Bonus Topics: Automated Reasoning,
Runtime Verification

http://d3s.mff.cuni.cz

Pavel Parízek
Automated Reasoning

- SAT solvers
- SMT solvers
- Theorem provers
SAT solvers

- **Domain:** propositional logic
 - Formulas over boolean variables

- **Tools**
 - MiniSAT (http://minisat.se/)
 - Lingeling (http://fmv.jku.at/lingeling/)
 - Glucose (https://www.labri.fr/perso/lsimon/glucose/)

- **Applications**
 - Hardware & software verification (testing)
 - Efficiently solving various problems encoded to SAT
SMT solvers

- Domain: first-order predicate logic with specific theories and other restrictions
 - Formulas include predicates and functions
 - arithmetic expressions (+, -)
 - relational operators (=, >, <)
 - Theories: linear arithmetic, bitvectors, arrays, strings
 - Restrictions: limited support for quantifiers

- Tools
 - Z3 (https://github.com/Z3Prover/z3)
 - CVC4 (https://cvc4.github.io/)
 - OpenSMT (http://verify.inf.usi.ch/opensmt)
 - Common input format: SMT-LIB
Theorem proving

• Domain: complete first-order predicate logic
 ▪ Mathematical induction
 ▪ Higher-order logic (HOL)
 ▪ Machine-checked proofs

• Very powerful, but only partially automated
 ▪ Interactive (requires human assistance)

• Input: set of axioms (theory T), general formula ϕ
 ▪ Relevant use case: proof obligations

• Tools: PVS, Isabelle/HOL, Coq
Theorem proving – tools

- **PVS**
 - https://pvs.csl.sri.com/

- **Isabelle/HOL**
 - https://isabelle.in.tum.de/

- **Coq**
 - https://coq.inria.fr/
PVS – introduction

- Download from https://pvs.csl.sri.com/downloads.html and install
 - Version: PVS 7.1, Linux allegro 64-bit
 - How: unpack & run install-sh

- Running: ./pvs

- Important commands
 - Quit the PVS environment: Ctrl-x Ctrl-c
 - Help: Ctrl-c h // leave by typing “q”

- Basic guide
Opening file: Ctrl-x Ctrl-f
Switch buffer (file): Ctrl-x b
Close buffer: type character “q”

Demo 1: sum.pvs
 - Type checking (show that function is total)
 - Commands: Alt-x tc, Alt-x tcp
 - Proving main theorem semi-automatically
 - Approach: traverse all branches in the proof tree
 - Start by PVS command: Alt-x pr
 - Relevant prover commands: (induct “n”), (expand “sum”), (assert), (skolem!), (flatten)

Demo 2: stacks.pvs
Demo 3: fm99/phone_1.pvs
Theorem proving – other tools

• The KeY Project
 https://www.key-project.org/

• ACL2
 https://www.cs.utexas.edu/users/moore/acl2/

• Lean
 https://leanprover.github.io/
Runtime verification

- Monitors
 - Recording interesting events
 - field accesses, method calls, thread synchronization
 - Checking functional correctness properties defined as finite state machines

- Further details

- State of the art: conference RV
 - https://runtime-verification.github.io/events/