Algebraic Specification Methods & Languages

http://d3s.mff.cuni.cz

Pavel Parízek
Introduction

• Purpose
 - Specification of external interfaces
 • Operations (arguments, results)

• Example
 - Abstract data types
 • You define behavior of all the operations, and not the internal data representation
Using
- Algebraic structures
- Abstract data types

ADT = carrier sets + operations + axioms
Basic theory
• Algebra $A = \langle D, F \rangle$
 ▪ Carrier set D
 ▪ Functions F

• Function $f_A \in F$
 ▪ $f_A : A \times \ldots \times A \to A$
 ▪ $f_A : \to A$
Sorts

- Sort = data type
 - Examples: Nat, Int, Bool, Strings, ...

- Many-sorted algebras

- Sub-sorting relation
 - Nat < Int
Algebra - revisited

- Notation
 - S ... sorts
 - F ... functions (operations)
 - D ... carrier sets (data)
 - A ... algebra

- Types of functions
 - $T = S^* \times S$
 - $s_1 \times \ldots \times s_n \rightarrow s$

- Algebra $A = \langle [D_s]_{s \in S}, [F_t]_{t \in T} \rangle$
Example
Signature

- Signature \((S, \Sigma)\)
 \[\Sigma = [\Sigma_t]_{t \in T}\]

- \(\Sigma\)-algebra
 - Carrier set \(D_s\) for every sort \(s \in S\)
 - Operation \(f_A\) for each symbol \(f \in F\)
Properties of operations

- Basic approach
 - Equations between function expressions

- Set E of all equations (sentences, axioms)

- Executable specifications (models)
More complex signatures and equations

- Overloaded functions
 - Different subsorts
 - Number of arguments

- Predicates and relations
 - Signature: the set P of predicate symbols
Initial model

- Exactly the right number of elements in carrier sets
 - No redundancy ("garbage")
 - No ambiguity ("confusion")

- Multiple isomorphic models
Algebraic specification

- Assumptions
 - Programs are modeled by many-sorted algebras
 - Correctness of the input/output behavior has precedence over all other properties

- \(Q = (S, \Sigma, E) \)

- Two parts
 - Declarations (signature)
 - Equations (semantics)
Example

- List of integers
 - Operations: add, remove, get, size, contains
 - insert and remove to/from any position

- Use of recursion

- Exceptions (errors)
Semantics of algebraic specifications

- $Q = (S, \Sigma, E)$
 - well-formed specification

- $\text{Sem}[Q]$
 - the class of all initial algebras (models)
Languages

- CASL: Common Algebraic Specification Language
 - http://www.cofi.info

- Other: Larch (family), OBJ3, ASL
• Ian Sommerville: Software Engineering
 - consider just recent book editions (9th or 10th)