
http://d3s.mff.cuni.cz

OCL: Object Constraint
Language

Pavel Parízek

Motivation

2

UML models (class diagrams, ...)

Main limitations: incomplete, ambiguous

Some domain knowledge is not captured

How to specify additional constraints

Natural language (plain text)

Formal languages (some logic)

Constraints in UML diagrams

3

Precise exact statement (sentence)

Captures some condition or restriction

Attached to elements (classes, fields, ...)

Context: entity in diagram for which the constraint
is evaluated and time of evaluation

Graphical notation

Textbox connected to entity with a dashed line

What is OCL

4

Formal specification language

Extension for UML

Main features

Declarative and very strongly typed

Constraints written as precise text

Supports object query expressions

Official information

5

Maintainers

Object Management Group (OMG)

Resources

Specification: http://www.omg.org/spec/OCL/
https://en.wikipedia.org/wiki/Object_Constraint_Language

http://www.omg.org/spec/OCL/
https://en.wikipedia.org/wiki/Object_Constraint_Language

What can be specified in OCL

6

Initial values of properties (object fields)

Derivation rules (constraints for values)

Operation preconditions and postconditions

Operation bodies (side-effects)

Invariants for objects (classes)

Initial values

7

Syntax

context TypeName::PropertyName : Type

init <expression representing the initial value>

Example

context Thesis::state

init: ThesisStatus::assigned

Derivation rules

8

Purpose
Restricts value of some property (object field)

Syntax
context TypeName::PropertyName : Type

derive: <expression representing the derivation rule>

Example
context Lecturer::courses

derive self.teaching->size()

Operation pre/post-conditions

9

Syntax
context TypeName::OperName (p1 : Type1, ...,
pN : TypeN): ReturnType

pre: <precondition expression>

post: <postcondition expression>

Example
context Student::enrollToCourse(c:Course): Boolean

pre: c.enrolledStudents < c.limit
and self.enrolled->excludes(c)

post: c.enrolledStudents = c.enrolledStudents@pre + 1
and self.enrolled->includes(c)
and result = c.students->includes(self)

Operation bodies

10

Purpose

Capturing side-effects

How the operation changes values of properties

Syntax
context TypeName::OperName (p1 : Type1,
..., pN : TypeN): ReturnType

body: <expression>

Invariants

11

Purpose

Constraint for every instance of the class (type)

Syntax

context TypeName

inv: <invariant expression>

Example

context Student
inv: self.yearOfStudy > 5 implies self.payingFee

OCL features

12

Type system

Collections

Type system

13

Generic types: OclAny, OclInvalid

Basic types: Boolean, Integer, String, ...
Common operators and functions

Collection types: Set, Bag, OrderedSet, Sequence
Instances created through navigation over associations in
UML class diagrams

User-defined types
Elements of UML diagrams

Collections

14

How they are created
Navigation via properties (association ends or attributes) produces a
new collection object
Chain a.p1.p2.[...].pN of properties p1, ..., pN from variable a

Collection constants
Syntax: TypeName{ value1, value2, ..., valueN }

Operations
Filtering by predicate: select, reject
Quantifiers: forAll, exists
Loop with accumulator: iterate
Transitive closure by recursive application of an expression: closure
Some other: count, includes, excludes, isEmpty, size
Iterating over all instances of a given type: <Type>.allInstances()

Collections – examples

15

context Course
inv: self.passed->reject(s|self.enrolled
->includes(s))->size()=0

context Lecturer
inv: self.courses->forAll(c|c.guaranteedBy
->includes(self))

context Course
inv: self.enrolled->iterate(s : Student ;
somePassed : Boolean = false | somePassed
or s.pointsFor(self) >= 50)

Remarks

16

Likely, OCL is not used that much in practice

Take-away message (knowledge)

General concepts, transferable to some other
specification languages and frameworks

