

Pokud se modul nachází v jiném souboru, musíme tento soubor „inkludovat“

pomocí:

include "filename.dfy"
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IMPORT–EXPORT

Modul pak importujeme následovně:

module ModuleD {
import MC = ModuleC

method Test() {
var c: MC.Color; // OK protože Color je provided
c := MC.Yellow; // chyba: unresolved identifier 'Yellow'
assert MC.Double(3) == 6;

}
}

Pokud se modul nachází v jiném souboru, musíme tento soubor „inkludovat“

pomocí:

include "filename.dfy"
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IMPORT–EXPORT

Modul pak importujeme následovně:

module ModuleD {
import MC = ModuleC

method Test() {
var c: MC.Color; // OK protože Color je provided
c := MC.Yellow; // chyba: unresolved identifier 'Yellow'
assert MC.Double(3) == 6; // verifikuje se, Double je revealed

}
}

Pokud se modul nachází v jiném souboru, musíme tento soubor „inkludovat“

pomocí:

include "filename.dfy"
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KONZISTENCE EXPORTŮ

Exporty musejí být konzistentní – když smažeme části, které nejsou exportované,

programmusí být stále typově správný

Předpokládejme následující definici modulu:

module ModuleC {
datatype Parity = Even | Odd
function F(x: int): Parity
{

if x % 2 == 0 then Even else Odd
}

}
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KONZISTENCE EXPORTŮ

module ModuleC {
datatype Parity = Even | Odd
function F(x: int): Parity
{

if x % 2 == 0 then Even else Odd
}

}

Nekonzistentní exporty Konzistentní exporty
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KONZISTENCE EXPORTŮ

module ModuleC {
datatype Parity = Even | Odd
function F(x: int): Parity
{

if x % 2 == 0 then Even else Odd
}

}

Nekonzistentní exporty

export provides F

Konzistentní exporty
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KONZISTENCE EXPORTŮ

module ModuleC {
datatype Parity = Even | Odd
function F(x: int): Parity
{

if x % 2 == 0 then Even else Odd
}

}

Nekonzistentní exporty

export provides F
export provides Parity

reveals F

Konzistentní exporty
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KONZISTENCE EXPORTŮ

module ModuleC {
datatype Parity = Even | Odd
function F(x: int): Parity
{

if x % 2 == 0 then Even else Odd
}

}

Nekonzistentní exporty

export provides F
export provides Parity

reveals F

Konzistentní exporty

export provides Parity, F
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KONZISTENCE EXPORTŮ

module ModuleC {
datatype Parity = Even | Odd
function F(x: int): Parity
{

if x % 2 == 0 then Even else Odd
}

}

Nekonzistentní exporty

export provides F
export provides Parity

reveals F

Konzistentní exporty

export provides Parity, F
export reveals Parity, F
export reveals *
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Třídění
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TŘÍDĚNÍ

Přirozenou operací nad seznamy je setřídění prvků (u čísel podle velikosti)

Ukážeme si, jak postupovat při specifikaci a implementaci takové operace

Specifikace označíme jako ghost, aby bylo jasné, že se jedná o nekompilovaný

kód použitý jen pro ověření vlastností

Definice seznamu (pro připomenutí):

datatype List<T> = Nil | Cons(head: T, tail: List<T>)
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PREDIKÁT ORDERED

K setřídění (a ověření setříděnosti) seznamů potřebujeme tentokrát víc, než jen

schopnost porovnat (na rovnost) jednotlivé prvky seznamu – potřebujeme

testovat, který je větší

Proto se omezíme na typ int:

ghost predicate Ordered(xs: List<int>) {
match xs
case Nil => true
case Cons(x, Nil) => true
case Cons(x, Cons(y, _)) => x <= y && Ordered(xs.tail)

}
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OVĚŘENÍ PREDIKÁTU ORDERED

Pokud máme složitější predikát nebo obecně nějakou definici, je dobré ověřit její

vlastnosti, které očekáváme, že má

V případě predikátu Ordered to může být například následující lemma:

lemma AllOrdered(xs: List<int>, i: nat, j: nat)
requires Ordered(xs) && i <= j < Length(xs)
ensures At(xs, i) <= At(xs, j)

{
...

}
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PERMUTACE

Ne každá funkce, která vrací setříděný seznam, je třídící funkce

například funkce vždy vracející prázdný nebo jednoprvkový seznam

Další důležitou vlastností je, že návratová hodnota je permutací vstupu

přímé vyjádření a dokázání permutace jsou ale složité – to jsme už viděli v PiVC

využijeme princip projekce
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PERMUTACE

ghost function Count(xs: List<int>, p: int): nat {
match xs
case Nil => 0
case Cons(x, tail) =>

if x == p then (1 + Count(tail, p)) else Count(tail, p)
}

ghost function Project(xs: List<int>, p: int): List<int> {
match xs
case Nil => Nil
case Cons(x, tail) => if x == p then Cons(x, Project(tail, p))

else Project(tail, p)
}

lemma SortingCorrectness(xs: List<int>, p: int)
ensures Project(xs, p) == Project(WhateverSort(xs), p)
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PERMUTACE

ghost function Count(xs: List<int>, p: int): nat {
match xs
case Nil => 0
case Cons(x, tail) =>

if x == p then (1 + Count(tail, p)) else Count(tail, p)
}

ghost function Project(xs: List<int>, p: int): List<int> {
match xs
case Nil => Nil
case Cons(x, tail) => if x == p then Cons(x, Project(tail, p))

else Project(tail, p)
}

lemma SortingCorrectness(xs: List<int>, p: int)
ensures Project(xs, p) == Project(WhateverSort(xs), p)
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INSERTION SORT

Třídění vkládáním (insertion sort) je založeno na postupném zatřiďování

jednotlivých prvků do už setříděného seznamu, jeho složitost je 𝒪(𝑛2)

Funkcionální implementace je přímočará:

function InsertionSort(xs: List<int>): List<int> {
match xs
case Nil => Nil
case Cons(x, tail) => Insert(x, InsertionSort(tail))

}

function Insert(y: int, xs: List<int>): List<int> {
match xs
case Nil => Cons(y, Nil)
case Cons(x, tail) => if y < x then Cons(y, xs)

else Cons(x, Insert(y, tail))
}
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INSERTION SORT

Třídění vkládáním (insertion sort) je založeno na postupném zatřiďování

jednotlivých prvků do už setříděného seznamu, jeho složitost je 𝒪(𝑛2)

Funkcionální implementace je přímočará:

function InsertionSort(xs: List<int>): List<int> {
match xs
case Nil => Nil
case Cons(x, tail) => Insert(x, InsertionSort(tail))

}

function Insert(y: int, xs: List<int>): List<int> {
match xs
case Nil => Cons(y, Nil)
case Cons(x, tail) => if y < x then Cons(y, xs)

else Cons(x, Insert(y, tail))
}
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OVĚŘENÍ INSERTION SORT

Nyní využijeme dříve definovaných predikátů a funkcí k ověření správnosti

insertion sortu:

lemma InsertionSortOrdered(xs: List<int>)
ensures Ordered(InsertionSort(xs))

lemma InsertOrdered(y: int, xs: List<int>)
requires Ordered(xs)
ensures Ordered(Insert(y, xs))

lemma InsertionSortSameElements(xs: List<int>, p: int)
ensures Project(xs, p) == Project(InsertionSort(xs), p)

lemma InsertSameElements(y: int, xs: List<int>, p: int)
ensures Project(Cons(y, xs), p) == Project(Insert(y, xs), p)
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SHRNUTÍ

Viděli jsme, jak je abstrakce pro členění a zapouzdření kódu realizovaná v DAFNY

pomocí modulů

Specifikovali, implementovali a ověřili jsme správnost třídícího algoritmu

InsertionSort ve funkcionálním prostředí
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