
NSWI183: SÉMANTIKA PROGRAMŮ

13. DAFNY VI – INVARIANTY DATOVÝCH STRUKTUR

Jan Kofroň



INVARIANTY DATOVÝCH STRUKTUR

Datové typy a typy obecně nám umožňují kontrolovat program nad rámec syntaxe

Víme, že proměnná typu Listmůže vypadat jako Nil nebo

Cons(head, tail)
To je užitečné, ale my můžeme jít ještě dál a specifikovat další (detailnější)
vlastnosti týkající se typů

například u červeno-černého stromu můžeme pomocí invariantů specifikovat

povolené počty červených a černých uzlů

Invarianty jsou velmi důležité pro správný design programů a jejich správnost

Jan Kofroň: Sémantika programů 2



PRIORITNÍ FRONTA

Jako datovou strukturu pro tuto přednášku budeme používat prioritní frontu

Prioritní fronta umožňuje přístup k minimálnímu, ne nutně prvnímu prvku:

module PriorityQueue {
type PQueue

function Empty(): PQueue
predicate IsEmpty(pq: PQueue)
function Insert(pq: PQueue, y: int): PQueue
function RemoveMin(pq: PQueue): (int, PQueue)

requires !IsEmpty(pq)
}

Jan Kofroň: Sémantika programů 3



PRIORITNÍ FRONTA

Naše definice prioritní fronty nedefinuje reprezentaci prvků (jestli to bude

seznam, strom, ...)

Proto je nutné mít možnost testovat prázdnost fronty pomocí predikátu

IsEmpty (nebo jinak)

Abychommohli dále specifikovat, co vracejí jednotlivé funkce a predikáty,
potřebujeme nějakou abstrakci naší prioritní fronty ve smyslu reprezentace
jednotlivých prvků

máme několik možností (uspořádaný seznam, multimnožina (multiset), ...)

každá reprezentace má své výhody a nevýhody, my zvolíme multimnožinu

Jan Kofroň: Sémantika programů 4



ABSTRAKCE

ghost function Elements(pq: PQueue): multiset<int>

lemma EmptyCorrect()
ensures Elements(Empty()) == multiset{}

lemma IsEmptyCorrect(pq: PQueue)
ensures IsEmpty(pq) <==> Elements(pq) == multiset{}

lemma InsertCorrect(pq: PQueue, y: int)
ensures Elements(Insert(y, pq)) == Elements(pq) + multiset{y}

lemma RemoveMinCorrect(pq: PQueue)
requires !IsEmpty(pq)
ensures var (y, pq') := RemoveMin(pq);

IsMin(y, Elements(pq)) &&
Elements(pq') + multiset{y} == Elements(pq)

ghost predicate IsMin(y: int, s: multiset<int>) {
y in s && forall x :: x in s ==> y <= x

}

Jan Kofroň: Sémantika programů 5



EXPORT

Specifikace je z hlediska potenciálních klientů skoro hotová, musíme ještě

definovat, co chceme exportovat:

module PriorityQueue {
export

provides PQueue, Empty, IsEmpty, Insert, RemoveMin
provides Elements
provides EmptyCorrect, IsEmptyCorrect
provides InsertCorrect, RemoveMinCorrect
reveals IsMin

...
}

Jan Kofroň: Sémantika programů 6



NÁVRH DATOVÉ STRUKTURY

Pro implementaci prioritní fronty použijeme haldu

halda je binární strom, který reprezentuje prvky ve vnitřních uzlech

umožňuje tak odebírat minimum v čase 𝒪(log𝑛), pokud je strom vyvážený, tedy

každý levý a pravý podstrom téhož prvku mají přibližně stejnou velikost

ke klasifikaci použijeme pojem Braunova stromu – levý a pravý podstrom jsou stejně

velké nebo levý podstrom obsahuje o jeden prvek více než pravý

Máme tedy tři vlastnosti:

1. prvky ve vnitřních uzlech

2. vlastnost haldy – prvek v uzlu je menší než prvky v podstromech

3. vyváženost – velikosti levého a pravého podstromu se liší nejvýše o 1

Z modulu PriorityQueue exportujeme predikát Valid, který platí pro prioritní

frontu implementovanou jako BraunTree, pokud splňuje všechny tři výše

uvedené vlastnosti:

ghost predicate Valid(pq: PQueue)

Jan Kofroň: Sémantika programů 7



NÁVRH DATOVÉ STRUKTURY

Upravíme předchozí lemmata tak, aby byla aplikovatelná jen na validní stromy,

protože ostatní případy nás nezajímají:

lemma EmptyCorrect()
ensures var pq := Empty();

Valid(pq) && Elements(Empty()) == multiset{}

lemma IsEmptyCorrect(pq: PQueue)
requires Valid(pq)
ensures IsEmpty(pq) <==> Elements(pq) == multiset{}

lemma InsertCorrect(pq: PQueue, y: int)
requires Valid(pq)
ensures var pq' := Insert(pq, y);

Valid(pq') && Elements(Insert(pq, y)) == Elements(pq) + multiset{y}

lemma RemoveMinCorrect(pq: PQueue)
requires Valid(pq) && !IsEmpty(pq)
ensures var (y, pq') := RemoveMin(pq);
Valid(pq') && IsMin(y, Elements(pq)) && Elements(pq') + multiset{y} == Elements(pq)

Jan Kofroň: Sémantika programů 8



IMPLEMENTACE DATOVÉ STRUKTURY

Nyní už máme specifikaci i návrh hotový a můžeme přistoupit k implementaci

To obnáší definice jak operací nad datovou strukturou, tak predikátů a lemmat

detaily v přiložených materiálech

Například predikát Valid:
ghost predicate Valid(pq: PQueue) {
IsBinaryHeap(pq) && IsBalanced(pq)

}

Jan Kofroň: Sémantika programů 9



IMPLEMENTACE PRIORITNÍ FRONTY

Jan Kofroň: Sémantika programů 10



DALŠÍ KURZY NA MFF – NAVAZUJÍCÍ MAGISTERSKÉ STUDIUM

NSWI101: Modely a verifikace chování systémů (ZS)

Základní principy a algoritmy model checkingu

Modelování chování systémů a jejich následná verifikace

NSWI132: Analýza programů a verifikace kódu (LS)

Zaměřen na praktickou zkušenost s nástroji pro verifikaci kódu (C/C++, Java, C#)

Principy a algoritmy pro analýzu zdrojového kódu

NAIL094: Rozhodovací procedury a verifikace (LS)

Zaměřen na SAT a SMT solvery, algoritmy, optimalizace

Bakalářské a diplomové práce, softwarové a výzkumné projekty

Pokud Vás téma verifikací zaujalo, neváhejte mě kontaktovat!

Jan Kofroň: Sémantika programů 11


	Invarianty
	Prioritní fronta – specifikace
	Prioritní fronta – návrh
	Prioritní fronta – implementace
	Navazující kurzy na MFF

