NSWI183: SEMANTIKA PROGRAMU

13. DAFNY VI - INVARIANTY DATOVYCH STRUKTUR

Jan Kofron

Department of
Distributed and
Dependable



INVARIANTY DATOVYCH STRUKTUR

@ Datové typy a typy obecné ndam umoznuji kontrolovat program nad rdmec syntaxe
@ Vime, Ze proménnd typu List mdzZe vypadat jako Nil nebo
Cons(head, tail)
@ Toje uzitecné, ale my mdzeme jit jesté ddl a specifikovat dalsi (detailné;si)
vlastnosti tykajici se typt
@ napriklad u ¢erveno-¢erného stromu mdzeme pomoci invariantl specifikovat
povolené pocty Cervenych a cernych uzll

@ Invarianty jsou velmi dilezité pro spravny design program a jejich spravnost

Jan Kofrori: Sémantika programti



PRIORITNi FRONTA

@ Jako datovou strukturu pro tuto prednasku budeme pouzivat prioritni frontu

@ Prioritni fronta umoznuje pristup k minimalnimu, ne nutné prvnimu prvku:

module PriorityQueue {
type PQueue

function Empty(): PQueue

predicate IsEmpty(pq: PQueue)

function Insert(pq: PQueue, y: int): PQueue

function RemoveMin(pqg: PQueue): (int, PQueue)
requires !'IsEmpty(pq)

Jan Kofrori: Sémantika programa 3



PRIORITNi FRONTA

@ Nase definice prioritni fronty nedefinuje reprezentaci prvkd (jestli to bude
seznam, strom, ...)

@ Proto je nutné mit moZnost testovat prazdnost fronty pomoci predikatu
IsEmpty (nebo jinak)

@ Abychom mohli dale specifikovat, co vraceji jednotlivé funkce a predikaty,
potrebujeme néjakou abstrakci nasi prioritni fronty ve smyslu reprezentace
jednotlivych prvki

@ madme nékolik moznosti (usporddany seznam, multimnozina (multiset), ...)
@ kazda reprezentace ma své vyhody a nevyhody, my zvolime multimnozinu

Jan Kofrori: Sémantika programti 4



ABSTRAKCE

ghost function Elements(pq: PQueue): multiset<int>

lemma EmptyCorrect()
ensures Elements(Empty()) == multiset{}

lemma IsEmptyCorrect(pq: PQueue)
ensures IsEmpty(pq) <==> Elements(pg) == multiset{}

lemma InsertCorrect(pq: PQueue, y: int)
ensures Elements(Insert(y, pg)) == Elements(pq) + multiset{y}

lemma RemoveMinCorrect(pq: PQueue)
requires !IsEmpty(pq)
ensures var (y, pq') := RemoveMin(pq);
IsMin(y, Elements(pq)) &&
Elements(pq') + multiset{y} == Elements(pq)

ghost predicate IsMin(y: int, s: multiset<int>) {
y in s & forall x :: x in s ==> y <= X

Jan Kofrori: Sémantika programti 5



EXPORT

@ Specifikace je z hlediska potencidlnich klientd skoro hotova, musime jesté
definovat, co chceme exportovat:

module PriorityQueue {
export
provides PQueue, Empty, IsEmpty, Insert, RemoveMin
provides Elements
provides EmptyCorrect, IsEmptyCorrect
provides InsertCorrect, RemoveMinCorrect
reveals IsMin

Jan Kofrori: Sémantika programa 6



NAVRH DATOVE STRUKTURY

@ Proimplementaci prioritni fronty pouzijeme haldu
@ halda je bindrni strom, ktery reprezentuje prvky ve vnitrnich uzlech
@ umoznuje tak odebirat minimum v ¢ase O (log n), pokud je strom vyvazeny, tedy
kazdy levy a pravy podstrom téhoz prvku maji pfiblizné stejnou velikost
@ ke klasifikaci pouZijeme pojem Braunova stromu — levy a pravy podstrom jsou stejné
velké nebo levy podstrom obsahuje o jeden prvek vice neZ pravy

@ Mdme tedy tfi vlastnosti:

1. prvky ve vnitrfnich uzlech
2. vlastnost haldy — prvek v uzlu je mensi nez prvky v podstromech
3. vyvazenost - velikosti levého a pravého podstromu se liSi nejvyse o 1

@ Z modulu PriorityQueue exportujeme predikat Valid, ktery plati pro prioritni
frontu implementovanou jako BraunTree, pokud splriuje vSechny tfi vyse
uvedené vlastnosti:

ghost predicate Vvalid(pqg: PQueue)

Jan Kofrori: Sémantika programti 7



NAVRH DATOVE STRUKTURY

Upravime predchozi lemmata tak, aby byla aplikovatelna jen na validni stromy,
protoZe ostatni pfipady nds nezajimaji:

lemma EmptyCorrect()
ensures var pq := Empty();
Valid(pq) && Elements(Empty()) == multiset{}

lemma IsEmptyCorrect(pq: PQueue)
requires Valid(pq)
ensures IsEmpty(pq) <==> Elements(pg) == multiset{}

lemma InsertCorrect(pq: PQueue, y: int)
requires Valid(pq)
ensures var pq' := Insert(pq, vy);
Valid(pq') && Elements(Insert(pg, y)) == Elements(pqg) + multiset{y}

lemma RemoveMinCorrect(pq: PQueue)
requires Valid(pqg) && !IsEmpty(pq)
ensures var (y, pq') := RemoveMin(pq);
Valid(pq') && IsMin(y, Elements(pq)) && Elements(pq') + multiset{y} == Elements(pq)

Jan Kofrori: Sémantika programti 8



IMPLEMENTACE DATOVE STRUKTURY

@ Nyni uz mdme specifikaci i ndvrh hotovy a mizeme pristoupit k implementaci
@ To obnasi definice jak operaci nad datovou strukturou, tak predikatt a lemmat
@ detaily v priloZenych materialech
@ Napfiklad predikat Valid:
ghost predicate Valid(pq: PQueue) {
} IsBinaryHeap(pq) && IsBalanced(pq)

Jan Kofrori: Sémantika programa 9



IMPLEMENTACE PRIORITNi FRONTY

Jan Kofrori: Sémantika programa



DALSIi KURZY NA MFF - NAVAZUJiCi MAGISTERSKE STUDIUM

@ NSWI101: Modely a verifikace chovani systém (ZS)

@ Zzakladni principy a algoritmy model checkingu
@ Modelovani chovani systémd a jejich ndsledna verifikace

@ NSWI132: Analyza programd a verifikace kédu (LS)

@ Zaméren na praktickou zkusenost s nastroji pro verifikaci kédu (C/C++, Java, C#)
@ Principy a algoritmy pro analyzu zdrojového kddu

@ NAIL094: Rozhodovaci procedury a verifikace (LS)
@ Zaméren na SAT a SMT solvery, algoritmy, optimalizace

@ Bakalarské a diplomové prace, softwarové a vyzkumné projekty
@ Pokud Vas téma verifikaci zaujalo, nevahejte mé kontaktovat!

Jan Kofrori: Sémantika programi



	Invarianty
	Prioritní fronta – specifikace
	Prioritní fronta – návrh
	Prioritní fronta – implementace
	Navazující kurzy na MFF

