
http://d3s.mff.cuni.cz

Formal Foundations of 
Software Engineering

Pavel Parízek



Goals of the course

2

Show methods and tools for specification
and modeling of

Requirements

Architecture

System behavior

Show methods, languages and tools for

More formal design, specification and prototyping 
of software systems



Structure

3

Lectures

Basic concepts (“theory”)

Languages (syntax, usage)

Tool demo & examples

Methodology for practice

Labs

Small practical tasks

Playing with tools



Why you should attend

4

Get some knowledge about formal methods
Examples of languages and tools

Practical benefits & limitations

Methodology and way of thinking

Usage of formal methods can actually help you 
in software development practice

Ability to read and understand models created 
by someone else (human, IDE, generative AI)



Contents

5

General introduction to formal methods

Algebraic specification techniques (CASL)

Rewriting systems (Maude, OBJ3)

Model-oriented languages (Z, VDM, Alloy)

UML (modeling) & OCL (specification)

Petri nets (modeling concurrent systems)

Temporal & dynamic logics (TLA+)

Domain-specific languages (DSLs)



Grading

6

Homeworks
Topics: Maude, VDM or Alloy, UML/OCL, Petri nets
Each awarded with 0-25 points

Base: 0-15 points for the solution (model, documentation)
Bonus: 0-10 points for discussion (explaining the solution)

You need to submit at least two for “zápočet”

Final exam
Basic principles, theory, comparing approaches
Discussion of all homework solutions with respect to important criteria
Awarded with 0-25 points

Scale
85-125: excellent
70-84: very good
55-69: good (pass)
54 and less: failure



Contact

7

Web: http://d3s.mff.cuni.cz/teaching/ntin043

Email: parizek@d3s.mff.cuni.cz

Room 309

http://d3s.mff.cuni.cz/teaching/ntin043


Related courses

8

System Behavior Models and Verification (NSWI101)

http://d3s.mff.cuni.cz/teaching/nswi101

Program Analysis and Code Verification (NSWI132)

http://d3s.mff.cuni.cz/teaching/nswi132

http://d3s.mff.cuni.cz/teaching/nswi101
http://d3s.mff.cuni.cz/teaching/nswi132


General introduction to formal methods

9



Informal modeling and specification

10

Approach 1: Creating some diagram by hand
Relations between components in the system

Approach 2: Drawing finite state automaton
Nodes: possible states of the system

Transitions: actions that update state

Limitations
Unclear semantics (ambiguous)

Validation by tools not possible



What are formal methods ?

11

Mathematical techniques

Supported by tools

Languages

Specification notation

Formal syntax & semantics

Reasoning mechanism

Enable rigorous software development



Formal description of software systems

12

Interface perspective

Specifying requirements and desired properties

Implementation perspective

Modeling internal behavior

Characteristics

Expression in some formal language

Typically at certain level of abstraction

Precise, consistent, and unambiguous



What are formal methods good for

13

Precisely capturing user’s requirements

Modeling behavior of critical subsystems

Discovering issues at the design phase

Validation (testing, analysis, verification)
Greater confidence in software

Generating code from specification/models
Iterative refinement (transformations)
Model-driven engineering (MDE)



Usage pattern

14

1. Manually write a formal specification (model)

2. Semi-automatically validate & fix all problems

3. Iteratively transform (refine) into real code

Allow provably correct refinement steps

Implementation correct-by-construction



Benefits

15

General: improved quality of software systems

Enable system validation at very early stage

Detecting many issues (but some remain!!)

ambiguity, inconsistency, plain bugs, missing pieces

Better resilience against non-standard states

Required for mission/safety-critical systems



Limitations

16

Insufficient scalability to realistic systems

High overall costs (man-power, time)



Practice: critical systems

17

Application domains

transportation, military, healthcare, tele-com

Small or middle-sized

10-1000 KLOC

Very high cost of errors



Case study: subway line in Paris

18

Development process

1. Abstract models and specifications in B

2. Iterative refinement to concrete models

3. Transformation to source code in ADA

Quantitative metrics

Formal specification: 100 KLOC in B

Source code: 87 KLOC in ADA

Validation: proved 28K claims and found many bugs

No error found after the deployment !!



Case study: helicopter AH-6 (Boeing)

19

Goal: robustness against cyber attacks
Examples: rogue software in auxiliary devices, compromised USB stick

Main characteristics of the internal software system
Safety enforced through architecture (isolated modules)
Restricted communication over architectural boundaries
Access control (privileges, capabilities, runtime checks)
Information flow behavior (controlled and proven safe)

Observation
Proper architecture and configuration are important for high assurance

Additional information
G. Klein, J. Andronick, M. Fernandez, I. Kuz, T. Murray, and G. Heiser. Formally 
Verified Software in the Real World. Communications of the ACM, vol. 61, no. 
10, Oct 2018
https://cacm.acm.org/magazines/2018/10/231372-formally-verified-
software-in-the-real-world

https://cacm.acm.org/magazines/2018/10/231372-formally-verified-software-in-the-real-world


MDE & formal methods

20

MDE: model-driven engineering

Automated code generation

Model-based testing

Domains: embedded systems

automotive, industry manufacturing robots



Disclaimer

21

Formal methods do not guarantee correctness

"a formally verified program is only as good as its 
specification“

It is very easy to create a bad specification

Problems: incompleteness, inconsistency, typos

Remedy: search for bugs & validate everything



Ten Commandments of Formal Methods

22

1. Choose an appropriate notation

2. Formalize, but do not over formalize

3. Estimate costs

4. Have a formal methods guru on call

5. Not abandon traditional development methods

6. Document sufficiently

7. Not compromise quality standards

8. Not be dogmatic

9. Test, test, and test again

10. Reuse



Management of models and specifications

23

Why: formal models and specifications are 
normal software artifacts

What to do: versioning, peer reviews, ...

Problems and challenges

Keeping consistency of models in multiple files

Inconsistency between specification and code



Design by Contract

24

Granularity: procedures, objects

Preconditions

Postconditions

Invariants

Methodology
Define contracts by hand

Use tool for verification


