Petri Nets

http://d3s.mff.cuni.cz

Pavel Parízek

Petri nets

- Modeling language
 - concurrent and distributed SW systems
 - reactive systems (asynchronous events)
- Notations: graphical, mathematical

- Many variants and extensions
 - Basic (ordinary)
 - Colored (CPN)
 - Hierarchical nets

Basic elements

Transitions

Arcs

Tokens

Semantics

- Marking
 - Function $M : P \rightarrow N$

- Transitions
 - Enabled: when input places contain enough tokens
 - Firing (execution)
 - Removing tokens from input places
 - Adding tokens to output places

Examples

- Conflicting transitions
- Independent transitions

Synchronization

Definition

Petri net is a tuple (P, T, A, w, M_0), where:

$$A \subseteq (P \times T) \cup (T \times P)$$

$$P \cap T = \emptyset$$
 (disjunct)

w: $A \rightarrow N$ is a weight function

 M_0 : P \rightarrow N is the initial marking

Reachability graph R

$$M_0 \in R$$

 $M \in R \land t \in T$ enabled in M s.t. $M \rightarrow_t M' \Rightarrow M' \in R$

Example: dining philosophers

- Two philosophers
- Two shared forks

Properties

- Reachability of M
 - \blacksquare 3 sequence of transitions from M_0 to M
- Reachable markings R(M)
- Coverability of M
 - $\exists M' \in R(M_0)$ such that $\forall p \bullet M'(p) >= M(p)$

Applications: verification, simulation, analysis

Variants

- Ordinary Petri net
 - every arc has the weight 1
- State machine
 - every transition has exactly one input place and one output place

Colored Petri Nets

Colored Petri Nets (CPN)

- Support for data types and manipulation
- Multiple types of tokens (colors)
 - data type = set of values ≈ set of colors
 - token value ≈ token color
- New elements
 - Places: color sets (allowed token types)
 - Transitions: guard conditions (enabling)
 - Arcs: arc expressions (transferring values)

CPN: usage

Example

- Distributed storage system with a very simple protocol for synchronization
 - Entities: client, server, data storage

Applications

- Communication protocols
- Distributed algorithms
- Control for embedded systems

Tools

- Popular editors for creating diagrams
 - <u>https://app.diagrams.net/</u> (draw.io)
- PetriDotNet
 - http://inf.mit.bme.hu/en/research/tools/petridotnet
- CPN Tools
 - http://cpntools.org/
 - http://cpntools.org/download
- CPN IDE
 - https://cpntools.org/cpn-ide/
- PIPE 2
 - http://pipe2.sourceforge.net/

Literature

- Basic Petri Nets
 - https://en.wikipedia.org/wiki/Petri net
 - Further details and references to various literature

- Colored Petri Nets
 - K. Jensen. A Brief Introduction to Coloured Petri Nets. Invited talk at TACAS 1997, LNCS 1217

