UML: Unified Modeling
Language

http://d3s.mff.cuni.cz

Ditibutad and Pavel Parizek

Dependable

A=, FACULTY

L = OF MATHEMATICS
3 AND PHYSICS
Charles University

What is UML

®* General-purpose graphical notation for modeling
software systems

= with formal semantics

°* Many different aspects (viewpoints)
= architecture of the system
= processes (behavior)
= states and transitions
= interaction of components

* Levels of abstraction
= conceptual
" implementation

Basic perspective on usage

® Creating nice large and complex diagrams
= Various aspects of software systems

® But there is formal semantics too

= Allows for validation, reasoning about models, and
generating code

* Relatively wide adoption
= Who: business analysts, designers, architects

® Supported by many CASE tools and IDEs

= CASE = computed-aided software engineering

Official information

°* Maintainers
= Object Management Group (OMG)

® Industry standard
= |SO/IEC 19501

® Resources
= Official website (home page): http://uml.org/

= Specification: https://www.omg.org/spec/UML
= https://en.wikipedia.org/wiki/Unified Modeling Language

http://uml.org/
https://www.omg.org/spec/UML
https://en.wikipedia.org/wiki/Unified_Modeling_Language

UML diagrams

® Structure
= Class diagram
* https://en.wikipedia.org/wiki/Class diagram
= Component diagram

® Behavior
= Use case diagram

® https://en.wikipedia.org/wiki/Use case diagram
Activity diagram

® https://en.wikipedia.org/wiki/Activity diagram
= Sequence diagram

® https://en.wikipedia.org/wiki/Sequence diagram
State machine

https://en.wikipedia.org/wiki/Class_diagram
https://en.wikipedia.org/wiki/Use_case_diagram
https://en.wikipedia.org/wiki/Activity_diagram
https://en.wikipedia.org/wiki/Sequence_diagram

UML diagrams — complete schema

Diagram

T

Behaviour Structure
Diagram Diagram
£ £\
| | | [
Activity State Class Component Object
Diagram Machine Diagram Diagram Diagram
Diagram
Interaction Use Case Composite Deployment Package Profile
Diagram Diagram Structure Diagram Diagram Diagram
Diagram
A
| | |
Communication Interaction Sequence Timing
Diagram ':'*'_-'E miew Diagram Ciagram Notation: UML |
Ciagram

Source: https://en.wikipedia.org/wiki/Unified_Modeling_Language

Tools

®* Free tools for creating UML diagrams
= draw.io: https://app.diagrams.net/
= PlantUML: https://plantuml.com, https://www.planttext.com/

® Microsoft Visio
= https://www.microsoft.com/cs-cz/microsoft-365/visio/flowchart-software

®* Enterprise Architect
= https://sparxsystems.com/
= https://en.wikipedia.org/wiki/Enterprise Architect (software)

® Plugins for IDEs
= |ntelliJ (UML Generator)
® https://plugins.jetbrains.com/plugin/15124-uml-generator

= Visual Studio (Class Designer)

® https://learn.microsoft.com/en-us/visualstudio/ide/class-designer/designing-and-
viewing-classes-and-types?view=vs-2022

https://app.diagrams.net/
https://plantuml.com/
https://www.planttext.com/
https://www.microsoft.com/cs-cz/microsoft-365/visio/flowchart-software
https://sparxsystems.com/
https://en.wikipedia.org/wiki/Enterprise_Architect_(software)
https://plugins.jetbrains.com/plugin/15124-uml-generator
https://learn.microsoft.com/en-us/visualstudio/ide/class-designer/designing-and-viewing-classes-and-types?view=vs-2022

Class diagrams

®* Purpose: modeling structure of the system

= Classes that represent sets of objects (real-world
entities from a given domain) with the same
characteristics (properties, features, constraints)

= Various relationships between the objects

® Used at two levels

= Conceptual (domain): where the domain entities and
relations are captured

= Implementation: which maps directly to source code
in a programming language

Class diagrams — elements

® (Classes

= Basic information (name)

= Attributes (fields)
®* name, type, multiplicity (number of values)

= QOperations (actions)
= Endpoints for associations

® Relationships
= Association
= Composition
= Aggregation

Class diagrams — associations

®* Association ends labeled with

= Relationship meaning (semantics)
= Multiplicity (cardinality): /1. .N

®* Binary
® N-ary

= three or more endpoints

® Association classes

10

Class diagrams — part-of relationships

®* Composition
= Parts are not shared with other owners

= |Individual parts cannot exist without their owners

* Aggregation

= Parts may be shared with other owners

11

Class diagrams — inheritance

® Specialization
® Generalization

°* Expected semantics

= As in common programming languages

12

Class diagrams — operations

®* Operation = action that can be performed on
class instances

°* May be annotated with
= pre-condition
= post-condition
= special body-condition over the result

13

Component diagram

® Purpose

= How the components are connected together

®* Entities
= Components (with names)
= Provided interfaces
= Required interfaces
= Bindings (connectors)

® Resources
= https://en.wikipedia.org/wiki/Component diagram

14

https://en.wikipedia.org/wiki/Component_diagram

Activity diagram

® Purpose
= Modeling various processes (computations)

®* Entities
= Actions (transitions)
= Decisions (choices)
= Concurrency (fork/join)

® Resources
= https://en.wikipedia.org/wiki/Activity diagram

15

https://en.wikipedia.org/wiki/Activity_diagram

Sequence diagram

® Purpose

= Modeling interaction between objects and processes in
terms of events over time

* Entities
= QObjects (processes)
= General timeline
= Procedure calls
= Network messages
= Scope of execution

® Resources
= https://en.wikipedia.org/wiki/Sequence diagram

16

https://en.wikipedia.org/wiki/Sequence_diagram

UML profiles

® Extensions for specific domains

* SysML
= Target domain: large systems, not just software
= https://en.wikipedia.org/wiki/Systems modeling language

= https://sysml.org/

17

https://en.wikipedia.org/wiki/Systems_modeling_language
https://sysml.org/

