Formal Foundations of
Software Engineering

Pavel Parizek

Department of
Distributed and
Dependable

o2k FACULTY
= OF MATHEMATICS

= AND PHYSICS
Charles University

Goals of the course

* Show methods and tools for specification
and modeling of

= Requirements
= Architecture
= System behavior

* Show methods, languages and tools for

= More formal design, specification and prototyping
of software systems

Structure

®* Lectures
= Basic concepts (“theory”)
= Languages (syntax, usage)
= Tool demo & examples
= Methodology for practice

® Labs

= Small practical tasks
= Playing with tools

Why you should attend

* Get some knowledge about formal methods
= Examples of languages and tools
= Practical benefits & limitations
= Methodology and way of thinking

* Usage of formal methods can actually help you
in software development practice

* Ability to read and understand models created
by someone else (human, IDE, generative Al)

Contents

®* General introduction to formal methods

* Algebraic specification techniques (CASL)
* Rewriting systems (Maude, OBJ3)

°* Model-oriented languages (Z, VDM, Alloy)
* UML (modeling) & OCL (specification)

* Petri nets (modeling concurrent systems)
°* Temporal & dynamic logics (TLA+)

°* Domain-specific languages (DSLs)

Grading

* Homeworks
= Topics: Maude, VDM or Alloy, UML/OCL, Petri nets

= Each awarded with 0-25 points
® Base: 0-15 points for the solution (model, documentation)
® Bonus: 0-10 points for discussion (explaining the solution)

= You need to submit at least two for “zapocet”

® Final exam
= Basic principles, theory, comparing approaches
= Discussion of all homework solutions with respect to important criteria
= Awarded with 0-25 points

® Scale
= 85-125: excellent
= 70-84: very good
= 55-69: good (pass)
= 54 and less: failure

Contact

* Web: http://d3s.mff.cuni.cz/teaching/ntin043

®* Email: parizek@d3s.mff.cuni.cz

®* Room 309

http://d3s.mff.cuni.cz/teaching/ntin043

Related courses

® System Behavior Models and Verification (NSWI1101)
= http://d3s.mff.cuni.cz/teaching/nswil01

®* Program Analysis and Code Verification (NSWI1132)
= http://d3s.mff.cuni.cz/teaching/nswil32

http://d3s.mff.cuni.cz/teaching/nswi101
http://d3s.mff.cuni.cz/teaching/nswi132

General introduction to formal methods

Informal modeling and specification

®* Approach 1: Creating some diagram by hand
= Relations between components in the system

®* Approach 2: Drawing finite state automaton
= Nodes: possible states of the system
= Transitions: actions that update state

® Limitations
= Unclear semantics (ambiguous)
= Validation by tools not possible

10

What are formal methods ?

* Mathematical techniques
* Supported by tools

®* Languages
= Specification notation

®* Formal syntax & semantics

= Reasoning mechanism

°* Enable rigorous software development

11

Formal description of software systems

° |nterface perspective

= Specifying requirements and desired properties

°* Implementation perspective

= Modeling internal behavior

® Characteristics
= Expression in some formal language
= Typically at certain level of abstraction
= Precise, consistent, and unambiguous

12

What are formal methods good for

* Precisely capturing user’s requirements
* Modeling behavior of critical subsystems
* Discovering issues at the design phase

* Validation (testing, analysis, verification)
= Qreater confidence in software

* Generating code from specification/models

= |terative refinement (transformations)
" Model-driven engineering (MDE)

13

Usage pattern

1. Manually write a formal specification (model)
2. Semi-automatically validate & fix all problems

3. lteratively transform (refine) into real code
= Allow provably correct refinement steps
= Implementation correct-by-construction

14

Benefits

* General: improved quality of software systems

°* Enable system validation at very early stage
°* Detecting many issues (but some remain!!)

= ambiguity, inconsistency, plain bugs, missing pieces

* Better resilience against non-standard states

* Required for mission/safety-critical systems

15

Limitations

* |Insufficient scalability to realistic systems

* High overall costs (man-power, time)

16

Practice: critical systems

* Application domains

= transportation, military, healthcare, tele-com

* Small or middle-sized
= 10-1000 KLOC

* Very high cost of errors

17

Case study: subway line in Paris

®* Development process
1. Abstract models and specifications in B
2. lterative refinement to concrete models
3. Transformation to source code in ADA

® Quantitative metrics
= Formal specification: 100 KLOC in B
= Source code: 87 KLOC in ADA
= Validation: proved 28K claims and found many bugs

®* No error found after the deployment !!

18

Case study: helicopter AH-6 (Boeing)

® @Goal: robustness against cyber attacks
= Examples: rogue software in auxiliary devices, compromised USB stick

® Main characteristics of the internal software system
= Safety enforced through architecture (isolated modules)
= Restricted communication over architectural boundaries
= Access control (privileges, capabilities, runtime checks)
= Information flow behavior (controlled and proven safe)

® QObservation
= Proper architecture and configuration are important for high assurance

¢ Additional information

= @G. Klein, J. Andronick, M. Fernandez, I. Kuz, T. Murray, and G. Heiser. Formally
Verified Software in the Real World. Communications of the ACM, vol. 61, no.
10, Oct 2018

m https://cacm.acm.org/magazines/2018/10/231372-formally-verified-
software-in-the-real-world

19

https://cacm.acm.org/magazines/2018/10/231372-formally-verified-software-in-the-real-world

MDE & formal methods

* MDE: model-driven engineering

= Automated code generation

°* Model-based testing

°* Domains: embedded systems

= automotive, industry manufacturing robots

20

Disclaimer

* Formal methods do not guarantee correctness

= "a formally verified program is only as good as its
specification”

° |tis very easy to create a bad specification

= Problems: incompleteness, inconsistency, typos

°* Remedy: search for bugs & validate everything

21

Ten Commandments of Formal Methods

. Choose an appropriate notation

. Formalize, but do not over formalize

. Estimate costs

. Have a formal methods guru on call

. Not abandon traditional development methods
. Document sufficiently

. Not compromise quality standards

. Not be dogmatic

. Test, test, and test again

10. Reuse

O 00O N O 00 b WIN B

22

Management of models and specifications

* Why: formal models and specifications are
normal software artifacts

°* What to do: versioning, peer reviews, ...

°* Problems and challenges
= Keeping consistency of models in multiple files
= |nconsistency between specification and code

23

Design by Contract

°* Granularity: procedures, objects

® Preconditions
®* Postconditions
® |nvariants

* Methodology
= Define contracts by hand
= Use tool for verification

24

