
Abstract Specification

First we must define (show) relevant parts of the abstract specification.

Basic data types: [NAME , ID , INT ].

Schemas that capture the system state:

Bank
persons : NAME 7→ Person
accounts : ID 7→ Account
ownership : Person ↔ Account

Account
owner : Person
id : ID
balance : INT

balance > 0

We do not need the structure of the data type Person here.

Abstract schema for the operation CreateAccount .

CreateAccount
∆Bank
per? : Person
nid? : ID
acc! : Account

nid? /∈ dom accounts

ownership′ = ownership ⊕ {(per?, acc!)}

acc!.owner = per? ∧ acc!.id = nid?

The Z language supports the dot-notation for accessing fields.

Concrete Design

We can use arrays in the concrete version of the schema Bank .

arrPersons : array[1..N ] of PersonImpl1
arrAccounts : array[1..N ] of AccountImpl1

Arrays may be defined as explicitly finite (1..N) or as infinite with constraints on their size expressed through
logic formulas.

The digit 1 in the name of the concrete schemas (PersonImpl1, AccountImpl1) indicates that it is the first
step of iterative refinement. We will use a similar notation in the whole document.

For the purpose of mathematical reasoning about the concrete data structures, we can model arrays as
functions from positive integers (N1) to element objects (of type PersonImpl1, respectively AccountImpl1).

arrPersons : N1 → PersonImpl1
arrPccounts : N1 → AccountImpl1

1



An array element persons[i ] is simply the function value persons(i). The assignment persons[i ] := p is
exactly specified as persons ′ = persons ⊕ i 7→ p.

Schema for the concrete state is actually very similar to the abstract schema. We just need some variables
to capture the current array sizes.

BankImpl1
arrPersons : N1 → PersonImpl1
arrAccounts : N1 → AccountImpl1
szPersons : N
szAccounts : N

∀ i , j : 1..szPersons • i 6= j ⇒ arrPersons(i) 6= arrPersons(j )

The constraint expresses our requirement that we want unique persons (distinct elements of the array).

Note that we use different names of state variables in the concrete schema (BankImpl1) than in the abstract
schema to avoid confusion.

We also need to define the abstraction schema that captures the relationship between abstract states (schema
Bank) and concrete states (schema BankImpl1).

AbsBank
Bank
BankImpl1

(p, a) ∈ ownership ⇔ (∃ i : 1..szPersons • p = arrPersons(i)) ∧
(∃ j : 1..szAccounts • a = arrAccounts(j )) ∧
(a.owner = p)

The abstraction schema AbsBank includes both the abstract and concrete schema, and then it defines some
relation between abstract and concrete state variables. In literature, you can also find the term abstraction
relation for this concept.

To have a really complete design, we would have to define also some concrete representation of the relation
ownership, and use it in the abstraction schema, but I did not want to make the example too complex for
illustration purposes.

The concrete schema (implementation) of the operation CreateAccount may look like this:

CreateAccountImpl1
∆BankImpl1
per? : PersonImpl1
nid? : ID
acc! : AccountImpl1

∃ i : 1..szPersons • per? = arrPersons(i)

∀ j : 1..szAccounts • nid? 6= arrAccounts(j ).id

szAccounts ′ = szAccounts + 1

arrAccounts ′ = arrAccounts ⊕ {szAccounts ′ 7→ acc!}

acc!.owner = per? ∧ acc!.id = nid?

The concrete schema has the same arguments (inputs) and outputs as the abstract schema, but operates on
the concrete state (data structures). Note that we again omitted constraints involving the relation ownership
to avoid unnecessary complexity of this example.

2


