
Charles University
Faculty of Mathematics and Physics

HABILITATION THESIS

Jan Kofroň

Verification of Software

Computer Science, Software Systems

Prague, Czech Republic 2018

Contents

1 Introduction 3

2 Specification of Software Behavior 7
2.1 Software components and services . 7

3 Verification of Source Code 11
3.1 Explicit model checking . 11
3.2 Static analysis . 12
3.3 Symbolic verification methods . 14

4 Behavior Protocols Verification: Fighting State Explosion 17

5 Checking Software Component Behavior Using Behavior Protocols and
Spin 27

6 Modes in component behavior specification via EBP and their applica-
tion in product lines 33

7 Threaded Behavior Protocols 55

8 On Partial State Matching 87

9 Framework for Static Analysis of PHP Applications 115

10 WeVerca: Web Applications Verification for PHP 139

11 On Interpolants and Variable Assignments 147

12 PVAIR: Partial Variable Assignment InterpolatoR 157

13 Conclusion and future work 173

i

CONTENTS

ii

Preface

The thesis presents selected results in the area of specification and verification of soft-
ware properties. The work has been carried out during my stay at the Department of
Distributed and Dependable Systems (formerly Distributed Systems Research Group) of
the Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic, and
Forschungszentrum Informatik, Karlsruhe, Germany.

The selected topics include two main directions—first, it is the problem of semantic
specification of software behavior, with a focus on component software. Second, we address
the problem of efficient verification of software in general, in particular improving scaling
of explicit and symbolic verification methods as well as providing a scalable yet precise
static analysis algorithms for dynamic languages. The thesis consists of published research
papers (selecting those that summarize the achieved results in particular topics) and
connecting comments to make the text seamless as much as possible.

Apart from the papers, there are also research results in the form of taking part in
international and national projects and organization of international conferences and
workshops. The international projects include a bilateral project with France Telecom
“Component Reliability Extensions for Fractal component model”, FP7 European project
“Q-ImPrESS”, FP7 Marie Curie ITN project “Relate”, and FP7 FET Proactive Initia-
tive project “Ascens”. The national projects include several ones funded by the Czech
Science Foundation, in particular 102/03/0672, 201/03/0911, 201/06/0770, 201/08/0266,
P103/11/1489, 14-11384S, and 17-12465S.

Major partners in the aforementioned collaborative research projects include Orange
S.A., formerly France Télécom S.A., France, Universität Karlsruhe, Germany, Univerzità
Svizzera della italiana, Lugano, Switzerland, and Vysoké učeńı technické v Brně, Czech
Republic.

The research presented in the thesis is of a collective rather than individual nature. The
software prototypes mentioned in the thesis are large piece of software; it is beyond abilities
of an individual researcher to bring them to a working state in a reasonable amount of
time. The published research papers were included with a list of all the contributing
authors, while the connecting comments are mine.

I am grateful to my colleagues from the Department of Distributed and Dependable
Systems (formerly Distributed Systems Research Group). Jǐŕı Adámek, Rima Al Ali,

1

Preface

Paolo Arcaini, Lubomı́r Bulej, Jakub Daniel, Ilias Gerostatopoulos, David Hauzar, Petr
Hnětynka, Viliam Holub, Pavel Janč́ık, Pavel Ježek, Tomáš Kalibera, Lucia Kapová,
Micha l Kit, Michal Malohlava, Vladimı́r Mencl, Pavel Paŕızek, Tomáš Poch, Tomáš Pop,
Ondřej Šerý, Viliam Šimko, and Jǐŕı Vinárek have all participated in the research activities
relevant to the thesis and therefore have made this work possible. A special thank belongs
to Frantǐsek Plášil, Petr Tůma, and Tomáš Bureš for not only participating in research
but also leading the department (group).

I am also grateful to my colleagues from Forschungszentrum Informatik, Karlsruhe, in
particular Steffen Becker and Mircea Trifu, who have welcomed me during my visit and
led the research activities.

Jan Kofroň

2

CHAPTER 1

Introduction

Software is ubiquitous. Its reliability has become an important aspect of everyday lives and
the errors within it can cause not only inconvenience at the user side, but also represent a
significant danger to people’s health and lives (e.g., [50]). A number of techniques thus
have been developed to reduce the number of errors inside software. On the one hand, they
include modern programming concepts and languages, practically eliminating some types
of errors, such as type mismatch. On the other hand, testing and verification procedures
can automatically reveal errors beyond syntax and type system of the used programming
language. Unfortunately, the techniques of the latter group suffer from the theoretical
complexity of the task; the required time usually grows exponentially with the size of
the input, more often, the task is even undecidable. Testing, including both traditional
application testing by human testers and more sophisticated methods such as unit testing,
brings an additional burden in terms of effort to prepare and perform the tests. Testing
definitely improves quality of software in most common use cases and scenarios; despite
those come on mind of both testers and developers, they are particularly weak in covering
the corner cases. Verification methods can successfully address this weakness; here, the
effort is largely moved from humans to computers. Still, humans have to specify the
desired properties of the software to be verified.

In order to produce reliable and dependable software, it is necessary to create a specification
capturing semantics of the software and verify the desired properties thereof. This requires
using an appropriate specification platform featuring verification tools. In the design, this
can help to form the software architecture that enables the implementation to satisfy the
properties. Later in the development process, the properties of the code have to be verified
as well. Here, as the recent research shows, code level specification, usually in the form
of annotations, is more appropriate than re-using the design specification and extracting
information from it [29]. Nonetheless, maintaining consistency between the design and
code level is a challenging task.

3

1. Introduction

In this thesis, we focus on the methods improving software design and verification. This
spans from various approaches to capturing the desired properties and modeling software
behavior (semantics) to techniques of verifying the validity of properties at the code level.

First, we focus on software behavior specification. The challenge here is to capture
the desired properties of the system, while still keeping the specification reasonably simple
to be able to maintain it, communicate it, and analyze its properties. This especially
employs using an appropriate specification language. With a sufficient expressiveness of the
language at one hand, one has to keep in mind the complexity of the verification process
on the other hand. This means that a compact yet expressive specification language,
model checking (or another kind of formal analysis) of which is infeasible, is practically
not very useful. In Chapter 2, we describe our research in this area, applied in the domain
of software components. In our research, we focused on both development of a suitable
specification language for software component behavior and development of algorithms
allowing for implementation and application of the verification tools on real-live component
applications. Our contribution is summed up in Chapters 4–7.

The second part of this thesis is devoted to code verification. This does not necessarily
imply direct analysis of source code, but usually employs a pre-processing compilation
phase, such as compiling Java code into Java bytecode and transforming C code into a
formula in propositional logic. In this part, we first focus on explicit code model checking
and verification of properties of Java programs. Here, we address the state explosion
problem [21], which is the major obstacle in application of explicit model checking in
practice. By means of dead-heap-variable analyses, we propose optimization of state space
that reduces both the representation of particular states and the number of states to be
explored. Our achievements are described in Chapter 8.

While being theoretically undecidable, code model checking can, in many cases, decide
on validity of software properties; however, its inherent complexity, exponential in the
size of the input program, limits its practical usability. Often, approximate results on
property violations are of great value. The imprecision of such verification results includes
not covering all the issues and reporting spurious ones. It is then up to the developer
to investigate them and decide about their relevance. Such an approximate piece of
information can be computed by means of static analysis. Its advantage over model
checking is a lower complexity—while model checking works upon the state space of
the input program, which can grow exponentially due to non-deterministic user input
and thread interleavings, static analysis uses directly the code representation, without
generating its state space. The challenge of designing a static-analysis algorithm is to
balance its precision with its performance. Low precision of the algorithm results in
many spuriously reported issues, while low performance of a precise algorithm hinders
practical usability of the corresponding tool in the development process. In this area, we
focus on static analysis of dynamic languages, such as PHP and JavaScript, to reveal
vulnerabilities (potential security problems) of web applications. In particular, we aim at
reasonably precise representation of heap data structures to reduce the imprecision (i.e.,
over-approximation) of the analysis. The results are described in Chapters 9 and 10.

The final part of the thesis forming Chapters 11 and 12 is devoted to the area of symbolic
verification. In particular, we focus on improving efficiency of verification methods

4

1. Introduction

employing Craig interpolants. The interpolants are used for capturing semantics of
programs (functions) in an over-approximate, i.e., simpler way, since a precise representation
is practically useless due to its high complexity and size. Similarly to the previous part, one
of the most burning issues here is the efficiency of the verification process; while it works
well for simple programs, scaling to larger real-life applications is still difficult to achieve.
Therefore, we address the problem of efficiency of the interpolation procedure. The smaller
representation of interpolants and the faster way they are computed, the more efficient
the overall verification is. In particular, we have extended the interpolation systems by
the option to specify a partial variable assignment, thus focusing the computed function
interpolant (function summary) on a specific context in which the corresponding function
is used. This not only helps to generate a more compact interpolant representation, but
also to make the computation procedure more efficient, both in terms of time and memory.

The main part of the thesis consists of the following papers and articles published at
international conferences or in international journals:

Martin Mach, Frantǐsek Plášil, and Jan Kofroň: Behavior Protocols Verification: Fighting
State Explosion, International Journal of Computer and Information Science, Vol.6, Number
1, ACIS, ISSN 1525-9293, pp. 22-30, March 2005

Jan Kofroň: Checking Software Component Behavior Using Behavior Protocols and Spin,
Proceedings of the 2007 ACM Symposium on Applied Computing, ACM, Seoul, Korea,
ISBN 1-59593-480-4, pp. 1513-1517, March 2007

Jan Kofroň, Frantǐsek Plášil, and Ondřej Šerý: Modes in component behavior specification
via EBP and their application in product lines, Information and Software Technology 51/1,
pp. 31-41, Elsevier, January 2009

Tomáš Poch, Ondřej Šerý, Frantǐsek Plášil, and Jan Kofroň: Threaded Behavior Protocols,
Formal Aspects of Computing, Volume 25, Issue 4 , pp 543-572, ISSN 0934-5043, Springer-
Verlag, July 2013

Pavel Janč́ık and Jan Kofroň: On Partial State Matching, Formal Aspects of Computing,
ISSN: 1433-299X, pp. 1–27, Springer Verlag, January 2017

David Hauzar and Jan Kofroň: Framework for Static Analysis of PHP Applications,
Proceedings of the 29th European Conference on Object-Oriented Programming (ECOOP
2015), July 2015

David Hauzar and Jan Kofroň: WeVerca: Web Applications Verification for PHP, Proceed-
ings of the 12th International Conference on Software Engineering and Formal Methods
(SEFM’14), Grenoble, France. LNCS, September 2014

Pavel Janč́ık, Jan Kofroň, Simone Fulvio Rollini, and Natasha Sharygina: On Interpolants
and Variable Assignments, Proceedings of Formal Methods in Computer-Aided Design
2014, Lausanne, Switzerland, October 2014

Pavel Janč́ık, Leonardo Alt, Grigory Fedyukovich, Antti E.J. Hyvärinen, Jan Kofroň, and
Natasha Sharygina: PVAIR: Partial Variable Assignment InterpolatoR, Proceedings of
FASE’16, Eindhoven, Netherlands, April 2016

5

1. Introduction

6

CHAPTER 2

Specification of Software Behavior

Specification of software behavior and its properties is an important part of the development
process. Without a specification, one can hardly decide upon software correctness and
whether it fulfills the original expectations. Moreover, correctness, or error freedom, of
software is an aspect that is parametrized by the property or properties of interest; what
can be perceived as correct behavior in some cases, might be erroneous in other ones.
Therefore, the properties of interest are also to be captured.

2.1 Software components and services

Challenges and approaches. Software components have become a widely used mean of
software construction, both in industry and academia. A plenty of component systems have
been introduced, each one focusing on different aspects of the systems [11, 13, 14, 17, 18, 52].
Particular software components can be specified in terms of modeling (simulating) their
behavior and expressing their (both functional and extra-functional) properties. It is
worth mentioning that properties of a software component include not only its provided
properties, but also those required by other components, usually communicating with this
one (its environment).

Specification of software components is important for many reasons. First, for complex
software, composing components together is a non-trivial task. One has to pay attention
to fulfilling all the components requirements and achieve the intended functionality. Here,
the specification not only serves for checking the composition correctness, but also provides
the developer with a formal and precise description of the component functionality. In
other words, it can be seen as a form of developer documentation.

Second, for mission-critical software, which is usually not that large, absence of errors
and adherence to the specification is of particular importance. This includes software in
areas such as avionics, medical devices, and military devices. Here, more than elsewhere,

7

2. Specification of Software Behavior

deviation from the specification can have tragic consequences. Specification of particular
components helps to not only assemble the systems together and prove properties of
particular parts, but also to devise the validity of the overall system specification out of
these.

Specification of a software component does not involve just its type information, i.e., type
specification of provided (and required) interfaces. An important part of the specification
is also semantic information, i.e., description of the behavior of the component. This piece
of information can take a form of a temporal logic formulae, such as LTL and CTL [21], or
a model of abstract behavior of the component in the form of an automaton or generally a
type of state-transition system [31, 33, 36].

The semantic specification of a software component can capture both its functionality
and the assumed ways of using it. While the assumed way of usage is something one can
imagine as a set of allowed sequences of method calls or messages issued on the component,
the meaning of component’s functionality varies across the component systems. Since
components are usually understood as black or gray boxes, the functional specification
usually narrows to contracts or rules relating the component’s inputs and outputs. This
includes pre- and post-conditions of particular provided methods (or services) [10, 38] and
dependencies of usage of the required interfaces on particular provided ones [6, 8] and [44].

Contribution. Chapters 4–7 describe our development of a specification platform called
behavior protocols family. Here, particular specification languages model behavior of
particular components by means of communication protocols; this involves, for each
component, specification of allowed sequences of provided method calls and for each
provided method, a set of possible reactions of the component in terms of calling particular
required methods (i.e., those of required interfaces). Having all the components forming
a particular application specified in terms of behavior protocols, it is possible to check
compatibility of the components, i.e., the correctness of their composition. This involves
compatibility of the protocols of communicating components, but also, in hierarchical
systems, correctness of realization of each composed component by its sub-components.
We refer to those as horizontal resp. vertical compliance [8]. Since validation of the
compliance relations by hand becomes practically impossible for applications consisting
of tens and more components, (semi-)automatic tools performing these tasks become a
necessity. Along the development, tools verifying correctness of component composition
in terms of both horizontal and vertical compliance [6, 9] were implemented for each
specification language in the context of the SOFA component system [18].

Verification of correctness of the communication among particular components signifi-
cantly helps during the design phase. Nonetheless, adhering to the specification when
implementing the system (which means implementing both primitive components in a
programming language and composite components by composition of other ones) is a
non-trivial task, too. Whereas the correctness of composition in case of the composite
components is already established at the design phase, correspondence of behavior of
primitive components with their specification is definitely not guaranteed. This problem
is undecidable in general, usually even after (reasonable) limiting both the specification
language and the programming one. Fortunately, methods for checking the correspondence

8

2. Specification of Software Behavior

working in most practical cases are available. In particular, for behavior protocols, these
include [39].

Hereby, we have naturally stepped to the topic of the following chapter—verification of
software properties at the code level.

9

2. Specification of Software Behavior

10

CHAPTER 3

Verification of Source Code

Creating a detailed specification of software semantics and consequently maintaining its
correspondence with the implementation is tedious and can be, by some, even perceived as
superfluous. Currently, the trend in this area is to specify the properties directly in source
code, usually by means of annotations [22, 26, 34]. Alternatively, the required properties
can be defined generally, that is independently of actual code, usually just reflecting
specifics of a particular domain [2] and [53]. The notion of a domain includes a particular
programming language and its specific issues (absence of null-pointer de-references in
C/C++ and Java) and particular software kinds, such as device drivers.

Verification of source code introduces a second-level check following the syntax and type
checks performed by a compiler. It is desirable that this semantic check discovers any
technical issue that may arise at runtime. Of course, this idea has its limits in terms of
what is the intended behavior of the software piece—things that are correct and intended
in one case can be wrong in another. This justifies the need for explicit specification in
cases where software reliability is of particular importance.

3.1 Explicit model checking

Challenges and approaches. The idea of model checking dates back to early 1980s.
Originally formulated for finite-state systems [19, 20, 25, 43], it allowed one to systematically
and automatically verify properties of computational systems, if their model in the form
of a finite state graph was available. The state space of complex software is often infinite
(or so large that it is considered infinite from the analysis point of view), thus disallowing
a straightforward application of model checking in general. Moreover, even for finite-state
software, constructing its state space results in large transition systems, whose traversal is
practically infeasible, anyway. Despite this, a lot of attention has been paid to developing
appropriate methods to face these issues and as for today, several explicit code model
checkers are available and even used outside academia in industry [30, 49].

11

3. Verification of Source Code

Success of a particular explicit model checking method and the corresponding tool crucially
depends on its practical usability. This means both its performance and the set of properties
it is able to verify. As to the supported properties, most of the tools in this area are able
to verify reachability properties, usually materialized as assertions inside the code. This
allows for simplification of the overall model checking process, focusing on reduction of the
state space needed to explore, and efficient traversal thereof. The reduction techniques
are in particular important in case of multi-threaded programs, where the state explosion
problem arises in a huge extent.

Partial Order Reduction (POR) [21] is a reduction technique exploiting the fact that two
or more sequences of actions can result in the same state. Then, just a single sequence
from such set needs to be explored, while the other ones can be omitted. In the context of
code model checking, this corresponds to different thread schedulings when there is no
race condition in the code. This reduction is implemented in a form in all explicit state
model checkers today [30, 49] and significantly improves performance of these tools.

Other techniques focus on reduction of the state sizes, such as Dead Variables Reduction
(DVR). Based on the information which variables are accessed during a future execution,
i.e., the live variables, the representation of a state can be significantly reduced. The
problem here is to identify the live variables at particular program states efficiently. Our
research in this area is devoted to finding methods that identify future accesses to variables
and objects on the heap, given a program state. Even though several results in this
direction have been published so far [16, 35, 47], they usually restrict themselves just
to local variables, or miss some important properties, such as sound support for multi-
threaded programs. Successful reduction of state representation by removing their dead
parts results not only in a more compact representation, but also decreases the number of
explored states, since more states are considered as equal; in particular those differing just
in the dead parts.

Contribution. Our results in this direction are described in Chapter 8. We address the
problem of dead variable analysis for data stored at the heap. In particular, this involves
fields of dynamically allocated objects, which are the most common type of objects in
Java programs. We have developed and implemented two types of analysis, one aiming at
speed and simplicity, while the other at precision and maximal state space reduction. The
methods are based on tracking live fields during state space traversal and identification
of states being equivalent in the values of these fields, i.e., omitting the dead ones. Our
experiments prove the technique useful; it has the potential to significantly decrease not
only the size of program state space, but also the size of particular state representation.

3.2 Static analysis

Challenges and approaches. In many cases, precise formal analysis of software prop-
erties is (computationally and sometimes even theoretically) infeasible. Here, static
analysis [15] can be applied and provide very useful results. Static analysis works at the

12

3. Verification of Source Code

level of code representation rather than at the level of the associated state space, which
results in better scaling and a wider set of programs that can be handled; the price paid
is a lower precision of the results in terms of over-approximation. When aiming at not
missing a violation of the specification, the method can yield false negatives; in other
words, it can report spurious specification violations. Static analysis can be also used as a
means of bug hunting. In such a case, it is more desirable that the reported specification
violations are real, with the possibility of not discovering all of them. Both cases can be
covered by static analysis, being set up different ways.

In our work, we focus on the first settings, i.e., we aim at discovering all potential issues;
the decision if a reported problem is real or spurious is a task for the user/developer. The
goal of static analysis can differ a lot in different cases, which also implies different kind of
information that is computed by it. We are concerned with information about data types
and values, based on which more specific information can be deduced; this can include
information about what variables can be influenced by user input and thus are subject to
security checks. This type of static analysis is called data-flow program analysis.

The high-level view on the data-flow-analysis algorithm is a cycle extending the set of
possible values (or types) of each program variable, based on the possible values of variables
influencing this one. The sets of possible values are extended until a fixed point is reached.
Since the fixed-point computation can take very long, i.e., many iterations of the main
cycle can be needed to reach it, widening of those sets of possible values that have met a
threshold size is made. Generally, widening extends the set of possible values by adding
new values without being a direct consequence of values of other variables. In particular,
this can be realized by assuming that a variable can take any value of its domain. Widening
thus becomes a source of over-approximation and, in turn, of reporting spurious issues.
Even without widening, spurious issues can be reported because some combination of
computed variable values might be infeasible in the given program.

To mitigate the impact of the over-approximation, several steps to improve the result
precision have been made. In general, the algorithm can take into account various aspects
of the program that is by default disregarded for the sake of analysis performance. Flow-
sensitive analysis takes into account the ordering of particular statements, i.e., their mutual
position in the program. Possible values of a variable can then be narrower. Path-sensitive
analysis computes several versions of possible value sets for each variable parametrized by
the conditional branches taken in the past. This is usually realized as adding the conditions
that determine the particular branches. Context-sensitive analysis takes into account the
program point from which a particular function or method is called and computes several
versions of the possible value sets parametrized by this context. This kind of sensitiveness
make sense just for inter-procedural analyses, which is not always the case. Static analysis
can be made sensitive in any combination of the aforementioned dimensions, which usually
improves the precision, but lowers its performance.

Contribution. In our work, we focus on security analysis of dynamic languages, es-
pecially PHP. We are interested in detecting vulnerabilities, i.e., possibilities of leaking
and damaging data by means of passing malicious user input. The most famous types of
vulnerabilities are SQL injection (SQLi) and Cross-site scripting (XSS) attacks [48].

13

3. Verification of Source Code

It is not too difficult to design and implement fast data-flow analysis; the drawback is
usually its low precision. On the other hand, it is not too difficult to come up with a precise
analysis algorithm; the analysis then usually runs out of computational resources—memory
and time. A tool being very fast but imprecise in terms of reporting many spurious
warnings (next to the real ones) is not of much practical use. Similarly, a tool producing
precise results, but being too slow or even running out of memory in most cases would
not be more useful. Balancing these two aspects is a basic assumption for a success of an
analysis tool.

To achieve a reasonable precision of the analysis algorithm, it is necessary to represent the
data in a precise and easy-to-process way. In contrast to other state-of-the-art tools for
security analysis of PHP, we decided to support also the heap data structures and their
interconnections in terms of references with no particular nesting limit and most of the
PHP5 constructs such as classes, the eval function, and dynamic includes [40].

We have created an analysis framework for dynamic languages (PHP, JavaScript) with
a PHP front-end that demonstrates its usefulness. It provides the developers with an
easy way to implement a custom kind of data-flow analysis. The framework processes
the input program in two phases; in the first phase, the AST representation of the code
is created. This is not an easy task, since in dynamic languages, names of included files
can be computed at runtime, making the problem undecidable in general. Fortunately,
constructing filenames is often limited to using basic string operations, so in most cases,
this piece of information can be computed by means of static analysis. Consequently, the
basic information about data types and values are computed. Providing a second-phase
analysis is up to the developer. We have implemented a security analysis for PHP that
was able to find a previously unknown real vulnerability inside real code. The results of
our work are described in Chapters 9 and 10.

3.3 Symbolic verification methods

Challenges and approaches. Despite the success of explicit verification methods, they
still have to face several issues hindering its practical usability. While the approach of
state space traversal in an explicit way is not very complex in principle, the complexity
and practical time (and often also memory) requirements stemming from the fact that
the number of different thread schedulings grows exponentially in number of threads
and the program size significantly limits scaling of these methods. Symbolic verification
methods, on contrary, can handle the state explosion problem in much better way. Even
though usually being of the same theoretical complexity as the explicit methods, symbolic
methods can perform better in practice. However, they have their drawbacks, too. It
is usually principally difficult to support different aspects of programs, such as dynamic
heap allocation, and multi-threading, that are commonly used. Therefore, the available
approaches and tools are often limited and their application in industrial settings is not easy.
Nonetheless, significant advances have been recently made that contribute to practical
usability of the related tools [27, 32, 42, 51].

14

3. Verification of Source Code

Symbolic model checking, proposed by K. L. McMillan in his doctoral thesis [36] in 1992,
employs binary decision diagrams for representation of set of states. For symbolic methods
in code verification, different approaches are used. Some of them employ static analysis
and abstract interpretation, while others exploit SAT and SMT solvers. In the latter case,
the program is transformed to a propositional or a first-order-theory formula; consequently,
a SAT or SMT solver is called to decide on satisfiability of the formula, corresponding to
reachability of an error state. The hard part of the problem is thus yielded to a solver, while
the verification tool itself is responsible for preparing the solver input and interpreting the
solver results. Since for large programs, precise formula representations are impractical
due to their sizes, an abstraction method is to be employed. Here, Craig interpolation
plays a central role.

Given an unsatisfiable formula in the form A ∧ B, Craig interpolant [24] is a formula I
such that (i) A→ I, (ii) B ∧ I → ⊥, and (iii) I contains only variables common to both
A and B. Interpolants can be used for over-approximating sets of states, e.g., those that
are reachable after n steps of program execution. An interpolant can be perceived as a
proof that no error state (represented by the B sub-formula) is reachable from within
the states represented by the interpolant (containing all the states represented by the
A sub-formula). Such over-approximation introduces a source of imprecision, which can
manifest itself as a non-empty intersection of I and B, representing a spurious error-state
reachability. On the other hand, the benefit of employing interpolants lies in a much
smaller representation of sets of states compared to the original A sub-formula. Moreover,
the spurious errors can be detected and the interpolant refined—modified to become more
precise over-approximation of A not intersecting with B any more.

An interpolant is usually computed from a proof of unsatisfiability of A ∧B. There are
several algorithms for interpolant computation [37, 41, 46] called interpolation systems.
Interpolants computed by different systems differ in size and in logical strength. The
Labeled Interpolation System (LIS) [46] generalizes different approaches and formulates
criteria for comparing the strength of different interpolants. It is worth mentioning that
for different verification tasks, interpolants of different strength are needed. In addition,
interpolants computed by a specific interpolation system have properties that others lack.

Since the motivation for using interpolants in program verification is to reduce the size of
set-of-states representation, it is desirable that the interpolants are as compact as possible.
Various techniques for achieving this goal are used; they employ reductions of the proof of
unsatisfiability [12, 23, 28, 45], from which interpolants are computed, and optimizations
of the interpolant construction itself [45]. Smaller interpolants not only save memory, but
also the time in the subsequent verification steps in which they are involved.

Contribution. In our work, we focused on faster computation of smaller interpolants
by exploiting partial variable assignments. Such an assignment corresponds to ignoring
parts of the program as a consequence of added knowledge about, e.g., method parameters.
In turn, this results not only in potentially smaller interpolants, but also in more efficient
computation of them. Moreover, it does not restrict the application area, since in the case
of an empty variable assignment, our technique is equivalent to the standard ones. Our
results in this direction are described in Chapters 11 and 12.

15

3. Verification of Source Code

16

CHAPTER 4

Behavior Protocols Verification: Fighting State

Explosion

Authors: Martin Mach, Frantǐsek Plášil, and Jan Kofroň

[8] International Journal of Computer and Information Science, Vol.6, Number 1, ACIS,
ISSN 1525-9293, pp. 22-30, March 2005

17

Behavior Protocols Verification: Fighting State Explosion

Martin Mach1, Frantisek Plasil1,2, Jan Kofron1

Charles University, Prague

Academy of Sciences of the Czech Republic

Abstract

A typical problem formal verification faces is the size of

the model of a system being verified. Even for a small

system, the state space of the model tends to grow

exponentially (state explosion). In this paper, we present a

new representation of state spaces suitable for implementing

operations upon behavior protocols of software components

[1]. The proposed representation is linear in length of the

source behavior protocol. By trading space for time, it

allows handling behavior protocols of “practical size”. As a

proof of concept, two versions of a verification tool based

on the proposed technique are discussed.

Keywords: Formal verification, software components, state

explosion, behavior protocols, parse trees.

1. Introduction and motivation

The traditional verification techniques of program

correctness are testing and simulation. However these

techniques suffer from two major problems: (i) A working

prototype is necessary for the verification, which inherently

means belated error discovery within the development cycle.

A remedy may require a major change in the program’s

architecture, which may be very costly in late design stages.

(ii) It is usually hardly possible to test all the potential

interactions with the program’s environment so that some

errors may remain undetected during the development,

being discovered as late as by an end user.

Formal verification is a well-established method for

correctness checking which can be employed during the

whole program development cycle. The complete program

is described via a mathematical model the properties of

which can be verified with the assistance of verification

tools.

1Faculty of Mathematics and Physics
Department of Software Engineering

Malostranske namesti 25, 118 00 Prague 1,

Czech Republic
{mach, plasil, kofron}@nenya.ms.mff.cuni.cz,

http://nenya.ms.mff.cuni.cz

2Academy of Sciences of the Czech Republic

Institute of Computer Science

Pod Vodarenskou vezi 2, 182 07 Prague 8,

Czech Republic
plasil@cs.cas.cz, http://www.cs.cas.cz

However, as forming of the actual model can be quite

complicated, these tools are usually not easy to employ.

Another important problem is that the representation of the

state space associated with the model tends to exhaust all

the memory available for a particular verification tool (the

“state explosion” problem).

In this paper, we focus on formal models targeting

behavior description of software components. In particular,

we address the issue of efficient memory representation of

the behavior protocols [1], which allows behavior

compliance checking of cooperating components.

1.1. Components and behavior

Components are modern foundations of building software

applications. Frequently understood as a design entity, a

component provides some services to its environment and

requires other services from the environment (other

components). A service is usually described as an interface

(and the methods in this interface). Therefore, in a typical

component model, a component features both provided and

required interfaces, like in Darwin [14] and Fractal [15].

In addition to defining interfaces at the syntax level,

some of the component models partially capture also the

semantics of components by specifying the desired/allowed

sequences of method invocations (behavior of components).

Such component models include Wright[5], Darwin[14],

and SOFA[3]. In this paper, we focus on the behavior

specification via behavior protocols [1] employed in SOFA,

an open source component model [3].

1.2. Behavior protocols

A behavior protocol is a regular expression-based

expression describing behavior at different levels of

granularity (interface, interplay of all interfaces of a

component, composition of several components). A

behavior is a language over symbols that denote either the

start or end of a method invocation (events). A behavior

protocol features additional operators to enhance

expressiveness. These additions do not break regularity of

the languages described by behavior protocols. We provide

only a basic overview of behavior protocols, for further

reference we refer the reader to [1] and [4].

4. Behavior Protocols Verification: Fighting State Explosion

18

Syntax. The symbols denoting events are used to

describe synchronous and asynchronous method invocations

and have the following syntax:

(type, interface_name, event_name, flag)

where type indicates whether event_name determines a

method invocation accepted on interface_name (?),

emitted on interface_name (!), or it is an internal event

taking place within a composed component (τ). Further,

flag denotes whether the event is a method invocation

request (↑) or response (↓). As an example, the acceptance

of synchronous call invoking the method b on an interface a

is expressed as ?a.b ; !a.b.

Semantics. In addition to the operators defined for

regular expressions, i.e. ; (sequencing), + (alternative), *

(repetition), several new operators are added to handle

restriction, parallelism, and composition. For the purpose of

this paper, it is sufficient to mention the operator | (and-

parallel) which produces an arbitrary interleaving of traces

generated by its operands.

Example. Consider a component representing a file. It

provides one interface that contains five methods to

manipulate the file: open, read, write, close,

and status. The supported behavior either (i) starts with

calling open, then an arbitrary interleaving of read and

write follows and finally close has to be called; or (ii)

allows status to be called at anytime (in parallel with (i)).

The corresponding behavior protocol takes the form (for

simplicity we use shortcut method_name for

?method_name; !method_name):

(open;(read+write)*;close)|status*

Compliance. Behavior protocols allow static testing of

behavior compliance of tied components. This way

questions like “Is it possible to safely replace a component

by another one if we know their interfaces and behavior?” or

“Is it possible to interconnect these two components if we

know the behavior interplay on the provided and required

interfaces of each of them?” can be answered. Basically, the

components are compliant if they fulfill two conditions

based on subset relations. The publication [1] describes the

compliance concept thoroughly and also provides an

algorithm of compliance verification.

State explosion. Basically, the state space associated

with a behavior protocol is the state space of the finite

automaton accepting the regular language generated the

behavior protocol.

Above, we mentioned that formal verification has

typically to cope with the state explosion problem. Also

behavior protocols suffer from this problem, because the

compliance is tested via the corresponding automata

determined by the behavior protocols in question, since any

parallel activity causes exponential growth of the state

space. For example in the original SOFA verifier [3], the

state space corresponding to an expression involving more

than 13 parallel operators does not practically fit into the

memory available for the verifier even on a decent PC.

1.3. Goals and structure of the paper

To target the problem mentioned above, we designed a

novel automata representation, which significantly improves

the efficiency of the compliance verifier. In the inherent

space versus time tradeoff, it shifts the complexity towards

time in such a way that it allows to solve practical problems

at least twice as big as the original verifier could handle.

The main goal of this paper is to present the basic idea of

this novel representation and share with the reader the

lessons we learned during experiments with the new

verifiers.

The structure of the paper is following. In Section 2, we

discuss the flaws of classical automata representations

(Section 2.2), while the Sections 2.3 and 2.4 bring the core

of the paper by introducing parse tree automata and their

optimizations. In Section 3, we describe an experimental

behavior protocol verifier based on parse tree automata and

Section 4 describes an enhanced Java version of the verifier.

In Section 5, we evaluate the proposed representation and

compare it with other techniques addressing state explosion.

Section 6 concludes the paper.

2. Behavior protocol representation

2.1. Representation and efficiency

Different representations of a state space corresponding

to a behavior protocol (expression for short) have specific

benefits and drawbacks. Such a situation makes any

reasoning on the representation efficiency a complicated

task.

To show the properties of different finite automata

representations (representation for short), we have

identified four criteria proved to be important for a

successful choice of a particular representation. The chosen

criteria are:

 Size of representation is the amount of the memory

required to store a (state space) representation. This is

determined by all the data structures involved.

 Building time is the time required to create the

representation from an expression.

 Space requirement of composed state identifiers is the

amount of memory required to identify the states in a

state space.

 Access time is the average time needed to determine the

list of transitions associated with a state.

4. Behavior Protocols Verification: Fighting State Explosion

19

2.2. Basic representation techniques

To illustrate how the evaluation criteria help (i)

characterize different representation techniques and (ii)

show trade-off between time and space complexity, we

present an overview of two classical finite automata

representation techniques.

Explicit representation is the most simple and

straightforward technique to represent an automaton. All

necessary information is explicitly held in memory – lists of

states, transitions, and accepting states (as lists, hash tables,

matrices, ...).

As to size of such representation, state explosion is very

likely. Also building time is fairly low as the construction of

a state space is usually done recursively by composing the

state spaces of sub-expressions and as the whole state space

has to be traversed during this construction.

On the other hand, explicit representations shine in access

time and size of identifiers. Hardly anything can beat the

usage of pointers in states identification and retrieving a list

of transition from memory.

Size of a representation is the major drawback of explicit

representation causing that verification tools avoid using it.

As explained in [2], the original SOFA behavior protocol

verifier uses this type of representation. States are

implemented as Java objects holding lists of labeled

references to other states.

Symbolic representation is a group of techniques that

use a different approach. The required state space is not

generated in advance as in explicit representations but it is

rather computed on-the-fly. This approach brings two

benefits in terms of fighting state explosion: (i) In most

cases, very large numbers of states can be handled, and (ii)

the unvisited portions of the space are not generated at all.

However access time is slower than in explicit

representation because several computations are needed to

obtain a list of transitions. Also a state identifier is usually

implemented via a composed data structure, hence

consuming more memory than a state identifier in the

explicit representation technique.

The most recognized member of the symbolic

representation technique category is the Ordered Binary

Decision Diagram (OBDD) [6] technique. An OBDD is an

acyclic directed graph representing a Boolean function

f(x1,…,xn) {0, 1}. In this graph, the internal nodes

correspond to functional arguments and the two possible

terminal nodes correspond to the output of the function. The

arguments appear in the same order on the path from the

root to leaves (Fig. 1). However the size of an OBDD graph

strongly depends on the order of the function arguments.

x
10 1

f(0, x
2
,...,x

n
) f(1, x

2
,...,x

n
)

Fig. 1. Root of the decision diagram determining the function

f(x1,...,xn)

There are functions that are described by a graph of linear

size for a specific argument ordering and of exponential size

for a different ordering. And, unfortunately, deciding on an

optimal ordering is an NP-complete problem [6].

To our knowledge, a precise evaluation of using OBDDs

for representation of regular expressions has not been

provided so far.

2.3. Parse trees and parse tree automata

To tackle the state explosion problem in representation of

behavior protocols, we suggest and describe bellow parse

tree automata, a novel symbolic representation technique.

Parse trees (also syntax or expression trees) are a

common way to represent expressions in memory. They are

mainly used to represent mathematic formulas and program

source codes in compilers. Obviously, they are also capable

to represent behavior protocols (Fig. 2).

A parse tree is a tree structure that describes a given

expression unambiguously. When representing behavior

protocols, the parse tree features the following important

properties:

 Event symbols featuring in an expression appear only in

the leaf nodes and operators in inner nodes of the

corresponding parse tree.

 The operator nodes representing the repetition and

restriction operators are unary; all others are binary.

 Every subtree describes an expression (valid behavior

protocol).

The main advantage of parse trees is the size of

representation, linearly dependent on the expression length

and having no direct relation to the number of states. Also

the building time is linear in the length of expression.

Evaluation of access time and state identifiers’ space

requirement will be discussed later after we present parse

tree-based representation technique (parse tree automata).

4. Behavior Protocols Verification: Fighting State Explosion

20

;

+ *

b ca

Fig. 2. A parse tree representing (a+b) ; c*

Parse tree automata (PTA). Construction of a PTA

follows the idea of recursive state space creation in the

explicit representation technique. As PTA is a symbolic

technique, the actual full state space of PTA is never

represented as a single complex data structure. On the

contrary, the key idea is to (i) directly represent only the

parse tree (PT) of the expression and the primitive automata

which accept the event symbols in the leaves of the parse

tree, (ii) introduce composed state identifiers allowing to

denote the current state and avoid unnecessary multiple

traversals of PTA states, and (iii) define the transition

function of PTA via recursive rules determining the (direct)

transitions from a state, given its composed identifier. An

example of PTA and its correspondence to a parse tree is

illustrated on Fig. 3.

We will demonstrate the idea on three simple examples:

(1) representation of a primitive automaton, (2)

implementation of automata composition driven by the

sequence operator, and (3) implementation of automata

composition driven by the parallel operator. Automata

compositions driven by the other operators are implemented

in a similar manner (a detailed description is in [2]).

A primitive automaton has two states (initial and

accepting) and a single transition between them. The

transition label is an event symbol (Fig. 4a).

The sequencing operator expresses concatenation of the

languages accepted by the left- and right - hand automata

PTAL and PTAR. To create the respective composed

automaton PTA; , it is sufficient to establish implicit

transitions (λ) from the accepting states of PTAL to the

initial state of PTAR (Fig. 4b). The resulting set of

accepting states in PTA; consists of the accepting states of

PTAR . The accepting states of PTAL are added only if the

initial state of PTAR is accepting. Obviously, modifications

of PTAL and PTAR are not necessary, since the implicit

transitions λ are added in the implementation of the

sequencing operator in PTA;.

The parallel operator expresses arbitrary interleaving of

all the words of the languages accepted by the left- and right

hand automata PTAL and PTAR. In order to create the

respective product automaton, it is sufficient to establish a

state space “grid” and corresponding transitions as

illustrated in Fig. 4c.

Composed state identifiers in PTA. To address the idea

(ii) above, a state identifier must reflect the structure of the

subtree of PT it is associated with and capture the state of

the primitive automata within the subtree. For a specific PT,

all the top-level identifiers will be of the same size (linear in

the size of PT). As a technicality, memory allocation for

state identifiers can cause substantial memory overhead. It

is recommended to use an allocator that is optimized for

allocating small memory chunks of the same size.

Time requirements for generating PTA transitions.
The average time required is influenced by the number of

PT nodes that have to be visited to calculate the list of

transitions associated with a particular state. In each of

these nodes some computation is necessary, as the potential

transitions are determined on the fly. For each transition,

Fig. 3. Generating states and transitions of PTA.

Circles represent states. Squares represent nodes of

PT; [0,0] denotes the initial state.

a

b

a b

a)

b)

[0] [1]

[0] [1]

[0,0] [0,1] [1,0] [1,1]

λ

c)

a

a

a

b

b

b

c c c

d d d

 [0,0]

[1,0]

[2,0]

[0,1] [0,2]

[1,1] [1,2]

[2,1] [2,2]

Fig. 4. a) Primitive automata for the “a” and “b” event

symbols. b) PTA for “a;b”. c) PTA for (a;b) | (c;d). Legend: A

dotted arrow represents an implicit transition λ. State identifiers

are in brackets (simplified).

; ;

b↑

a↓

a↑ b↓

+

[0,0] [0,2] [0,1] [1,1] [1,2]

4. Behavior Protocols Verification: Fighting State Explosion

21

also the state identifier of the target state has to be evaluated

for keeping track of the states visited.

The number of visited PT nodes is greatly influenced by

the actual operators encountered in PT. For example, for the

standard regular expression operators only one subtree has

to be visited. On the contrary, encountering a parallel

operator means visiting both subtrees.

2.4. PTA optimizations

As discussed in Section 2.3, performance of PTA

depends on the number of nodes in PT. If the number of PT

nodes were reduced, performance would greatly improve.

Therefore we experimented with several optimizations in

PTA representation.

Multinodes. The idea of multinodes is to collapse the

nodes of PT featuring the same operator into a single node.

For example, in Fig. 5 collapsing means representing only a

single node for the sequence operator ‘;’ (associated with a

list of PT subtrees a, b, c, d).

; M;

;

; d

dcba

ba

c

a) b)

Fig. 5. a) Original parse tree. b) Parse tree with multinodes for the

protocol a;b;c;d

This way, access time is greatly improved since less

computation is required.

Forward cutting (of primitive automata). Removal of

the transitions from the state space, which are discarded by a

restriction operator, can be easily achieved by removing the

affected event symbols nodes from PT.

Again, such optimization can produce PTs with a smaller

number of nodes what results in a smaller state identifiers’

space and improved access time.

Explicit subtrees. Since performance of explicit

representation is very good for state spaces of “reasonable”

size, it can be advantageous to combine both the PTA and

explicit representations techniques. It is feasible to select

those PT subtrees that imply a small state space (typically

not featuring “many” parallel operators) and the states of

which are generated more than once (e.g. forced by a

parallel operator in a higher level of PT) and represent them

via explicit automata embedded in PTA.

We implemented two verifiers based on the PTA

representation technique (“Python verifier” and “Java

verifier”). These implementations provide a flexible

framework that allows simple addition of new parsers,

optimizations, and verification backend alternatives as

explained below.

3. Python implementation of PTA

Architecture platform. The Python verifier consists of

three independent parts (parser, optimizer, backend)

orchestrated by a simple application. All the parts of the

verifier are implemented in Python [7]. However as the

original Python provides only interpreted execution, we use

the PSYCO [8] optimizing compiler to improve efficiency.

Parser. The goal of the parser is the creation of a PT

representation from an expression. Currently only behavior

protocols (Section 1.2) are considered as expressions.

Optimizer supports forward cutting of events and

explicit subtrees optimizations. To choose a subtree that

should be converted into an explicit automaton, a simple

estimate of the number of states described by the subtree is

based on assigning weights: the primitive automata get

weight 2; for sequencing and alternative operators we sum

the weights of the underlying automata, for parallel

operators we multiply the weights. All the subtrees, the

weight of which does not exceed a specific value, are

addressed via explicit representation.

Backend alternatives. To enhance the application area

of behavior protocols, we created three backend

alternatives: compliance checking, visualization (using

Aisee visualization tool [9]), and model checking (using

Caesar/Aldebaran model checker [10]). Technically,

compliance is checked by evaluating the subset relations of

the compliance conditions (defined in [1]) via inspecting the

emptiness of intersection of one set and the complement of

the other. Visualization of a state space can ease up protocol

perception, especially by highlighting counter examples

produced by compliance verifier. When the state space gets

too large for visualization, checking of specific properties is

easier via a model-checking tool such as the

Caesar/Aldebaran toolset. The bottom line is that

independent tools are used for visualization and model

checking; the verifier prepares only source files for them.

Since all backends use exhaustive traversal of the state

space, we implemented a general depth-first-search

algorithm that provides hooks for the algorithm specific

computations during a state space traversal. The algorithm

uses state space caching technique [12] to keep the list of

visited states.

Implementation details. For particular operators,

operator nodes are implemented as classes derived from a

single interface that allows the client to obtain the initial

state of the state space, list of transitions for a particular

4. Behavior Protocols Verification: Fighting State Explosion

22

state, and list of the accepting states. In addition to the

behavior protocol operators, we also implemented operators

for language complement and automata product. A state

identifier is implemented as a tree of Python 2-tuples.

Benchmarks. We used a slightly modified case study

from [1] to assess performance of the Python verifier. The

case study features a database server composed of two

components and the protocol describing the server’s

behavior is:

!dbAcc.Open;

 (?d.Insert

{(!dadbAcc.Insert; !dbLog.LogEvent)*}

+

 ?d.Delete

{(!dadbAcc.Delete; !dbLog.LogEvent)*}

+

 ?d.Query

{(!dadbAcc.Query)*}) *;

!dbAcc.Close

Our enhancements to the case study [1] pertain

parallelism for accessing the functionality of the database

server (replacing the ‘+’ operator by ‘|’) and the addition of

two methods, insert and modify, to the server

interface. The new methods are used in a similar way as

their siblings. Using parallelism and the addition of new

methods significantly increased the size and complexity of

the related state space. These modifications are discussed in

[2].

We created four benchmarks (1-4): In (1) we tested the

compliance of the protocol described in the case study [1]

with the composed protocol of nested components. Both

state spaces in (1) were very simple and compliance

verification was fast. In the subsequent benchmarks, we (2)

replaced the alternative operators by parallel operators and

(3) added the insert and (4) modify methods.

For illustration, the protocol in the (4) variant (most

demanding as far as the size of state space generated is

considered) was:

!dbAcc.open; (

 (?dbSrv.insert;!trans.begin;
 (!dbAcc.insert;!lg.logEvent)*;

 (!trans.commit+!trans.abort); !dbSrv.insert)
|

 (?dbSrv.delete;!trans.begin;
 (!dbAcc.delete;!lg.logEvent)*; (!trans.commit +

 !trans.abort); !dbSrv.delete)
|

 (?dbSrv.update;!trans.begin;
 (!dbAcc.update;!lg.logEvent)*;

 (!trans.commit+!trans.abort); !dbSrv.update)
|

(?dbSrv.modify;!trans.begin; (!dbAcc.modify;
!lg.logEvent)*; (!trans.commit+!trans.abort);

!dbSrv.modify)
|

(?dbSrv.query;!dbAcc.query;!dbSrv.query)
)*;

!dbAcc.close.

We benchmarked the consumed memory and required

time of the original verifier and of the Python verifier with

different optimizer settings. The speed without the forward

cutting of primitive automata optimization was very poor,

being significantly slower when compared to the original

verifier; therefore this optimization was applied in all of the

following benchmarks.

 (1) (2) (3) (4)

Simple

protocol from

[1]

Protocol

with |

Protocol

with | and
insert

Protocol with

| , insert

and modify

 Original

verifier 12.2MB 16.8MB 70.5MB
Out of memory

limit

P

y

t

0 explicit

states 5.9MB 6.2MB 12.3MB 72.4MB

h

o

n

100

explicit

states
5.9MB 6.6MB 10.1MB 46.4MB

v

e

r

i

10,000

explicit

states
5.7MB 6.7MB 9.9MB 40.2MB

f

i

e

r

1,000,000

explicit

states
5.7MB 6.4MB 14.0MB 70MB

Table 1. Memory benchmark results of the original verifier and

the Python verifier for various sizes of explicit subtrees measured

by number of their states.

 (1) (2) (3) (4)

Simple

protocol from

[1]

Protocol

with |

Protocol

with | and
insert

Protocol with

| , insert

and modify

 Original

verifier 800.0% 102.9% 197.0%
Out of memory

limit

P

y

t

0 explicit

states 100% 100% 100% 100%

h

o

n

100

explicit

states
123.1% 48.9% 45.8% 44.6%

v

e

r

i

10,000

explicit

states
123.1% 48.9% 34.0% 32.8%

f

i

e

r

1,000,000

explicit

states
123.1% 97.1% 45.0% 28.2%

 Table 2. Relative time requirements: The original verifier vers.

Python verifier for various sizes of explicit subtrees measured by

number of their states.

The explicit subtrees optimization was applied to a

different numbers of states embedded in explicit

4. Behavior Protocols Verification: Fighting State Explosion

23

representation: 0 (no optimization), 100, 10,000, and

1,000,000. The results of the benchmarks were a little bit

surprising: The Python verifier (based on PTA) with

forward cutting of primitive automata outperformed the

original SOFA verifier (based on explicit representation).

However, there was a major difference in CPU time

dedication: The original verifier spent most of the time by

creating the explicit representation, while the actual

verification was very quick (about two seconds for (3)). The

Python verifier spent some time on optimizations and a

significant amount of time on verification. The time spent

by the optimizer heavily depended on the size of explicit

subtrees. For example, in (4) the creation of explicit subtrees

with 1,000,000 states took about 135 seconds. The increase

of the overall execution time of (2) and (3) (comparing

10,000 and 1,000,000 states) was caused by the time

necessary for creation of explicit subtrees.

4. Java implementation of PTA

To fully incorporate a checking tool into the SOFA

environment, we decided to reimplement the Python verifier

in the Java language.

The Java verifier uses the approach and techniques

employed in the former Python verifier, but it introduces

new optimizations and backend features. By these

optimizations, both time and space requirements decreased

and, therefore, the complexity of the protocols that can be

checked was pushed a bit further.

Optimizations. Besides the optimizations included in the

Python verifier (explicit subtrees and forward cutting), the

multinodes optimization (Fig. 5) was implemented and

found very beneficial. This optimization is performed during

the construction of a parse tree in a straightforward, efficient

way.

Backend alternatives. In the Java verifier we

implemented only two backends: compliance checking and

visualization, since these two had been identified as the

most frequently needed.

For visualization, we decided to use the dot tool of the

Graphviz package [16], since it is freely distributed and its

features greatly suffice for our purposes. The visualization

backend is able to provide both protocol parse tree and

graph of the PTA state space. Since the dot tool supports,

among other types of output, the Virtual Reality Modeling

Language (VRML), this format can be advantageously used

for complex protocols both to get the whole picture of the

automaton and zoom into its specific parts.

Implementation details. Because of the differences

between Python and Java, we had to cope with a lot of

specific problems when rewriting the verifier from Python

to Java. A main problem was the state identifiers in Java

(handled internally by Python): As implied by the

argumentation in Section 2.3, we needed state identifiers

that could be computed fast and consume as small amount

of memory as possible. We could not use Java references,

because of the on-the-fly state generation (potentially

repeated for a particular state).

Therefore, each state is represented by a state tree, where

its leaves represent the states of primitive automata, while

inner nodes represent the state of the composed automata

corresponding to the nodes’ subtree. The state identifier of a

primitive automaton indicates its active state (0 or 1) (Fig.

4a). The state identifier of a composed automaton is created

as concatenation of its children’s identifiers. Thus, the

resulting state identifier reflects the structure of PT,

uniquely denotes a state within the state space, and its

length is linear in the size of PT. Obviously, the state

identifier of the main automaton is determined at the root of

the state tree. The state identifiers are computed in a lazy

way (only when actually needed) and are stored in a cache.

Traversal of the state space employs frequent comparison of

the identifiers (that is quite fast). Even though the

computation of state identifiers was optimized for speed, it

is still the most time consuming operation in the checking

process (since it is performed for each state visit).

Benchmarks. We employed two types of benchmarks:

the first type was focused on the benefits of particular

optimizations in the Java verifier and the second one on a

comparison of performance of the three verifier versions:

the original verifier (written in Java), and Python and Java

PTA verifiers. Always we used protocols of various

complexity; both real-life and “academic” protocols

inducing large state spaces were checked.

The real-life protocols included again a set of database

server protocols similar to those used in Section 3. The

“academic” protocols involved only the parallel operator

(such as a | b, a | b | c, …), which is one of those

causing the exponential growth of the state space, so that

using it enabled us to generate really large state spaces and

easily compute their sizes.

The optimization benchmarks have shown that disabling

the forward cutting optimization results in a very poor

performance. This is caused by the complement operator

expanding the state space to an enormous size. Hence, as

well as in Section 3, forward cutting is used in each of the

benchmarks below. The benefits of the other types of

optimization depend on the concrete structure of the

protocols being checked (Table 3). For example, in the case

of “academic” protocols using the parallel operator, the

most worthwhile optimization are multinodes; the explicit

subtrees optimization cannot be used here, because the

states of the automaton represented by the only (multi-)

node in the parse tree are used only once. While checking

the real-life protocols, the explicit subtrees optimization is

most beneficial.

Since the most important parameter of the protocol

verifier is the state processing speed, in Table 4 we present

the comparison of all verifiers based on checking the

4. Behavior Protocols Verification: Fighting State Explosion

24

“academic” protocols (the results of checking the real-life

protocols are not so interesting). A comparison of memory

requirements is not involved since it is clear from Table 1

that a PTA representation requires a smaller amount of

memory than a corresponding explicit representation. In all

benchmarks considered below all optimizations were

applied.

In the case of “academic” protocols, the Java verifier is

faster than the Python verifier even if we turn off the

multinodes optimization; the state processing is about two

times faster in the Java verifier, which is probably caused by

the fact that the Java Virtual Machine outperforms the

Python Psyco compiler. On the other hand, the construction

of the explicit subtrees is much slower in Java because of

the evaluation of the state identifiers; the Python verifier is

also able to keep more states (and larger explicit

subautomata) in memory, because its state identifiers are

shorter. In any case, the PTA approach beats the original

explicit state representation.

Forward

cutting

only

All

optimization

No

multinodes

No

explicit

subtree

Academic

(parallel)
100% 76.2% 100.8% 75.7%

Real-life 100% 50.5% 67.7% 81.4%

Table 3. Average relative time the Java verifier spent by checking

with various optimizations enabled.

Number of

parallel

operators

used

Original

verifier

Python

verifier
Java verifier

6 100% 38.3% 22.3%

7 100% 16.5% 7.7%

8 100% 6.9% 2.3%

9 100% 2.7% 0.7%

Table 4. Relative time spent by checking the “academic” (parallel)

protocols by all verifiers.

5. Evaluation and related work

Evaluation. The idea of using parse trees for symbolic

representation has proven to be useful for the verification of

behavior protocols. The newly implemented verifiers

outperformed the original SOFA one, both in time and space

complexity. The results provide a solid base for the

hypothesis that the symbolic PT representation supported by

the forward cutting of primitive automata optimization

outperforms the explicit representation. Nevertheless, this

hypothesis is still to be justified by a more thorough

benchmarking.

While experimenting with the proposed technique of

PTA, we identified the following implementation issues: (i)

Access time was significantly influenced by applying the

forward cutting of primitive automata optimization. This

implies there might be huge method calls overhead during

the list of transition computation. (ii) Another access time

improvement may be achieved by an adaptive selection of

explicit subtrees, since our benchmarks showed that access

time depends on the size of the parse trees as well. (iii) State

identifiers may involve allocation of small structures what

means a significant memory allocation overhead. Using a

customized allocator, the amount of consumed memory

might be greatly decreased in both Python and Java cases.

Related work. To our knowledge, there is no other work

that would focus on evaluation of an optimal representation

for regular expressions. Therefore we can provide bellow

only a comparison with representation techniques that face

state explosion in other transition systems.

Space explosion handling techniques can be divided into

two categories: (i) efficient representation of the state space

and (ii) structural simplification of the state space. OBDDs

(mentioned in Section 2.2) and their derivatives Multiple-

value Decision Diagrams (MDDs) [11] and Multiple-

terminal BDDs (MTBDDs) [13] are typical representatives

of (i). All these representations suffer from the optimal

ordering problem [6]. There are heuristics developed, but

they cannot guarantee the optimal results. Structural

simplification of the state space is usually achieved by

employing several level of abstraction in model description

[14]. In fact, this technique was implicitly employed in

SOFA component model [3], since a behavior protocol is

always defined for a particular level of component nesting

(as opposed to [14]) and behavior compliance is evaluated

separately at the adjacent levels of component hierarchy.

6. Conclusions and future intentions

In this paper, we presented a new representation of a

state space called Parse Tree Automata that addresses the

state explosion problem encountered in behavior protocol

checking. PTA fights this problem successfully for behavior

protocols of “practical size”. Both verifiers based on this

representation outperformed the original verifier

implemented within the SOFA project not only in memory

requirements but in the speed of verification as well.

In the future, we intend to focus on handling the

implementation issues described in Section 5. In particular

we would like to implement an adaptive version of explicit

subtrees optimization and make experiments with various

memory allocators.

4. Behavior Protocols Verification: Fighting State Explosion

25

Acknowledgement

The work was partially supported by the Grant Agency of

the Czech Republic (project number 102/03/0672). We are

grateful to our colleagues Vladimir Mencl and Jiri Adamek

for valuable comments.

References

[1] F.Plasil and S.Visnovsky: Behavior protocols for

software components. IEEE Transactions on SW

Engineering, 28 (9), Sep 2002.

[2] M.Mach: Formal verification of behavior protocols.

Master thesis, Dept. of SW Engineering, Charles

University, Prague, 2003.

[3] SOFA project, http://nenya.ms.mf.cuni.cz/sofa/

[4] F.Plasil and J.Adamek: Behavior Protocols Capturing

Errors and Updates. Proceedings of the Second

International Workshop on Unanticipated Software

Evolution (USE 2003), ETAPS, University of

Warsaw, 2003.

[5] R.Allen and D.Garlan: A Formal Basis For

Architectural Connection. ACM Transactions on

Software Engineering and Methodology, Jul 1997.

[6] C.Meinel and T.Theobald: “Algorithms and Data

Structures in VLSI Design: OBDD Foundations and

Applications”. Springer Verlag, 1998.

[7] Python, http://www.python.org

[8] PSYCO compiler, http://psyco.sourceforge.net

[9] Aisee visualization tool, http://www.aisee.com

[10] Caesar/Aldebaran model checker,

http://www.inrialpes.fr/vasy/cadp/

[11] A.Srinivasan, T.Kam, S.Malik, and R.Brayton:

Algorithms for discrete function manipulation. Int’l

Conf. on CAD, 1990.

[12] P.Godefroid, G.Holzmann, and D.Pirottin: State-Space

Caching Revisited. Formal Methods in System

Design: An International Journal, 1995.

[13] M.Fujita, P.McGeer, and J.Yang.: Multi-Terminal

Binary Decision Diagrams: An Efficient Data

Structure for Matrix Representation. Formal Methods

in System Design: An International Journal, 10, April

1997.

[14] D.Giannakopoulou, J.Kramer, and S.Cheung:

Analysing the Behaviour of Distributed Systems using

Tracta. Journal of Automated Software Engineering,

special issue on Automated Analysis of Software, vol.

6(1), Jan 1999.

[15] E.Bruneton, T.Coupaye, and J.Stefani: The Fractal

Composition Framework. Proposed Final Draft of

Interface Specification version 0.9, The ObjectWeb

Consortium, Jun 2002.

[16] Graphviz – open source graph drawing software,

http://www.research.att.com/sw/tools/graphviz

Martin Mach is a former Ph.D.

student at the Department of Software

Engineering, Charles University,

Prague. His research was focused on

software verification methods,

component behavior specification and

model checking. He implemented a

tool for checking compatibility of

components in the SOFA component

model (a platform for building component-based

application). He is now a software designer and quality

tester at Umeå Datakonsulter, Sweden.

Frantisek Plasil is a professor and the

vice-chair at the Department of

Software Engineering, Charles

University, Prague, and also a senior

researcher at the Institute of Computer

Science of the Academy of Sciences

of the Czech Republic, Prague. After

receiving his PhD degree from the

Czech University of Technology in Prague in 1978, he was

with that university until 1994 when he joined Charles

University. He has also held visiting positions at the

University of Denver, Wayne State University, and the

University of New Hampshire, Durham. His research,

focused on component-based programming comprising

middleware technologies, has been mainly carried out in

framework of several projects, including SOFA/DCUP,

TOCOOS/ Copernicus/Esprit, PEPiTA and OSMOSE in

the ITEA/EUREKA program; the list of industrial partners

includes IONA Technologies, France Telecom, Bull

Grenoble, Alcatel, and MLC Systeme Ratingen. He is a

member of the IEEE Computer Society.

Jan Kofron is a Ph.D. student at the

Department of Software Engineering,

Charles University, Prague. He is also

a member of Distributed Research

Group at the department. His research

is focused on software verification

methods, component behavior

specification and model checking. He

has implemented and extended a tool for checking

compatibility of SOFA components.

4. Behavior Protocols Verification: Fighting State Explosion

26

CHAPTER 5

Checking Software Component Behavior Using

Behavior Protocols and Spin

Authors: Jan Kofroň

[6] Proceedings of the 2007 ACM Symposium on Applied Computing, ACM, ISBN 1-
59593-480-4, pp. 1513-1517, DOI: 10.1145/1244002.1244326, Seoul, Korea, March
2007

27

Checking Software Component Behavior Using
Behavior Protocols and Spin∗

Jan Kofron
Institute of Computer Science

Academy of Sciences of the Czech Republic

kofron@cs.cas.cz

ABSTRACT
Using software components is a modern approach for build-
ing extensible and reliable applications. To ensure high de-
pendability, a component application should undergo veri-
fication, e.g. model checking, to prove it has certain prop-
erties. The implementation of an application is usually too
complex to be verified at a formal level; therefore, a model
being an abstraction of the implementation is to be used.
Behavior protocols [11] are a platform for modeling of soft-
ware component behavior. In this paper, we propose a
method for translation behavior protocols to Promela [7],
which is consequently used as the input for the Spin model
checker [7]. Having the Promela code describing the com-
ponent behavior, one can efficiently check for the behavior
compatibility and LTL (Linear Temporal Logic) properties
of cooperating software components.

Keywords
Behavior protocols, Promela, Behavior specification, Verifi-
cation.

1. INTRODUCTION
Using software components for building reliable (distributed)

applications belongs to modern and promising trends of the
future of software development. Each software component
is potentially a subject for future reuse; therefore, clearly
defined interface and semantics are a necessity. To com-
bine components from various vendors, the developer needs
a common way for component specification. Unlike descrip-
tion of component interfaces (ADL’s, headers, . . .), a stan-
dard for the specification of component semantics (behavior)
has not been established yet.

In this paper, we focus on checking behavior compatibil-
ity in hierarchical component models like Fractal [12] and
SOFA [6]. In these component models, there are two kinds

∗This work was partially supported by the Czech Academy
of Sciences project 1ET400300504.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’07, March 11-15, 2007, Seoul, Korea.
Copyright 2007 ACM 1-59593-480-4/07/0003 ...$5.00.

of components: primitive components that have no internal
structure (from the architectural point of view) and are di-
rectly implemented in a programming language, e.g. Java,
and composite components consisting of other (either prim-
itive or composite) components. The architecture of an ap-
plication, i.e., the way the components are connected and
nested, is described in an Architecture Description Language
(ADL) file. Here, the specified component behavior or a
link to an external file containing the specification may be
present.

1.1 Goals and Structure of the Paper
The goal of our research is to devise a method for verifica-

tion of behavior compatibility of cooperating components of
real-life applications specified using behavior protocols [11]
as well as verifying LTL (Linear Temporal Logic) properties
of particular components.

Behavior protocols [11] are a method for specification of
software component behavior in the SOFA [6] and Fractal [1]
component models. Having an entire component application
specified by behavior protocols, one can check for behavior
compatibility of the application’s components.

In this paper, we present a way component behavior com-
patibility written in behavior protocols can be checked in
the Spin model checker [7]; since Spin uses Promela[7] as its
input language, we also propose an algorithm for translating
behavior protocols into Promela and discuss the benefits of
this approach.

The structure of the paper is as follows: In Sect. 2 we
describe behavior protocols. In Sect. 3, details of the be-
havior compatibility check are described, while in Sect. 4
we show how specified behavior can be converted into Pro-
mela. Sect. 5 evaluates the contribution. Sect. 6 discusses
related work, while Sect. 7 concludes the paper and proposes
possible directions of our future work.

2. BEHAVIOR PROTOCOLS
A behavior protocol [11] is an expression describing the

behavior of a component; the behavior means the activity
on component interfaces viewed as finite sequences (traces)
of accepted and emitted method call events. A behavior
protocol is syntactically composed of event denotations (to-
kens), operators, and parentheses. For a method m on an
interface i, there are four event token variants:

5. Checking Software Component Behavior Using Behavior Protocols and Spin

28

Emitting an invocation: !i.mˆ
Accepting an invocation: ?i.mˆ
Emitting a response: !i.m$
Accepting a response: ?i.m$

Furthermore, several syntactic abbreviations of method calls
are defined to improve the readability of the expresions.

The operators in behavior protocols include those used in
regular-expressions (‘+’, ‘;’, and ‘∗’) and a special one (the
parallel operator ‘|’ generating an alternative of all possible
interleavings of operands’ event tokens).

As an example, consider the following behavior protocol:

!Callback .AddrInvalidated ∗
|
(

?Mgmt .UsePermanentDbˆ;
(

!IpMacPermanentDb.GetAddr ∗
|
(!Mgmt .UsePermanentDb$;
?Mgmt .StopUsingPermanentDbˆ)

);
!Mgmt .StopUsingPermanentDb$

)∗

The protocol describes behavior of a DHCP server, which
can behave in two different modes: (1) IP addresses for new
clients are automatically generated by the DHCP server (by
a preconfigured pattern e.g. valid IP address range) or (2)
the IP/MAC address mappings are permanently stored in an
external database component and the DHCP server assigns
IP addresses to new clients according to their MAC address
and the mapping stored in the database.

This behavior is reflected in the behavior protocol as fol-
lows: parallel composition of the !Callback .AddrInvalidated
token with the rest of the protocol means that the com-
ponent may call this method any time during its execution.
Additionally, the component is able to accept a
Mgmt .UsePermanentDb method request. Before accepting
a Mgmt .StopUsingPermanentDb method request, it must
emit exactly one Mgmt .UsePermanentDb response and it
may emit any number of
IpMacPermanentDb.GetAddr calls. Before responding to
the Mgmt .StopUsingPermanentDb, it accepts a potential re-
sponse to the IpMacPermanentDb.GetAddr to accomplish
this method call, if a request event of this method has been
emitted and no corresponding response accepted yet. In the
first mode, only !Callback .AddrInvalidated may be emitted,
while in the second mode, which is entered by accepting
the Mgmt .UsePermanentDb ˆ event, also methods of the
IpMacPermanentDb interface are called. The second mode
of DHCP server is exited by emitting the
Mgmt .StopUsingPermanentDb$ event.

3. COMPONENT BEHAVIOR COMPATIBIL-
ITY

In hierarchical component models, there are two behav-
ior compatibility relations to be taken into account. The
first compatibility relation describes the correctness of the
communication among components on a particular level of
nesting, while the subject of the other relation is to capture
the compatibility between each component and its subcom-

ponents. In behavior protocols, the correctness of communi-
cation of the former relation is called horizontal compliance
or absence of composition errors. The latter one is denoted
as vertical compliance.

For evaluation of both vertical and horizontal compliances
a special composition operator consent [2] is used. This
operator is basically a parallel composition operator syn-
chronizing the protocols on a set of events — let us denote
this set S. When synchronizing, two complementary events
(differing in their prefixes — ‘!event’ and ‘?event’) from S
form a τ -event. The emitting and accepting events are thus
executed in a single atomic transition. Unlike other compo-
sition operators, application of the consent operator yields
not only the traces corresponding to correct communication
among components, but also error traces describing the er-
roneous behavior. The consent operator is able to capture
three types of composition errors — bad activity, no activity,
and divergence.

The bad-activity error denotes a state when a component
(according to its behavior protocol) may emit an event, but
there is no other component able to accept such an event1.

The no-activity error denotes a deadlock, i.e., a state
where no component is able to perform any action (neither
emit nor accept an event) and at least one component is not
in an end state. As the components of an application under
consideration are not required to form a closed system, some
interfaces may not be bound; in this case, the emit events
of such unbound required interfaces are considered to be
accepted by “the environment” any time, while “the envi-
ronment” is considered as being able to emit an event of an
unbound provided interface only in the states a component
is able to accept it. If this default behavior concerning un-
bound interfaces is not desirable, a component representing
the environment may be constructed adjusting the expected
behavior.

The divergence error2 denotes presence of a cycle within
the component behavior when there is no way to reach an
accepting state. As mentioned in Sect. 2, behavior protocols
describe only finite traces; therefore, each cycle from which
no accepting state is reachable is considered as an error.

According to our experience, we believe that undesired in-
finite program execution appears very rarely when using be-
havior protocols as the specification platform; therefore we
omit the detection of this type of errors in Promela models
obtained from behavior protocols.

As an example of how the consent operator works, con-
sider the following behavior protocols PA and PB and their
consent composition PA∇SPB :

S = {file.openˆ,file.open$, file.readˆ, file.read$,
file.writeˆ, file.write$,file.closeˆ,file.close$}

PA : ?file.open; (?file.read)∗; ?file.close

PB : !file.open; (!file.read+!file.write)∗; !file.close

PA∇SPB : (τfile.open; (τfile.read)∗; τfile.close) +
(τfile.open; εfile.write)

The composition of PA and PB protocols yields a bad-
activity composition error caused by the file.write method
1Note that in the semantics of behavior protocols requests
do not block, as opposed to e.g. Java method calls; therefore,
the case when the recipient is not ready to accept a request
is considered as an error.
2Sometimes referred to as infinite activity.

5. Checking Software Component Behavior Using Behavior Protocols and Spin

29

denoted by the εfile.write token.

4. TRANSLATING BEHAVIOR PROTOCOLS
TO PROMELA

Behavior Protocol Checker [9] is a tool for evaluation of
horizontal and vertical compliance on models described by
behavior protocols. Evaluation of these relations employs
exhaustive traversal of the model state space and thus is
quite time-consuming. The current version of the Behavior
Protocol Checker is limited to state spaces of the size in the
order of magnitude of 108 states, which is not sufficient in
some cases.

The Spin model checker [7] is a state-of-the-art explicit
model checker featuring LTL checking abilities, bit-state
hashing, and quite user friendly interface. It is able to tra-
verse state spaces of several orders of magnitude higher sizes
than Behavior Protocol Checker is. Additionally, there are
a number of extensions of Spin extending the Promela lan-
guage, e.g. dSpin [5], that can be used in the future for
translating possible behavior protocols extensions.

These facts motivated us for formulating the “Protocols-
to-Promela” translation rules allowing for checking for the
composition errors and LTL properties of models described
by behavior protocols in Spin.

4.1 Modeling of Communication
The main problem to solve when translating behavior pro-

tocols to Promela [7] is modeling of the component commu-
nication.

The first idea one probably gets is to use processes to
model components and message channels to model com-
munication among them. There are two modes regarding
message treatment in Spin — in the first mode, the send-
message command gets blocked in the case of the full mes-
sage buffer, while in the second mode, the message gets lost
in such a case. Unfortunately, in behavior protocols, we
want each emit event that cannot be accepted immediately
to cause a bad activity error. Thus, modeling such behav-
ior using message channels would require incorporation of
an algorithmic mechanism (e.g. message counting) to detect
bad activity errors; still, bad activity would be probably de-
tected at the end of the verification hardening an error trace
construction and finding the error cause.

Another approach for modeling component communica-
tion is based on variables. Each component is modeled as a
process; moreover, each method of an exported (provided /
required) interface is associated with two boolean variables
reflecting a wait for a call request (wrq) and response (wrs).
Each time a component starts to wait for a method call, it
sets the wrq variable to true. Later on, when another com-
ponent decides to emit a call of this method, it first checks
the value of wrq, and according to the value it either per-
forms the call (it reassigns false to wrq) or stops the checking
process by printing information about the error discovered
(similarly with the wrs variable). As to the other types of
composition errors, the no-activity is detected in a natural
way as a Promela deadlock, and, as explained in Sect. 3, the
divergence composition error is not detected at all.

4.2 Protocols-to-Promela Translation Rules
Now, we describe the proposed “Protocols-to-Promela”

translation algorithm. As aforementioned, for each method,

two boolean variables are declared3; we denote them method
variables:

bool interface1_method1[2];

bool interface1_method2[2];

...

At the beginning, for each behavior protocol a Promela pro-
cess is created and for all methods the protocol allows to
accept in its initial state, the corresponding variable is set
to true:

interface1_method1[0] = true;

interface1_method3[0] = true;

...

Consequently, each process notifies a special process Main

about finishing its initialization. The Main process is used
for running the other processes and synchronizing their ex-
ecution at the beginning and at the end of the verification.

Now, the input protocols are parsed and corresponding
Promela code is generated according to each protocol struc-
ture. The following table describes the mapping of the be-
havior protocol operators to Promela.

BP operator Promela mapping
sequence ‘;’ ‘;’
alternative ‘+’ if...fi with each guard representing

the beginning of an alternative branch
repetition ‘∗’ do...od with break
and-parallel ‘|’ new process types each representing

a parallel branch

Additionally to these basic mapping principles, there are
several issues to be addressed concerning particular opera-
tors.

If the ‘+’ operator is used to combine various branches
starting with an accept event (‘?interface.method ’), after ac-
cepting a particular request all the other requests must not
be accepted. Therefore, the corresponding method variables
have to be reset to false. Mixing of emit and accept events
in various branches of an alternative operator is considered
as a bad practice and therefore not supported.

If the protocol encapsulated by a repetition operator ‘*’
starts with a request event, the do...od statement has to
include additional conditional branch ‘::skip -> break;’
for nondeterministic termination of the cycle to model any
arbitrary number of protocol repetition. Note here that the
semantics of this transformation includes also an infinite
number of repetitions of the protocol inside the ‘do...od’
statement.

If the protocol encapsulated by the ‘∗’ operator starts with
an accept event, it is up to the other components to decide
how many times they would call the component associated
with this behavior protocol. To model the appropriate be-
havior and to avoid a deadlock at the end of the cycle, again,
the ‘do...od’ statement includes an additional conditional
branch. It either accept the call following after the repeti-
tion part or, if there are no further events, the ‘::endofrun
-> break;’ statement terminating the cycle at the end of
the verification is used. The ‘endofrun’ variable is set to

3Because of the Promela syntax, the method identifiers
used in protocols are modified in the Promela output from
‘interface.method’ to ‘interface method’.

5. Checking Software Component Behavior Using Behavior Protocols and Spin

30

true by the Main process when no other process is able to
perform any action anymore.

As stated in the table above, the ‘|’ (‘and-parallel’) be-
havior protocol operator is modeled using a new process for
each parallel branch. The processes are created by the pro-
cess representing the protocol and started simultaneously
(ensured by the ‘atomic’ statement). The parent process
waits for termination of the child processes before it contin-
ues emitting and accepting further events. The notification
is performed via a shared variable.

As the semantics of behavior protocols declares that var-
ious events may interleave during the execution, but only
one event is executed at a time, we use the atomic state-
ment to ensure the same semantics in Promela. A protocol
waiting for, consequently accepting a method request, and
finally emitting a method response looks as follows:

?interface.method

The corresponding Promela code fragment takes the form:

waitforrequest(interface_method);

acceptrequest(interface_method);

emitresponse(interface_method);

The counterpart, i.e., the component emitting the request
and consequently accepting a response is described by the
following behavior protocol:

!interface.method

Here, the corresponding Promela code fragment is:

atomic {

emitrequest(interface_method);

waitforresponse(interface_method);

}

acceptresponse(interface_method);

An example of translating the behavior protocol of DHCP
server to Promela can be found in [8].

5. EVALUATION
We have successfully applied the proposed technique on a

non-trivial component application [1] consisting of approx-
imately 20 components. The verification time when using
the proposed approach and the Spin model checker4 took
less than ten minutes, which we definitely consider as ac-
ceptable time.

The Promela code is generated from a behavior protocol
in the time linear in the length of the input. Due to the
way the semantics of behavior protocols is modeled in Pro-
mela, the resulting state space of Promela code is usually
about ten times larger than the state space generated by
the model specified by behavior protocols. This is because
each event has to be explicitly awaited and also emitting an
event means several lines of code. Compared with time re-
quired for verification of such systems using the proprietary
Behavior Protocol Checker[9], Spin is more than an order of
magnitude faster. Additionally, an arbitrary LTL property
of the model can be verified.

As to alternative approaches, the first idea the reader
probably gets after reading the sections above is to specify
the component behavior directly in Promela. It is likely that
the resulting code would be shorter than the code generated

4We have used the hash-compact state storing method.

from behavior protocols. On the other hand, it would be
significantly longer than a behavior protocols model. Nev-
ertheless, the main problem lies in variables. Since Promela
features various data types (integers, booleans, structures,
enums), the application designer is in temptation to use
them. Our experience shows that description of a slightly
more complex system in Promela then usually yields a too
large model state space impossible to traverse (even the use
of bit-state hashing can’t provide a reasonable level of reli-
ability). Therefore, even a bit tricky because of absence of
variables, behavior protocols provide a suitable specification
platform for testing behavior compatibility of communicat-
ing components.

6. RELATED WORK
In [3], the authors use a finite-automata-based descrip-

tion of component behavior and they compose automata
for arbitrary components to obtain an automaton modeling
behavior of a composite component. They differentiate be-
tween control and functional behavior of components. The
properties are modeled using the alternation-free µ-calculus,
for which an efficient model checking algorithm exists. Us-
ing reconfiguration controllers, it is possible to express and
check for properties concerning the component application
state after and even during an architectural reconfiguration.
However, even if the checking process proposed in this paper
is performed independently for each composition level, com-
putational requirements of the entire process are substantial
even in cases of simple components; complex components are
thus beyond the abilities of today’s computational systems.

In the Bandera toolset [4], the Java source code is trans-
lated to Promela (or another input language of a model
checker) to check various properties using Spin. In cases of
complex software units, the resulting Promela model yields
extremely large state spaces impossible to traverse in a rea-
sonable time with reasonable amount of memory. However,
the flexibility and power of the Promela language is demon-
strated. Also, if separate checking of particular components
is desired, one has to provide a testing environment [10, 13],
since the Bandera toolset is able to accept closed code only.

Java PathFinder (JPF) [14] does not translate the Java
source code into a modeling language; Instead, it uses a
custom Java virtual machine executing the bytecode and
checking for three properties: absence of failed assertions,
unhanded exceptions, and absence of deadlocks. Moreover,
it can be extended to check for a large scale of other prop-
erties. Again, however, JPF accepts close code only, so the
problem of a suitable environment also has to be solved. As
to the scalability of this approach, as Java is a program-
ming language, the state space of even a simple application
is quite large.

7. CONCLUSION AND FUTURE WORK
In this paper, we have shown how the compliance rela-

tion for communicating components may be evaluated using
behavior protocols and the Spin model checker; in particu-
lar, we have proposed a procedure for translating behavior
specification in behavior protocols to Promela. The map-
ping of behavior protocol operators and modeling of the
components’ communication can be done in several ways
affecting the size of the resulting model. Using the meth-
ods described in this paper, absence of composition errors

5. Checking Software Component Behavior Using Behavior Protocols and Spin

31

may be checked even for complex system consisting of tens
of components (like in [1]). As the behavior compatibility is
checked for each composite component separately, extending
of a component-based application by additional components
usually increases the checking time requirements in an ad-
ditive way only. We have also discussed the advantage of
using behavior protocols in comparison with Promela as the
language for component behavior specification. Nonethe-
less, during the work on the project [1], we have identified
several issues complicating the creating of behavior specifi-
cation; in particular, it is the absence of procedures/macros
and variables.

Our future work will focus on extending the behavior pro-
tocol by macros that would allow reusing of protocol frag-
ments in complex protocols. Further, we will focus on state-
ful components — here variables for storing the component
state would be beneficial; therefore, other subject of our fu-
ture work is extending behavior protocols by variables of
some limited domains.

8. REFERENCES
[1] J. Adamek, T. Bures, P. Jezek, J. Kofron, V. Mencl,

P. Parizek, and F. Plasil. Component reliability
extensions for Fractal component model, http://
kraken.cs.cas.cz/ft/public/public_index.phtml,
2006.

[2] J. Adamek and F. Plasil. Component composition
errors and update atomicity: Static analysis. Journal
of Software Maintenance and Evolution: Research and
Practice, 17(5), 2004.

[3] T. Barros, L. Henrio, and E. Madelaine. Verification
of distributed hierarchical components. In Proceedings
of the International Workshop on Formal Aspects of
Component Software (FACS 2005), August 2006.

[4] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu,
Robby, S. Laubach, and H. Zheng. Bandera:
Extracting Finite-state Models from Java Source
Code. In Proceedings of the 22nd International
Conference on Software Engineering, June 2000.

[5] C. Demartini, R. Iosif, and R. Sisto. dSPIN: A
dynamic extension of SPIN. In SPIN, pages 261–276,
1999.

[6] P. Hnetynka and F. Plasil. Dynamic reconfiguration
and access to services in hierarchical component
models. In Proceedings of CBSE 2006, pages 352 –
359. Springer-Verlag, 2006.

[7] G. J. Holzmann. The SPIN Model Checker: Primer
and Reference Manual. Addison-Wesley Professional,
September 2003.

[8] J. Kofron. Software Component Verification: On
Translating Behavior Protocols to Promela, technical
report no. 2006/11, Dep. of SW Engineering, Charles
University in Prague, 2006.

[9] M. Mach, F. Plasil, and J. Kofron. Behavior protocol
verification: Fighting state explosion. International
Journal of Computer and Information Science, 6(1),
2005.

[10] P. Parizek and F. Plasil. Specification and generation
of environment for model checking of software
components. In Presented at Formal Foundations of
Embedded Software and Component-Based Software
Architectures (FESCA 2006), 2006.

[11] F. Plasil and S. Visnovsky. Behavior protocols for
software components. IEEE Trans. Softw. Eng.,
28(11):1056–1076, 2002.

[12] R. Rouvoy and P. Merle. Towards a model-driven
approach to build component-based adaptable
middleware. In ARM ’04: Proceedings of the 3rd
workshop on Adaptive and reflective middleware, pages
195–200, New York, NY, USA, 2004. ACM Press.

[13] O. Tkachuk, M. Dwyer, and C. Pasareanu. Automated
environment generation for software model checking.
In Proc. of the Eighteenth IEEE Int. Conf. on
Automated Software Engineering, 2003.

[14] W. Visser, P. Mehlitz, J. Penix, D. Giannakopoulou,
C. Pasareanu, and M. Mansouri-Samani. Java
Pathfinder,
http://javapathfinder.sourceforge.net, 2006.

5. Checking Software Component Behavior Using Behavior Protocols and Spin

32

CHAPTER 6

Modes in component behavior specification via EBP

and their application in product lines

Authors: Jan Kofroň, Frantǐsek Plášil, and Ondřej Šerý

[7] Information and Software Technology 51/1, pp. 31-41, Elsevier,
DOI: 10.1016/j.infsof.2008.09.011, January 2009

33

Modes in component behavior specification

via EBP and their application in product lines

Jan Kofroň a,b Frantǐsek Plášil a,b Ondřej Šerý a

aCharles University in Prague
Malostranské náměst́ı 25, 118 00 Praha 1, Czech Republic

Tel: +420 221 914 266, Fax: +420 221 914 323
{jan.kofron, frantisek.plasil, ondrej.sery}@dsrg.mff.cuni.cz

bAcademy of Sciences of the Czech Republic, Institute of Computer Science
Pod Vodárenskou věž́ı 2, 182 07 Praha 8, Czech Republic

Tel: +420 266 053 830, +420 286 585 789
{jan.kofron, frantisek.plasil}@cs.cas.cz

Abstract

The concept of software product lines (SPL) is a modern approach to software de-
velopment simplifying construction of related variants of a product thus lowering
development costs and shortening time-to-market. In SPL, software components
play an important role. In this paper, we show how the original idea of compo-
nent mode can be captured and further developed in behavior specification via the
formalism of Extended Behavior Protocols (EBP). Moreover, we demonstrate how
the modes in behavior specification can be used for modeling behavior of an entire
product line. The main benefits include (i) the existence of a single behavior specifi-
cation capturing the behavior of all product variants, and (ii) automatic verification
of absence of communication errors among the cooperating components taking the
variability into account. These benefits are demonstrated on a part of a non-trivial
case study.

Key words: Behavior specification, component modes, software product lines
PACS:

1 Introduction

The concept of software components has been around for more than a decade.
Component models range from relatively simple, flat component models (e.g.,
EJB [32]) to more sophisticated hierarchical component models such as Frac-
tal [5] and Koala [30,31]. The latter one is based on Darwin [19] which coined

1

6. Modes in component behavior specification via EBP and their application in product lines

34

the concept of provided and required interfaces and primitive and composed
components allowing component nesting (forming a hierarchy).

Typically, a part of a component-based application involves several operational
variants, especially when the part was subject to reuse. This may be reflected
both by architecture and behavior variants. However, there is no general con-
sensus on handling this variability. The well-known approaches include modes
and product lines.

A mode, as introduced in [13], defines (at design time) a particular alternative
of a component’s architecture. At runtime, transitions among the modes of
the component may take place, however. In principle, a mode is part of a
static view on component architecture; it determines the component’s internal
architecture, the mode of internal components, and is associated with a specific
behavior of the component (not necessarily specified in detail). At the same
time, the modes of internal components determine a specific mode of the
parent.

Software components also play an important role in software product lines
(SPL) [30,12]. Work in this field aims at supporting development of software
for a set of closely related and likely further evolving products such as con-
sumer electronics. Therefore, capturing variability at different levels of abstrac-
tion and stages of software development is a key goal here [7,29,26,9,6,28].
These stages range from modeling software requirements, over design and
architecture specification, to code. Consequently, there are many modeling
methods targeting variability within such different software artifacts; the key
related abstractions include features [23], and, in particular, variation points
and their resolution when a specific product is to be instantiated [28,27]. In
addition to aspect-oriented programming [24], software components play an
important role when considering variability at the level of software architec-
ture. It should be emphasized that a SPL needs to address both variability
(configurability) and evolution (modifiability). In a component-based archi-
tecture, the variability is reflected in general by some kind of variation points
(resolved by configuration parameters) and evolution by the option to replace
a component at various levels of component hierarchy.

1.1 Problem statement

Unfortunately, there has been no general consensus on handling architecture
variants with respect to component behavior. Specifically, the mode concept
is an approach to switching statically determined architecture variants at run-
time; however, there is no abstraction to capture how switching among the
variants is related to component behavior. If this were determined, automated

2

6. Modes in component behavior specification via EBP and their application in product lines

35

checks could be employed to verify whether the intended transitions among
architecture variants are safely possible in a particular state of the involved
components.

Similarly, in SPL, most of the focus is on variability in software architecture,
but little attention is paid to variability of a component’s behavior in support
of its reuse in different architectural variants.

1.2 Goals and structure of the paper

In our group, we have developed a technique of specifying component behav-
ior in a simple process algebra style. In its first variant, Behavior Protocols
(BP) [1], the events specified are purely related to issuing request and re-
sponses of method calls on the component interfaces, while its more elabo-
rated version, Extended Behavior Protocols (EBP) [16], allows us to capture
a component state encoded as a n-tuple of values of enumeration types. The
actual expressive power of EBP was tested on a non-trivial component based
application developed in the CoCoME component models’ contest [22]. There
are model checking tools of BP and EBP which can verify correctness of com-
munication among components. The goal of this paper is threefold—to show
how

(i) EBP can be used to specify the behavior associated with a specific mode,
and also capture the transitions among modes,

(ii) EBP can be employed in product line architecture specification and help
derive the behavior and architecture of a particular product variant, and

(iii) the EBP model checking tools can be used for verification of communi-
cation correctness of architecture variants.

2 Background

There are a number of formalisms designed for formal behavior specification
of software, including set theoretic (e.g., Z), algebraic (e.g., VDM), and pro-
cess algebraic (e.g., CCS, CSP, FSP [20]) formalisms. As to component-based
software, its structuring of code into components with clearly defined inter-
faces and bindings encourages modular reasoning, on the one hand. On the
other hand, the formalism for behavior specification of software components
should reflect the key abstractions commonly used in component models.
These abstractions involve methods grouped into interfaces, both provided
and required, communication among assembled components via bindings of
interfaces, and support of component hierarchies. In addition to BP and EBP,

3

6. Modes in component behavior specification via EBP and their application in product lines

36

such specialized formalisms include Interface automata [8], Component inter-
action automata [4], and SEFF [11].

2.1 EBP Example

Fig. 1. Architecture of the CoCoME application

First, we shortly describe the CoCoME (Common Component Modeling Ex-
ample) contest assignment, as the examples in this paper stem from our solu-
tion to this assignment [22]. CoCoME was motivated by the need for having
a nontrivial canonical example of a component based application that would
enable an assessment of strengths and weaknesses of different features and

4

6. Modes in component behavior specification via EBP and their application in product lines

37

their comparison. Previously, only simple examples (even toy ones) had been
used as a proof-of-concept for this purpose.

The assignment of CoCoME is an application for managing a set of stores,
each equipped with a cashdesk line. UML component diagram [33] provid-
ing an overview of the whole application is in Fig. 1. The assignment con-
sists of a UML specification (component, deployment, sequence, and use-case
diagrams), a prototype implementation in Java, and specification of extra-
functio-nal properties. A number of teams applied their modeling techniques
to the assignment; the results were subsequently evaluated by a jury, pointing
out pros and cons of each modeling technique [22].

The example in Fig. 2 provides an intuitive insight and a brief overview of
EBP. The example is a slightly simplified version of the EBP specification
of the CoCoME CashDeskApplication component. The component contains
the actual business logic of a single cash desk in a store; e.g., it maintains
information about the progress of a current sale.

An EBP specification of a component consists of three sections: types, vars,
and behavior. In the types section, the enumeration types of the components’
state variables and method parameters are defined. In our case, there is a single
enumeration type states, which captures the possible states of sale (line 3). The
state variables are listed in the vars section. In the example, state captures
the state of a current sale (line 6); it is initialized to SALE STARTED.

The actual behavior is specified in the behavior section. Basic building blocks
are: accepting a method call ?interface.method(parameters) {reaction}, issu-
ing a method call !interface.method(parameters), assignment to a state vari-
able variable <− value, and the switch statement, which is used to direct the
control flow depending on the value of a state variable. More complex expres-
sions are constructed using the ‘+’ alternative, ‘;’ sequence, ‘∗’ repetition, and
‘|’ parallel (interleaving, no synchronization) operators. They are described in
more detail in [21] and [16].

The behavior section of the specification describes which method calls the com-
ponent can accept and how it reacts on them. In Fig. 2 the reaction depends on
the actual value of the state variable (note the switch statements). In its initial
state SALE STARTED, the CashDesk component can accept bar codes of sale
items (ProductBarcodeScannedEvent—line 10) on which it reacts by querying
StoreServer about the items and by updating the current total. This can be
repeated (line 62). The state is switched to SALE FINISHED, when the end of
BarCode entering is signaled by the GUI component (the corresponding event
SALE FINISHED EVENT mediated by CashDeskBus is accepted at line 20).
After that, the purchase is paid either by cash or a credit card. The former
case is reflected by accepting a call from GUI (mediated by CashDeskBus as

5

6. Modes in component behavior specification via EBP and their application in product lines

38

1: component CashDeskApplication {

2: types {

3: states = { SALE_STARTED, SALE_FINISHED, CREDIT_CARD_SCANNED, PAID }

4: }

5: vars {

6: states state = SALE_STARTED

7: }

8: behavior {

9: (

10: ?CashDeskAppHandleIf.onEvent(ProductBarcodeScannedEvent) {

11: switch (state) {

12: SALE_STARTED: {

13: !CashDeskConnectorIf.getProductWithStockItem;

14: (

15: !CashDeskAppDispatchIf.send(ProductBarcodeNotValidEvent) +

16: !CashDeskAppDispatchIf.send(RunningTotalChangedEvent)

17:)

18: } } }

19: +

20: ?CashDeskAppHandleIf.onEvent(SaleFinishedEvent) {

21: switch (state) {

22: SALE_STARTED: { state <- SALE_FINISHED }

23: } }

24: +

25: ?CashDeskAppHandleIf.onEvent(CashAmountCompletedEvent) {

26: switch (state) {

27: SALE_FINISHED: {

28: !CashDeskAppDispatchIf.send(ChangeAmountCalculatedEvent);

29: state <- PAID

30: } } }

31: +

32: ?CashDeskAppHandleIf.onEvent(CashBoxClosedEvent) {

33: switch (state) {

34: PAID: {

35: !CashDeskAppDispatchIf.send(SaleSuccessEvent);

36: !CashDeskDispatchIf.send(AccountSaleEvent);

37: state <- SALE_STARTED

38: } } }

39: +

40: ?CashDeskAppHandleIf.onEvent(CreditCardScannedEvent) {

41: switch (state) {

42: SALE_FINISHED: { state <- CREDIT_CARD_SCANNED }

43: } }

44: +

45: ?CashDeskAppHandleIf.onEvent(PINEnteredEvent) {

46: switch (state) {

47: CREDIT_CARD_SCANNED: {

48: !BankIf.validateCard;

49: (

50: !CashDeskAppDispatchIf.send(InvalidCreditCardEvent)

51: +

52: !BankIf.debitCard;

53: (

54: !CashDeskAppDispatchIf.send(InvalidCreditCardEvent);

55: (NULL + state <- SALE_FINISHED)

56: +

57: !CashDeskAppDispatchIf.send(SaleSuccessEvent);

58: !CashDeskDispatchIf.send(AccountSaleEvent);

59: state <- SALE_STARTED

60:))

61: } } }

62:)*

63: }

64: }

Fig. 2. EBP specification of the CashDeskApplication component

6

6. Modes in component behavior specification via EBP and their application in product lines

39

CashAmountCompletedEvent—line 25) reporting the cash amount paid by
a customer. As a result, GUI is called (again mediated by CashDeskBus—
line 28) to report the change to be returned to the customer and the state is
switched to SALE PAID. As soon as the change is returned and the cashbox is
closed (CashBoxClosedEvent—line 32), the StoreServer records are updated
and the state is set back to SALE STARTED (lines 35-37). Payment by credit
card is initiated by swiping a credit card (CreditCardScannedEvent—line 40),
switching the state to CREDIT CARD SCANNED, and then either finalized
by entering a valid PIN (PINEnteredEvent—line 45), or canceled by switching
back to the state SALE FINISHED.

2.2 Detecting component communication errors via EBP

After an EBP specification of each component has been finished, the tools
designed for EBP are applied. They serve to verify correctness of communica-
tion among components via checking absence of the following communication
errors: bad activity, no activity, and unbound requires error. In general (with
a slight simplification), whenever a component calls (‘!’) a method and the
target component is not ready to accept (‘?’) the call, the bad activity error
occurs. No activity represents the situation, when there are components wait-
ing for a method call, while no component is able to emit any. The last error,
unbound requires, may be viewed as a special case of the bad activity error,
as it represents the situation, when a component issues a call on an unbound
required interface. We have developed a tool (Sect. 2.3) which automatically
identifies the communication errors and produces a corresponding error trace.

For a composed component, a typical question is whether a component frame
(the set of externally visible interfaces) is correctly implemented by component
architecture (composition of subcomponents). The tool can answer the ques-
tion on the behavioral level, i.e., it reports whether an EBP specification of a
composed component is correctly implemented by the behavior of its subcom-
ponents (as described in [1,16,18], compliance of the frame and architecture
EBP protocol is verified by a tool).

Considering the CoCoME architecture, the tool can be, e.g., used to show
that the EBP specification of CashDesk is correctly implemented by compos-
ing CashDeskApplication, CashDeskGUI, LightDisplayCtrl, CardReaderCtrl,
CashBoxCtrl, ScannerCtrl, PrinterCtrl, and CashDeskBus (the architecture
of CashDesk). Correctness of an entire application can by verified by applying
this idea at each level of component nesting.

7

6. Modes in component behavior specification via EBP and their application in product lines

40

2.3 EBP in the light of process algebras

In principle, a protocol in EBP is a textual definition of a finite automaton
specifying behavior of a component. The essence of the behavior part (as seen
in Fig. 2) are expressions forming a simple process algebra close to CSP and
partially to CCS. Such an expression generates a set of traces—a trace in EBP
is a finite sequence of labels representing the atomic events related to method
invocations (the label of a form ?a↑ stands for accepting an invocation of a
method with (composed) name a, !a↑ for issuing an invocation, ?a↓ means
accepting the response (end) of a method execution, !a↓ means issuing the
response). Syntactically, an expression in EBP is composed of labels, oper-
ators, and parenthesis ‘()’ and ‘{}’. The basic operators are: ‘;’ sequencing,
‘+’ alternative, and ‘|’ parallel interleaving with similar semantics as in CSP.
However, recursive definitions are not allowed; instead, the repetition opera-
tor ‘*’ similar to regular expressions is employed. Therefore only finite traces
are considered. Moreover, the parenthesis ‘{}’ serve to easily encode method
calls and functionality of methods in the following way: ‘?a’ stands for ‘?a↑;
!a↓’, while ‘?a{P}’ stands for ‘?a↑; P ; !a↓’, and similarly for ‘!a’ and ‘!a{P}’,
where P is again an expression in EBP. For illustration, consider the example
in Fig. 3.

45: ?CashDeskAppHandleIf.onEvent { 45: ?CashDeskAppHandleIf.onEvent↑;
46: 46:

47: 47:

48: !BankIf.validateCard; 48: !BankIf.validateCard↑;
49: ?BankIf.validateCard↓;

49: (50: (

50: !CashDeskAppDispatchIf.send 51: !CashDeskAppDispatchIf.send↑;
52: ?CashDeskAppDispatchIf.send↓

51: + 53: +

52: !BankIf.debitCard; 54: !BankIf.debitCard↑;
55: ?BankIf.debitCard↓;

53: (56: (

54: !CashDeskAppDispatchIf.send 57: !CashDeskAppDispatchIf.send↑;
58: ?CashDeskAppDispatchIf.send↓

55: 59:

56: + 60: +

57: !CashDeskAppDispatchIf.send; 61: !CashDeskAppDispatchIf.send↑;
62: ?CashDeskAppDispatchIf.send↓;

58: !CashDeskDispatchIf.send 63: !CashDeskDispatchIf.send↑;
64: ?CashDeskDispatchIf.send↓

59: 65:

60:)) 66:));

61: } 67: !CashDeskAppHandleIf.onEvent↓

Fig. 3. EBP specification of the CashDeskApplication component

In the left column, there is a stripped-off version of the EBP specification in
Fig. 2, which was obtained by ignoring the switch constructs and method pa-
rameters for simplicity. An equivalent expression where only atomic events are
used is in the right column. In principle, this is also a valid CSP specification,

8

6. Modes in component behavior specification via EBP and their application in product lines

41

in which the events feature composed names (such as !BankIf.validateCard↑)—
notice that here a dot means name composition and not CSP prefixing. This
simple example illustrates only the use of the ‘+’ and ‘;’ . The operator ‘|’ will
be applied later (Fig. 5-10). Obviously, since an expression in CSP determines
an LTS [25], an expression in EBP determines also an LTS (more specifically
a finite automaton, since recursion in the EBP specification is not employed).
Notice that the constructs not employed in Fig. 3 (switches and method pa-
rameters) are based on enumeration types, only constants can be assigned to
variables of these types, the variables are used only to control switch alterna-
tives, etc., so that the rules for converting them into a finite automaton can
be easily articulated.

Composed behavior of two components is determined by parallel composition
of their EBP behavior specifications. For this purpose, the binary operator
consent (∇M) is introduced in EBP. In principle, its semantics is similar to
the “interface parallel” composition with restriction (P ||M Q) as known from
CSP [25], i.e. in the interleaving of events from P and Q those with names
in M synchronize and restriction makes them τ events in the corresponding
LTS. However, there are two key semantic differences in case of P∇MQ :

(i) The synchronization is based on pair-wise complementarity of the event
names (similar to CCS)—the names which differ only in their prefixes ‘!’
and ‘?’ are complementary. For example, events !BankIf.validateCard↑
and ?BankIf.validateCard↑ would synchronize and produce τ .

(ii) Contrary to CSP, if there is no counterpart for an event in M in the
other operand of ∇M , such situation triggers a communication error (an
erroneous trace is produced by definition). As mentioned in Sect. 2.2,
the following communication errors are defined: bad activity, no activity,
and unbound required error.

In our group, for BP we have developed several variants of a model checking
tool which identifies communication errors in a ∇M composition and produces
a corresponding error trace [18]. Moreover, for EBP verification, we use a tool
transforming EBP specifications into Promela—the input language of the Spin
model checker [14]. The reason for choosing Spin is an easier support for future
extensions of the EBP language and the efficiency and maturity of Spin—it
is a state-of-the-art explicit model checker featuring LTL checking abilities,
bit-state hashing, and quite friendly user interface. In addition, there are a
number of extensions of Spin, e.g., dSpin extending the Promela language by
functions, exceptions, etc. The reason for choosing Spin is an easier support
for future extensions of the EBP language.

9

6. Modes in component behavior specification via EBP and their application in product lines

42

3 Expressing modes and product lines in EBP

3.1 Behavior modes

To illustrate the way modes are reflected in EBP behavior specification, we
present a fragment of the CoCoME component architecture (Fig. 1)—the
CashDeskApplication component (Fig. 2). CashDeskApplication works in two
operational variants, EXPRESS mode and NORMAL mode. Each of these
variants is characterized by a modification of both behavior and architecture
of the involved components. In Fig. 4, the architectural variants correspond-
ing to these modes are depicted (we omit other components connected to the
CashDeskBus for simplicity).

(a) (b)

Fig. 4. CashDeskApplication in NORMAL mode (a) and in EXPRESS mode (b)

The EBP snippet in Fig. 5 shows how switching between the modes is reflected
in behavior specification of CashDeskApplication. It contains the changes to
the CashDeskApplication frame protocol necessary to describe switching to
and from the EXPRESS mode. Basically, the original protocol from Section 2.1
is extended by an additional state variable CDAmode (containing the value
NORMAL or EXPRESS). The component starts computation in the NOR-
MAL mode (line 8); after receiving an onEvent method call with the parameter
value ExpressModeEnabledEvent (line 27), it switches to the EXPRESS mode
(line 28).

This example shows that a mode is captured as a specific value of a single
state variable (CDAmode in this case). However, in general, a behavior mode
of a component can be encoded as an n-tuple of local state variables, each of
a specific enumeration type.

The EBP snippet in Fig. 6 describes behavior of the CashDesk component—
the parent component of CashDeskApplication. Generally, the behavior modes

10

6. Modes in component behavior specification via EBP and their application in product lines

43

1: component CashDeskApplication {

2: types {

3: states = { SALE_STARTED, SALE_FINISHED, CREDIT_CARD_SCANNED, PAID },

4: modes = { NORMAL, EXPRESS}

5: }

6: vars {

7: states state = SALE_STARTED,

8: modes CDAmode = NORMAL

9: }

10: behavior {

11: (

12:

13: . . .

14:

15: +

16: ?CashDeskAppHandleIf.onEvent(CreditCardScannedEvent) {

17: switch (CDAmode) {

18: NORMAL: {

19: switch (state) {

20: SALE_FINISHED: { state <- CREDIT_CARD_SCANNED }

21: } } } }

22: +

23:

24: . . .

25:

26:)* | (

27: ?CashDeskAppHandleIf.onEvent(ExpressModeEnabledEvent) {

28: CDAmode <- EXPRESS

29: }

30:)* | (

31: ?CashDeskAppHandleIf.onEvent(ExpressModeDisabledEvent) {

32: CDAmode <- NORMAL

33: }

34:)*

35: }

36: }

Fig. 5. EBP specification of the CashDeskApplication component with behavior
modes

of a parent and its child components are independent—in each component,
there may be state variables capturing the actual behavior mode. In the case
of the CashDesk and CashDeskApplication components, however, the modes
of both parent and child components are switched simultaneously as a reac-
tion to the ExpressModeEnabled/ExpressModeDisabled events mediated by
CashDeskBus.

To provide an example of really independent behavior modes in nested com-
ponents, let us consider a modified CashDesk component featuring again two
behavior modes (CASH and CARD mode) to capture how a customer has
decided to pay. Since customers are allowed to pay by cash in both the EX-
PRESS and NORMAL modes of CashDeskApplication, the behavior mode
of CashDesk is not determined by the behavior mode of CashDeskApplica-
tion (and vice versa) in this case. Of course, since the CARD mode makes
sense only in the NORMAL mode, the modes of CashDeskApplication and
CashDesk are not logically independent—the former influences the latter.

11

6. Modes in component behavior specification via EBP and their application in product lines

44

1: component CashDesk {

2: types {

3: modes = { NORMAL, EXPRESS}

4: }

5: vars {

6: modes CashDeskMode = NORMAL

7: }

8:

9: behavior {

10: # Sale related stuff

11: (

12: !CashDeskConnectorIf.getProductWithStockItem*;

13: (# the bank interface is used only in the EXPRESS mode

14: switch (CashDeskMode) {

15: NORMAL: {

16: !BankIf.validateCard*;

17: !BankIf.validateCard;

18: !BankIf.debitCard;

19: }

20:

21: EXPRESS: { NULL }

22: }

23:)*;

24: !CashDeskEventDispatcherIf.send(AccountSaleEvent);

25: !CashDeskEventDispatcherIf.send(SaleRegisteredEvent)

26:)*

27: |

28: # Express mode switch

29: ?CashDeskAppEventHandlerIf.onEvent(ExpressModeEnabledEvent) {

30: CashDeskMode <- EXPRESS

31: }*

32: |

33: # Normal mode switch

34: ?CashDeskAppEventHandlerIf.onEvent(ExpressModeDisabledEvent) {

35: CashDeskMode <- NORMAL

36: }*

37: }

38: }

Fig. 6. EBP specification of the CashDesk component with modes

In composition via ∇M (and the corresponding verification), the behavior
modes (state variables) themselves are taken into account indirectly, via the
sequences of method calls that are determined by the switch variants which
trigger mode switching. In our example, the NORMAL mode is reflected by
calling the methods on the BankIf interface (lines 16-18), which is not allowed
in the EXPRESS mode (line 21).

3.2 Software product lines

In this section, we show how EBP and behavior modes can be beneficially
employed in product line software engineering. To get an idea how EBP can
help in SPL architectural design and verification, consider the following exam-
ple (a slightly generalized part of the CoCoME example). In each store, there
is a server maintaining the list of items on and out of stock (Fig. 7). Since
the enterprise operates multiple stores, when some goods are running out of

12

6. Modes in component behavior specification via EBP and their application in product lines

45

stock in a store, they may be brought there from another store (if available)
and/or ordered from a supplier. The decision on moving/ordering the goods
is realized by a dedicated enterprise server. Depending on whether there is an
outlet store at the enterprise premises, the enterprise server either provides
also the functionality of the store server (Fig. 9), or it does not (Fig. 8).

These functional alternatives are reflected as architecture variants of a generic
server (Fig. 9). The ability to serve as a store server is embodied in the pres-
ence of the StoreApplication component, while the enterprise functionality is
implemented by the ProductDispatcher component. The other parts, i.e., the
ReportingApplication and Data components, are present in all variants.

Fig. 7. Store server—present at common stores

In Fig. 10, an EBP specification of the generic server component is provided.
Such a behavior specification takes advantage of the fact that some parts of the
functionality (behavior) are shared by several variants. The key idea is that the
variation points are represented by the switch construct employing the state
variables store and enterprise which serve for resolution of these variation
points. Both of them can be set to YES or NO; since they are supposed to be
set at the design phase by the system architect according to the desired role
of the component instance within the system, they are read-only. Particular
combinations of the values of store and enterprise reflect the architecture
variants described above (except for the combination NO-NO, which results
in empty behavior). Such initial assignments to the variables determine the
resolution statically.

Behavior modes are suitable for SPL design of unrelated variation points
(where state variables are independent). The only difference between a vari-
able determining a product line variant and a variable representing a runtime

13

6. Modes in component behavior specification via EBP and their application in product lines

46

Fig. 8. Enterprise server—present at the enterprise with no store

Fig. 9. Generic server

mode is that the value of the former is not modified in the behavior specifica-
tion. There are no means to enforce this within the EBP language itself; it is
up to the designer to obey this principle.

In general, there may be several state variables, each capturing variants of a
specific aspect of component behavior and a product line variant. Before the
deployment phase, the values of (read-only) variables representing a product
line variant are determined to reflect the actual role of each component in
the system (resolution of variation points)—it is the case of the store and

14

6. Modes in component behavior specification via EBP and their application in product lines

47

enterprise variables in Fig. 10. Next, at runtime, the other variables are used
to express different behavior modes (and transitions among them) of particular
components, as illustrated by the state and CDAmode variables in Fig. 5.

component Server {

types {

STORE { YES, NO }

ENTERPRISE { YES, NO }

}

vars {

STORE store = YES

ENTERPRISE enterprise = NO

}

behavior {

switch (enterprise) {

YES: {

(

?ProductDispatcherIf.orderProductsAvailableAtOtherStores{

!MoveGoodsIf.queryGoodAmount;

((!MoveGoodsIf.acceptFromOtherStore;

!MoveGoodsIf.sendToOtherStore)

+ NULL

)

}

)*

}

NO: { NULL }

}

|

switch (store) {

YES: {

(

?CashDeskConnectorIf.getProductWithStockItem*;

(?CashDeskLineEventHandlerIf.onEvent(AccountSaleEvent){

!ProductDispatcherIf.orderProductsAvailableAtOtherStores +

NULL

}

+

NULL

)

)*

|

(

?MoveGoodsIf.queryGoodAmount

+

?MoveGoodsIf.sendToOtherStore

)*

|

?MoveGoodsIf.acceptFromOtherStore*

}

NO : { NULL }

}

}

}

Fig. 10. EBP specification of the Server component with variation points

15

6. Modes in component behavior specification via EBP and their application in product lines

48

4 Evaluation and related work

There are several differences between the behavior modes proposed by this
paper and the modes introduced in [13]. First, a mode in [13] is a part of
the static view on a component’s architecture. Moreover, in [13] a mode of
a composite component determines both the architecture implementing its
frame (i.e., the subcomponents and their bindings) and the modes of sub-
components. Since there is a one-to-one mapping of the mode of a frame and
the modes of the subcomponents and their bindings, the architecture and the
modes of subcomponents also determine the mode of the encapsulating frame.
Regarding the behavior corresponding to different modes, the authors of [13]
just assume that every mode of a component is associated with a specific
behavior of the component (however, no further details on behavior, or on
how modes are switched among, are provided). In other words, modes are a
part of the architecture description (technically, they are expressed as (i) la-
bels associated with components and (ii) specification of component instances
and their bindings [13]). This way, behavior is determined only at an abstract
level. Moreover, employment of the mode idea is distributed over several non
integrated tools: Architecture labeling (Darwin), Alloy specification of mode
switching constraints [15], and Ponder for specifying runtime policies (such as
management and security).

In our approach, on the other hand, mode is a part of behavior specifica-
tion and it relates to the static view (architecture) only indirectly. Moreover,
there is no direct dependency between the behavior mode of a frame and the
behavior modes of the subcomponents in its relevant architecture. The only
requirement is that the architecture protocol has to be compliant to the frame
protocol. It should be emphasized that the compliance evaluation takes into
account involvement of mode switching both in the architecture and the frame
protocol, i.e., it is verified that these mode switches correspond to each other
well. In other words, compliance evaluation helps verify that parent mode
switching is correctly reflected in children’s behavior. As an aside, an addi-
tional benefit of EBP is that the specification scales well due to its textual
form (no diagrams) and separation of abstraction layers (frame vs. architec-
ture protocol) which helps keep the state space subject to model-checking in
manageable limits.

As to SPL, to our knowledge, there has been no attempt to directly support
variation points in behavior specification of a product line. The EBP language
allows specifying the behavior of all potential resolutions of variation points
in a component frame within a single specification. This is beneficial since
significant parts of the specification are typically shared by several variants.
An additional benefit of our approach is that from the generic behavior speci-
fication of a product line (like the specification of the generic server in Fig. 9)

16

6. Modes in component behavior specification via EBP and their application in product lines

49

both the architecture and its behavior specification of a variant can be derived;
e.g., the architectures in Fig. 7 and Fig. 8 can be inferred in an automatized
way.

In addition to [13] discussed above, probably the most related work is [3] em-
phasizing the need for dynamic software product lines in mobile applications,
particularly in the context of self adaptation. We can imagine modifying the
variant selection algorithm proposed in [3] in such a way that it would convert
its output to trigger an event which could determine a corresponding “dy-
namic” behavior mode. In our approach, due to the ability to combine both
static and non-static variables in the n-tuple determining a behavior mode,
we can express behavior of both static (classical) and dynamic product lines.

In [10], dynamic architecture reconfiguration in the context of SPL is modeled
as applying the reconfiguration patterns defined at design phase. However, no
verification of correctness properties is considered. In [2], behavior of prod-
uct line variants is modeled in a CSP-based algebra. Nevertheless, all the
architecture variants are considered statically and their correctness in terms
of deadlock related architectural mismatches is verified separately for each
variant. To our knowledge, this is the only process algebra used in SPL.

When compared to general CCS and CSP-like process algebras, EBP is spe-
cialized for specification of components. It offers key component abstractions
such as methods grouped into interfaces, both provided and required, commu-
nication among assembled components via bindings of interfaces, and support
of component hierarchies. Another important aspect is representation of a
method call by four separate atomic events !iface.method↑, ?iface.method↓,
?iface.method↑, and !iface.method↓, which allows for precise specification of
interleaving and nesting of method calls.

As an aside, there is no means for expressing behavior modes in the other com-
ponent behavior modeling formalisms known from literature, such as Interface
automata [8], I/O automata [17], and Component interaction automata [4].

5 Conclusion

We have presented a contribution to handling architecture variants with re-
spect to component behavior. The key idea is to use the behavior specification
in EBP as a basis for specification of behavior variants. We have shown how
EBP can be used to specify the behavior associated with a specific mode of
a component and to capture the transitions among the modes at runtime.
Moreover, the employment of EBP in the architecture of a product line be-
havior specification, and the derivation of the architecture and its behavior

17

6. Modes in component behavior specification via EBP and their application in product lines

50

for a particular product variant were presented. Finally, we have described the
use of model checking tools designed for EBP in verifications of component
communication correctness in architectural variants.

6 Acknowledgements

This work was partially supported by the Czech Republic project 201/08/0266
and the Czech Academy of Sciences project 1ET400300504.

References

[1] J. Adamek and F. Plasil. Component composition errors and update atomicity:
Static analysis. Journal of Software Maintenance and Evolution: Research and
Practice, 17(5), 2004.

[2] M. Bernardo, P. Ciancarini, and L. Donatiello. Architecting families of software
systems with process algebras. ACM Trans. Softw. Eng. Methodol., 11(4):386–
426, 2002.

[3] G. Brataas, S. Hallsteinsen, R. Rouvoy, and F. Eliassen. Scalability of decision
models for dynamic product lines. In Proceedings In International SPLC
Workshop on Dynamic Software Product Line (DSPL’07), page 10, 2007.

[4] L. Brim, I. Cerna, P. Varekova, and B. Zimmerova. Component-interaction
automata as a verification-oriented component-based system specification.
SIGSOFT Softw. Eng. Notes, 31(2):4, 2006.

[5] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. An open
component model and its support in java. In CBSE, pages 7–22, 2004.

[6] S. Buhne, K. Lauenroth, and K. Pohl. Modelling requirements variability across
product lines. In RE ’05: Proceedings of the 13th IEEE International Conference
on Requirements Engineering, pages 41–52, Washington, DC, USA, 2005. IEEE
Computer Society.

[7] P. Clements and L. Northrop. Software product lines: practices and patterns.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[8] L. de Alfaro and T. A. Henzinger. Interface automata. In Proceedings of the
9th Annual Symposium on Foundations of Software Engineering (FSE), pages
109–120. ACM Press, January 2001.

[9] A. Garg, M. Critchlow, P. Chen, C. V. der Westhuizen, and A. van der Hoek.
An environment for managing evolving product line architectures. In ICSM ’03:
Proceedings of the International Conference on Software Maintenance, page 358,
Washington, DC, USA, 2003. IEEE Computer Society.

18

6. Modes in component behavior specification via EBP and their application in product lines

51

[10] H. Gomaa and M. Hussein. Model-based software design and adaptation.
In SEAMS ’07: Proceedings of the 2007 International Workshop on Software
Engineering for Adaptive and Self-Managing Systems, page 7, Washington, DC,
USA, 2007. IEEE Computer Society.

[11] J. Happe, H. Koziolek, and R. H. Reussner. Parametric Performance Contracts
for Software Components with Concurrent Behaviour. In F. S. de Boer
and V. Mencl, editors, Proceedings of the 3rd International Workshop on
Formal Aspects of Component Software (FACS06), Prague, Czech Republic,
Electronical Notes in Computer Science, pages 41–55, September 2006.

[12] S. A. Hendrickson and A. van der Hoek. Modeling product line architectures
through change sets and relationships. In ICSE ’07: Proceedings of the 29th
International Conference on Software Engineering, pages 189–198, Washington,
DC, USA, 2007. IEEE Computer Society.

[13] D. Hirsch, J. Kramer, J. Magee, and S. Uchitel. Modes for software
architectures. In V. Gruhn and F. Oquendo, editors, EWSA, volume 4344
of Lecture Notes in Computer Science, pages 113–126. Springer, 2006.

[14] G. Holzmann. The Spin Model Checker, Primer and Reference Manual.
Addison-Wesley, Reading, Massachusetts, 2003.

[15] J. S. Kim and D. Garlan. Analyzing architectural styles with alloy. In
ROSATEA ’06: Proceedings of the ISSTA 2006 workshop on Role of software
architecture for testing and analysis, pages 70–80, New York, NY, USA, 2006.
ACM.

[16] J. Kofron. Behavior Protocols Extensions. PhD thesis, Charles University in
Prague, 2007.

[17] N. Lynch and M. Tuttle. An introduction to input/output automata. Technical
Memo MIT/LCS/TM-373, Massachusetts Institute of Technology, November
1988.

[18] M. Mach, F. Plášil, and J. Kofroň. Behavior protocol verification: Fighting
state explosion. International Journal of Computer and Information Science,
2005(1):22–30, 2005.

[19] J. Magee and J. Kramer. Dynamic structure in software architectures.
SIGSOFT Softw. Eng. Notes, 21(6):3–14, 1996.

[20] J. Magee and J. Kramer. Concurrency: State Models and Java Programs. Wiley,
1999.

[21] F. Plasil and S. Visnovsky. Behavior protocols for software components. IEEE
Transactions on SW Engineering, 28(9), 2002.

[22] A. Rausch, R. Reussner, R. Mirandola, and F. Plasil, editors. The
Common Component Modeling Example: Comparing Software Component
Models, volume 5153 of LNCS. Springer, Heidelberg, 2008.

19

6. Modes in component behavior specification via EBP and their application in product lines

52

[23] M. Riebisch, D. Streitferdt, and I. Pashov. Modeling variability for object-
oriented product lines. In LNCS 3013, pages 165–178. Springer, 2004.

[24] D. B. Roberto E. Lopez-Herrejon. Modeling features in aspect-based product
lines with use case slices:an exploratory case study., October 2006.

[25] A. W. Roscoe, C. A. R. Hoare, and R. Bird. The Theory and Practice of
Concurrency. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1997.

[26] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. Covamof: A framework for
modeling variability in software product families. In Proceedings of the Third
Software Product Line Conference (SPLC 2004), pages 197–213. Springer-
Verlag, 2004.

[27] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. Managing variability in
software product families. In Proceedings of the 2nd Groningen Workshop on
Software Variability Management (SVMG 2004), 2004.

[28] M. Svahnberg, J. van Gurp, and J. Bosch. A taxonomy of variability realization
techniques: Research articles. Softw. Pract. Exper., 35(8):705–754, 2005.

[29] S. Thiel and A. Hein. Systematic integration of variability into product
line architecture design. In SPLC 2: Proceedings of the Second International
Conference on Software Product Lines, pages 130–153, London, UK, 2002.
Springer-Verlag.

[30] R. van Ommering. Building product populations with software components.
In ICSE ’02: Proceedings of the 24th International Conference on Software
Engineering, pages 255–265, New York, NY, USA, 2002. ACM.

[31] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. The koala
component model for consumer electronics software. Computer, 33(3):78–85,
2000.

[32] Sun Enterprise Java Beans, http://java.sun.com/products/ejb.

[33] Unified Modeling Language, http://www.uml.org/.

20

6. Modes in component behavior specification via EBP and their application in product lines

53

6. Modes in component behavior specification via EBP and their application in product lines

54

CHAPTER 7

Threaded Behavior Protocols

Authors: Tomáš Poch, Ondřej Šerý, Frantǐsek Plášil, and Jan Kofroň

[9] Formal Aspects of Computing, Volume 25, Issue 4 , pp 543-572, ISSN 0934-5043,
DOI: 10.1007/s00165-011-0194-3, Springer-Verlag, July 2013

55

Threaded Behavior Protocols1

Tomáš Poch, Ondřej Šerý, Frantǐsek Plášil, Jan Kofroň
Charles University Prague, Faculty of Mathematics and Physics

Malostranské náměst́ı 25, 118 00 Prague 1, Czech Republic

{tomas.poch, ondrej.sery, frantisek.plasil, jan.kofron}@d3s.mff.cuni.cz

http://d3s.mff.cuni.cz

Abstract.
Component-based development is a well-established methodology of software development. Nevertheless,

some of the benefits that the component based development offers are often neglected. One of them is
modeling and subsequent analysis of component behavior, which can help establish correctness guarantees,
such as absence of composition errors and safety of component updates.

We believe that application of component behavior modeling in practice is limited due to huge differ-
ences between the behavior modeling languages (e.g., process algebras) and the common implementation
languages (e.g., Java). As a result, many concepts of the implementation languages are either very different
or completely missing in the behavior modeling languages. As an example, even though behavior modeling
languages are practical for modeling and analysis of various message-based protocols, they are not well suited
for modeling current component applications, where thread-based parallelism, lock-based synchronization,
and nested method calls are the essential building blocks.

With this in mind, we propose a new behavior modeling language for software components, Threaded
Behavior Protocols (TBP). At the model level, TBP provides developers with the concepts known from the
implementation languages and essential to most component applications. In addition, the theoretical frame-
work of TBP provides a notion of correctness based on absence of communication errors and a refinement
relation to verify correctness of hierarchical components. The main asset of TBP formalism is that it links
together the notion of threads as used in imperative object oriented languages and the notion of refinement.
For instance, this allows reasoning about hierarchical components composed of primitive components im-
plemented in Java without the need of bridging abstractions and simplifications enforced by the modeling
languages.

Keywords: Behavior modeling, verification, model checking, refinement, composition, component systems

1 This work was partially supported by the Grant Agency of the Czech Republic project P202/11/0312 and by the grant
SVV-2011-263312.

7. Threaded Behavior Protocols

56

2 Tomáš Poch, Ondřej Šerý, Frantǐsek Plášil, Jan Kofroň

1. Introduction

The basic idea of component based development (CBD) [LS00] is to compose complex software from well
defined artifacts denoted as components. Individual components are developed independently of each other
(possibly by different vendors) and communicate through their interfaces. This independence encourages
reuse of a single component in different applications requiring similar functionality.

The application architecture plays a key role in the development process. It identifies the individual
components of which the application is composed, their functionality, non-functional properties (e.g., per-
formance) and the way the components communicate with each other—interfaces. Each component defines
a set of its provided interfaces (set of methods implementing functionality provided to other components),
as well as a set of its required interfaces (functionality the component requires from other components).
Each interface has its type, and the types of the connected interfaces must correspond to each other (in the
meaning common to object oriented languages).

The benefits mentioned so far are closely related to the fact that component internals are hidden to
users. This is referred to as the black box view. In particular, only the person who implements a primitive
component has access to the source code of the component. Other persons are expected to deal with the
component via its interfaces and rely on its correctness.

If a component is used in an architecture, it must be ensured that it conforms to its context in the
architecture. In practice, the developers rely on syntactic compatibility of interfaces (at the implementa-
tion language level) and a precise documentation. This, obviously, does not guarantee a correct result. A
developer may overlook subtle details in the documentation which can lead to erroneous behavior. Also,
the documentation does not necessarily reflect the actual component implementation. The errors caused
by inconsistency of components can be revealed by testing, or in the worst case, manifest themselves after
submission to a customer. This weak point of CBD is addressed by many efforts in academia.

Software verification and CBD can benefit from each other [ABC10]. CBD splits a complex program
into smaller fragments—correctness of each primitive component can be verified separately. And afterwards,
correctness of composition is to be checked. For such compositional verification, each component is equipped
with a formal model specifying its behavior, and when composing components it is checked whether their
models fit together.

The requirements posed to a formal model to make it applicable in component-based development are
formulated as interface theories in [AH01b]. The requirements include support of incremental design and inde-
pendent implementability. A selective overview of several diverse approaches related to component behavior
evaluation, which ranges from LTS based behavior models, through contracts, analysis of implementation,
to summaries can be found in [CSS05].

1.1. Problem statement

Component-based development has found its way into industry. However, the component systems used in
practice (e.g. EJB [MSD03], DCOM [GG97], CCM [OMG06], Koala [OLKM00]) do not take advantage of
behavior modeling and subsequent analysis.

In our experience based on [CoC, ABJ+06], a part of the problem is that there is no suitable specifica-
tion language for behavioral modeling aiming at component systems in a comprehensive way. Specifically,
no specification language allows writing behavior specification in a straight-forward way, while providing
features important for analysis of a component-based system such as behavior composition and refinement.
Specifically, crafting behavioral models is a time consuming and error prone task. One of the reasons is
that the modeling languages of the formal frameworks are too different from the imperative programming
languages used by developers on daily basis.

1.2. Goals

The main objective of this paper is to make the application of behavioral modeling in component-based
development more suitable for day-to-day practice.

Based on our experience with specification languages of the Behavior Protocols family, in particular
Behavior Protocols (BP) [AP04, AP03] and Extended Behavior Protocols (EBP) [Kof07], we propose the

7. Threaded Behavior Protocols

57

Threaded Behavior Protocols 3

specification language Threaded Behavior Protocols (TBP) aiming at fulfilling the following two goals. On
the one hand, writing specifications in TBP should resemble programming in an imperative programming
language. Since programmers are used to the concepts provided by the imperative languages, this aspect
should significantly decrease the effort needed to prepare specifications of individual components. On the
other hand, the formal framework should provide means for successful application in CBD. This includes
a composition operator, as well as refinement relation, both designed with respect to a precisely-defined
notion of correctness and imperative concepts of the language. This way, we want to combine the aim
of programming languages at practical usability and existing theoretical frameworks focused on analyses
ensuring correctness of behavior.

Even though none of the features of the proposed specification language TBP is utterly novel, the contri-
bution of this paper lies in the way these features are put together within the context of a single language.
What makes it unique is that the users can reason on refinement of individual components’ models, while
the computation is driven by threads as it is in a real implementation. Thus, the user can avoid introducing
unnecessary specific concepts, “bridging” different abstractions levels and maintain their mappings as the
model evolves.

2. Related Work

During the past decades, several languages and formalisms for behavior modeling of software systems have
been proposed. They range from very generic ones (e.g., process algebras) to those specific to components
(e.g., Darwin [MDEK95], Wright [All97], Behavior Protocols (BP) [PV02], BIP [BBS06]). In this section,
we focus on those based on labeled transition systems (LTS), as they are well studied, meaning that their
properties (e.g., decidability of model checking of particular temporal logic formulas) as well as algorithms
for formal reasoning are well established.

2.1. Process Algebras

Classical process algebras (e.g., CSP [Hoa85] and CCS [Mil95]) describe a behavior as a set of cooperating
processes syntactically defined by a set of recursive equations; each of them associates a process name with an
expression determining the process behavior. Formally, the semantics of an expression is given via derivation
rules. A number of operators are typically defined to combine elementary actions. The operators include
sequencing, alternative, parallel composition typically with the option to create a synchronous product,
event hiding, renaming, etc.

When applied in the component context, individual components are represented by separate processes.
Synchronization of actions represents issuing a method call on a required interface resp. accepting method
call on a provided interface. Names of actions correspond to method names found in the architecture and
method parameters and data can be captured in the full calculus by value passing.

A particular example of CSP usage in the context of component systems is the Wright specification
language. Wright [All97] is an ADL for defining a component-based architecture enriched by behavioral
specification. The key abstractions of the component model include a component and its ports (interfaces),
and a connector and its roles (interfaces). An assembly is created by binary bindings of ports to roles. Each
of the key abstractions is associated with its behavior specification in the form of a process in a subset of
CSP.

The process describing the behavior of a component on its ports is called a computation, while the process
specifying behavior of a connector on its roles is called glue. Having the behavior of ports, roles, glues and
computations specified in CSP, automated checking of composability (based on refinement and deadlock-free
testing) is possible. In [Ros98], the approach taken is to transform Wright specifications into plain CSP and
use the FDR tool.

Modeling component behavior in a process algebra in principle assumes that every component is an active
entity, which does not correspond to the idea of implementation threads “visiting” other components. This
leads to the need of fragmenting threads into cooperating processes, or introducing a specific abstractions
for component behavior coordination (connectors in [BBS06])

7. Threaded Behavior Protocols

58

4 Tomáš Poch, Ondřej Šerý, Frantǐsek Plášil, Jan Kofroň

2.2. Automata-Based Languages

Automata based languages define the LTSes of individual communicating systems (with a straight-forward)
graphical representation. Such a definition is typically easy to comprehend, since it does not require deep
knowledge of the semantics of the given formalism. On the other hand, drawing complex systems tends
to be a tedious and time consuming task. Individual formalisms differ in the supported actions (labels),
composition operator and by the studied properties and relations over models.

Interface automata introduced by Alfaro and Henzinger [AH01a] distinguish input actions (?name),
output actions (!name) and internal actions (name). The parallel composition is used to form more complex
systems from simple ones.

Generally, the composition is defined over pairs of composable (having fitting sets of input and output
actions) automata A1 and A2. A synchronous product automaton PA = A1 ⊗ A2 is created; A1 and A2

synchronize on complementary actions. The result contains error states if an automaton emits an output
action and the counterpart automaton is not able to accept it (there is no complementary input action).

Existence of an error state in the product PA, however, does not mean that A1 and A2 cannot work
together. If A1 and A2 form an open system (i.e., there are still some input and output actions) there can
still be an environment E that avoids the error state. If such E exists, A1 and A2 are considered compatible.

The refinement relation (�) supported by the formalism of interface automata preserves the compatibility.
In particular, if P and R are compatible and Q � P then also Q and R are compatible. Such notion of
refinement can be directly used in the component context to verify hierarchical architectures.

Apart from the interface automata, there are other formalisms, e.g., I/O automata [LNW07], Component
Interaction Automata [ČVZ07] and others.

2.3. UML

Since Unified Modeling Language (UML) [BRJ05] is a de-facto industrial standard used for modeling software
systems, it is worth mentioning here as well. Although it addresses the problem of behavior modeling,
the semantics of related diagrams (activity, state machine, communication, interaction overview, sequence,
and timing diagrams) is not defined precisely enough to allow formal verification. Also a formal notion of
composition and refinement is missing. Although UML supports profiles refining the semantics for special
cases, none of the profiles has been generally accepted yet. Nevertheless, UML is often used to visualize
software designs and even for prototype code generation.

3. Application in Development Cycle

Rigorous application of formal methods in software development always requires substantial effort. This
includes running analysis tools and interpretation of their results, preparing models in various languages
and formalisms as well as maintaining consistency with concurrent activities in the development process.
Therefore, to lower the effort and maximize the benefits of using formal methods, it is necessary to carefully
articulate their role in the development process.

In comparison to other development paradigms, component based development has the advantage of an
explicitly-defined software architecture and component boundaries. Thus, there is a solid ground upon which
the formal methods may be built.

Notion of correctness A key benefit is the guarantee that the created software is in a certain sense
correct. The notion of correctness may differ depending on the particular formalism and the available tools.
Obviously, the formalism cannot provide guarantees related to the software aspects from which it abstracts.
In general, three types of correctness are considered (i) composition correctness, (ii) correctness of imple-
mentation, and (iii) user-defined properties.

The behavioral model of a component specifies how the component communicates with its environment.
This is sometimes referred to as contract. In particular, it specifies what the component provides to the
environment, under which assumptions, and what it requires from the environment. As the components are
composed in a specific architecture, violations of mutual assumptions can emerge, resulting in a composition
error. As an example, consider deadlock or invocation of a method on a component not prepared to accept
it (e.g., due to omitted initialization).

7. Threaded Behavior Protocols

59

Threaded Behavior Protocols 5

Another important property is adherence of the implementation of a primitive component, i.e., a compo-
nent directly implemented in an imperative language such as Java, to its behavior model. This means that,
when used in compliance with the assumptions articulated in its behavior model, the component reacts as
specified by its behavior model and without low-level implementation errors (e.g., null pointer dereference).

In addition to these issues, some formalisms provide means to specify and analyze violations of user-
defined properties. This allows specifying domain-specific properties reflecting the actual business logic of
the application. As an example, consider the requirement that all method calls in a component should be
preceded by an initialization and eventually followed by a special method call which frees resources (e.g.,
open files, database cursors, unfinished transactions). User-specified properties are typically provided in the
form of a temporal logic formula (e.g., LTL, CTL).

Top-down approach. In the classical waterfall model, the developer is expected to provide the design
in an early stage of the development process. If formal methods are applied, certain aspects of the design are
expressed formally. For instance, the behavior model is to be provided right after the application architecture
is created. When the architecture is hierarchical, the component behavior models can be created level by
level—the behavior models of the top level components can be created prior to the architecture of the lower
levels of the hierarchy. At each level, the composition of individual models is checked for correctness and
also for fulfilling the behavior specification at the higher level. The relation of the behavior composition to
the behavior specification at the higher level is referred to as refinement.

When the architecture is ready, the next step is to provide an implementation of the primitive components.
Since the behavior model of the primitive components is already available, it is convenient to generate a
skeleton of the implementation from the model. Then, the developers are expected to manually implement the
aspects of the behavior not captured by the model (e.g., by means of inheritance). Alternatively to skeleton
generation, the developers can provide the whole implementation manually. In such case, it is important to
find a way to ensure that the implementation conforms to the model of the primitive components. Otherwise,
the whole process is not sound.

The top-down approach allows continuous verification as the behavior model is getting more precise.
Thus, since errors at higher levels of hierarchy are detected as soon as possible, they can be fixed with small
impact on the lower levels.

Bottom-up approach. The top-down approach is not always applicable. An example is analysis of
legacy applications. Also in some of the methodologies, which do not follow the waterfall model, rapid
prototyping comes first and later the code is refined and improved. In these cases, implementation precedes
creation of the behavior model.

The first step is to provide behavior models for all primitive components. It may be either constructed
by a skilled reverse engineering specialist or generated from the implementation by means of static analysis
or monitoring. Once the behavior models for all primitive components are available, the architecture can
be flattened and checked for composition correctness. This may, however, be an infeasible task for current
analysis tools (e.g., due to state explosion). In such case, a hierarchy can help to delegate the task to smaller
subtasks by checking each composed component individually. In particular, when a behavior specification
of the composite components is provided, refinement ensures that the behavior specification corresponds to
the composition of primitive components. In the next step, correctness of composition of components at the
higher level is checked and so on.

4. TBP Proposal

Based on the comparison of imperative languages with the formalisms presented so far, we can more closely
refine the goals.

Goal 1 TBP will feature a straight-forward syntax and semantics to capture the behavior of a component,
as well as the assumptions on the behavior of its environment.

(a) We would like the parts of TBP describing (specifying) the behavior of component to be close to imper-
ative programming languages (we have chosen Java as the representative) in both syntax and semantics.

(b) TBP will support specification of assumptions on an environment.

7. Threaded Behavior Protocols

60

6 Tomáš Poch, Ondřej Šerý, Frantǐsek Plášil, Jan Kofroň

Goal 2 Theoretical framework of TBP will provide guarantees of correctness in the following sense:

(a) The framework will allow comparing actual behavior of a closed system to the expected behavior. Two
kinds of assumption violations are to be detected: bad activity and no activity2.

(b) Composition operator will reflect the concept of threads.

(c) There will be a preorder refinement relation considering both bad activity and no activity.

(d) The analyses of correctness should be decidable.

To achieve this goal, the theoretical framework of TBP has to precisely define the semantics of concurrent
thread execution in a form suitable for definition of correctness and of the refinement relation.

5. TBP Syntax

This section presents the formalism of Threaded Behavior Protocols (TBP) from the user point of view. In
particular, intuitive notion of component execution is used to explain meaning of individual concepts. More-
over, since specification of individual components is a typical usage scenario, this chapter, unless explicitly
stated, considers just specification of a single component. Note, however, that the formalism of TBP allows
expressing syntactically also the result of a composition.

The basic structure of a TBP specification is formed by five parts—declarations of types, declarations of
state variables, reactions on method calls, threads, and provisions. While the reactions and threads specify
the behavior exercised by the component itself in the imperative manner, provisions specify the behavior of
an environment assumed by the component. The assumptions are stated over sequences of provided method
calls.

component ComponentName {
types { ... }
vars { ... }
provisions { ... }
reactions { ... }
threads { ... }

}

5.1. Relation to Component Model

The concept of provided and required methods (often formulated using interfaces—groups of methods) is
already present in a typical component model. Since TBP is designed to be an extension of such a model,
there is no need to provide explicit syntax construction to determine which methods are provided and which
methods are required. Later, in the semantics section (Section 7), we assume Σreq, resp. Σprov, resp. Σint to
denote the set of component’s required, provided, and internal methods, respectively. Their content is taken
from the component model.

Moreover, the component models define compositions of components via bindings among the interfaces.
Thus, since the information about bindings can be taken from the component model, there is no need to
specify syntax for composition of TBP specifications.

5.2. Declarations

The types section defines enumeration types. The types may be used for declaration of method parameters,
state variables, and local variables. The vars section contains definition of state variables important for the
behavior. The variables can be accessed from within the component (i.e. reaction or thread) only. Later
on, within the threads and reactions sections, the variables are referenced by assignments and conditions.

2 Due to historical reasons we use the terms “no activity” to denote deadlock and “infinite activity” to denote livelock; “bad
activity” denotes a situation similar to the error state of Interface automata [AH01a].

7. Threaded Behavior Protocols

61

Threaded Behavior Protocols 7

types {
result = {OK, FAILED};
mode = {INIT, RUNNING, MAINTENANCE, SHUTDOWN}

}

vars {
mode actualMode = INIT;

}

The types fragment contains declaration of two enumeration types. While the result type consists of two

enumeration values OK and FAILED, the mode type consists of four enumeration values. The following
example fragment contains declaration of the actualMode state variable. The variable’s type is mode and the
initial value is INIT.

There is a special type of variable, mutex. A mutex variable serves as a synchronization primitive, upon
which the threads can synchronize, e.g., to achieve mutual exclusion.

5.3. Reactions

The reactions section contains description of the actual behavior performed by the component in reaction
to a method call of either a provided or an internal method (a method that is neither provided nor required,
but called by a component’s thread). Each reaction specified in the section consists of the method name,
declaration of arguments and body. The body begins with declaration of local variables followed by the
actual behavior.

reactions {
interface.methodName(ArgType1 argName1, ArgType2 argName2, ...):ReturnType {

LocalVarType localVar = initialValue;
...

}

Local Variables and Arguments Each local variable declaration specifies a name, a type, and an initial
value. Arguments, on the other hand, consist just of the type and a name. Local variables and arguments
may be accessed only from the reaction body. Moreover, the local variables and arguments are not shared
by parallel executions of the body—each execution has its own copy.

Elementary Actions The actual behavior consists of elementary actions composed together by control
flow operators. There are three kinds of elementary actions. In the following, val, val1, val2, etc. denote
values of defined types. The types of parameters in method calls and assignment correspond to expected
types. Var denotes a variable.

• Method call — i.a(val1, val2, ...)
The execution of the current reaction is postponed and the a method on the i interface is invoked with
parameters val1, val2, etc. The a method is either required or internal. The execution of the current
reaction is resumed when the method a is finished.

• Return — return val
Explicit termination of reaction. The returned value may be assigned to a variable at the calling site.

• Variable assignment — var=val
The content of the var variable is changed to the val value. The variable is either local variable or state
variable and the value is either constant (enumeration value), another variable or a method call. In the
last case, the return value of the invoked method is assigned to the variable.

• empty action — NULL

Control Flow Operators Control flow operators correspond to the control flow statements known from
imperative languages. The conditions used in the control flow operators are boolean expression consisting
of elementary conditions (equality — var == val) connected by common boolean operators (|| && !).
Moreover, there is the non-deterministic condition denoted by ?.

Apart from the sequence operator (;), there are if, switch and while operators used in the same context
as in an imperative language. The sync keyword denotes a critical section. It cannot be entered by more than
one thread simultaneously. Technically, the mutual exclusion is achieved by atomic test-and-set operation
over a variable of the built-in type Mutex (m in the fragment).

7. Threaded Behavior Protocols

62

8 Tomáš Poch, Ondřej Šerý, Frantǐsek Plášil, Jan Kofroň

if (condition) {thenBranch}
else {elseBranch}

switch(var){
case constA: aBranch
case constB: bBranch
default: defaultBranch

}

while(condition){
loopBody

}

sync(m){
criticalSect

}

When a non-deterministic condition is used, the executed branch is chosen arbitrarily. The loop statement
may be executed any finite number of times (i.e. non-deterministic decision whether to continue or not is
taken before each iteration).

5.4. Threads

The threads section contains description of the autonomous behavior performed by the component’s internal
threads. Each thread is declared by a name and a body, which consists of local variable declarations followed
by description of behavior. The constructs used to describe reaction bodies are used also to describe thread
behavior. Each thread may invoke required methods as well as internal methods. It may change a state
variable or a local variable. The number of threads is constant, each thread starts its execution immediately
at the beginning of the model execution and once a thread reaches its end it does not perform any action.

5.5. Provisions

Previous sections specify the behavior exercised by the component itself in the imperative manner. In con-
trast, the purpose of the provisions section is to declare the allowed usage of the component—assumptions
posed on the environment (i.e., limit the set of environments with which the component is supposed to
cooperate). The key distinction from the imperative part is that the assumptions posed on the environment
should be weak. While the imperative parts specify the behavior as precisely as possible, the assumptions
must not prohibit too many environments, to enable reuse of the component in different contexts.

Each assumption is specified as a set of allowed sequences of component’s provided method calls and
returns. The set of allowed environments then includes all environments that do not violate the assumption.

Each provision consists of an expression and a set of methods it constraints. The expression defines
a language in the same way as a regular expression. An environment fulfills the provision if all traces it
generates, when restricted to the methods from the set, belong to the language.

Elementary expression An elementary expression consists of two actions—a provided method call and
the corresponding return. Both actions can contain additional data—either the method call parameters or a
return value. Each method used in the expression must be a member of ΣProv.

provisions {
{ i.m(val):retVal } for {i.m}
{ i.n() } for {i.n, i.q}

}

The fragment contains two provisions. While the first provision guards all invocations of the method m
on the interface i, the second provision guards invocations of the methods n and q. The first provision states
that the method m on the interface i is expected to be invoked exactly once by the environment. Moreover,
the argument value must be equal to val and the method returns retVal. The second provision states that
the environment calls the method n exactly once. The arguments used and the return value may be arbitrary,
however. Moreover, the method q cannot be invoked by the environment at all.

Operators To construct more complex provisions, the following operators are available.

• Regular operators — sequence (;), alternative (+) and repetition (*)

{ i.m(val);i.n()*+i.q() } for {i.m, i.n, i.q}

In the example, the environment must call the method m with the argument val and later it can either
call the method n arbitrary many times or the method q exactly once. In between, before and after

7. Threaded Behavior Protocols

63

Threaded Behavior Protocols 9

Log

SessionManager

UserInterface

BusinessLogic

session

uiNotify

logic

log

Database

db
db

cmd

required interface

provided interface

component

Fig. 1. Architecture employing the SessionManager component

method calls, however, any number of other methods than i.m, i.n, and i.q is allowed, since the other
methods are not guarded by the provision.

• Parallel operators — and-parallel(|), or-parallel(||)
Parallel operator stands for alternative of all possible interleavings of operands. While for the and-parallel
| the environment has to follow both operands, for the or-parallel the environment may choose just one
operand.

• Reentrancy operator — limited (A ||n for n ∈ N) and full (A ||*)
A ||n is equivalent to A || A || . . . || A where there are n occurrences of A within the expression.
Thus, A may be followed by the environment at most n times in parallel. A ||* stands for A || A || A
|| Thus, the environment may proceed according to A as many times in parallel as it needs.

{ {i.login():ACCESS_DENIED*; i.login():ACCESS_GRANTED; i.n()}|* } for {i.login, i.n}

In the example, the environment may attempt to login in parallel. Each attempt, however, must end by
a successful login and invocation of the method n.

6. Example

6.1. Architecture

Fig. 1 contains an example architecture of a component application. The example contains a fragment of
a web-based information system. The application logic is implemented in the BusinesLogic component and
the UserInterface component mediates the user input entering the system in form of HTTP requests. The
commands from the user, however, do not go directly to the business logic. The communication is intercepted
by the SessionManger component that takes care of authentication of commands. SessionManager requires
some additional functionality provided by the Log and Database components. The latter one is shared with
the BussinessLogic component.

6.2. Behavioral specification for SessionManager

The SessionManager component is expected to work in the environment suggested in Fig 1. In particular,
the SessionManager component intercepts the communication between the (web based) user interface and
the application logic to provide the authentication feature.

The basic functionality of the component is to associate commands from individual users with sessions. In
order to invoke commands, the user interface has to acquire a session id (invoke the createSession method
provided by SessionManager). Then, if a valid session id is returned, it is used as a parameter for subsequent
commands. After SessionManager accepts the command, it checks the session id and passes the command
to the business logic. Apart from the main functionality, the component implements a maintenance mode.
The mode is automatically turned on when the administrator user is logged in. In the maintenance mode,
no new sessions can be created (createSession returns INVALID SESSION) and new requests executed in a
context of other than the administrator’s session causes invalidation of the request session. Moreover, the

7. Threaded Behavior Protocols

64

10 Tomáš Poch, Ondřej Šerý, Frantǐsek Plášil, Jan Kofroň

session timeout is implemented, so that SessionManager may decide on its own to invalidate an arbitrary
session.

It is important to emphasize the purpose of the model since it determines the abstractions to be used.
In this case, the goal is to describe dependencies of individual method calls in presence of parallelism. In
particular, we want to identify deadlocks and wrong ordering of method calls.

For instance, we do not model the particular authentication algorithm since it is not relevant. Just the
result influences the sequencing of method calls and the implementation must be prepared for the positive
result as well as for the negative one. Moreover, we do not distinguish individual users. There are just several
types of sessions (ADMIN SESSION, USER SESSION and INVALID SESSION). In general, the data abstractions
are chosen to reflect the conditions in the code that influence the control flow.

In the model, there is just one provision (lines 16-22) prescribing how the user interface can call the
methods on the session interface. In particular, user interface is allowed to submit a command (invokeCmd),
only if the createSession method returns a valid session id (i.e. USER SESSION or ADMIN SESSION). The
component is able to process requests from several users in parallel (| and |* operators).

Then, there are reactions for the provided methods createStatement() and invokeStatement() and
the reaction for the internal method terminate Session() which is invoked from three different placess.
When the user explicitly issues the CMD LOGOUT command (line 46) to invalidate an existing normal user
session in the maintenance mode (lines 47-48) and finally on timeout (line 69). The timeout is implemented
by the only autonomous thread in the specification, Timer.

1 component SessionManager {
2 types {
3 DbResult = {DB_GRANTED , DB_REFUSED };
4 SessionId = {USER_SESSION , INVALID_SESSION , ADMIN_SESSION };
5 UserId = {ADMIN_ID , USER_ID };
6 Command = {CMD_LOGOUT , CMD_OTHER };
7 OperationMode = {NORMAL_MODE , ADMIN_MODE };
8 }
9

10 vars {
11 OperationMode opMode = NORMAL_MODE;
12 Mutex m;
13 }
14
15 provisions {
16 {
17 {session.createSession (): USER_SESSION;session.invokeCmd(USER_SESSION ,?)*}
18 + {session.createSession (): ADMIN_SESSION;session.invokeCmd(ADMIN_SESSION ,?)*}
19 + session.createSession (): INVALID_SESSION
20 }|*
21 for {session.createSession ,session.invokeCmd}
22 }
23
24 reactions {
25 session.createSession(UserId userId): SessionId{
26 DbResult queryResult = DB_REFUSED;
27 queryResult = db.query ();
28 sync(m) {
29 i f (queryResult == DB_GRANTED) {
30 log.log();
31 i f (userId == ADMIN_ID){
32 opMode = ADMIN_MODE;
33 return ADMIN_SESSION;
34 }
35 i f (opMode == NORMAL_MODE){
36 return USER_SESSION;
37 }
38 } else { log.log (); }
39 return INVALID_SESSION;
40 }
41 }
42
43 session.invokeCmd(SessionId sessionId , Command cmd)
44 {

7. Threaded Behavior Protocols

65

Threaded Behavior Protocols 11

45 i f (sessionId == INVALID_SESSION) return
46 i f (cmd == CMD_LOGOUT || (sessionId == USER_SESSION && opMode == ADMIN_MODE)){
47 log.log();
48 intr.terminateSession(sessionId);
49 } else {
50 log.log();
51 logic.invokeCmd(cmd);
52 }
53 }
54
55 intr.terminateSession(SessionId sessionId){
56 sync(m){
57 i f (sessionId == ADMIN_SESSION){
58 opMode = NORMAL_MODE;
59 log.log();
60 }
61 uiNotify.sessionTerminated(sessionId);
62 log.log();
63 }
64 }
65 }
66
67 threads {
68 Timer {
69 while(?) {intr.terminateSession (?);}
70 }
71 }
72 }

7. TBP Semantics

The syntax presented so far accompanied by the information about interfaces from an underlying component
model form a TBP specification. Its semantics, as depicted in Fig 2, is defined in two stages.

In model stage, the TBP model is defined. The TBP model is a five-tuple capturing by mathematical
means (e.g., Labeled Transition System) the essential information from the TBP specification. Composition
is defined at the model stage, so that composition of two TBP models (⊕) yields also a TBP model.

The notion of correctness (i.e. absence of communication errors) and refinement is defined at the LTS
stage. The computation of the TBP model is represented by an LTS, either finite or infinite. Communication
errors are defined for a closed model (i.e. model which does not exercise any externally observable activity—
Σprov and Σreq are empty) as a property over computation states.

For an open system, refinement is defined as a relation over observation projections. Observation projec-
tion is an LTS modeling only externally observable activity (e.g., observation projection of a closed system
is a single state with no edges) of the computation. In the special case when the number of external threads
expected to use the provided methods of the component is limited to k, the LTS is finite. Finally, notion of
refinement is defined as a relation over observation projections.

The motivation behind those stages is to bridge the gap between the TBP specification, which provides
relatively rich concepts to the user, and mathematical structures used to clearly define notions of composition,
communication errors, and refinement.

7.1. TBP Model

The TBP model precisely defines meaning of the syntax presented so far by mathematical means. As al-
ready indicated, provisions differ from the imperative parts of the specification (threads and reactions). Not
surprisingly, in the TBP model, those are captured by different means as well. The provisions define a set
of important events and a set of allowed traces. To formally capture threads and reactions, a variant of LTS
enhanced with variables, guards, and assignments—Labeled Transition System with Assignments (LTSA)—is
used.

7. Threaded Behavior Protocols

66

12 Tomáš Poch, Ondřej Šerý, Frantǐsek Plášil, Jan Kofroň

component C {

 types { ... }

 vars { ... }

 provisions { ... }

 reactions {... }

 threads {...}

}

TBP Specification

TBP Model
Closed

Open

Closed
Computation

<

Error detection

Refinement

Observation
projections

Model Stage LTS Stage

TBP Model

TBP Model

Fig. 2. TBP semantic stages

In the following definitions, let E be a set of enumeration types and V be a set of variables of types from
E. Each variable v ∈ V determines its type and initial value. Dome is a set of values of type e ∈ E, Domv

is a domain of the variable v, DomE =
⋃
e∈E Dome and DomV =

⋃
v∈V Domv.

A basic element of the transition systems we are going to define is a parameterized transition. It corre-
sponds to a method call, where the method α can contain parameters v1, v2, ..., vn:

Definition 1 (Parameterized labels). Let Σ be a set of labels and Par is a set of variables (representing
formal parameters). Then, we define the set of parameterized labels ΣPar = {(α, 〈v1, v2, . . . , vn〉) : α ∈ Σ, n ∈
N ∪ {0}, vi ∈ Par}.

The function parami : ΣPar → Par returns the i-th parameter of the parameterized label and the
function name : ΣPar → Σ returns the original label without the parameters.

Labels are later used to model method calls. In particular, parameterized labels allow encoding method
parameters as well as return values into labels. Thus, in the following definitions, the set of labels is often
parameterized by variables and constants—ΣV ∪DomE

.

Definition 2 (Valuation function). The valuation function γV : V ∪ DomE → DomE assigns a value
to each variable from V . Moreover, it is identity for constants (γV (c) = c for c ∈ DomE). The initial
valuation function γ0

V assigns initial values to all variables. Modification of the valuation function is denoted
as γV [v 7→ c].

γV [v 7→ c](a) =

{
γV (a) : a 6= v
c : a = v ∧ v ∈ V
undefined : a = v ∧ v /∈ V

This third case in the definition above denotes the situation when v is not a variable but a constant;
obviously, the value of a constant cannot be modified.

Definition 3 (Guards). A guard over V, is a finite expression derived using the following rules:

• true is a guard,

• v == l, where v ∈ V ar, l ∈ Domv is a guard,

• if X and Y are guards, then X ∧ Y , X ∨ Y and ¬X are also guards.

The actual value of the guard g for valuation γV is denoted as γV (g) and the set of guards over V is
denoted as GV .

Note that a mutex m is considered to be a special case of a variable such that:

Domm = {LOCKED,UNLOCKED}, initm = UNLOCKED

Definition 4 (Assignment). Assignment over V is a label in the form

• v = c where v ∈ V, c ∈ Domv

assigning the constant c of the corresponding type to v

7. Threaded Behavior Protocols

67

Threaded Behavior Protocols 13

• v = w where v, w ∈ V,Domv = Domw

assigning the current value of the variable w to v

Let AV be a set of assignments over V .

Definition 5 (Labeled Transition System with Assignments). A Labeled Transition System with As-
signments (LTSA) is a tuple (S, s0, F, δ, Σ, V), where S is a finite set of states, s0 ∈ S is the initial state, F ⊆ S
is a set of final states, Σ a set of communication labels, V a set of variables and δ ⊆ S ×GV × (Σ∪AV)×S
is a transition relation.

Definition 6 (LTSA computation state). Let l = (S, s0, F, δ,Σ, V) be an LTSA. We call the tuple
(s, γV) a computation state of l if s ∈ S and γV is a valuation function for the set V. The tuple (s0, γ

0
V) is

denoted as initial computation state.

Definition 7 (Enabled LTSA transition). Let l = (S, s0, F, δ,Σ, V) be an LTSA and cs = (s, γV) be its
computation state. We call the transition t = (s, g, α, s′), t ∈ δ enabled in cs if γV (g) is evaluated to true.

In the TBP model, LTSAs are used to capture control flow of imperative parts (i.e., reactions and
threads). In this context, the set of labels contains parameterized labels representing issuing of a method
call (for all required and internal methods).

Let Σ contain method names (m ∈ Σ), Σ↑ contains events for issuing a method call (m↑∈ Σ↑) and Σ↓

contains events for accepting a method call result (m↓∈ Σ↓). Moreover, Σ↑/↓ = Σ↑ ∪ Σ↓. Then, Σ↑V ∪DomE

contains the events for issuing a method call parameterized by all possible combinations of variables from V
and constants from DomE .

For purposes of TBP model definition, we define LTSAΣ
V,E to be a set of all LTSAs using labels from

Σ↑V ∪DomE
and variables from V . In such case, each transition in δ is thus guarded by g ∈ GV and labeled

by l ∈ Σ↑V ∪DomE
∪ AV . Thus, l represents either issuing of a method call (including parameters), or an

assignment involving a variable from V . The return value of a method call is assigned to the special purpose
Ret variable. Thus, to assign the return value to a user specified variable, it suffices to assign the content of
the Ret variable.

Informally, the TBP model definition says that a model is defined by an alphabet of methods names, a
set of variables, a set of provisions (each captured as a set of allowed traces), a set of reactions (represented
as LTSA), and a set of active threads (given also as LTSA).

Definition 8 (TBP model). Let E be a set of enumeration types used in a TBP specification. A TBP
model is a five-tuple (Σ, P,R, T,G), where:

(a) Σ = (Σprov,Σreq,Σint) denotes disjunct sets of provided, required and internal method names used in
the model. In addition, where convenient, we use Σext = Σprov ∪ Σreq to denote the set of all externally
visible method names, Σall = Σext ∪ Σint for all names and Σimp = Σint ∪ Σreq for names of methods
which can be actively invoked in imperative parts.

(b) G is a set of state variables.

(c) P is a set of provisions {P1, P2, . . . , Pn} taking the form Pi = (filterPi , tracesPi), where filterPi ⊆
(Σprov) specifies methods observed by the provision and tracesPi specifies a set of allowed finite sequences

of events from (filterPi)
↑/↓
DomE

.

(d) R is a function: (Σint ∪ Σprov) → (L,N → L,LTSAΣall

G∪L,E) representing a mapping of method names

to their local variables (L), a parameter mapping function and reactions in form of LTSA. The L set
contains always at least the variable Ret.

(e) T is a set of threads T1, T2, ..., Tm, where Ti ∈ (L,LTSAΣall

G∪L,E) is a tuple specifying a set of local variables
and the behavior of the i-th thread in the form of LTSA.

Each provision Pi in (c) represents a set of finite sequences over events representing issuing of a method
call and accepting the response. The methods are either provided or internal methods and the events are
parameterized by constants from DomE . TBP model directly representing a TBP specification states the
provisions just over the provided methods. However, after composition, some provided methods become
internal methods. The parameters of response events represent return values. This allows reflecting return
values in sequences and, in particular, describing an environment which behaves with respect to the value

7. Threaded Behavior Protocols

68

14 Tomáš Poch, Ondřej Šerý, Frantǐsek Plášil, Jan Kofroň

obtained from the method call. Notice, that events are not parameterized by variables as in other cases, but
just by constants from DomE (actual values of method calls).

The labels in the LTSA for reactions in (d) contains calls of methods from Σimp and assignments over
local variables and state variables. In addition, constants from DomE are allowed in method calls. The
Ret variable is a special purpose variable used to store results from method calls. The parameter mapping
function is used to assign parameters from a parameterized method call event α to variables from L.

7.1.1. From TBP Specification to TBP Model

Method sets (Σ), global variables (G), and filters (filterPi) directly correspond to the sets from TBP
specifications. Provisions (tracesPi) and construction of LTSAs (R,T), however, deserve precise definitions.
Formally, we define the function model(TBPSpec, k) taking a TBP specification and the number of threads
from the environment allowed to enter the specification in parallel as arguments.

Provisions Every set tracesPi is represented by a finite state machine (FSM). Its construction directly
follows the algorithm for construction of FSM from a regular expression. In particular, method calls are
translated into a sequence of two events representing issuing a method call and return from a method call.
Both events are parameterized—either by parameters or by return values. The parallel operator results in
an interleaving of FSMs induced by its operands. Finally, the reentrancy operator is treated as a sequence
of or-parallel operators. The number of parallel operators is given by the parameter k of the model function.

Imperative Parts The structure of LTSAΣ
V,E is constructed in a bottom-up fashion. The basic building

blocks are method calls and variable assignments. The LTSA representing a method call contains three states
sequentially connected by two transitions labeled by a method call and, optionally, a Ret value assignment.
A state variable assignment is represented by an LTSA with two states connected by a single transition
labeled by the assignment.

The LTSA of a more complex expression is constructed from the LTSAs of its subexpressions. It is
also similar to construction of a nondeterministic finite automaton from a regular expression. The sequence
operator (‘;’) corresponds to the concatenation of LTSAs, if and switch correspond to alternative, and
the while statement is related to repetition. The difference inheres, however, in guards. If the if statement
contains a deterministic condition (not ‘?’), the corresponding transitions are equipped with the guards
derived from the condition and its negation. Similarly, the edges coming from the final states of the while
statement may contain a guard.

Finally, a block synchronized by a mutex sync(m){...} adds a new initial state to the LTSA connected
by a transition to the original initial state. The new transition is labeled by the guard ensuring that the
associated mutex is unlocked m == UNLOCKED and by the assignment m = LOCKED, which locks the mutex m.
The resulting LTSA has only one (newly added) final state with a transition targeting it from each original
final state and labeled by the assignment m = UNLOCKED.

7.1.2. Composition

Before defining the composition itself, we first make a simple observation. The names from the sets Σint and
G are not visible to the outer world and thus should not influence the result of the composition. In other
words, a protocol defines the same behavior under any arbitrary renaming of Σint and G. Therefore, without
loss of generality, we assume that there are no name clashes in these internal names3.

Moreover, when two models are being composed, they should not provide a method with the same name
as this would yield a binding of a single required interface to multiple provided interfaces, which is not
supported. Thus, to capture these requirements, we define notion of composable models.

Definition 9 (Composable models). Let A = (Σ′, P ′, R′, T ′, G′) and B = (Σ′′, P ′′, R′′, T ′′, G′′) be TBP
models. We say, that A and B are composable iff

• Σ′prov ∩ Σ′′prov = ∅
• Σ′int ∩ Σ′′int = ∅

3 Formally, this could be also handled by name substitution. However, this would obfuscate the otherwise simple definition.

7. Threaded Behavior Protocols

69

Threaded Behavior Protocols 15

Composition of two composable TBP models is again a TBP model. The composition makes a union of
the corresponding sets of provisions, reactions, threads, and state variables.

Definition 10 (TBP Composition). Let A = (Σ′, P ′, R′, T ′, G′) and B = (Σ′′, P ′′, R′′, T ′′, G′′) be com-
posable TBP models. Then:

A⊕B = ((Σprov,Σreq,Σint), P
′ ∪ P ′′, R′ ∪R′′, T ′ ∪ T ′′, G′ ∪G′′)

where
Σprov = Σ′prov ∪ Σ′′prov,
Σreq = (Σ′req ∪ Σ′′req)\(Σ′prov ∪ Σ′′prov) and
Σint = Σ′int ∪ Σ′′int

Notice that the set of methods provided by composition is a union of methods provided by the original
models. This way, a method provided by the input model which is at the same time required by the other input
model stays in the set of provided methods in the composition. Thus a provided method can be required (thus,
invoked) by several components composed together by sequential application of the composition operator.

Definition 11 (Closed TBP model). Let M = (Σ, P,R, T,G) be a TBP model. We call M closed if
Σreq = ∅

The essence of a closed model is that it does not communicate with the environment. The closed com-
putation introduced in the following text considers only the threads from T as a source of activity and does
not expect the environment to invoke any method.

7.2. Analysis of Closed Models

In this section, we define the computation of a closed TBP model as a finite LTS, called a closed computation.
Intuitively, a closed computation is created by composition of LTSAs of individual threads and reactions. In
particular, the way individual LTSAs are put together is inspired by a typical stack-based execution model
of imperative languages.

The number of threads is fixed in the closed TBP model. There is a single stack for each thread. The
top of a stack refers to the actual position in the LTSA being currently executed by the thread. Also, the
local variables and parameters referenced by LTSA guards and assignments are on the stack. Thus, each
computation state is represented by a number of stacks and valuation of state variables.

Definition 12 (Computation state). A Computation state of the TBP model (Σ, P,R, T,G) is a tuple
(Stacks, γG), where Stacks is a (multi)set of stacks—sequences of tuples (s, γL). The size of Stacks corre-
sponds to the number of threads (|Stacks| = |T |), γG and γL are valuation functions and s is a state of an
LTSA `. The LTSA ` either captures behavior of a reaction or a thread from the model.

A computation transition represents an atomic change of the computation state. Such a change is either a
modification of a stack or modification of a state variable or both. A change of the stack size corresponds either
to issuing a method call or accepting a method call response. Those transitions are labeled by corresponding
parameterized labels. The data in those labels are the actual values used in the particular method calls and

returns. Thus, if the method names are from Σ, then labels are from Σ
↑/↓
DomE

. Since the labels in LTSA may
be also parameterized by variables, a parameter valuation function is defined to get the actual values of these
variables.

Definition 13 (Parameter valuation function). Let γV : V ∪DomE → DomE be a valuation function.
Then, we define the parameter valuation function γΣ

V : ΣV ∪DomE
→ ΣDomE

in the following way:
γΣ
V ((α,< p1, p2, . . . , pn >)) = (α,< γV (p1), γV (p2), . . . , γV (pn) >).

In the following definition, a stack is treated as a pair (top, tail) or null, where top is the item on the top
of the stack, tail is the rest of the sequence and null represents an empty stack.

Definition 14 (Computation transition). Let l = (S, s0, F, δ,Σ
↑
V ∪DomE

, G ∪ L) be the LTSA corre-
sponding to the top of the active stack (s ∈ S, L is the set of variables considered by valuation γL). Let
(((s, γL), tail)∪Stacks, γG) be a computation state of the TBP model (Σ, P,R, T,G), where ((s, γL), tail) is

7. Threaded Behavior Protocols

70

16 Tomáš Poch, Ondřej Šerý, Frantǐsek Plášil, Jan Kofroň

(a)
δ:s

g,m↑<a1..n>−−−−−−−→s′,γG∪L(g)=true

({((s,γL),tail)}∪Stacks,γG)
m↑<γG∪L(a1..n)>−−−−−−−−−−→({((s′,γL),tail)}∪Stacks,γG)

where m ∈ Σreq

(b)
δ:s

g,v=e−−−→s′,γG∪L(g)=true

({((s,γL),tail)}∪Stacks,γG)
τ−→({((s′,γL[v 7→γG∪L(e)]),tail)}∪Stacks,γG[v 7→γG∪L(e)])

where v ∈ G ∪ L
e ∈ G ∪ L ∪Dom(v)

(c)
δ:s

g,m↑<a1..n>−−−−−−−→s′,γG∪L(g)=true

({((s,γL),tail)}∪Stacks,γG)
m↑<γG∪L(a1..n)>−−−−−−−−−−→({((s′0,γ0

L′ [p(i)7→γG∪L(ai)]),((s′,γL),tail))}∪Stacks,γG)

∀i ∈ {1..n} and m ∈ Σprov ∪ Σint
R(m) = (L′, p, l′) where L′ is a set of local variables, p : N→ L′ is a parameter mapping
function, and l′ = (S′, s′0, F

′, δ′,ΣG∪L∪DomE
, G ∪ L′)

(d)
s∈F

({((s,γL),((s′,γL′),tail))}∪Stacks,γG)
m↓<γL(Ret)>−−−−−−−−→({((s′,γL′ [Ret7→γL(Ret)]),tail)}∪Stacks,γG)

Fig. 3. Rewriting rules defining a computation transition

the stack of the thread producing the transition. Moreover,m < a1..n > is a shorthand for (m,< a1, . . . , an >)
and m < γV (a1..n) > for (m,< γV (a1), γV (a2), . . . , γV (an) >). The transitions among computation states
are defined by the rewriting rules in Fig. 3. While the top part of the rule references the LTSA capturing
control flow of a method performed by a thread, the bottom part defines a new transition.

In Fig. 3, the rule (a) represents invocation of a required method. The computation transition is labeled
by the method identifier parameterized by the actual values of its arguments. The rule (b) represents an
assignment. Just the valuation of the given variable is changed and the computation transition is labeled
by the silent action. The rule (c) represents invocation of a provided or internal method. In either case, a
method reaction is to be executed by the thread. Thus, the target state of the computation transition has
a new item at the top of the active stack containing the initial state of the invoked method’s reaction. The
valuation of local variables contains correct values for the method’s arguments. The rule (d) represents the
final step of a method reaction. Since the final state of the corresponding LTSA has been reached (s ∈ F),
the stack in the target state of the computation transition is popped and the content of the special purpose
variable Ret (return value) is copied one level higher on the stack. The computation transition is labeled by
the return method identifier parameterized by the actual value of the Ret variable.

Put together, computation states and transitions form a closed computation:

Definition 15 (Closed computation). Let M = (Σ, P,R, T,G) be a closed TBP model. Then the closed

computation of M is the tuple C(M) = ((Σimp)
↑/↓
DomE

∪ {τ}, S, s0, δ, F), where:

• Each label from (Σimp)
↑/↓
DomE

is an event representing either issuing or acceptance of method calls pa-
rameterized by constants from DomE .

• s0 = (Stacksinit, v
0
G) is initial computation state of the model. The set Stacksinit contains a stack for

each thread t = (L,LTSAt) from T containing a single item (s0
t , γ

0
L), where s0

t is the initial state of
LTSAt and γ0

L is the initial valuation of L.

• δ ⊆ S × (Σimp)
↑/↓
DomE

∪ {τ} × S is a transition relation corresponding to the computation transition

• S is a set of computation states reachable by δ from s0

7. Threaded Behavior Protocols

71

Threaded Behavior Protocols 17

• F ⊆ S is a set of final states. The state s is final if for each thread t its stack contains just single item
(s, L) such that s is a final state of LTSAt.

The closed computation of a closed TBP model is finite as long as the model does not contain (even
indirect) recursive calls in reactions. To keep the properties we are interested in decidable, we consider only
finite TBP models in the following text. Technically, we prohibit recursion. We believe this is not a huge
harm from the practical point of view, since we consider recursive calls among components to be a bad
practice. Practically, a tool can detect a possible recursion and refuse to provide any results in such case.
Moreover, since there are no required methods, there are no transitions of type (1) (Definition 14)

The definitions presented so far provide us with the precise meaning of a set of TBP specifications
composed together such that they form a closed TBP model. The semantics in this case is given in the form
of finite LTS, which provide straightforward definition of communication errors in the following sections.

7.2.1. Communication Error

The formalism of TBP distinguishes two kinds of communication errors. There are inherent errors, which
appear in consequence of a closed computation, and errors with respect to provisions.

Definition 16. Let C(M) = ((Σimp)
↑/↓
DomE

∪{τ}, S, s0, δ, F) be a closed computation of a closed TBP model
M.

There is inherently no activity in a state s ∈ S if s /∈ F and there are no transitions leading from s. The
set of all states with inherently no activity is denoted as F�.

There is infinite activity in state s ∈ S if there is no path from s to a final state or to a state where
inherently no activity is. The set of all states with infinite activity is denoted as F∞.

There is internal infinite activity error in state s ∈ S if there is infinite activity in s and all paths leaving
the state s contain only τ events. The set of all states with internal infinite activity error is denoted as F∞int.
Apparently, F∞int ⊆ F∞.

No activity denotes the situation when a thread gets stuck in a state waiting for a guard which never
starts to hold (e.g., to enter a critical section created by sync keyword or waiting for a certain value of a
variable). In such a case, the thread is waiting for an action to be performed by another thread (leave the
critical section, set the variable), which does not occur. Since such a situation is clearly undesirable, such a
state is considered to be erroneous.

On the other hand, the infinite activity is desirable in some cases—especially those emphasizing reactive
nature of a system while not modeling shutdown at all. The special case of infinite activity—internal infinite
activity, however, is undesirable, since there the computation performs only internal actions with no effect
observable by other components. For instance, internal infinite activity captures the situation, when a thread
is actively waiting (in a loop) for a guard.

We consider as erroneous the states from F� and F∞int, while F∞ can be desirable in some models.
Additionally, there is another class of errors induced by the provisions.

Provisions of individual components express assumptions posed on the environment in the form of traces.
As the models are being composed together, the particular environment of the component is being formed.
Once the system is closed, it is checked whether all provisions are obeyed.

Since provisions are based on traces, we define traces generated by closed TBP model first.

Definition 17 (Computation trace). Let C = ((Σimp)
↑/↓
DomE

∪ {τ}, S, s0, δ, F) be a closed computation

of a closed TBP model. Then, we call the finite sequence α0, α1, . . . , αn, αi ∈ (Σimp)
↑/↓
DomE

∪{τ} computation
trace, if there is a sequence of computation states s0, s1, . . . , sn+1 such that ∀i, 0 ≤ i < n : ∧(si, αi, si+1) ∈ δ.

Moreover, we call the computation trace terminating when sn+1 ∈ F , stuck when sn+1 ∈ F�, diverging
when sn+1 ∈ F∞ and internally diverging if sn+1 ∈ F∞int.

The set of terminating computation traces is denoted as L(C)
√

and stuck computation traces as L(C)�.
L(C)∞ contains the set of representatives of diverging computation traces—all diverging traces sharing the
same (already diverging) prefix are represented just by the prefix. The set of representatives of internally
diverging computation traces is denoted as L(C)∞int. L(C) = L(C)

√
∪ L(C)� ∪ L(C)∞.

7. Threaded Behavior Protocols

72

18 Tomáš Poch, Ondřej Šerý, Frantǐsek Plášil, Jan Kofroň

α
t = α

t t'

(a) No activity

α
t' = α

t'

α
α is shorter

t'

t

t

(b) Bad activity

Fig. 4. Examples of provision violation

The set L(C) characterizes a closed computation. It contains all traces leading to successful termination
as well as traces leading to no activity and traces leading to diverging states. Having such characterizing set
of computation traces, we can define the provision violation.

Definition 18 (Trace restriction). Let t = α0, . . . , αn be a computation trace consisting of parametrized

labels αi ∈ (Σimp)
↑/↓
DomE

∪{τ} and f ⊆ Σimp be a set of labels referred to as a filter. Then, the trace restricted

by f , t � f = α′0, . . . , α
′
m is a computation trace consisting of α′i ∈ f

↑/↓
DomE

such that

t � f =

{
α0.(t1 � f) : name(α0) ∈ f
t1 � f : otherwise

where t1 = α1, . . . , αn is the trace t without the first parametrized label and . is the concatenation
operator. Moreover, restriction of the empty trace is the empty trace.

Informally, the trace restriction operator removes from the trace the parametrized labels that are not
based on a label belonging to the filter. As an example, consider the following trestriction:

m1(v11, v12, ..., v1n);m2(v21, v22, ..., v2n);m3(v31, v32, ..., v3n);m4(v41, v42, ..., v4n) � {m1,m4} =
m1(v11, v12, ..., v1n);m4(v41, v42, ..., v4n).

Definition 19 (Provision violation). Let (Σ, P,R, T,M) be a closed TBP model and C its closed com-
putation. We say, that the provision Pi ∈ P , Pi = (filterPi , tracesPi) is obeyed by a trace t ∈ L(C) iff
t � filterPi ∈ tracesPi . The provision is not violated in the TBP model if it is obeyed by all the computation
traces from L(C). In the other cases, we say that the provision is violated.

With violation of provision defined in general, let us discuss specific kinds of violations. Violation of a
provision Pi for some i occurs, if there is a trace in L(C) such that its restriction t /∈ tracesPi . In such case,
let t′ ∈ tracesPi be a trace, sharing the longest prefix α with t.

Fig. 4(a) illustrates the case when t = α, which is denoted as no activity. In such case, the restricted
trace t follows the provision up to the certain point (α) and then immediately terminates without following
the rest of the trace t′. It corresponds to the situation when the model is expected to perform some action
(e.g., close a session), however it does not and just terminates, instead.

Definition 20 (No activity). A TBP model with a closed computation C generating computation traces
L(C) and containing a provision (filter, traces) contains no activity error if there is t ∈ L(C) � filter,
t /∈ traces such that it is a prefix of a trace t′ ∈ traces.

Fig. 4(b) reflects the remaining two situations. Either t′ = α or α is shorter than both t and t′. In the
former case, the trace t is a witness of a situation when a source model attempts to invoke a provided
method of a target model, which is already in a final state and does not expect any further method calls.
The latter case, on the other hand, reflects the situation when the target component does not expect the
invoked method, but expects another method call.

Definition 21 (Bad activity). The TBP model with closed computation C generating computation traces
L(C) and containing provision (filter, traces) contains bad activity error if there is t ∈ L(C) � filter,
t /∈ traces such that it is not a prefix of any trace t′ ∈ traces.

For the purposes of the following text, we define the predicate ErrFree over the set of all closed TBP
models.

7. Threaded Behavior Protocols

73

Threaded Behavior Protocols 19

Definition 22 (ErrFree). Let M be a closed TBP model. Then we define

• ErrFreeBA(M)⇔ there is no bad activity in the model.

• ErrFree�(M)⇔ there is neither inherently no activity nor no activity in the model.

• ErrFree∞int
(M)⇔ there is no internal infinit activity in the model

• Errfree(M)⇔ ErrFreeBA(M) ∧ ErrFree�(M) ∧ ErrFree∞int(M)

Assuming C is a closed computation of M, Errfree(M) can be alternatively defined as (L(C)
√
� filter) ⊆

traces ∧ (F� = F∞int = ∅)

7.3. Analysis of Open Models

So far, a notion of correctness for closed TBP models was presented. In the context of hierarchical component
models, however, developers often deal with open systems. Thus, it is necessary to extend the notion to the
realm of open TBP models.

Even if there is an error (in the sense of previous paragraphs) in the open system, it often depends
on the particular environment whether the error becomes evident or not. The environment may steer the
open system away from the error so that the error is never reached in the closed system that results from a
composition.

Thus, instead of mere identification of errors in an open system, comparison of open systems with respect
to an environment is preferred. In particular, the question is whether a TBP model I behaves correctly in
all environments where a TBP model S behaves correctly. Such relation is referred to as refinement in the
rest of this paper.

In a typical scenario, I represents a complex model (I stands for the implementation, which is typically
a composition of other models) while S is a relatively simple model capturing only the important aspects of
behavior with respect to communication with the environment.

Having the refinement relation, the hierarchical system verification is divided into two subtasks. The first
task is done when an open system is being created. The developer of a composite component provides the
model S and ensures that the actual component behavior corresponds to S—by means of refinement. The
second task is done when the open system is put into a particular environment to create either a closed
system or an open system on the higher level. In former case, the developer uses the specification S to verify
correctness of the closed model by means of the ErrFree predicate. In the latter case, the specification S
is put together with other components to form the implementation of the composed component. Then, the
refinement is checked again on the higher level.

Formally, the refinement is defined as follows:

Definition 23 (Refinement). Let I and S be TBP models and E be the set of all TBP models such that
∀e ∈ E : e is composable with both I and S, and e⊕ I is a closed TBP model.

• We say that I refines S with respect to bad activity iff
∀e ∈ E : ErrFreeBA(e⊕ S)⇒ ErrFreeBA(e⊕ I)

• We say that I refines S with respect to no activity iff
∀e ∈ E : ErrFree�(e⊕ S)⇒ ErrFree�(e⊕ I)

• Finally, we say that I refines S iff
∀e ∈ E : ErrFree(e⊕ S)⇒ ErrFree(e⊕ I)

Definition of the refinement is based on the errors considered. Moreover, the implication in these defini-
tions ensures transitivity of all three refinement relations as stated in the following lemma4.

Lemma 1 (Transitivity). Let A, B and C be TBP models such that A refines B and B refines C. Then,
A refines C.

The rest of this section provides a means for deciding whether I refines S. This is done in several steps.
First, an open TBP model is transformed into provision-driven computation. It is LTS similar to the closed

computation, however it also contains the transitions labeled by input actions representing the actions the

4 The proofs can be found in [Poc10].

7. Threaded Behavior Protocols

74

20 Tomáš Poch, Ondřej Šerý, Frantǐsek Plášil, Jan Kofroň

environment is allowed (or expected) to perform. Those input actions are distinguished from the actions
actively performed by the model (output actions).

In the next step, an observation projection is created from the provision-driven computation. The purpose
of the observation projection is to resolve the non-determinism in the model. It is a pessimistic approximation
of the provision-driven computation representing the behavior of the model as observed by an environment.
In particular, the environment is not able to distinguish states of the model reached by the same sequence
of observable actions. All these states are represented by a single state (super-state) in the observation
projection. Moreover, the super state allows the environment to perform only the actions allowed by a state
of provision-driven computation it represents. On the other hand, the observation projection requires the
environment to be ready for all actions that may occur in any state the super state represents.

The final step when deciding whether I refines S is parameterized alternation simulation. Basically, the
alternation simulation [AH01a] identifies pairs of states which must fulfill a property in order to ensure
refinement of specifications. The property P parameterizing the particular variant of refinement is designed
to preserve the corresponding error.

Currently, the refinement requires that the number of threads originated in the environment is limited.
The limit k goes through all the following definitions and theorems. In this sense, we define a weaker notion
of refinement as follows:

Definition 24 (Refinement up to k threads). Let I and S be TBP models and E is a set of all TBP
models such that ∀e ∈ E : e⊕ I is a closed TBP model and e does not invoke more than k provided methods
of I in parallel.

• We say that I refines S with respect to bad activity up to k threads iff
∀e ∈ E : ErrFreeBA(e⊕ S)⇒ ErrFreeBA(e⊕ I)

• We say that I refines S with respect to no activity up to k threads iff
∀e ∈ E : ErrFree�(e⊕ S)⇒ ErrFree�(e⊕ I)

• Finally, we say that I refines S up to k threads iff
∀e ∈ E : ErrFree(e⊕ S)⇒ ErrFree(e⊕ I)

7.3.1. Provision-driven Computation

In contrast to the closed specification, the open specification, besides its internal threads, allows threads
from the environment to invoke its provided methods. The way the external threads invoke the provided
methods is, however, limited by provisions. Thus, in the provision-driven computation (which is an LTS)
also externally triggered activity occurs (i.e. transitions representing invocation of a provided method by an
external thread).

Formally, provision-driven computation is a tuple CPD = ((Σall)
↑/↓
DomE

∪ {τ}, S, s0, δ, F). Notice that it
differs from the computation signature by the set of labels appearing on transitions—while the computation
transition uses only Σimp, there can be also input actions representing provided methods (Σall). In the
remainder of this paper, we use ?m to denote m ∈ Σprov, !m to denote m ∈ Σreq and finally τm to denote
m ∈ Σint.

In contrast to closed computation, the number of stacks in the individual states changes to reflect the
external threads allowed by provisions to call the provided methods. Moreover, individual states also contain
the information about the actual state of provisions.

The first step to create a provision-driven computation is to combine individual provisions of the speci-
fication. This is done in two phases. First, each provision is normalized to formally guard all methods from
Σprov. The set of traces allowed by the normalized provision is equal to the set of traces allowed by the
original provision. The normalization is done by interleaving all original traces by arbitrary invocations of
methods that were not guarded by the original provision. In the second phase, the intersection of normalized
provisions is created to achieve combined provision.

Definition 25 (Normalized provision for k threads). Let P = (filter, traces) be a set of provisions of
a TBP model M and Σprov the set of provided method names of M. The normalized provision for k threads
is defined as Pnorm,k = (Σprov, traces|L((m1 + m2 + . . . + mn) ∗ ||k)) , where the operator | produces all
interleavings of its operands, m1, . . . ,mn ∈ Σprov \ filter and L((m1 + m2 + . . . + mn) ∗ ||k) is a language
of traces capturing at most k parallel repetitive invocations of methods m1, . . . ,mn.

7. Threaded Behavior Protocols

75

Threaded Behavior Protocols 21

Definition 26 (Combined provisions for k threads). Let P = {P1, P2, . . . , Pn} be a set of provisions
of a TBP model M where Pi = (filterPi , tracesPi). Then, the combined provisions of M is a provision

ProvkM = (Σprov,
⋂
i=1,...,n traces

norm,k
Pi

) where tracesnorm,kPi
is the set of traces of the normalized provision

Pi
norm,k.

If the provisions are seen as finite automata, which is possible as each of them defines a regular lan-
guage, the combined provision is a finite automaton formed as the intersection of automata corresponding
to particular normalized provisions.

As long as the environment features less then k threads, the composed provisions allow the environment
to perform exactly the same behavior as was allowed by the original set of provisions. The fact is expressed
by the following lemma:

Lemma 2. Let M = (Σ, P,R, T,G) be a closed TBP model and N = (Σ, {(Σprov, P rovkM)}, R, T,G) is the
same model where the set of provisions P was replaced by composed provisions of M for k threads where k
is the number of threads in M (|T |). Then, ErrFree(M)⇔ ErrFree(N).

The Lemma 2 can be proven in the following way. Using the alternative definition of ErrFree(M) (
(L(C)

√
� filter) ⊆ traces ∧ (F� = F∞int = ∅)), one can see that the provisions influence only the (L(C)

√
�

filter) ⊆ traces part of definition. Moreover, the closed computation L(C) remains the same for both
M and N . For a particular provision Pi of M, let us denote Merrtr = (L(C)

√
� filterPi

) \ tracesPi
and

Nerrtr = L(C) \ ⋂i=1,...,n traces
norm,k
Pi

and prove Merrtr = ∅ ⇔ Nerrtr = ∅. There is a trace t in Merrtr

iff ∃t′ ∈ L(C) such that t = t′ � filterPi
and at the same time t /∈ tracesPi

. Either t is too short (it is a
prefix of a trace from tracesPi

) or α is the first symbol of t that differs from the trace from tracesPi
. In the

former case, t′ is just a prefix of a trace from tracesnorm,kPi
(we were adding interleavings, thus, no trace was

shortened). In the latter case, since α ∈ filterPi
, one can find the same (i-th) occurence of α in t’ as well

and there is no prefix of a trace from tracesnorm,kPi
that would follow t’ up to and inluding α (we were adding

just arbitrary interleavings of methods not belonging to filterPi). Thus, t′ ∈ L(C) \⋂j=1,...,n traces
norm,k
Pj

.

For the opposite direction, the idea is the same, one just have to use the fact that number of threads is
limited by k, thus there is no problem with limited reentrancy in normalized provisions.

Once composed provisions representing the behavior that the model M expects from the environment is
available, provision-driven computation can be constructed. The following definitions are based on definitions
of closed computation. For instance, the provision-driven computation state is a computation state enriched
by a position in the combined provisions.

Definition 27 (Provision-driven state for k threads). Let M = (Σ, P, R, T,G) be a TBP model and
ProvkM = (S, s0, δ, F) its composed provisions for k threads. A state of Provision-driven computation of M
for k threads is a tuple (Stacks, γG, s), such that the tuple (Stacks, γG) forms computation state and s
identifies a state from ProvkM (s ∈ S).

In addition to the transition of a closed computation, the provision-driven computation transition is
changing the state of combined provisions as a method is invoked. Moreover, there are transitions representing
invocation of provided methods by threads from the environment.

Definition 28 (Provision-driven transition for k threads). The rewriting rules in Fig. 5 define the
transitions among provision-driven states. While the top part of each rule references the computation
transition (Def. 14), the bottom part defines a new provision-driven transition. Let (Stacks, γG, sProv) be
a provision-driven computation state of the TBP model M = (Σ, P,R, T,G), where sProv is a state of
ProvkM = (SProv, s0Prov, δProv, FProv).

In Fig. 5, the rule (a) produces a transition which does not modify the provision state. The rule (b) and
(c) produces a transition representing active invocation of a method by the model. The provision state is
modified to reflect the invocation. If the provision does not provide the required transition, the computation
state causes bad activity error—(Stacks, γG, sprov) ∈ FBA. The rule (d) produces a transition representing
invocation of a method by environment. The provision state is modified to reflect the invocation.

It is worth to notice that while the transitions defined in (a), (b), and (c) represent an activity performed
actively by the model (!m), the rule (d) states that the model is allowed to perform the activity if asked by
the environment (?m).

7. Threaded Behavior Protocols

76

22 Tomáš Poch, Ondřej Šerý, Frantǐsek Plášil, Jan Kofroň

(a)
(Stacks,γG)

α−→(Stacks′,γ′G)

(Stacks,γG,sprov)
α−→PD(Stacks′,γ′G,sprov)

where α = τ or α is a required method call

(b)(c)
(Stacks,γG)

α−→(Stacks′,γ′G),δprov:sprov
α−→s′prov

(Stacks,γG,sprov)
τ−→PG(Stacks′,γ′G,s

′
prov)

(Stacks,γG)
α−→(Stacks′,γ′G),δprov:sprov 6

α−→s′prov
(Stacks,γG,sprov)∈FBA

where α is a provided or internal method call

(d)
δprov:sprov

m↑<a1..n>−−−−−−→s′prov

(Stacks,γG,sprov)
m↑<a1..n>PG−−−−−−−→(Stacks∪{((s′0,γ′L),null)},γG,s′prov)

where R(m) = (L′, p, l′)
s′0 is the initial state of l′

γ′L = γ0
L′ [p(i) 7→ ai]

Fig. 5. Rewriting rules defining provision-driven transition for k threads

Definition 29 (Provision-driven computation for k threads). The provision-driven computation of

a TBP model M = (Σ, P,R, T,G) for k threads is the tuple CkPD(M) = ((Σall)
↑/↓
DomE

∪ {τ}, S, s0, δ, F, !F),
where:

• A label from (Σall)
↑/↓
DomE

is either an event representing issuing of a method call or acceptance of a method
call parameterized by constants from DomE .

• s0 = (Stacksinit, v
0
G, s

0
Prov) is initial provision-driven state. The set Stacksinit contains a stack for each

thread t = (L,LTSAt) from T containing single item (s0
t , γ

0
L), where s0

t is the initial state of LTSAt and
γ0
L is initial valuation of L. s0

Prov is an initial state of ProvkM .

• δ ⊆ S × (Σimp)
↑/↓
DomE

∪ {τ} × S is a transition relation corresponding to the provision-driven transition
for k threads.

• S is a set of provision-driven computation states reachable by δ from s0

• !F ⊆ S is a set of imperative final states. The state s = (Stacks, γG, sProv) is a final imperative state
if for each model’s thread t there is a stack ∈ Stacks containing just single item (s′, L) such that s’ is
a final state of LTSAt. There are no other stacks in Stacks representing the threads originated in the
environment.

• F ⊆ S is a set of final states. The state s = (Stacks, γG, sProv) is a final state if it is imperative final
state and sProv is a final state of ProvkM .

In addition to the final states F representing the situation when both internal threads and provisions are
in a final state, we also define the set !F ⊆ S to denote the states where all threads are in a final state, but
there is no restriction on the provision state (!F ⊆ F). Those states reflect the situation when the model is
neither obliged to perform any action on its own nor to terminate.

Similarly to the closed computation, using the definition of provision-driven final states, we define the
sets F�, F∞ and F∞int. Moreover, we define FBA to be a set of states causing the bad activity error (Defi-
nition 28 (c). In contrast to the closed computation, mere existence of an error state (e.g. s ∈ F�) does not
automatically mean that the model is useless. It can still work perfectly in a number of environments which
use it in a way such that the error is avoided.

The provision-driven computation is well defined even for closed systems. Such computation features no
transitions labeled by input actions (?m). Moreover, it can be used for detection of error states.

Lemma 3. Let M be a closed TBP model containing k threads and CkPD(M) is its provision driven com-
putation for k threads. The set of error states FBA is empty iff there is no bad activity state in M .

7. Threaded Behavior Protocols

77

Threaded Behavior Protocols 23

7.3.2. Observation Projection

A key step when deciding whether the I model (implementation) refines the S model (specification) is to
compare their ability to work in various enclosing environments—the model I has to work in all environ-
ments where S works. Thus, only the model’s behavior observable by the environment is important. The
environment cannot make any assumptions regarding the internal non-determinism of the model (including
internal communication). To include this fact in further reasoning about refinement, we define the observa-
tion projection of the provision-driven computation. The observation projection is an LTS which abstracts
from the non-determinism of the original computation in a pessimistic way—whenever an error can occur
due to the non-determinism, it must be reflected in the observation projection.

Each state of the observation projection (super-state) represents a set of states of the original provision-
driven computation. The individual states represented by the same super-state cannot be distinguished by
any environment. For instance, states originally connected by a τ transition always belong to the same
super-state.

Let CkPD(M) = ((Σall)
↑/↓
DomE

∪ {τ}, S, s0, δ, F) be a provision-driven computation of a TBP model M for
k threads. Let A ⊆ S be a set of states. We define τ -closure(A) as to be a set of states reachable from
s ∈ A by a set of externally invisible transitions—τ -transitions originated as assignments (cases (a) and (b)
in Definition 29).

Definition 30 (Observation projection for k threads). Let CkPD(M) = ((Σall)
↑/↓
DomE

∪ {τ}, S, s0, δ, F)
be a provision-driven computation of TBP model M for k threads. Then the observation projection of M

for k threads is a tuple CkOP (M) = ((Σext)
↑/↓
DomE

, SOP , s
0
OP , δOP , FOP , !FOP) such that

• SOP ⊆ 2S

• s0
OP = τclosure({s0})

• δOP : SOP × (Σext)
↑/↓
DomE

→ SOP
δOP (sOP , ?m) = τclosure(s′OP)⇔ ∀s ∈ sOP∃s′ ∈ s′OP : (s, ?m, s′) ∈ δ
δOP (sOP , !m) = τclosure(s′OP)⇔ ∃s ∈ sOP∃s′ ∈ s′OP : (s, !m, s′) ∈ δ
• FOP = {sOP : ∀s ∈ sOP : s ∈ F}
• !FOP = {sOP : ∃s ∈ sOP : s ∈!F}

Moreover, we define sets of various error states. In particular

• EBAOP = {sOP : ∃s ∈ sOP : s ∈ FBA}
• ENAOP = {sOP : ∃s ∈ sOP : F� ∪ F∞int}
• EOP = EBAOP ∪ ENAOP

Observation projection simplifies the original provision-driven computation by reducing non-determinism.
The internal choices are expected to behave as in the worst case w.r.t. bad activity; if one of the states
belonging to a super-state (e.g., several states connected by internal actions) produces an output action,
it must be produced also by the super-state. On the other hand, an input action leaving the super-state
must be present in all states of the super-state. In other words, output action in the observation projection
represents option of the model to emit the action while input action represents obligation to accept it.

Fig. 6 contains a fragment of a provision-driven computation. There are states connected by transitions
labeled by internal, input and output actions. The leftmost state is the initial one while the rightmost
state is a final state. The rest of the LTS is represented by the dashed line. The corresponding observation
projection (Fig. 7) consists of three super-states. The super-state k is the initial state, since one of the states
it represents is the initial state of the provision-driven computation. Moreover, there is no transition labeled
by an input action leaving k since not all of the states are ready to accept ?p. On the other hand, there are
two output transitions. The one labeled by !q leads to the super-state l, while the other one leads to the
part of the observation projection which is not depicted. In contrast to k, there is an input transition leaving
the super-state l, since all the states in l are ready to accept ?p. The target states of these transitions are
not distinguishable by the environment. Thus, they all belong to the super-state m.

The definitions provided in this section gradually simplify an open TBP model so that, in the end, the
observation projection is just a transition system labeled by input and output actions—similarly to interface

7. Threaded Behavior Protocols

78

24 Tomáš Poch, Ondřej Šerý, Frantǐsek Plášil, Jan Kofroň

?p

?p
?p

?p

?p

?p!s

!q

!x

!x

!y

!y

τa τa

τb τbτc τc

initial state

final state

rest of LTS

Fig. 6. Fragment of provision-driven computation

?p!s

!q

!x

!y

k l

m

Fig. 7. Fragment of observation projection

!q ?p

!q

!s

?p

?r

?t

T
ru
e

a b c

b' c'a'

S:

I:

1 2

Fig. 8. Alternation simulation example

automata. There are, however, two significant differences. The transition system is deterministic (there are
no internal actions and each state contains at most one outgoing transition for each external action). Second,
there is also additional termination information associated with super-states.

Determining whether the observation projection CkOP (I) refines CkOP (S) is based on the parameterized
alternation simulation.

Definition 31 (Parameterized alternation simulation). Let I and S be observation projections of
TBP models. Let SI be the set of states of I, SS be the set of states of S, δI and δS be the transition
functions of the respective observation projections. Moreover, let P ⊆ SI × SS be a relation. Then, we call
the relation �P⊆ SI × SS parameterized alternation simulation if

• ∀(sI , sS) ∈�P : (sI , sS) ∈ P
• ∀(sI , sS) ∈�P : δI(sI , !m) = s′I ⇒ ∃s′S : δS(sS , !m) = s′S ∧ s′I �P s′S
• ∀(sI , sS) ∈�P : δS(sS , ?m) = s′S ⇒ ∃s′I : δI(sI , ?m) = s′I ∧ s′I �P s′S

The relation is extended to observation projections using initial states as follows.
We say that I refines S with respect to the property P (I �P S) iff there is a parameterized alternation

simulation �P such that s0
I �P s0

S where s0
I is the initial state of I and s0

S is the initial state of S.

The parameterized alternation simulation stems from the alternation simulation introduced for interface
automata in [AH01a]. The main purpose of the alternation simulation is to relate states of the individual
observation projections that correspond to each other from the observer’s point of view. Let E be an environ-
ment enclosing S and the result of composition does not contain any error. Then, when CkOP (S) exercised by
the environment E is in the state si, then CkOP (I) exercised by E must be in the state ss such that si �P ss.

The additional predicate P allows specifying an additional property that must hold to address a specific
error. In particular, I �True S preserves bad activity that occurs in communication among I (resp. S) and
its enclosing environment E, however, it considers neither no activity nor bad activity caused by internal
communication within I.

Fig. 8 contains an example of two observation projections I and S such that I �True S. In particular,
c′ �True c holds trivially, since there are no leaving transitions and (c′, c) ∈ True. The implication 2 and

7. Threaded Behavior Protocols

79

Threaded Behavior Protocols 25

c′ �True c implies b′ �True b and the implication 1 and b′ �True b implies a′ �True a. Since the initial states
a′ �True a then also I ′ �True S
Lemma 4 (Transitivity of �P). Let A, B and C be observation projections of TBP models, and P be a
transitive relation over their sets of states SA,SB and SC (i.e. (sAPsB)∧(sBPsC)⇒ (sAPsC)). Let A �P B
and B �P C. Then A �P C.

7.3.3. Preserving Bad Activity

Theorem 1 (Refinement w.r.t. BA up to k threads). Let IOP resp. SOP be an observation projection
of a TBP model I resp. S for k threads. Let EBAI resp. EBAS be sets of bad activity error states in the
observation projections. Let BA(a, b) be a relation over set of states of observation projections such that

BA(a, b)⇔ (a ∈ EBAI ⇒ b ∈ EBAS).

Then IOP �BA SOP implies that I refines S with respect to bad activity up to k threads.

7.3.4. Preserving No Activity

To define a refinement relation preserving the no activity error additional information is needed in the
observation projection. Let AOP be an observation projection. The predicate running holds for each state of
the observation projection that has to emit an output action. The predicate running is defined as follows.

Definition 32 (Running). Let sop be a super-state of the observation projection AOP and S be a set of
states in the provision-driven computation represented by sop. Then

running(sop) = sop /∈!F
∧
∀s ∈ S ∃sτ , !m, s′ : sτ ∈ τclosure(s) ∧ δ(sτ , !m) = s′

The definition consists of two properties of the state. If the set of states of the provision-driven computa-
tion represented by the super-state contains a state representing termination of all active threads (sop ∈!F),
the whole model can terminate on its own while not emitting an output action. The second property states
that for each state of the set, there has to be a path consisting of internal actions leading to a state sτ
producing an output action.

Theorem 2 (Refinement w.r.t NA up to k threads). Let IOP resp. SOP be an observation projection
of a TBP model I resp. S for k threads. Let ENAI resp. ENAS be sets of no activity error states in the
observation projections. Let NA(i, s) be a relation over set of states of observation projections such that.

NA(i, s) = BA(i, s) ∧ (i ∈ ENAI ⇒ s ∈ ENAS)
∧

s ∈ F ⇒ (i ∈ F ∨ running(i))
∧

running(s)⇒ running(i)

Then IOP �NA SOP implies that I refines S with respect to no activity up to k threads.

8. Experiment—TBP model of CoCoME assignment

We tested the capabilities of TBP on a model of a supermarket information system involving row of cashdesks,
each featuring a number of devices (keyboard, credit card reader, etc.), and a central database of goods in
the store. The model is taken over from the CoCoME contest assignment [RRMP08]. The goal of the Co-
CoME contest was to compare strengths and weaknesses of different modeling approaches. In particular,
each participant provided a model using their own formalism. The approaches of contest participants differ
in both goals and means. Some approaches aim at performance modeling and prediction (Paladio, Klapper),
while other aim at the functional correctness (rCOS, Java/A, CoIN). The means used by approaches aiming

7. Threaded Behavior Protocols

80

26 Tomáš Poch, Ondřej Šerý, Frantǐsek Plášil, Jan Kofroň

at functional correctness range from finite automata (CoIN), to those employing concepts of precondition-
s/postcontidion formulas. When compared to goals and means of TBP, the most related approaches used in
CoCoME were CoIN, Java/A, and our BP.

By providing a TBP model of the CoCoME example, we can compare it to the models provided by
participants [CoC] as well as to the Java implementation, which was created as a part of the assignment.
Unfortunately, there is no model of CoCoME in Interface Automata, the formalism which inspired definition
of refinement in TBP. On the other hand, in contrast to TBP, we consider Interface Automata to be more
a theoretical concept than a specification language intended for applications.

The TBP model of the CoCoME assignment is based on the architecture we already created for the
EBP model [BDH+08]. When compared to the other specification languages, it was straight-forward to
express multiple bindings in the architecture. In particular, neither reactions, nor provisions of a component
providing a method to several other components (e.g., EnterpriseServer shared by many StoreServers) need
to specify the particular degree of parallelism. Moreover, the sync keyword approved very useful for modeling
mutual exclusion and it significantly simplified the specification of buses. All in all, the means provided by
TBP enabled us to create a model that resembles the real implementation more closely than models in CoIN,
Java/A and BP.

The TBP model of CoCoME as well as the tool for TBP checking (partially work in progress) is available
at [BGR]. Even though the CoCoME assignment is far from being trivial, the initial version of the model
was crafted roughly in one day. The analysis of the model revealed a deadlock (in bus access) and also a
violation of provisions (the provision of StoreLogic did not allow one to process a sale while the StoreLogic
component was processing accepting goods from another store). Specifically the latter would be very hard
to discover manually.

9. Evaluation and Discussion

One of the objectives of the TBP design was to provide a formalism that would be simple enough for use
by practitioners during day-to-day development. To achieve this goal, both TBP syntax and semantics are
designed to be close to common imperative languages. At the same time, another goal was to be able to
benefit from formal analyses of models specified upon an LTS background. An important requirement in
the scenario was that verification of built-in properties and of refinement is decidable so that both could be
analyzed by a tool.

In terms of the Goals, stated in Chapter 4, both of them have been achieved: (1) The syntax of the TBP
formalism builds upon the constructs (if, switch, while, sync) and abstractions (threads, types, variables)
present in imperative programming languages, thus being easier to comprehend and use by a developer in
comparison to the traditional behavior modeling approaches, such as automata and process algebras. (2) The
proposed TBP formalism supports reasoning about component composability and refinement, which provides
a developer platform supporting both the bottom-up and top-down design. Here, specific kinds of errors,
inherent to component applications, are detected (bad activity, no activity). Furthermore, thanks to fulfilling
Goal 1, it is possible to reason about conformance of the code (implementation) with the corresponding
behavior model (specification)—this, however, is beyond the scope of this paper.

Below we discuss other important TBP properties which make behavior modeling of components to be
implemented in imperative object-oriented languages convenient.

Specification of Provisions. Provisions specify how an environment is expected to call the methods of the
component. This information is not present in the code itself, at least not explicitly, therefore the developer
should state the requirements of the component put on its environment within the TBP specification.

The language of provisions is inspired by BP [AP04]. In contrast to BP, method-call-related events are
equipped with parameters and return values of enumeration types. This allows specifying assumptions on
the environment with a finer granularity than just imposing particular sequencing of method calls.

Another important aspect is the granularity of assumptions’ specification. For a component’s model,
several provisions guarding different sets of methods are allowed. Some methods can be omitted by the
provisions section—these can be invoked arbitrarily by the environment, even in parallel. At the same time,
a method can be guarded by several provisions and then the environment has to follow all of them. This
approach supports separation of concerns.

7. Threaded Behavior Protocols

81

Threaded Behavior Protocols 27

Models TBP Stuck IA

Error
A B Bad Act. No Act.

a)
Yes No No Yes

b) Yes No Yes Yes

c) No Yes Yes No

d) No No Yes No

!a

!b

?a

!b ?a

?b ?a

?a

Fig. 9. Communication errors in composition of A and B

Communication. The LTS specified by the model captures parallel interleaving of activities executed by
individual threads. Individual threads influence each other only by modifications of state variables (this
includes locks).

As long as the parallelism is not explicitly limited in provisions, a method can be invoked as many times
in parallel as the environment requires.

In contrast, when process algebras are applied in component behavior modeling, every component is
typically modeled by a single process. Communication among components is represented by the synchro-
nization of actions representing method calls. A direct consequence is that method calls are represented as
if communication among components was asynchronous—(a) the method call is not accepted if it is not
explicitly awaited by the target process and (b) the caller process continues in the computation not waiting
for a result. This is far from the semantics of method calls in imperative languages.

While the issue (b) can be resolved by using pairs of actions—an output action at the source process
is immediately followed by the corresponding input action waiting for the result (and vice versa), the issue
(a) requires further attention—it is most striking when the user wants to model a method which can be
invoked in parallel as many times as the environment requires. As an aside, all Java classes exhibit such
behavior by default. Process algebras (CSP in particular) support recursion which allows unlimited number
of processes starting in parallel, as soon as required by the environment. This however, makes the formalism
more complex and the state space of an open component system infinite.

Composition. In contrast to process algebras, composition of specifications in TBP is defined at the syntax
level as union of the corresponding sets. The semantics defines how to create an LTS for an open model
(observation projection). Since there is no means for composition of two observation projections, two open
models are composed at the syntax level into a single model (possibly a closed one) which is transformed
into an LTS.

Communication Errors. The definition of communication errors supporting TBP is based on compar-
ison of the behavior actively performed by threads and description of the behavior passively expected by
provisions. Since both of them can be expressed as a set of traces, the required properties can be stated as
inclusion of these sets.

When comparing the actual behavior to the expected behavior at the trace level, there are hardly any er-
rors other than bad activity and no activity. However, individual formalisms targeting (component) behavior
modeling differ significantly in the way traces are constructed, specifically in dealing with non-determinism
and performing internal/external choice. An important aspect related to non-determinism is the “degree of
optimism” the formalism takes—whether a model containing an error state is considered erroneous: In case of
the optimistic approach (Interface Automata), the model is considered correct if there exists an environment
making the error state unreachable, while in the pessimistic approach existence of an error state implies the
model is erroneous. In TBP, in particular, the error is reported if it can occur, i.e., the pessimistic approach
is taken.

7. Threaded Behavior Protocols

82

28 Tomáš Poch, Ondřej Šerý, Frantǐsek Plášil, Jan Kofroň

Even though it might look simple, there is a caveat to defining communication errors: Fig. 9 illustrates
the differences among the TBP errors (bad activity and no activity, introduced in [AP03, AP04]) and the
stuck error introduced in [FHRR04a] and discussed in [FHRR04b]. Roughly, stuck error “combines” both bad
activity and no activity. Fig. 9 presents pairs of label transition systems demonstrating differences among the
errors. In each row, the state at the left-hand side is always an initial state while a double circle represents
a final state.

The key differences are characterized by the following four state transitions: The pair (a) demonstrates
the difference between the bad activity error and stuck error. While in TBP composition of A and B is
considered to be erroneous because of the !b action from A is not accepted by a counterpart in B, the same
situation does not cause a stuck error, since it suffices that at least an action is accepted by the counterpart
(!a and ?a). Composition of the pair (b) produces a stuck error—no action leaving the initial states is
accepted. This composition pair also reflects the difference between a stuck error and no activity. Since the
definition of no activity, unlike of stuck error, considers final states and cannot occur at final states, there
is a stuck error but not a no activity. The row (c) demonstrates that bad activity distinguishes input and
output actions (? and !) while stuck error does not. Finally, the row (d) illustrates the difference between no
activity and stuck error. While no activity can occur only in the states that are not final, stuck error does
not consider final states at all.

The bad activity error has the same meaning as the error introduced in [AH01a] for Interface Automata;
nevertheless, there is no concept of no activity (deadlock) in [AH01a].

Refinement. Fig 9 also demonstrates that the concept of refinement is based on the alternation simulation
introduced in [AH01a] for interface automata. For TBP, however, the relation is strengthened to preserve
absence of no activity. The definition of refinement for TBP is provided in three steps.

First, the provision-driven computation transforms an open TBP model into an LTS similar to the
interface automata—there are input, output, and internal actions. In the next step, observation projection
is created in the form of a deterministic LTS. The final step checks the parametrized alternation simulation
of two observation projections. This means to compare the options and obligations of the corresponding
states from the “implementation” and “specification”, i.e., the models being subject to refinement checking.
First, the initial states are compared and then the process continues by comparing the pairs identified by
the transitions labeled by the same actions.

By defining refinement in three steps, the theoretical framework behind gets more modular. In partic-
ular, the second step gathers the information from several states of a single provision driven computation
indistinguishable by the environment into a single state of the observation projection. Most importantly, the
second step resolves non-determinism; it determines what events important for preserving errors must or
may occur. Thus, the third step does not consider these differences, since they are already abstracted away
so that it can be defined in a straightforward way as a simple comparison of two states.

In this context, it is worth mentioning the special position of the refinement w.r.t. bad activity. The
comparison of the sets of input and output actions in the third step ensures preservation of bad activity
occuring on the component boundary on its own. At the same time, the comparison of the sets of actions
forms a basis for relating pairs of states. The parameter formula is then applied on these pairs.

Expressiveness compared to Java. By comparing the Java implementation of the CoCoME assignment
to its TBP specification, it becomes obvious that TBP specification omits technical details (such as accessing
a database via specifically DerbyDB and using ActiveMQ), which make the implementation infeasible for
code model checking (e.g., by JPF [HP00]). In principle, to employ such a code model checker for verification
we would need a simplified Java model obtained by either (a) omitting details from the implementation, or
(b) designing it from scratch. Such a model could be limited to the features available in TBP—limited
number of threads, enumeration variables, and assertions in the code for expressing assumptions on the
environment. Non-deterministic choices could be modeled by the Random class in Java. By JPF, such a
Java model would allow checking deadlock freedom (no activity), as well as checking bad activity as obeying
assumptions. To express the desired sequences of method calls, one would have to keep the related state (e.g.,
position in the sequence, state of the property automaton) manually in a Java variable and check its value
in injected assertions or using a custom PropertyListener. In contrast, provisions available in TBP provide
much more convenient way to express the desired sequences of method calls. Modeling the TBP reentrancy
provision operator in Java would be also very tricky. Finally, even if we limited ourselves to enumeration
variables, the size of the state space of the whole composition modeled in Java could become unfeasibly large

7. Threaded Behavior Protocols

83

Threaded Behavior Protocols 29

for non-trivial applications. In TBP, compositional verification using refinement in TBP implies partitioning
of the state space, shifting thus feasibility limits further. No similar technique is available in JPF.

10. Conclusion

The proposed specification language, TBP, aims at narrowing the gap between imperative languages used
in industrial software development and behavior specification languages.

Key achievements and benefits. While TBP remains a specification language, it tries to get as close as
possible to the syntax and semantics of the mainstream imperative languages (Java in particular). Specifi-
cally, both the syntax and semantics are inspired by the imperative object-oriented programming languages
the industrial developers are used to (Goal 1.a). Thus, the model can be crafted by similar means as the
implementation—developers operate with the same concepts and the specification structure can be followed
in the implementation as far as to the individual control flow statements. An important benefit is also that
synchronization in TBP is inspired by the approach taken by Java. At the same time, TBP specification
allows specifying assumptions on the environment, fulfilling thus Goal 1.b.

TBP allows analyzing models of applications in the context of component systems (Goal 2). In particular,
TBP supports checking compositional correctness and refinement. The notion of correctness is based on
verifying the actual behavior of a closed system against assumptions.

To sum up, TBP is a step towards narrowing the gap between a specification and implementation lan-
guage. Strictly speaking, most of the TBP features and ideas have already appeared either in the world of
behavioral modeling or in an implementation language. TBP, however, puts the ideas together in a novel
way—in particular, unique is the option of reasoning on refinement of individual components’ models, while
the computation is driven by threads as in a real application.

When compared to previous formalisms from the Behavior Protocols family, TBP is a step forward in
user friendliness and in the properties of formal framework.

The models related to an implementation are easier to write and understand in TBP than in other
specification languages as demonstrated on the session manager example (Sect. 6) and its versions published
in [CoC]. Regarding the formal framework, we consider beneficial that the refinement relation preserves both
bad activity and no activity errors. Moreover, the refinement relation is modular, which helps enhance it
in order to support additional errors. Even though there are other formalisms available supporting similar
notion of refinement, to our best knowledge none of them follows the imperative object oriented languages
as closely as TBP does. In particular, the behavior based on threads where each thread has its own stack
allows the user to follow the object oriented design much closer than in any other formalism and still reason
about refinement at the level of application architecture.

Future Work and Open Issues. There are still several features worth modeling, not supported in TBP.
Specifically, these include: Dynamic thread creation, support for evolving architectures (software logic often
involves dynamically created logical objects important for the high level behavior), and unlimited number
of threads considered in the refinement.

We intend to address the last one as follows: To provide a refinement relation supporting unlimited
number of threads triggered by environment, we want to add level of parallelism (based on the reentrancy
operator) to the observation projection and define a relation that compares implementation and specification
in a way that considers the actual level of parallelism. Nevertheless, dynamic thread creation and dynamic
object support still remain open issues.

References

[ABC10] Alessandro Aldini, Marco Bernardo, and Flavio Corradini. A Process Algebraic Approach to Software Architecture
Design. Springer, 2010.

[ABJ+06] J. Adamek, T. Bures, P. Jezek, J. Kofron, V. Mencl, P. Parizek, and F. Plasil. Component reliability extensions
for Fractal component model, http://kraken.cs.cas.cz/ft/public/public_index.phtml, 2006.

[AH01a] Luca de Alfaro and Thomas A. Henzinger. Interface Automata. SIGSOFT Softw. Eng. Notes, 26(5):109–120, 2001.
[AH01b] Luca de Alfaro and Thomas A. Henzinger. Interface Theories for Component-Based Design. In EMSOFT ’01: Pro-

ceedings of the First International Workshop on Embedded Software, pages 148–165, London, UK, 2001. Springer-
Verlag.

7. Threaded Behavior Protocols

84

30 Tomáš Poch, Ondřej Šerý, Frantǐsek Plášil, Jan Kofroň

[All97] Robert J. Allen. A Formal Approach to Software Architecture. PhD thesis, CMU, 1997.
[AP03] Jiri Adamek and Frantisek Plasil. Behavior protocols capturing errors and updates. In Proceedings of the 2 nd

International Workshop on Unanticipated Software Evolution, 2003.
[AP04] J. Adamek and F. Plasil. Component composition errors and update atomicity: Static analysis. Journal of Software

Maintenance and Evolution: Research and Practice, 17(5), 2004.
[BBS06] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous real-time components in bip. In Pro-

ceedings of the Fourth IEEE International Conference on Software Engineering and Formal Methods, pages 3–12,
Washington, DC, USA, 2006. IEEE Computer Society.

[BDH+08] T. Bureš, M. Děcký, P. Hnětynka, J. Kofroň, P. Paŕızek, F. Plášil, T. Poch, O. Šerý, and P. Tůma. CoCoME in
SOFA. In The Common Component Modeling Example: Comparing Software Component Models, pages 388–417,
Berlin, Heidelberg, 2008. Springer-Verlag.

[BGR] Badger—Verification of component behavior specification.
http://d3s.mff.cuni.cz/~sery/badger.

[BRJ05] Grady Booch, James Rumbaugh, and Ivar Jacobson. Unified Modeling Language User Guide, The (2nd Edition)
(Addison-Wesley Object Technology Series). Addison-Wesley Professional, 2005.

[CoC] Modelling Contest: Common Component Modelling Example, http://agrausch.informatik.uni-kl.de/CoCoME.
[CSS05] Edmund M. Clarke, Natasha Sharygina, and Nishant Sinha. Program compatibility approaches. In Frank S.

de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever, editors, Lecture Notes in Computer
Science, volume 4111, pages 243–258. Springer, Springer, 2005.

[ČVZ07] Ivana Černá, Pavĺına Vařeková, and Barbora Zimmerova. Component Substitutability via Equivalencies of
Component-Interaction Automata. In Proceedings of the Workshop on Formal Aspects of Component Software
(FACS’06), volume 182 of ENTCS, pages 39–55. Elsevier Science Publishers, June 2007.

[FHRR04a] Cédric Fournet, C. A. R. Hoare, Sriram K. Rajamani, and Jakob Rehof. Stuck-Free Conformance. In Rajeev Alur
and Doron Peled, editors, Computer Aided Verification, 16th International Conference, CAV 2004, Boston, MA,
USA, July 13-17, 2004, Proceedings, volume 3114 of Lecture Notes in Computer Science, pages 242–254. Springer,
2004.

[FHRR04b] Cedric Fournet, Tony Hoare, Sriram K. Rajamani, and Jakob Rehof. Stuck-free conformance theory for ccs.
Technical report, Microsoft Research, July 2004.

[GG97] Richard Grimes and Dr Richard Grimes. Professional Dcom Programming. Wrox Press Ltd., Birmingham, UK,
1997.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International (UK) Ltd., 1985.
[HP00] K. Havelund and T. Pressburger. Model checking JAVA programs using JAVA pathfinder. International Journal

on Software Tools for Technology Transfer, 2(4):366–381, 2000.
[Kof07] Jan Kofron. Checking software component behavior using Behavior Protocols and Spin. In Proceedings of Applied

Computing 2007, pages 1513–1517, Seoul, Korea, March 2007.
[LNW07] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski. Modal I/O Automata for Interface and Product

Line Theories. In Rocco De Nicola, editor, ESOP, volume 4421 of Lecture Notes in Computer Science, pages 64–79.
Springer, 2007.

[LS00] Gary T. Leavens and Murali Sitaraman, editors. Foundations of component-based systems. Cambridge University
Press, New York, NY, USA, 2000.

[MDEK95] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer. Specifying Distributed Software Architectures. In
Fifth European Software Engineering Conference, ESEC ’95 , Barcelona, 1995.

[Mil95] R. Milner. Communication and Concurrency. Prentice Hall International (UK) Ltd., Hertfordshire, UK, UK, 1995.
[MSD03] Vlada Matena, Beth Stearns, and Linda Demichiel. Applying Enterprise JavaBeans: Component-Based Develop-

ment for the J2EE Platform. Pearson Education, 2003.
[OLKM00] Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee. The Koala Component Model for

Consumer Electronics Software. Computer, 33(3):78–85, 2000.
[OMG06] OMG Group. CORBA Component Model Specification. Technical report, OMG Group, 2006.
[Poc10] T. Poch. Towards Thread Aware Component Behavior Specifications. PhD thesis, Charles University, Prague,

2010.
[PV02] Frantisek Plasil and Stanislav Visnovsky. Behavior Protocols for Software Components. IEEE Transactions on

SW Engineering, 28(9), 2002.
[Ros98] A. W. Roscoe. The theory and practice of concurrency. Prentice Hall, 1998.
[RRMP08] Andreas Rausch, Ralf Reussner, Raffaela Mirandola, and Frantisek Plasil, editors. The Common Component

Modeling Example: Comparing Software Component Models, volume 5153 of Lecture Notes in Computer Science.
Springer, 2008.

7. Threaded Behavior Protocols

85

7. Threaded Behavior Protocols

86

CHAPTER 8

On Partial State Matching

Authors: Pavel Janč́ık and Jan Kofroň

[4] Formal Aspects of Computing, ISSN: 1433-299X, pp. 1–27,
DOI: 10.1007/s00165-016-0413-z, Springer Verlag, January 2017

87

On Partial State Matching
Pavel Janč́ık and Jan Kofroň1

Charles University

Faculty of Mathematics and Physics

Malostranské náměst́ı 25, Praha 1, Czech Republic

pavel.jancik@d3s.mff.cuni.cz, jan.kofron@d3s.mff.cuni.cz

http://d3s.mff.cuni.cz

Abstract. During explicit software model checking, the tools spend a lot of time in state matching. This
is implied not only by processing a huge number of states, but also by the fact that state representation is
usually not small either. In this article, we present two dead variable analyses; applying them during the
code-model-checking process results in size reduction of both state representation and explored state space
itself. We implemented the analyses inside Java PathFinder and evaluate their impact in terms of memory
and time reduction using several non-trivial benchmarks.

Keywords: Explicit model checking, dead variable analysis, optimization, performance.

1. Introduction

In explicit software model checking, the model checkers spend a lot of time in the state matching process.
During the state space traversal, state matching identifies equivalent states to avoid multiple exploration of
the same parts of the state space. This usually implies computing a state representation for each reached state
that is easy to compare and store, and trying to find the state being currently explored in the set of states
visited earlier. Many optimizations, such as Partial Order Reduction [Pel93] and thread symmetry [VHB+03],
have been introduced to reduce the number of states that need to be explored. At the same time, since the
state representation in case of software model checking is usually not of negligible size, its reduction can
significantly speed up the state matching process as well. The related optimization techniques in this case
focus on fast compression of state representation, such as those in [Huf52, rle], hashing, and identification of
unimportant parts of states [SM07, LJ06, BFG99], e.g., the environment variables being the same over the
entire program run, to be excluded.

While most of the optimizations are easy and fast to compute and apply if information about entire state
space is available (e.g., for partial order reduction, it is clear which traces end up in the same state and
what are the potential successors of the states along them), they become challenging if the state space is

Correspondence and offprint requests to: Jan Kofroň, KDSS, Malostranské náměst́ı 25, 118 00 Praha 1, Czech Republic
1 This work was partially supported by the Grant Agency of the Czech Republic project 14-11384S.

8. On Partial State Matching

88

2 Pavel Janč́ık, Jan Kofroň

generated on-the-fly; this is the typical case of today’s tools. Then, conservative simplifications have to be
made to preserve correctness of the model checking results.

1.1. Problem statement

The existing techniques for state space reduction in the on-the-fly state-space-generation settings focus
themselves just either to identify equivalent sets of event sequences resulting in the same program state
or in identification of unused parts (w.r.t. future behaviour) [Pel93] or identification of dead variables, but
restricting themselves just to local or non-heap variables [BFG99]. However, there is much space for reduction
of the state space representation also when data stored in the heap are considered (both global variables and
object fields). Involving their consideration in dead variable reduction (DVR) can further improve the state
matching performance resulting thus in more scalable and applicable software model checking.

1.2. Goals

In this article, we describe two techniques aiming at identifying dead parts of the states, i.e., data that does
not influence the future behaviour of the program, considering also data stored in the heap. We leave the
analysis of dead local variables to other techniques, which can be combined with our approach. In particular,
we introduce two dead variable analyses (DVA) of data stored in the heap differing in computational demands
and precision, both suitable for being applied in an on-the-fly software model checker. Further, we also
show the benefits of applying each of them on several benchmarks demonstrating thus the contribution to
performance of on-the-fly explicit model checking. This article is an extension of our previous work [JK16];
here, we describe the analyses in more detail as well as provide detailed proofs and more experimental results
supporting the significance of our contribution. In addition to that, we also discuss the aspects of DVA on
the bytecode level.

2. Background

The purpose of state matching is to detect behaviourally equivalent states. For complex representation of
program states, it can happen that future behaviours of two or more different states are equivalent. Informally,
a state matching algorithm should match states if the future behaviour of the program starting in either of
them is the same w.r.t. the property being verified. For reachability properties this means that from both of
them, a state violating the property can either be reached or not. Since this view would be difficult to apply
in the on-the-fly settings, we adopt a weaker one: Two states are equivalent if the same set of equivalent
states can be reached from either one.

We say that a variable is dead if it is not read until the program terminates or until its value is (re-)written
before being read. Program states which differ in dead variables only are behaviourally equivalent and thus
should be matched.

The contribution of DVR is two-fold. First, it reduces the state space, since states differing only in values
of the identified dead variables are matched. This means that only a single representative of each set of
matched states is explored. Second, state matching (i.e., canonicalization, hashing) can process only the live
parts of state representation (ignoring dead parts), thus making the whole state matching process faster. This
is also of a particular importance, since explicit-state model checkers spend a large amount of their runtime
(approx. 30%) by state matching [NR09]. The former effect applies both for DVAs over local variables as well
as for those focusing on the whole program state. On the other hand, the second effect can be observed only
if a large enough portion of a program state is identified as dead, which can be expected only for the heap.
Instead of ignoring dead variables, some DVR implementations set their value to a predefined constant (e.g.,
0 or null). In such cases, the former effect is eliminated, since the size of the program state is not reduced
at all. Note that the more precise DVA is, the more these effects manifest themselves.

Let us illustrate the aforementioned effects on the Java program in Fig. 1 and the red-black trees in Fig. 2
stored in the tree variable. The corresponding class is listed in Fig. 3. The tree is shared among threads and
we assume that the program can generate either of them. No assertion is violated irrespective of whether
either the left or the right tree has been generated. While the colours in red-black trees are used only in

8. On Partial State Matching

89

On Partial State Matching 3

Thread T1

1 public void run() {
2 ...
3 assert(tree.contains(5));
4 }

Thread T2

5 public void run() {
6 ...
7 assert(tree.contains(1));
8 }

Figure 1. Java program composed of two thread where the tree variable contains red-black tree from Fig. 2.

5

1 8

7 9

5

1

Figure 2. Two different red-black trees, which can be identified as equivalent using our DVA for program in Fig. 1.

modifying operations (insertions and deletions), the contains operation does not access them and thus the
variables (fields) representing the colours of nodes are dead. The same holds for the right descendant of the
root node holding value 5. Since operation tree.contains(1) reads only the left descendant of the root
node, and operation tree.contains(5) accesses only the value of the root node, the whole right sub-tree
is dead. It means that the program states where the tree variable holds the left resp. right tree of Fig. 2
are equivalent w.r.t. dead variables; the model checker can explore the successors only for the state that is
reached first and does not need to re-explore the successors of the (equivalent) state reached later. This way
the state space is reduced.

To illustrate the second effect, let us inspect the parts of the tree (in other words the parts of the program
states) which are processed by the state matching (in the case of JPF, the data appearing in the state vector).
Note that the code in Fig. 1 does not modify the tree below the lines 3 resp. 7. First of all, the colours are
dead and thus can be ignored by state matching. More importantly, the right descendant of the root node
(tree.right) is also dead and can thus be omitted from state matching as well. This simple fact causes the
whole sub-tree tree.right (composed of nodes 7, 8, and 9) not to be accessed and thus it can be omitted
from state matching. The latter effect speeds-up verification also if the state space is not reduced (i.e., the
former effect does not apply). A prominent example of this effect is representation of environment variables,
which form a non-negligible part of the state, however are seldom accessed by the program.

In order to be useful, DVR itself and DVA as its part need to be fast enough to pay off, while still having a
modest memory demand. The DVRimplementation should be also compatible with all other state matching
optimizations.

Another important question is how to cope with the states having different sets of dead variables; in our
example each tree has a different set of them. The tree at the right-hand side has dead variables in nodes 7,
8, and 9, which do not exist in the tree at the left-hand side.

In the following section, we first briefly introduce our approach on the example above, while in Sect. 4
we formalize our approach and show its soundness. In Sect. 5, we describe our two analyses in detail and
shows its properties. Sect. 6 compares our approach to related work, while Sect. 7 presents the results of the
experiments demonstrating the contribution of our approach Sect. 8 concludes the article.

3. Running example

We have developed two versions of DVA for multi-threaded Java programs; the first one, called Dynamic
DVA (DDVA), aims at precision. The second one, called Hybrid DVA, uses static analysis (for multi-threaded
programs), and combines the results of the analysis with the knowledge from the dynamic (runtime) program
state. This lightweight analysis is designed to be fast and easy to integrate into state matching.

We illustrate our analyses using the example from Fig. 1 and the tree variable holding the right-hand-

8. On Partial State Matching

90

4 Pavel Janč́ık, Jan Kofroň

1 public class TreeNode {
2 public int value;
3 public Color color;
4 public TreeNode left;
5 public TreeNode right;
6 ...
7 }

8 boolean contains(int i) {
9 int v = this.value;

10 TreeNode child;
11 if (v == i) return true;
12 if (v < i) child = this.left;
13 else child = this.right;
14 if (child == null) return false;
15 return child.contains(i);
16 }
17 }

Figure 3. Red-black tree node representation

Figure 4. Future transitions of thread T1 resp. T2.

side tree from Fig. 2. The tree nodes are stored using the data structure from Fig. 3. We add a suffix holding
the stored value to distinguish the instances of TreeNodes from each other; e.g., the root tree node is denoted
as TreeNode@5.

Before we show how our analyses work, let us focus on the state space a bit. Thread T1 will call the
TreeNode.contains method, which will read TreeNode@5.value only. The T2 also calls the TreeNode.
contains method, which in this case reads TreeNode@5.value, TreeNode@5.left, and TreeNode@1.value.
Although both threads are independent of each other and thus it is enough to explore only one of their
interleavings, on-the-fly model checkers cannot be aware of this fact (since this requires knowledge about
future behaviour of the program). To be safe, they assume, e.g., a possible conflicting write to a given shared
field by another thread and create a non-deterministic choice at each of the field reads [PL11]. In other
words, the model checker will generate 15 unique states out of which 8 states contain a non-deterministic
scheduling choice deciding whether T1 or T2 will be scheduled for execution (Fig. 5).

3.1. Dynamic analysis

Our dynamic analysis tracks field reads and writes executed by the program and based on them it identifies
live parts of the program state (i.e., live addresses). During the depth-first search (DFS), the model checker
maintains two data structures related to visited states: (i) a stack of states currently present at the DFS
stack, for which full state vectors are stored to enable detection of state-space cycles, and (ii) a set of visited
states, for which the pairs 〈live addresses, reduced state vector〉 are stored; these are used for state matching.
The reduced state vectors, which are stored after a state and its successors are fully explored, do not include
dead variables.

To illustrate this process on our motivation example from Fig. 1, let us assume that the model checker
uses the DFS exploration strategy and that thread T1 has a higher priority than T2; in other words, if both
threads T1 and T2 can be scheduled at a state, the successor where T1 is executed is explored first. The
corresponding state space is shown in Fig. 5. The model checker is in state S1 just before the Tree.contains
calls where both threads can be scheduled, thus thread T1 is executed first. The model checker executes the
call to the Tree.contains and continues execution until it encounters the read of TreeNode@5.value field.
Just before the field read (in state S2) it creates a non-deterministic scheduling choice (to be able to read
the value possibly modified by other threads) and the execution of thread T1 continues. The first executed
instruction is the actual read of TreeNode@5.value, which caused the scheduling choice; the dynamic analysis
stores the fact that at the instance TreeNode@5, its field value has been read. First, note that our dynamic
analysis distinguishes among object instances. Also note that our implementation stores this information
during forward exploration (because JPF does not provide another way to obtain this piece of information).

8. On Partial State Matching

91

On Partial State Matching 5

S1

S2

S3 S4

S5

Figure 5. State space of T1 and T2. States with decision choices are in dark grey.

State TreeNode@5.value TreeNode@5.left TreeNode@5.right TreeNode@1.value TreeNode@1.left TreeNode@1.right

S1

S2

S3
S4

S5

Table 1. Live parts of selected states in Fig. 5.

The model checker then continues in forward execution of thread T1, it executes the assert statement and
thread T1 terminates (state S3). Since in JPF, a transition has to be executed by a single thread, a new
transition is created and, without any non-determinism, the only remaining thread T2 is scheduled. The
model checker then executes instructions of thread T2; among others, the reads of TreeNode@5.value,
TreeNode@5.left and TreeNode@1.value. Our analysis stores all these field reads (in the execution order)
as in the previous case; the field writes are stored in the same way. All these reads are executed in a single
transition, since T2 is the only runnable thread; the transition ends in state S4, where thread T2 terminates.

If the model checker reaches the visited or final state and it starts backtracking, our dynamic analysis
uses the stored information to compute live parts of program states. In the example, the model checker has
reached a final state and thus dynamic analysis marks all fields in all instances as dead (the program cannot
read any of them). The model checker then backtracks from S4 to S3; during backtracking the dynamic
analysis processes the stored information for backtracked transition in the reverse order. Thus due to field
reads, the analysis will mark TreeNode@1.value, TreeNode@5.left, and TreeNode@5.value as live at the
beginning of the transition S3→ S4, while all other data remain dead. This includes, if the right-hand side
tree is stored in the tree variable, the instances (and their fields) TreeNode@7, TreeNode@8, and TreeNode@9
as well as the colors of all TreeNode instances. Since there is only a single outgoing transition from state S3,
the live addresses of state S3 are those at the beginning of the transition S3 → S4. After the part of the
entire state space in Fig. 5 is explored, the live addresses of S1 are stored. During exploration of another
execution (most notably when the other tree from Fig. 2 is created by the program), the state corresponding
to the beginning of T1 and T2 is matched with the one already explored earlier, because the live part of the
stored state matches the corresponding part of the state being explored. If no DVR had been performed, the
corresponding part of the state space (having the same shape but differing in the tree.right field) would
have had to be explored.

State matching. Once the live resp. dead addresses are known at a state, dynamic analysis computes a
reduced state vector and stores the pair consisting of the set of live addresses and the reduced state vector
in the set of visited states. The reduced state vector contains only live values from the static and instance
fields, and call-stacks of the threads. Since local variables are not considered by our analysis (i.e., none of

8. On Partial State Matching

92

6 Pavel Janč́ık, Jan Kofroň

them is removed), the complete call-stacks (without any reduction) are stored. In order to speed up state
matching, the same optimization as in [SM07] is applied – for each call-stack, we store a list of live addresses
used to compute the reduced state vectors corresponding to this call-stack.

The reduced state vectors enable to detect those states which differ in dead parts of the heap only. In our
example, if the model checker backtracks over state S1, where the example begins, and generates another
state with the tree from the right-hand side of Fig. 3, our state matching procedure will match this state
with S1.

If the model checker reaches a state, it has to check whether the state (or an equivalent one) has been
already visited or not, so the state matching is initiated; the model checker uses the call-stack of the current
state to find a list of live addresses associated with the call-stack. For each set of live addresses from the list,
a reduced state vector of the current state is computed and it is checked whether the pair of live addresses
and the reduced state vector is among the visited ones. If so, the state is reported as visited.

3.2. Hybrid analysis

In contrast to our DDVA, where we addressed precision in the case of multi-threaded programs, our hybrid
analysis targets scalability and speed, instead.

It is relatively straight-forward to apply DVA on local variables; it can be done e.g., using intra-procedural
static analysis. The approach scales well due to a usually small sizes of function (or method) bodies. Moreover,
since local variables are thread-local, it naturally works in the case of multi-threaded programs as well. The
situation becomes more challenging in the case of global variables (and static fields), since these can be
accessed by several threads and their life-time is not limited to a single method only.

Our hybrid analysis consists of two phases. The first phase is executed before the model checker runs.
Cheap simple inter-procedural, context-insensitive static analysis is performed, identifying the fields that
may be read (i.e., used in the terminology of DVA) by a given method before it terminates (up to the end of
its body). The analysis gets only a partial view on the liveness; on the other hand, it is cheap to compute.
In other words, this phase provides an under-approximation (i.e., a subset) of the live fields at a state.
Additional pieces of information are obtained in the second phase, performed at model-checker runtime just
before each state matching. Note that the hybrid analysis does not distinguish among object instances; a
field is live either at all instances or at none. Therefore, field writes (i.e., def s) are not tracked.

In the second phase, the analysis uses information from the call-stacks of the threads; i.e., the locations
(instruction pointers) in the methods at the call-stacks. It traverses the call-stacks in the top-down manner
and extends the scope for which the liveness is considered. Using the location in the current method (top
stack frame), the analysis uses the results from the first phase to obtain fields read before the current method
terminates; these fields will be marked as live. Going down the call-stack, the analysis adds the live fields
from the caller using the results from the first analysis computed for the location right after the call. This
way, we obtain the fields which can be read by a thread before the considered method terminates. Once the
whole call-stack is processed, we know which fields the thread may read before it terminates. The above
processing of the call-stack is done for each thread and the results are joined together, thus obtaining the
final result – the fields which can be read at a given program state. These fields are marked as live and only
these are considered in state matching.

Note that even though the second phase is executed many times (before each state matching), it is
extremely fast and thus introduces only a minimal overhead.

Using this approach, we obtain more precise results compared to purely static DVA. In particular, the
information from call-stack determines the methods that are called; contrary to purely static DVA, which
has to consider all possibly called methods and reads in them. Also, the analysis does not have to construct
the possibly huge cross-product of thread locations, as it is (typically) done in flow-sensitive analyses of
multi-threaded programs.

In state matching, the information is used in a straight-forward way. If the analysis identifies a field as
possibly live, the value of the field is included into the state vector, otherwise the value is ignored and not
stored. Note that the results of the hybrid analysis intentionally do not distinguish particular instances more
precisely (e.g., using allocation sites). While the analysis itself can use a better pointer analysis (e.g., to
construct the call graph) to distinguish among instances of the same type, a slower and more complicated

8. On Partial State Matching

93

On Partial State Matching 7

state matching algorithm, similar to the one used in dynamic analysis, would be needed to preserve safety
in such a case.

4. Formalization

In this section, we first introduce parallel heap-manipulating programs as a parallel composition of guarded-
action transition systems and their state space (using the typical small-step-big-step approach). Later, we
formally describe our dynamic DVR and show its correctness. In contrast to static DVAs, which identify
variables which are dead at a location, our dynamic analysis identifies the addresses on the heap which
contain a dead value at a program state.

The memory (Mem) is modelled as a function taking an address and returning the value stored at this
address. As usual, writing to the memory produces a new function Mem ′ being equivalent to the original
one for all but the written address.

Syntax. A program P = (T1, . . . , Tn) is a tuple of concurrently executed threads T1, . . . , Tn operating over
shared memory. For the sake of presentation simplicity, we omit dynamic thread creation in the formalization,
since it can be added in a straight-forward way not affecting DVA.

Each thread can be seen as a labeled transition system Ti = (Li, T ri ⊆ Li×Guard ×Act ×Li, liniti ∈ Li),
where Li is a set of locations, liniti is the initial location, and Tri a transition relation (can be seen as CFG)
with transitions labeled by Guarded Act ions. We refer to edges in Tri as to steps; the steps are executed
atomically. Guards and actions can be arbitrary, provided that they satisfy the following conditions (later in
this section we show how to extract the information important to DVA): (α) The guards are assumed to be
side-effect-free (i.e., they do not modify the memory), and (β) the actions and guards are deterministic (i.e.,
they act as functions; the same input values result in the same output). Data non-determinism (e.g., user
input) is modelled by branching – one branch for each possible user input. The actions encode statements of
the source code. They typically represent direct or indirect writes into memory. Without loss of generality,
an action can include at most one write into the memory ending up the action; more complex constructs
of programming languages are split into several actions. Guards are intended to express conditions and
synchronization primitives from the source code. The memory is shared by all the threads; it holds all the
thread-local as well as global (shared) data and states of locks (locked/unlocked).

We choose this representation, since we believe that it is best suited for multi-threaded programs. In
contrast to while language [YG04] in Murphi, our memory is shared among all threads, thus our approach
permits complex interactions involving multiple threads over shared object instances which is common in
multi-threaded code. Our formalization does not include primitives for message passing and queues as in the
If model checker [FBG03] (unbounded FIFO queues) and Promela [Hol04] (bounded blocking and lossy
channels). The motivation for this decision was that queues are usually not an inherent part of programming
languages. They are typically included in the language libraries with various semantics – in the form of
priority queues, LIFOs, FIFOs, etc.

Semantics. A program state S = (IP,Mem) is a pair consisting of function IP (instruction pointers), which
for each thread i returns the current thread location li ∈ Li, and function Mem representing the content of
the memory. In the rest of the chapter, IPS and MemS refer to the corresponding components of state S,
respectively. We use S to denote the set of all possible program states.

For a function f , we write f [d := val] to denote the function which is equivalent to original f for all
inputs but d, for which it returns value val ; we use this syntax to denote execution of a step in a particular
thread. We write Mem[A] to denote original memory Mem, whose content is modified by the write of action
A.

Definition 1 (State space). The state space (i.e., behaviour) of a concurrent program P is the transition
system AP = (S,4 ⊆ S × Guard × Act × S, Sinit ∈ S) over the program states S, where the initial state
Sinit consists of the initial states of all the threads and the initial state of the memory: Sinit ≡ (IP (t) =
linitt ∀t ∈ 1...n,Meminit).

There is a transition (S,G,A, S′) ∈ 4, where S ≡ (IPS , MemS) and S′ ≡ (IPS′ ,MemS′) iff there exists
a thread t and its step (lt, G,A, l

′
t) ∈ Lt such that:

• IPS(t) = lt and IPS′ = IPS [t := l′t], and

8. On Partial State Matching

94

8 Pavel Janč́ık, Jan Kofroň

• guard G holds in state S, and
• MemS′ = MemS [A] (i.e., action A transforms MemS into MemS′).

According to the definition, the guards for all transitions in 4 hold, hence a transition cannot be blocked
by its guard. We include guards into the transitions, because they read the memory, thus are important for
DVA. The state space (i.e., 4) is non-deterministic; two different threads may, at a state, execute the same
action guarded by the same guard.

Definition 2 (Transition equivalence). Let p ≡ S1
G1,A1−−−−−→ · · · and p′ ≡ S′1

G′
1,A

′
1−−−−−→ · · · be (finite or

infinite) traces. We say that p and p′ are transition-equivalent if they consist of the same sequence of actions
and guards: ∀i : Gi = G′i, Ai = A′i.

Since actions are deterministic, the content of memory in all states along a trace is determined by the
initial state of memory and by the actions on the trace. The sets P and P ′ of traces are equivalent if ∀p ∈ P
there exists a transition-equivalent trace p′ ∈ P ′ and vice versa. We use P to denote the set of all traces in
the transition system AP .

Let read addr : 4→ 2dom(Mem) be a function, which for a given transition (S,G,A, S′) ∈ 4 returns the
set of memory addresses that are read from the memory by either guard G or action A or both. Similarly,
function write addr : 4 → 2dom(Mem) for a given transition returns the set of memory addresses to which
action A of the transition writes. Recall that guards do not modify the memory thus are not considered by
this function. Moreover, from the definition of the action, it follows that the set of written addresses is either
empty or it contains a single address; without this restriction, an inter-transition data-flow analysis would
be needed if multiple writes occur in a transition to obtain results with the same precision.

In our formalization of the program, we do not exactly specify the form of guards and actions. Instead,
we use read addr and write addr to extract their behaviour relevant to DVA (i.e., the read and written
addresses). Also note that these functions do not take the guard or action itself, but the whole transition;
the purpose is to precisely model indirect memory accesses and arrays, where the address which is read or
written depends on the content of the memory (in the initial state of the transition).

Let f be a function and S ⊆ dom(f) be a set. We write f �S to denote the equivalent partial function
with domain restricted to S. We use partial functions to represent program states omitting dead values.

Live addresses. The read/write addr functions can be easily generalized for traces. In a similar way, one
can define function tr live addr which returns the set of addresses that are read before they are written on
a given trace, i.e., the set of live variables for the given trace.

Definition 3 (Live trace addresses). Let p ≡ S1
G1,A1−−−−−→ · · · be a trace. Function tr live addr : P →

2dom(Mem) is defined as:

tr live addr(p) = {a|∃i : a ∈ read addr((Si, Gi, Ai, Si+1)) ∧ ∀j < i : a 6∈ write addr((Sj , Gj , Aj , Sj+1))}
Note that in contrast to Static DVA, the analysis operates on real program states and state space instead
of program locations in CFG. The values stored at live addresses at state S1 (initial state of the trace) fully
determine the behaviour of the trace, i.e., the outcome of the actions on the trace as well as fulfilment of the
guards. The tr live addr function points to the memory addresses whose values are important to follow the
trace, and fully determines the computations done (results of the actions) along the trace. If a state S′1 differs
from S1 in values at dead addresses only (i.e., S1 and S′1 equals on tr live addr(p)), then there exists a trace
p′ from S′1 being transition-equivalent to p. Moreover, the corresponding states along these equivalent traces
differ only in the memory content which is dead w.r.t. the suffices of these traces. Note that in general, two
transition-equivalent traces can have different live addresses, however if the initial states of the traces differ
at dead addresses only, then tr live addr(p) = tr live addr(p′).

In the verification, one is typically not interested in a single possible future behaviour starting at a state
(i.e., a single trace), but rather in all possible future behaviours (i.e., all traces). To reflect this, we extend
tr live addr . We say that an address is live at a state if there is a trace from the state at which the address
is live:

Definition 4. Let a be an address and S ∈ S be a program state. Function live addr : S → 2dom(Mem) is

8. On Partial State Matching

95

On Partial State Matching 9

T1:
True
X := 1

T2:
True
X := -1

T3:
True
Y := True

T4:
X < 0
Y := False

L 3L 2L 1

S 1

IP: L1
Mem: X=0

Y=True

IP: L2
Mem: X=1

Y=True

IP: L3
Mem: X=1

Y=True

IP: L2
Mem: X=-1

Y=True

IP: L3
Mem: X=-1

Y=True

IP: L3
Mem: X=-1

Y=False

S 2 S 3

S 4 S 5

S 6

T1

T2

T3

T3

T4

Figure 6. Thread specification (left) and its state space (right)

defined as follows:

live addr(S) = {a|∃ trace p = S ∗−−→ · · · such that a ∈ tr live addr(p)}

The live addr function refers to the memory addresses on whose values the future behaviour of the program
depends (once program reaches the given state). Similarly to the trace-based counterpart, if states S and
S′ equal w.r.t. live addr(S) (and of course refer to the same program point IP), then for any trace p from
S there is a transition-equivalent trace from S′ (i.e., the future behaviours of S is a subset of the future
behaviours of S′).

In the context of DVA, if two program states equal on their live addresses, their future behaviour is
assumed to be the same; informally stated, the sets of states reachable from either one are the same w.r.t.
their live addresses. This is generally not true for Guarded-Action LTS, and also for programs, this needs to
be proved (e.g., thread synchronization is to be considered).

Consider a single-threaded program P = (T), where thread T is shown in Figure 6; it consists of three
locations L1 − L3 and four steps T1 − T4. All steps except for T4 contain guard True, step T4 contains
guard X < 0. The actions are assignments to (global) variables X and Y.

The corresponding state space is depicted in Fig. 6 on the right-hand side; it consists of six states S1−S6
and five transitions. Note that for the sake of readability, we used variable names instead of addresses in the
example; while this is doable for global variables, it is not suitable for heap instances.

To illustrate that the claim above does not hold for LTSs in general, let us focus on states S2 and S4.
State S2 has an empty set of live addresses, since only the assignment Y := True of step T3 is executed
before the final state is reached; thus only location IP is considered in state matching. State S4 has the
same location as S2, and its set of live addresses equals to that of S2. However, the future behaviour of these
states is different – from S4 there is an additional trace taking step T4 into S6.

First, note that problem is caused by unsatisfied guards; guard X < 0 does not hold in S2, thus there
is no transition which could make the variable X live. Later in the subsection about guard restrictions, we
focus on the problem in more detail.

Also note that the claim below the live addr definition holds; from state S2 there is a trace S2 T3−−−→ S3.
From state S4 there is a transition-equivalent trace S4 T3−−−→ S5.

Safety properties. Out of the transition-equivalent traces p and p′ one may end up in an error state
while the other in a safe state. This is because the values on which the decision whether the state is safe
or not depends are ignored. For example, consider Figure 6; transition-equivalent traces S2 T3−−−→ S3 and
S4 T3−−−→ S5 and the safety property (IP = L3∧X > 0). While the first trace leads to the safe state S3, the
second one leads to the error state S5.

Let φ be (an externally specified) safety property for program P. We use addr(φ) to denote all the memory
addresses which φ reads (i.e., the addresses of variables φ contains). To be able to distinguish between safe
and error states, the addresses addr(φ) have to be a (live) part of each program state (even in cases the
address is not read on any trace). Note that for many common types of program errors, such as assertion
violation, the addr(φ) = ∅, since the property is encoded in the program itself.

8. On Partial State Matching

96

10 Pavel Janč́ık, Jan Kofroň

Live parts of state. The aforementioned definitions allow us to introduce a function which omits dead
(i.e., irrelevant) parts of program states. For a full state T we define a function reduce stateT which reduces
full states w.r.t. the future behaviour of the state T .

Definition 5 (Reduced states). Let S ≡ (IPS ,MemS) be a full state. The reduce stateT (S) function is
defined as follows:

reduce stateT (S) = (IPS ,MemS�live addr(T)∪addr(φ))

The reduce state∗ functions eliminates dead addresses from the domain of memory function MemS , while
instruction pointers IPS are not modified.

State matching. An optimal state matching algorithm matches (currently reached) state S with previously
(fully) explored state S′ if the future behaviours of S are a subset of behaviours from S′. In other words, the
states should be matched if (i) they both contain the same value of the instruction pointer and (ii) equal on
the data stored at the live addresses of S; formally if reduce stateS(S′) = reduce stateS(S).

This is however hard to implement efficiently, especially if just hashes of the visited states are stored.
At the time when state S′ was reached, it was not known which states visited later on would be considered
in the state matching with S′, thus the reduce stateS was unknown at that time. And symmetrically at
the time when S is reached, from the previously visited state S′ only the hash value (of the full state) is
known and there is no easy way to get the hash value considering only the live parts of S′, i.e., to obtain
reduce stateS(S′).

Alternatively, it is possible to omit the checking for subsets and match states with exactly the same future
behaviour; formally expressed reduce stateS(S) = reduce stateS′(S′). This check is easier to implement, but
the states whose future behaviour is a proper subset of the other are considered different due to different
domains of their Mem functions. This matching approach should be comparable to the optimal one since for
programs, a state does not exhibit a subset of the behaviours (i.e., traces) of another one; either the sets of
traces are the same or completely different.

Note that even this alternative way of state matching still needs to precisely know the future behaviour
of the currently reached state S. To detect whether state S has been already visited or not, it is not a good
idea first to explore the successors of S and then to compute the live addresses from the observed behaviour;
such an approach would eliminate one of the benefits of DVA – reduction of the state space. In our hybrid
analysis an over-approximation of the future behaviour origins from the static phase; so there is no need
to explore the successors. Our dynamic analysis utilizes the observed behaviour to compute live addresses,
however this is done only for states which are known to be new (i.e., visited for the first time). During state
matching, the approach uses the live addresses of previously visited states which are tested against those of
S; this is possible due to Theorem 2 below.

Reduced state space. As stated above, for state matching it is possible to consider states w.r.t. their own
future behaviour. For a full state S ≡ (IPS ,MemS) ∈ S, we define a reduced state R as R ≡ reduce stateS(S).
We use reduce state without subscript to denote reduction of the state w.r.t. its own future behaviour. The
symbol R is used to denote the set of all reduced states. Upon the reduced states, it is possible to build a
state space in a similar way as for full states.

Definition 6 (Reduced state space). Let P be a program with the state space AP = (S,4, Sinit).
The reduced state space RP of P is tuple RP = (R,4R ⊆ R × Guard × Act × R, Rinit), where Rinit =
reduce stateSinit (Sinit).

There is a transition (R,G,A,R′) ∈ 4R iff there exists a full state transition (S,G,A, S′) ∈ 4 such that
reduce stateS(S) = R and reduce stateS′(S′) = R′.

We now justify the correctness of this definition. In the reduced state space, it is easy to see that (1)
there are no reads of the undefined values from the memory, and (2) there are no undetermined values in the
memory. For a transition t ≡ ((IPR,MemR), G,A, (IPR′ ,MemR′)) ∈ 4R, (1) can be formally expressed as
read addr(t) ∈ dom(MemR), while (2) can be expressed as dom(Mem ′R) ⊆ dom(MemR) ∪ write addr(t).

As to (1), for any transition (R,G,A,R′) ∈ 4R if some memory address is read by guard G and/or
action A, then from the definition of the read addr function (using the trace containing only this single
transition) these addresses are preserved in the reduced state. So both G and A read defined values. Note
that the potential memory write of A can be performed to an irrelevant address. In such a case the write is

8. On Partial State Matching

97

On Partial State Matching 11

ignored, and the state of the memory is unchanged. This happens if the given memory address is dead w.r.t.
the property being verified and if the address is not read later in the program.

As to (2), for any transition (R,G,A,R′) ∈ 4R, all values (in the memory) of state R′ have to be
computed from the values in predecessor state R. For any address a ∈ dom(MemR′), there are three options:
either (i) a is read by the property φ (i.e., a ∈ addr(φ)) and thus the address is in the domain of Mem
for all reduced states, in particular MemR, or (ii) a is written by action A, thus the value is determined
in R′, or (iii) a is not written by action A. From the definition of the reduced state space it follows that if
there is a reduced transition (R,G,A,R′) ∈ 4R, then there is a full transition (S,G,A, S′) ∈ 4 such that
reduce state(S) = R and reduce state(S′) = R′. Then from the definition of live addr(S′), there must be a
trace p′ starting at S′ which (reads a and thus) causes a to be live in R′. This trace p′ can be prefixed by
the considered transition; and p = S G,A−−−−→ p′ can be created. Trace p shows that a is live in S and thus
a ∈ dom(MemR).

Below, we show that in our case there is a bisimulation between the full and reduced state spaces (as it
is typically done for static DVA). To our best knowledge this is the first proof for Dynamic DVA.

Theorem 1 (Bisimulation). For a program P and a property φ, transition system AP = (S,4, Sinit) and
corresponding reduced transition system RP = (R,4R, Rinit) are bisimilar.

Since reduced states and corresponding full states are equivalent w.r.t. φ, it directly follows that the state
space of the program is safe w.r.t. φ iff the reduced state space is safe (and similarly for error traces). So it
is enough to check the safety on the reduced state space. Bisimulation also preserves liveness properties, so
these can be safely checked just on reduced state space as well [BK08].

Proof sketch. We first sketch the idea of the proof, while a formal proof is presented later. We will show
that reduce state∗ functions define the relation among the states which is a bisimulation. We assume states
S ∈ S and R ∈ R to be in the relation iff reduce stateS (S) = R.

The direction from full states to reduced states follows directly from the definition. The only non-trivial
step is the other direction. For a reduced transition (R,G,A,R′) ∈ 4R executed by thread i and related full
state S we will show that there is full transition (S,G,A, S′) ∈ 4 such that full state S′ reduces to R′.

From Def. 6 we obtain a base full transition (Sb, G,A, S
′
b) ∈ 4. Using this transition we show that there

is also a transition (S,G,A, S′) ∈ 4 since S and Sb equal on all values that G and A use.
We show that S′ and S′b have the same live addresses: Since S and Sb reduce to the same state R,

they have (pair-wise) transition-equivalent sets of outgoing traces. Hence, the sets of traces via S′ or S′b are
transition-equivalent as well. It directly follows that S′ and S′b have the same live addresses and, in turn, S′b
and S′ reduce to the same reduced state (R′).

Before proving Theorem 1, we first introduce a lemma which formally expresses the claim about transition-
equivalent traces:

Lemma 1. Let S1 ≡ (IPS1 ,MemS1), S′1 ≡ (IPS′
1
,MemS′

1
) ∈ S be two states and let reduce stateS1(S1) =

reduce stateS1(S′1). For any trace p = S1
A1,G1−−−−−→ S2 · · · · · ·Si Ai,Gi−−−−−→ Si+1 · · · there exists a transition-

equivalent trace p′ = S′1
A1,G1−−−−−→ S′2 · · · such that IPSi = IPS′

i
for all i (i.e., the corresponding states along

equivalent traces differ only in the memory content).

Proof of Lemma 1: The proof is constructive and inductive on the trace length. The induction will itera-
tively append an equivalent transition to the end of trace p′ and preserve the following inductive invariant:
reduce stateSi

(Si) = reduce stateSi
(S′i) and IPSi

= IPS′
i

and there is a trace p′i which is transition equivalent
to the prefix of p of length i.

The base case (traces with no transitions): In such a case, trace p contains just one state: p = S1 (i.e.,
the trace of length 0 starting at S1). A transition-equivalent trace p′ = S′1 (a trace staring in S′1 with no
transition) exists trivially. Moreover IPS1

= IPS′
1
, because reduce stateS1

(S1) = reduce stateS1
(S′1) and the

fact that reduce state functions do not modify the instruction pointer (IP).
Inductive step: First, for the initial states S1 and S′1 the inductive invariant holds. Let the inductive

invariant hold for a trace p of length i. If p is of length i, the inductive invariant is exactly the claim of the
lemma. So let us assume trace p to be longer. The inductive invariant gives us transition-equivalent trace
p′i = S′1 −→ · · ·S′i such that reduce stateSi(Si) = reduce stateSi(S

′
i) and IPSi = IPS′

i
. Moreover, there is

a transition p = · · ·Si Gi,Ai−−−−−→ Si+1 · · · (i.e., (Si, Gi, Ai, Si+1)); we show that p′i can be extended with this
transition.

8. On Partial State Matching

98

12 Pavel Janč́ık, Jan Kofroň

Let S′i+1 = (IPSi+1 ,MemS′
i
[Ai]). First we show that there is a transition (S′i, Gi, Ai, S

′
i+1) ∈ 4 that

can be appended to p′i to form p′i+1. The first requirement of Def. 1 is satisfied since IPSi
= IPS′

i
(from

the induction invariant) and IPSi+1
= IPS′

i+1
(from the definition of S′i+1), thus the step showing the

existence of the transition (Si, Gi, Ai, Si+1) satisfies the condition for transition (S′i, Gi, Ai, S
′
i+1) as well.

The second condition (i.e., guard Gi holds in S′i) is satisfied, because Gi holds in state Si and Si and S′i
equal on live addresses (reduce stateSi

(Si) = reduce stateSi
(S′i) from the induction invariant). Due to trace

pGi
= Si

Gi,Ai−−−−−→ Si+1 (i.e., a trace with a single transition), all the addresses on which Gi depends are live
in Si. The last condition is satisfied directly by the definition of S′i+1.

Now we show that reduce stateSi+1(Si+1) = reduce stateSi+1(S′i+1) (i.e., the states Si+1 and S′i+1 equal
on live addresses). From the definition of S′i+1 we know that IPSi+1

= IPS′
i+1

. Let us look at the mem-

ory. In the following, we use MemRi+1
to denote the memory of state reduce stateSi+1

(Si+1) (which is
exactly the memory of the reduced state for full state Si+1) and MemR′

i+1
to denote the memory of state

reduce stateSi+1
(S′i+1) (i.e., the memory of states S′i+1 reduced w.r.t. future behaviour of Si+1). We show

that the above memory functions are the same (i.e., MemRi+1
= MemR′

i+1
); in other words, these functions

have (i) the same domain and (ii) they evaluate to the same values for any address from their domain. As
to (i), because the function reduce stateSi+1

is used to create both memory functions, their domains are the
same (i.e., dom(MemRi+1

) = dom(MemR′
i+1

)).

Now we show (ii) i.e., ∀a ∈ dom(MemRi+1
) it holds that MemRi+1

(a) = MemR′
i+1

(a). Let us pick an

address a ∈ dom(MemRi+1
); this address can be either assigned (written) by action Ai or not. In the former

case the values equal (i.e., MemRi+1
(a) = MemR′

i+1
(a)), because in both cases they are computed by the

same action Ai using the same values; the trace pGi
= Si

Gi,Ai−−−−−→ Si+1 shows that all the addresses read by
action Ai are live and thus preserved by reduce stateSi+1

and the induction invariant gives us that MemSi

and MemS′
i

equal on these addresses.
Let us focus on the latter case, i.e., when address a is not written by action Ai and its value is taken from

the predecessor. Formally, it holds that MemRi+1
(a) = MemSi

(a) and MemR′
i+1

(a) = MemS′
i
(a). Address a

is preserved by the reduce stateSi+1 function, thus either a ∈ addr(φ) or a ∈ live addr(Si+1). In both cases
address a is preserved by reduce stateSi ; in the first case, the reason comes from the definition of reduce state
– addr(φ) addresses are always a part of reduced state. In the second case, the definition of reduce state
gives us a trace p′a from state Si+1 which demonstrates that address a is live. Let trace pa be p′a prefixed by
(Si, Gi, Ai, Si+1) (i.e. pa ≡ Si

Gi,Ai−−−−−→ p′a), because Ai does not write to address a, the trace pa shows that
the address a is live in Si and thus preserved by reduce stateSi

. We know that MemRi+1
(a) = MemSi

(a) and
MemR′

i+1
(a) = MemS′

i
(a), and the inductive invariant gives us that MemSi

(a) = MemS′
i
(a); thus we have

shown that MemRi+1
(a) = MemR′

i+1
(a).

Put together, we have proved that reduce stateSi+1
(Si+1) = reduce stateSi+1

(S′i+1) – the inductive in-
variant for i+ 1.

Proof of Theorem 1 – Bisimulation: Let reduce state be a relation among the full and reduced states, such
that full state S and reduced state R are in the relation iff reduce stateS(S) = R. We show that reduce state
is a bisimulation, i.e., reduce state satisfies the following three conditions:

(1) The initial states Sinit and Rinit are in the relation (which comes directly from the definition).
(2) Let there is a full transition (S,G,A, S′) ∈ 4, and let state R be in the relation with S, i.e.,

R = reduce stateS(S). Then there has to be a reduced transition (R,G,A,R′) ∈ 4R such that R′ =
reduce stateS′(S′). This comes also trivially from the definition of the reduced state space.

(3) Let there is a reduced transition (R,G,A,R′) ∈ 4R executed by a thread i. Then for any full
state S such that reduce stateS(S) = R (a pre-image of reduced state R), there exists a full transition
(S,G,A, S′) ∈ 4 such that reduce stateS′(S′) = R′.

The only condition remaining to be proved is (3). From the definition of reduced state there exists a base
full transition (Sb, G,A, S

′
b) ∈ 4 due to which the reduced transition (R,G,A,R′) exists. From the definition

of reduce state it follows that it does not modify the instruction pointer, thus IPS = IPSb
= IPR (i.e., the

corresponding states S, Sb, and R point to the same program location) and IPS′
b

= IPR′ (i.e., the base

transition is executed by the same thread i as the reduced transition). Moreover the trace pb ≡ Sb G,A−−−−→ S′b
(i.e., the trace of length 1 consisting exactly of the base transition) guarantees that all the addresses that
guard G and action A read are live and thus preserved by reduce stateSb

. States S and Sb are both reduced

8. On Partial State Matching

99

On Partial State Matching 13

to state R thus, first, reduce stateSb
= reduce stateS (i.e., the reduce state functions for both states are the

same and both states have the same live addresses) and second, the values at the live addresses are the same
in both states (i.e., ∀a ∈ dom(MemR) : MemS(a) = MemSb

(a)).
Def. 1 gives us that (i) there is step (li, A,G, l

′
i) ∈ Li of thread i such that IPSb

(i) = li and IPS′
b

=

IPSb
[i := l′i] and (ii) guard G holds in Sb.

Let S′ ≡ (IPS′
b
,MemS [A]) be a full state, i.e., it is created from state S by a step of thread i into the

same program location as the base (and reduced) transition by executing action A. In order to prove the
theorem, we need to show that there is a transition (S,G,A, S′) ∈ 4 and that S′ reduces into R′.

According to Def. 1, there exists transition (S,G,A, S′) ∈ 4, because IPS = IPSb
, IPS′ = IPS′

b
so (i)

satisfies the first requirement of Def. 1 and guard G holds in S (due to (ii) and because Sb and S equal on
all the values that guard G reads). The last requirement of Def. 1 follows directly from the definition of state
S′.

We now show that S′ reduces to R′ (i.e., reduce stateS′(S′) = R′); first we show that (iii) states S′ and
S′b have the same live addresses (i.e., reduce stateS′ = reduce stateS′

b
, in other words the functions are the

same) and then that (iv) these states have the same values at the live addresses.
Before moving to (iii), we first show that (v) S′ and S′b have (pair-wise) transition-equivalent sets of

traces (using Lemma 1). Let pS′ be a trace from state S′ (i.e., pS′ = S′ ∗−−→ · · ·). Then there is also a
trace p which is formed by pS′ prefixed by transition (S,G,A, S′) (i.e., p ≡ S G,A−−−−→ S′ ∗−−→ · · ·). Then
reduce stateS(S) = reduce stateS(Sb) = R, because reduce stateS(S) = R (from the assumption of the
condition (3)), reduce stateS = reduce stateSb

, which was shown above, and reduce stateSb
(Sb) = R (from

definition of Sb). Lemma 1 can now be applied on states S and Sb and trace p resulting in a transition-
equivalent trace p′ = Sb

G,A−−−−→ Sx
∗−−→ · · · such that IPx = IPS′ . Now we show that Sx = S′b; the actions

are deterministic, so Memx = MemS′
b

(more rigorously by the definitions, both equal to MemSb
[A]). Since

IPx = IPS′
b

(via IPS′), we have shown that the states Sx and S′b are the same (i.e., Sx = Sb). Thus we can

remove the first transition of p′ to obtain pS′
b

from S′b, which is transition equivalent to pS′ . Exactly the

same reasoning can be used to show that for any trace from S′b there is a transition-equivalent trace from S′.
As to (iii), it remains to show that functions reduce stateS′ and reduce stateS′

b
are the same. From

the definition of the reduce state functions it follows that they modify only the Mem part of the program
state by restricting its domain. Assume that reduce stateS′ preserves an address a ∈ dom(MemS′); then
it holds either a ∈ addr(φ) or a ∈ live addr(S′). In the former case, the address a is also preserved by
reduce stateS′

b
from the same reason (the safety property φ is the same for the whole program). In the latter

case, we use the definition of live addr , which gives us a trace pS′ – a witness why a is a live address (i.e.,
a ∈ tr live addr(pS′)). Above we have shown that there is a trace pS′

b
transition equivalent to pS′ (see (v)).

Trace pS′
b

(having the same live addresses as pS′ , since the traces equal on tr live addr in their initial states)

is a witness that address a is live in S′b (i.e., a ∈ LA(S′b)). Thus a is also preserved by reduce stateS′
b
. The

same reasoning can be applied to show that all addresses preserved by reduce stateS′
b

are also preserved by
reduce stateS′ , which together gives us that reduce stateS′ = reduce stateS′

b
.

The only remaining part is (iv). IPS′ and IPR′ equal, because we know that IPR′ = IPS′
b

and IPS′ =
IPS′

b
from the definition. Let us focus on the memory parts; we show that for any address a preserved by

reduce stateS′ , the states S′ and S′b have the same value (i.e., MemS′(a) = MemS′
b
(a)).

Address a can be either written by action A (taken from the transition (S,G,A, S′)) or not. In the
former case, the value written by A is the same in MemS′ and MemS′

b
, because the outcome of the actions

is deterministic and the values used by action A to compute its result are the same (S and Sb both reduce
into R thus equal on live addresses and due to the single transition trace G,A−−−−→ , the addresses read by A
are live in these states). Let us focus on the latter case in which address a is not modified by A and thus the
values (in states S′ and S′b) are the same as in their predecessor (in states S and Sb respectively); formally
MemS′(a) = MemS(a) and MemS′

b
(a) = MemSb

(a). The predecessors have the same value at this address

(i.e., MemS(a) = MemSb
(a)); because S and Sb both reduce into R and thus equal on live addresses and a

is live in both S and Sb. Address a is live in S, because it is live address in S′; so there exists a trace p′ –
witness that the address is live. The trace p = S G,A−−−−→ p′ (i.e., prefixed by transition (S,G,A, S′)) shows
that the address is also live in S as we need.

We have shown (iii) and thus reduce state(S′) = R. It means we have created state S′ such that there

8. On Partial State Matching

100

14 Pavel Janč́ık, Jan Kofroň

is a transition (S,G,A, S′) and reduce state(S′) = R so we have shown (3). This proves the bisimulation
theorem.

Guard restriction. While the bisimulation theorem guarantees soundness of the approach, the definition of
the reduce state function is not suitable for efficient state matching. On-the-fly explicit state model checkers
can get a precise set of live addresses for a state, however they can be computed only after the state is fully
explored, which is too late to directly reduce the state space. Below, we articulate Lemma 2, which permits
us to use live addr (i.e., the reduce state∗ function) of one state to safely reduce another (still unexplored)
one. The theorem, however, cannot be applied on general guarded-action LTS. Hence, we first introduce a
syntax restriction for guards.

Definition 7 (Guard-restriction). Program P = (T1, ...Tn) satisfies guard-restriction if for each thread
Ti = (Li, T ri, l

init) and each step (li, G,A, lj) ∈ Tri such that guard G is non-trivial (i.e., different from
True) there exists also a step (li,¬G,A′, lk) ∈ Tri, (in the same thread t from the same location li) with
the complementary (negated) guard ¬G.

Both guards read the same data and in any case exactly one of the guards is satisfied. The guard-
restriction is inspired by the way source code is converted into transition systems. The guards are used
to encode conditions (if-then-else) and synchronization primitives. The conditions are encoded this way
naturally. Synchronization primitives (such as synchronized blocks, thread joins, and wait-notify) can also
be easily modelled this way by adding an (active-waiting) self-loop for the blocked state. This means that
source code (e.g., Java) yields guard-restricted transition systems.

Let us now focus on the purpose of the guard restriction. Without the guard restriction, if two states C
and V equal w.r.t. relevant addresses of V , we know that the future behaviours of C includes all the future
behaviours of V . They are in the subset relation, because there can exist a trace from C which cannot be
followed from V ; it means if the trace is followed from V , the corresponding transition to follow the trace can
be missing due to an unsatisfied guard. Note that unsatisfied guards do not contribute to relevant addresses.
It means that C and V do not behave equally w.r.t. (unsatisfied) guards. Exactly this case is illustrated in
examples from Figure 6, which do not satisfy the guard restrictions. Guard restrictions, on the other hand,
eliminate this issue. Consequently, if two states C and V equal w.r.t. relevant addresses of V , they have
(pair-wise) transition-equivalent sets of traces and also the same set of relevant addresses. This is formally
expressed in the following lemma:

Lemma 2. Let P be a program that satisfies guard restriction, and AP = (S,4, Sinit) be its state space. Let
C, V ∈ S be two states such that reduce stateV (C) = reduce stateV (V). Then reduce stateC = reduce stateV .

Proof sketch. We show that for each trace from C a transition-equivalent trace with the same set of
tr live addr from V exists and vice-versa; thus the states have the same set of live addresses and hence
the reduce state functions. The direction from V to transition-equivalent trace from C is informally stated
just below the definition of (trace) relevant addresses, being exactly the claim of the Lemma 1. As to this
part, the guard restriction is not applied here.

The other direction, i.e., for any trace from C, a transition-equivalent trace from V exists, is shown by
contradiction. Assume that p is the shortest trace from C, such that there is no transition-equivalent trace
from state V and that states C and V satisfy the requirements of the lemma. Since p ≡ C G,A−−−−→ C ′ is the
shortest such a trace, it follows that the first transition cannot be followed from V . In the opposite case we
could have moved along the common prefix of traces p and p′ (thus finding shorter traces from states Ci and
Vi).

Now we exploit the guard restriction to show that trace p cannot exist. Guard G cannot be trivial (in such
a case transition G,A−−−−→ would exist from V). Moreover, due to the guard restriction, there is a transition
V ¬G,A′
−−−−−→ V ′ thus all the addresses that ¬G (as well as G) reads are live in V . Because C and V equal

w.r.t. the relevant addresses of V (formally expressed as reduce stateV (C) = reduce stateV (V)), and all the
addresses that guard G reads are relevant, it follows that in C guard G is not satisfied (in fact its negation
holds). Thus there is no transition C G,A−−−−→ C ′ and trace p does not exist. In turn, in the whole state space,
there is no contradicting p (i.e., a trace without a transition-equivalent counterpart).

8. On Partial State Matching

101

On Partial State Matching 15

5. Implementation

We have developed two independent DVAs to identify live fields of the heap instances and implemented them
in Java PathFinder (JPF) [VHB+03]. The analyses differ in precision, computation complexity as well as in
the way live addresses are obtained. To make our approach clear, we present the algorithms in pseudo-code
below. To emphasize our extensions to classical model checking, we present the standard algorithm we build
upon in Alg. 1.

Algorithm 1 Common DFS model checking algorithm

1: procedure Main
2: ModelCheck(P, s init, [s init])

3: procedure ModelCheck(program P , state s, trace t)
4: if IsErrorState(s) then throw Unsafe(s, t)

5: if Visited(s) then return VISITED

6: SetVisited(s)
7: for transition alfa ∈ EnabledTransitionsIn(s) do
8: s succ ← alfa(s)
9: ModelCheck(P , s succ, t + (alfa, s succ))

10: return SAFE

Our Dynamic DVA (DDVA) tracks field reads and writes executed by the program. The live addresses for
a given program state are computed once all the future behaviours of the program state are fully explored.
Thus our DDVA can be used only with the default Depth-First Search (DFS) with no test-like heuristics
(those traversing only a part of the state space). The analysis is exact for loop-less state space, it marks
particular field as live if and only if there exists a real trace from that state on which the value of the field
is read (before it is overwritten). On the other hand, the analysis requires additional memory and has a
bigger computational costs compared to our Hybrid DVA. DDVA has to store the observed live addresses
(i.e., reduce state function) together with the program state (i.e., its state vector or its hash).

Our Hybrid DVA combines static analysis and dynamic information from program states; hence its
name. Static analysis provides an over-approximation of future program behaviour (in terms of field reads),
thus the information about live addresses is computed once the state is reached (before its successors will
be explored). So the analysis can be safely used together with various test-like heuristics and state space
exploration strategies. It is less precise than our DDVA, however, it offers very low computational and
memory overhead; only small amount of memory is required to store the results of static analysis.

In our work, we aim at identifying irrelevant content stored in the heap. Note that we disregard irrelevant
data stored in the local variables, which is a subject of other analyses that can be combined with ours.

Heap of Java programs. Heap is typically formally modelled as an array of values where references
(pointers) are indexes into the array. While this straightforward approach is generic and can express any
usage of the heap, it is too low-level for object-oriented languages. JPF (as well as other explicit-state model
checkers) typically represent heap in a more complex way. This helps to better express the semantics, and it
makes various optimizations (e.g., heap canonicalization) easier. It leads us not to represent the DVA related
information as addresses, but to follow a higher-level abstraction used in model checkers. It also provides us
with an easier integration into state matching. Below, we describe how the elements of heap are represented;
such a representation is directly used in our DDVA. Our Hybrid DVA uses a simpler representation, which
is described later.

In object-oriented languages, the objects are allocated on the heap. In Java, the objects are of two types
– arrays and instances of classes. Instead of addresses for referring to objects, we use pairs consisting of a
unique object ID (i.e., the representation of an address) and a field name (its index since the name may not
be unique) for class instances.

The class instances do not contain only fields, but also a type. The type of each instance is stored in
its headers. The type can be accessed via introspection (reflection), by the instanceof Java operator, and

8. On Partial State Matching

102

16 Pavel Janč́ık, Jan Kofroň

indirectly via virtual method calls. The instance cannot be marked as dead (i.e., completely ignored by state
matching), even if no field is read from the instance, if a virtual method is called on the instance; its type is
live, since if another instance with a different type had been used instead of the original one, the program
would behave differently; it will execute a different (virtual) method. Thus, for each instance (i.e., unique
instance ID), the analysis stores whether its type is live or not.

In Java, monitors are other properties of instances; each instance has associated a monitor (i.e., a lock),
upon which the threads can synchronize. The state of monitors (locked, unlocked, notified, etc.) is of course
an important part of the program state and thus has to be considered by state matching. The monitors
realize the synchronized blocks and methods; each monitor needs to be accessed at the beginning and at
the end of the corresponding synchronized section, and so each monitor is live. That is why our analysis
assumes all monitors to be live.

Arrays are other objects stored on the heap. They are handled in a similar way as class instances (since,
in Java, arrays are instances as well, but with no fields and methods defined by user), however, instead of
field names, we store which particular indices in the array are live – we store pairs consisting of a unique
object ID and an index. The arrays are more difficult to handle than normal instances, since they can vary
in length. Instances of a single class have a fixed set of fields and thus a fixed size. For arrays, we also store
whether their length has been accessed, in other words whether the length attribute is live or dead. In rare
cases, when an array is not accessed at all, but still the instance is important (e.g., it is compared to another
reference), we even omit the size of the array in state matching. Of course, if any index of the array is live,
then the array length is live as well; if the length of corresponding arrays differs, an attempt to access an
index may result in the IndexOutOfBoundsException only in one state with the shorter array. It means that
we also have to store the type of each array as for a normal class instance (the length of the array is a part
of the array type).

Our analysis also handles static fields. In JPF, static data are stored in a (special) heap, where each class
has its own instance. Because of that, we handle the static fields in the same way as object instances; for each
such a field, we store a pair consisting of a unique class identifier and a field name for identification. Note
that a particular class can be loaded into JVM several times (each time with a different defining classloader)
and each such loading results in a different and incompatible type, featuring its own static fields (sharing the
names). Even though these classes have the same name, we support this in our approach, since JPF assigns
them different identifiers.

Analysis of JVM bytecode. Above, we focused on specific properties of the heap. We need to track not
only addresses, but also, e.g., types and array lengths.

In the following paragraphs, we move from LTS to JVM bytecode. Our analyses, as described, operate
over LTS, however, the program is not executed as guarded-action LTS. Java programs are represented
by JVM bytecode, which is directly executed by the JPF model checker and observed for purposes of our
analyses. The mapping from LTS to bytecode is quite straightforward; however, guards need special attention.
Moreover, our DDVA requires a guard-restricted transition system; so below (1) we focus on guards and show
that JVM bytecode can express only guard-restricted transition systems. Later, we show (2) how to obtain
read addr and write addr resp. theirs counterparts for programs with heap.

In LTS, evaluation of guards influences which transitions the program may take; if LTS encodes a source
code, then guards are used to express conditions and synchronization primitives. In JVM, there are no
guards. Instead, bytecode (assemblers) have compare instructions to evaluate conditions, and conditional
jump instructions, to take a particular branch (i.e., transition). In particular, JVM bytecode contains the
compare [D/F]CMP[G/F] instructions, and conditional jumps specialized for a specific condition (e.g., the
IF ICMPLE instruction which compares two top integer values on the stack and jumps if the one-but-top
value is less than or equal to the top one).

Let us focus on the guard restriction. The restriction has been introduced to ensure that the reduced
states behave in the same way w.r.t. both satisfied and unsatisfied guards; in other words, the restriction
makes the reads of unsatisfied guards visible. Informally, in order to enable JVM to decide whether a given
transition can be taken, it first has to evaluate the condition (i.e., the guard); thus, the reads of (satisfied
as well as unsatisfied) guards are visible. Therefore, for JVM bytecode, we can assume that it satisfies the
guard restriction.

Let us now focus on the conditions and synchronization primitives in more detail. In case of conditions
(e.g., if-then-else and loops), first, the condition (i.e., the guard) is evaluated (so its reads are visible) and
based on the result, either the then or the else branch (i.e., the transition) is taken. In case of synchronization

8. On Partial State Matching

103

On Partial State Matching 17

a b c d e f g

bytecode instruction
Object instances Arrays Static
Fields Type Index Length Type Fields

getfield

putfield

getstatic

putstatic

checkcast

instanceof

[a/b/c/d/f/i/l/s]aload

[a/b/c/d/f/i/l/s]astore

arraylength

invokeinterface

invokevirtual

athrow

monitor[enter/exit]

Table 2. Heap manipulating JVM bytecode instructions

primitives, in particular the MONITORENTER and MONITOREXIT bytecode instructions, which correspond to the
beginning and end of synchronized sections, respectively, we always consider the corresponding monitor
to be live, as argued above. To focus more on the bytecode level, independently of the fact whether the
MONITORENTER would block the thread or not, the execution of the instruction is started and thus the read
of the monitor can be observed in either case – (blocking the thread or acquiring of the monitor) as needed
for the guard restriction.

Below, we focus on extraction of relevant information for JVM bytecode. First, we identify the bytecode
instructions that need to be considered by the analysis, later we focus on more specific JVM properties.

In Tab. 2, there is a list of bytecode instructions which manipulate references and accesses the heap;
for each instruction, we mark whether it depends on or modifies values in the interesting parts of the
heap mentioned above. Not all instructions which manipulates with references are interesting for DVA; e.g.,
aconst null, if[not]null, areturn, aload do not directly access the heap, so they can be safely ignored
by DVA.

Field accessing ([PUT/GET][field/static]) instructions do not make the type of the instance live. The
particular field that is read or written is determined during compilation; there is no dynamic-dispatch as in
case of virtual methods. Field accesses are thus independent of the actual runtime type of the corresponding
instance. Similarly, the *aload resp. *astore instructions read resp. write data from/to arrays; the proper
instruction is determined at compile-time using static types; its behaviour is independent of the actual
runtime type (in case of aaload), thus these instructions do not mark type information as live.

As to the invoke instructions, it is obvious that their behaviour does not depend on the values of the
fields. However, as mentioned above, since the runtime type of the instance on which the method is in-
voked influences which particular method is executed, the dynamic dispatch is applied (invokeinterface,
invokevirtual). Note that invokestatic and invokespecial do not involve dynamic dispatch, the called
method is determined statically during compilation, thus runtime type information is not used by them.

The athrow instruction throws an exception; its behaviour is independent of the type of the instruction,
however, the exception handling, i.e., the decision which exception handler matches the exception depends
on the type of the exception instance.

The invokedynamic instruction is the most complex; its purpose is to support dynamic languages using

8. On Partial State Matching

104

18 Pavel Janč́ık, Jan Kofroň

JVM. Our implementation of the DVA analyses does not consider this instruction, because the particular
JPF we used does not support this instruction.

The behaviour of the locking instructions (as well as calls to synchronized methods) has been described
above. JPF stores a state of all locked monitors into the state vector; our DVR’s do not modify the way mon-
itors are serialized. Moreover, in order to lock/unlock the monitor, it needs to be accessed. This guarantees
that the monitor instance is live and thus not omitted from program state.

The DVA does not have to consider the JVM instructions which create new objects (i.e., new and ldc).
The created objects do not exist in predecessor states; so obviously these objects cannot be live in them.

Not only bytecode can manipulate with the heap content; also native functions (in JPF realized by
modelled functions) can access it. The most obvious example is the introspection, which allows JPF to read
or modify fields and call methods. Another example is the output to the console (i.e., System.out); the
method print(String) is modelled in JPF and its native body reads the whole content of the provided
string.

Furthermore, in addition to the types of non-determinism present during normal Java programs exe-
cution, JPF features methods for efficient modelling of the user or environment behaviour. These include,
e.g., Verify.getBoolean(), Verify.getInt(). JPF process these methods by creating a temporal variable
storing the selected value in them and creating a choice for each possible one (i.e., branches in the state
space). Even when using these methods, the program satisfies the guard-restriction property.

5.1. Dynamic DVA

Our DDVA monitors interesting instructions described above and based on their appearances, it computes
live addresses for each state. The algorithm of DDVA is listed in Alg. 2.

Algorithm 2 Dynamic DVR

11: procedure Main
12: ModelCheck(P , s init, [s init])

13: procedure ModelCheck(program P , state s, trace t)
14: if is error state(s) then throw Unsafe(s, t)

15: (visited, live addrs)← IsVisited(s)
16: if visited then return (VISITED, live addrs)

17: if s ∈ trace then return (LOOP, {all addrs})
18: live addr s← {}
19: for transition alfa ∈ EnabledTransitionsIn(s) do
20: (s succ, heap accesses)← alfa(s)
21: (, live addrs s succ)← ModelCheck(P , s succ, t + (alfa, s succ))
22: live addrs s alfa← update live addrs (live addrs s succ, heap accesses)
23: live addrs s← live addrs s ∪ live addrs s alfa

24: SetVisited(ReduceState((s, live addrs s), live addr))
25: map stacks2live addrs[s.threads.callStacks] += live addrs s
26: return (SAFE, live addrs s)

27: procedure IsVisited(state s)
28: for live addrs v ∈ map stacks2live addrs[s.threads.callStacks] do
29: r s candidate← ReduceState(s, live addrs v)
30: if Visited(r s candidate, live addrs v) then return (TRUE, live addrs v)

31: return (FALSE, {})

Live addresses. While JPF executes the program forwards, for each transition (i.e., each forward step)
(line 19–23), the analysis records all relevant instructions (line 20–21); to be more specific, the addresses (a
part of the heap) to mark resp. unmark as live. JPF stops advancing forward once it reaches either the end

8. On Partial State Matching

105

On Partial State Matching 19

of the program or a visited state (line 16). In the former case, there are no live addresses, so no address
is marked as live (this corresponds to the empty set in our algorithm) (line 18). In the latter case, the
live addresses stored for the matched (previously visited) state are used (line 15). When JPF backtracks a
transition (i.e., goes backwards along a program trace), the analysis computes a union of live addresses for
the target state of the transition and the reads and writes recorded for the transition itself (line 23); this
way, live addresses for the source of the transition are computed. To obtain live addresses for state s, the live
addresses from the beginning of all the outgoing transitions from s are merged; an address is live at state s
if and only if it is live at the beginning of (at least one) transition starting in s.

Due to the DFS exploration strategy, all outgoing transitions are explored before the state is backtracked
from. Thus, the live addresses for state s (i.e., the reduce states function) as well as its reduced state rs can
be computed and stored for the state matching purposes after JPF backtracks over s. The only exception
are cycles in the state space (not just in CFG). If a cycle is detected after reaching (an already visited) state
s, the live addresses for it (being in the stack of unprocessed states) are not known. In order to preserve
correctness, we have to mark all addresses in s as live (line 17). Note that it does not necessarily mean that
the program has to loop forever; after a few iteration of the cycle, a non-deterministic choice can be taken,
which will exit the loop. Alternatively, there is a more elaborated approach, which does not lose precision.
It is possible to postpone the computation of live addresses for the cycle states. First, all the traces leading
out of the cycle (remaining non-deterministic choices in the states forming the cycle) have to be explored,
and later, after all of them are explored and their live addresses are known, the sets of live addresses for
the cycle states can be computed – their live addresses are propagated along the states forming the cycle to
simulate any number of loop iterations. This way, the sets of live addresses can be obtained even for state
spaces with loops in a precise way. Nonetheless, since the practical outcome of this approach is not clearly
visible, we postpone the experiments with it as future work.

State matching. After JPF reaches a state (after a forward step), state matching is initiated to decide
whether the state has already been visited or it is a new one (line 27–31). Java programs satisfy the guard-
restriction property, so Lemma 2 can be applied here; the state matching process attempts to find (line 28)
a state V and a corresponding function reduce stateV (i.e., live addrs v) satisfying the requirements of the
lemma (line 30).

For the purpose of state matching, a helper map is maintained (map stacks2live addrs, line 28). For each
call-stack, the map holds live addresses (in other words reduce state functions) used to reduce the states
with the particular call-stack. This map is used as an optimization reducing the number of live addresses to
be examined.

State matching proceeds as follows: First, the set of possible live addresses (i.e., reduce state functions)
is obtained using the call-stack of the current state s (line 28). These live addresses are examined one-by-one
whether their live values are the same as in s (line 29–30). In other words, a candidate reduced state is created
using the current state s and its live addresses are examined (formally reduce state v(s) is computed). Then,
using the standard state matching function, the algorithm determines if a previously visited state v exists
such that reduce state v(s) = reduce state v(v) (line 30). If so, due to Lemma 2, a state equivalent to s has
been already visited (line 30); if not, s is a new state (line 31).

5.2. Hybrid DVA

The other analysis of ours – Hybrid DVA – focuses on scalability instead of precision. It is designed to be
fast in presence of threads and to allow for efficient state matching. The algorithm of our hybrid analysis is
listed in Alg. 3.

For each program state, it identifies the fields which can be read (on any object of the given type) before
the program terminates by any trace from that state. In its nature, the analysis is similar to the analyses
proposed in [PL11], but we adapted it for the purpose of state matching. It consists of two phases: (1) static
data-flow analysis, whose results are combined with (2) the (verification time) information from the currently
reached state. The first phase is done once before a JPF run, while the second one is executed on demand
during state-space exploration just before state matching.

Static phase. Backward flow-sensitive context-insensitive data-flow analysis over full inter-procedural con-
trol flow graph (ICFG) is used to obtain information about future behaviour of the program (line 33). For

8. On Partial State Matching

106

20 Pavel Janč́ık, Jan Kofroň

Algorithm 3 Hybrid DVR

32: procedure Main
33: partial liveness ← HdvrComputePartialLiveFields(P)
34: ModelCheck(P , s init, [s init])

35: procedure ModelCheck(program P , state s, trace t)
36: if IsErrorState(s) then throw Unsafe(s, t)

37: live fields ← HdvrComputeLiveFields(s.callstacks)
38: reduced s ← ReduceState(s, live fields)
39: if IsVisited(reduced s) then return VISITED

40: SetVisited(reduced s)
41: for transition alfa ∈ EnabledTransitionsIn(s) do
42: s succ ← alfa(s)
43: ModelCheck(P , s succ, t + (alfa, s succ))

44: return SAFE

45: procedure HdvrComputeLiveFields(state s)
46: live fields ← {}
47: for Thread t : s.threads do
48: for StackFrame f : t.callstack do
49: live fields ← live fields ∪ partial liveness[f.instruction pointer]

50: return live fields

Instruction Transfer function

(branching point) after[`] =
⋃
`′∈succ(`) before[`′]

`: v = o.f before[`] = after[`] ∪ {ClassName(o).f}
`: return before[`] = ∅
`: call M before[`] = before[M.entry] ∪ after[`]
`: other instr. before[`] = after[`]

Figure 7. Transfer functions for the static phase of Hybrid DVA.

a given location (i.e., bytecode instruction) l, the analysis computes an over-approximation of the set of
all fields which may be read before returning from the method containing l (including potential reads from
the nested method calls and spawned threads). The data flow facts are pairs ClassName.FieldName which
unambiguously identify all program fields. In contrast to [PL11], the facts do not include allocation sites of
objects; even though potentially less precise, this allows for fast state matching, used together with heap
canonicalization.

The transfer functions are defined in Fig. 7. The result of the static phase is the least fixpoint over the
equations determined by these functions. If static analysis encounters the field-read instruction, it adds the
field into the resulting set (see the second rule). Because the analysis summarizes all instances into a single
data-flow fact, it does not treat field writes in any special way (the last rule applies).

The field reads are not propagated via exit-return edges (see the third rule). This blocks propagation
along infeasible paths in ICFG, in particular those where a related call-entry edge starts and exit-return
edge leads to a different method. For a program state, the complete picture about future reads is computed
at the dynamic phase. This technique gets precision of a context-sensitive analysis at the computational cost
of a fast context-insensitive analysis.

Dynamic phase. In the dynamic phase, the results from the static phase are utilized to get complete
information about future field reads, first for each thread, then for a program state. The call-stack (of each
thread) is processed in the top-down manner (line 48). The static analysis result for the current instruction
on the top stack frame contains the possible field reads, before the current method is exited. Going down the

8. On Partial State Matching

107

On Partial State Matching 21

Benchmark LOC Threads

AlarmClock 250 4

CLIF-BladeInsertAdapter 2780 3

Cache4J 600 3

CoCoME 3500 4

Deos 2160 3

Elevator 400 3

FTDemo 1300 3

LinkedList 291 3

Producer-Consumer 180 3

RepWorkers 630 3

Simple JBB 2300 3

Table 3. Sizes and numbers of threads for each benchmark.

call-stack, for each stack frame, the analysis joins (i.e., adds) the field reads computed in the static phase
for the instruction just after the call instruction (current instruction pointer in the stack frame) (line 49).
This way, future behaviour being considered is extended to the end of the given stack frame. Once the entire
call-stack is processed, the result contains all the fields the thread can read before it terminates. At the end,
future reads of all threads are joined together to obtain the future field reads for the program state (line 50).

State matching. Hybrid DVA provides us with an over-approximation of live addresses. The dynamic
phase depends only on information from the call-stacks, thus for the same call-stacks the analysis yields the
same live addresses (irrespective of the content of the heap). So there is no need for complex state matching
as in the case of aforementioned Dynamic DVR; put simply, a reduced state (in a representation suitable
for state matching) is created, which contains only the live fields of object instances. For the state matching
purposes, only the reduce state is used. In contract to Dynamic DVR, the live fields (i.e., a Hybrid-DVR
equivalent of live addresses) does not need to be stored in addition to reduced states; each reduced state
already contains all the information required to reconstruct the live fields.

We found that an efficient implementation is crucial in order to speed-up the verification. We heavily
employ bit-vectors and block-operations in our hybrid DVR implementation.

6. Evaluation

Implementation of both DVRs together with an experimental setup, and all related data are accessible at
http://d3s.mff.cuni.cz/software/jpf-psm/.

6.1. Benchmarks

We evaluated our approaches on 11 benchmarks – CoCoME [B+07], FTDemo [A+06], CLIF [Dil09], the
Cache4j and the Elevator (both from PJBench suite [PJB]), Simple JBB, and a set of small benchmarks taken
from the CTC repository [CTC] (AlarmClock, LinkedList, Deos, Producer-Consumer, ReplicatedWorkers).
The information on LOC and number of threads created during the programs’ runs are listed in Tab. 3.
All the benchmarks are multi-threaded, use heap, are error-free, and their state space (not the CFG) is
acyclic, thus the reported data are related to their complete state spaces. The reason for not including the
benchmarks with cyclic state spaces is that our current implementation does not support them. However,
there is no principle obstacle – we just have not implemented the support for them so far. The benchmarks
were taken from [PL15]; we have chosen them for several reasons. We already knew they worked with JPF,

8. On Partial State Matching

108

22 Pavel Janč́ık, Jan Kofroň

Benchmark original JPF JPF with Hybrid DVR JPF with Dynamic DVR

states time states JPF time + SA time states time

AlarmClock 573 362 2:15 573 362 100% 1:58 + 0:03 89% 573 362 100% 2:08 95%

CLIF-BladeInsertAdapter 50 627 0:21 43 512 86% 0:14 + 0:04 86% 31 491 62% 0:47 224%

Cache4J 5 106 128 17:53 5 105 482 100% 17:03 + 0:04 96% 2 880 839 56% 14:18 80%

CoCoME 2 213 005 23:19 2 103 729 95% 19:44 + 0:05 85% 1 319 894 60% 13:36 58%

DeOS 625 0:01 370 59% 0:01 + 0:04 500% 211 34% 0:01 100%

Elevator 7 304 096 29:34 7 256 407 99% 27:12 + 0:03 92% 6 947 527 95% 33:44 114%

FTDemo 59 354 0:40 56 308 95% 0:31 + 0:06 92% 53 646 90% 0:35 88%

LinkedList 2 038 840 5:51 2 038 840 100% 5:10 + 0:04 89% 1 974 486 97% 6:15 107%

ProdConsumer 6 074 085 19:35 6 074 055 100% 16:46 + 0:04 86% 1 237 457 20% 3:46 19%

RepWorkers 15 363 223 56:42 15 362 801 100% 48:26 + 0:05 86% 12 052 301 78% 50:11 88%

SimpleJBB 109 861 2:30 85 655 78% 1:37 + 0:05 68% 60 222 55% 1:10 47%

Overall 38 893 206 2:38:42 38 700 521 100% 2:18:42 + 0:47 88% 27 131 436 70% 2:06:31 80%

Table 4. Experimental results – runtime and state space size. “JPF time” represents the time spent by JPF at runtime. The
“SA time” is the time spent in static analysis of HDVR. “Time” is the overall running time, if there is no static-analysis phase.

Benchmark original JPF JPF with Hybrid DVR JPF with Dynamic DVR

memory vector size memory vector size memory DVA memory vec. size DVA size

AlarmClock 2 802.82 MB 5 117.84 557.12 MB 20% 1 010.88 20% 593.42 MB 21% 246.81 MB 625.88 12% 451.37

CLIF-BladeInsertAdapter 907.05 MB 18 778.60 198.48 MB 22% 4 775.00 25% 21.28 MB 2% 7.80 MB 440.76 2% 259.72

Cache4J 30 351.17 MB 6 224.80 12 300.51 MB 41% 2 518.32 40% 3 727.82 MB 12% 517.32 MB 1 160.56 19% 188.30

CoCoME 32 290.57 MB 15 292.08 16 097.64 MB 50% 8 015.64 52% 4 157.39 MB 13% 2 299.96 MB 1 467.60 10% 1 827.18

DeOS 3.62 MB 6 064.60 0.81 MB 22% 2 287.80 38% 0.41 MB 11% 0.25 MB 799.88 13% 1 242.39

Elevator 44 217.47 MB 6 339.88 19 410.64 MB 44% 2 796.92 44% 7 661.87 MB 17% 1 894.32 MB 862.48 14% 285.91

FTDemo 1 437.22 MB 25 382.60 455.65 MB 32% 8 477.16 33% 178.55 MB 12% 92.27 MB 1 678.36 7% 1 803.53

LinkedList 10 347.93 MB 5 313.96 1 887.42 MB 18% 962.68 18% 1 057.93 MB 10% 7.09 MB 550.08 10% 3.77

ProdConsumer 30 995.96 MB 5 342.88 8 675.65 MB 28% 1 489.68 28% 1 084.43 MB 3% 368.92 MB 598.32 11% 312.61

RepWorkers 87 001.07 MB 5 930.04 34 958.10 MB 40% 2 378.04 40% 9 302.25 MB 11% 695.21 MB 740.84 12% 60.48

SimpleJBB 5 452.43 MB 52 033.12 2 112.35 MB 39% 25 851.12 50% 366.94 MB 7% 205.17 MB 2 808.68 5% 3 572.39

Table 5. Experimental results – memory consumption. The vector sizes are averages over all vectors in a particular analysis.
The “DVA memory” is the memory used solely by the DVA analysis. The “DVA size” is the average amount of bytes needed
to store the DVA information for each state vector.

they generate a relatively small yet non-trivial state space, and since we worked with them before, we could
compare the results with other techniques.

As to the default JPF configuration, we disabled heap canonicalization, because it is not compatible with
our analyses. The reason is that in our implementation, we rely on one-to-one mapping of unique ids to
objects, which does not exist if heap canonicalization is used. Theoretically, it is possible to overcome this
restriction of our analyses, but it would imply an additional overhead for maintaining a one-to-one mapping
by ourselves. On the other hand, the following default optimizations were left turned on: final fields filtering,
live threads, and dynamic lock analysis.

Cache4j is a simple framework for in-memory caching of Java objects. We use the configuration with LRU
eviction algorithm and a blocking cache. Usage of the cache is modelled by two parallel threads accessing it.

CLIF is an open-source stress-testing platform, which is able to generate various kinds of traffics and
measure resource usage for the system under test. The core of CLIF is based on the Fractal component
model [B+04]. Our benchmark consists of one of its internal component, which is responsible for adding
measured blade servers, and a generated environment, which simulates its usage. The environment was
generated from a behaviour specification using [JPK12].

The CoCoME benchmark is a prototype of a cash-desk system for supermarkets. It consists of an inventory

8. On Partial State Matching

109

On Partial State Matching 23

management sub-system (storing a product database) and a cash-desk line formed by a set of cash desks.
The application consists of a test driver, which simulates two clients served in parallel.

The Elevator benchmark is a simulator of elevators in a building. We use the configuration with two
elevators and four actions executed by a simulated person.

FTDemo is a high-level component-based prototype of a software system providing Wi-Fi internet access
at airports. The demo consists of around twenty software components, handling, e.g., user authentication,
payment for network access, and IP address allocation. We ran the system with two simulated users in
parallel.

Simple JBB is a simplified version of the SPEC JBB 2005 benchmark, which is a model of an enterprise
information system for concurrent processing of clients’ requests. It models several databases (e.g., orders
and stock) and transactions that operate upon these databases. Some simplifications were necessary to make
the benchmark run inside JPF and to reduce the size of the state space to a reasonable level.

6.2. Experimental objectives

The main question to answer by our experiments was whether and to which extent the DVRs improve the
performance of software model checking in the case of Java PathFinder, both in terms of the runtime and
memory consumption. In particular, this involves both contribution to reduction of the state vectors and
the reduction of the number of explored states. We were also interested in the overhead of our analyses, that
is the memory and time consumption of Dynamic DVR and the static part of Hybrid DVR to see whether
the analyses actually pay off. In other words, the aim was to determine whether employing dead analyses of
heap data can broaden the set of Java programs that can be verified by JPF.

6.3. Results

All the experiments were run on a Linux machine with an Intel(R) Xeon(R) X5687 (3.60GHz) CPU and
192GB memory with the JPF filtering serializer. Tab. 4 and Tab. 5 summarize the results of the benchmarks.

In Tab. 4, the number of states and the running time (in the hour:min:sec format) for each type of DVR
is reported for each benchmark. The percentages are related to the values obtained by original JPF. We ran
each benchmark ten times and report the average run times. The standard deviation of JPF run times was
negligible with the average of 0.67% and maximum of 2.95%, which practically means few seconds in the
case of the most complex benchmarks. The information about memory (state space, vector sizes, etc.) were
constant across the runs. On average, Hybrid DVR yields a reduction of 12% in the verification time, while
using Dynamic DVR results in a 20% speed-up and a reduction of 30% in the number of states. Note that
the DeOS benchmark took in the case of Hybrid DVR five times longer to complete than in the original JPF
settings. This is due to static analysis performed at the beginning of the run, which, even though it reduced
the state space to 59%, did not pay off. Since the original state space consists of 625 states only, we do not
consider this case an issue.

Tab. 5 lists the information on memory consumption of the state matching using full state vectors. We
report the memory consumed solely by state matching 2 – we summed up the sizes of state vectors used
(they are all arrays of int). The default state matching in JPF stores only hashes of state vectors, thus its
memory requirements are negligible. In the table, both the absolute amount of memory and the percentage
reduction in the case of our analyses are presented. We also report reduction of the state vector size; the
reduction is smaller compared to reduction of the memory requirements, however, it is still significant. It is
caused by fewer program states being visited. The reduction of the vector size is larger for Dynamic DVR
than Hybrid DVR, because dynamic DVR is more precise.

We consider the vector shrinking particularly interesting. In the case of Hybrid DVR, memory consump-
tion is reduced to one third on average, both in terms of the total consumption and vector sizes, while the
memory consumption for Dynamic DVR is an order of magnitude lower.

An interesting example is the Alarm clock benchmark, where neither Hybrid nor Dynamic DVR reduce
the number of states, but the verification is faster (cf. Tab. 4). This shows that the overhead of our DVAs is

2 At the beginning, we used the -Xmx Java option to limit the maximal memory consumption of the Java process to estimate
the approximate amount of memory needed for each benchmark.

8. On Partial State Matching

110

24 Pavel Janč́ık, Jan Kofroň

low; the analyses identify dead parts of program states faster than the state matching processes these dead
parts (e.g., compute state hashes). In this particular case, the state vectors reduce to 20 and 12 per cent of
the original size for Hybrid and Dynamic DVR, respectively (cf. Tab 5). The main source of dead variables
is the System.properties object.

Hybrid DVR. In the case of Hybrid DVR, we present both the JPF runtime and the static phase dura-
tion. Typically, static analysis of live field takes less than five seconds (with a maximum of six seconds).
If the Java standard library uses introspection to create class instances of a dynamic class (i.e., it calls
Class.forName(*).newInstance()), it has a major impact on the static-analysis runtime. This is due to
processing a large number of classes from standard libraries. Since static analysis considers also the used
standard Java libraries, the whose size of processed Java bytecode is considerably larger than the size of the
verified benchmarks, this phase does not represent a bottleneck of our approach.

Dynamic DVR. Our dynamic analysis needs an additional amount of memory to store live addresses of
program states. This additional amount of memory is always required, independently of whether full state
vectors or only their hashes are used in state matching. In Tab. 5, we report the memory used to store
live addresses in the DVA memory column. On average, a single set of live addresses takes 910 bytes; the
consumed memory ranges from 256KB for DeOS, to 2.3GB for CoCoME. Since multiple states often have
the same set of live addresses (and differ only in the values at these addresses), the amount of memory
required to store them is one to two orders of magnitude less than the memory needed to store and match
full program states (instead of their hashes – JPF default). In Tab. 5, the column DVA size reports how
much additional memory per program state is needed to store DVA information; due to sharing of the live
addresses, the size is smaller than the average of 910 bytes.

6.4. Summary

The results of the benchmarks demonstrate that the contribution to performance in both the Hybrid and
Dynamic DVR cases is significant. Moreover, according to our experience with software model checking, the
most frequent reason why model checking fails is an insufficient amount of memory available, whereas the
runtime is usually acceptable (even though it can take up to several hours). Regarding this, we consider the
reduction in memory consumption when using our DVRs especially valuable.

Let us have a look at the aspects influencing the decision which analysis to choose for model checking
of a particular input. In general, Hybrid DVR usually pays off if the benchmark runtime takes just several
minutes. In this case, the speed up of the entire process is higher than the time required for the static
analysis phase. The only situations when HDVR would not be suitable (from the practical point of view)
is when many new (not implemented inside JPF) native methods are used. This requires creating models
for them in JPF first (this is not DVR specific) and then create models for static analysis itself (HDVR
specific), which represents a significant additional amount of work. The usefulness of dynamic DVR is hard
to predict in general, but we foresee some heuristics based on random state space search and sampling the
stack traces, which would provide an insight as to the DDVR benefits for a specific Java program (without
model checking it). In particular, the size the set of live addresses at particular stack-trace influences the
overall runtime in terms of number of comparisons when searching for an equivalent state.

It would be also useful to see the results if our techniques are combined with DVRs for local variables. We
have not implemented a combined analysis mainly for the following reasons: The corresponding techniques
are already known, so there would not be a scientific contribution in that. Next, the local DVRs only reduce
the state space, not the state vectors. Finally, it would not be clear what is the effect of the local DVRs and
what is the effect of the global (heap) ones’ reduction (turning on and off each of them would not give a
clear insight), but, on the other hand, we agree that it would show the practical contribution.

The selected benchmarks share some properties that, in general, might slightly bias the final observation
about their results. First of all, all of them are multi-threaded. Even though this seems to be more general
than including also single-threaded benchmarks, the (data) non-determinism appearing in single-threaded
programs may cause the reductions to work slightly worse or better. Another aspect of the benchmarks is
that their state spaces do not contain cycles. Unlike in the previous case, we do not expect programs with
cyclic state space to have significant impact on reduction, regardless of the way it is handled, i.e., simplified
or precise (see Sect. 5.1). Last aspect we would like to mention here is that we restricted ourselves, due

8. On Partial State Matching

111

On Partial State Matching 25

to implementation platform, to explicit model checking. In principle, there is no obstacle in applying our
reductions also in the context of symbolic model checking, but it is worth mentioning that a number of
technical details have to be addressed there.

7. Related work

In this section, we compare the presented DVRs to related approaches both in general and showing the
differences on our running example from Sect. 2.

Dynamic DVA. Let us continue with the example after exploring the S3 state. After state S3 is fully pro-
cessed, the model checker will backtrack the transition S2→ S3. The dynamic analysis uses the records stored
for this transition and it adds TreeNode@5.value among live variables; because this field is live in state S3
(i.e., in the target state of the transition) adding it has no effect and at the beginning of transition S2→ S3,
the live variables are the same as in S3, i.e., TreeNode@1.value, TreeNode@5.left, and TreeNode@5.value.
Because this is not the only outgoing transition from S2, the model checker has to explore also the transitions
where thread T2 is scheduled before thread T1 – transition S2 → S5. Using the same approach as before
it discovers that only TreeNode@1.value, TreeNode@5.left, and TreeNode@5.value are live at the begin-
ning of transition S2 → S5. To compute live variables for S2, our analysis merges the live variables at the
beginning of all outgoing transitions; the live variables again include TreeNode@1.value, TreeNode@5.left,
and TreeNode@5.value. Since the model checker has already explored all outgoing transitions from S2, it
backtracks transition S2→ S1 to state S1 and our analysis computes that at the beginning of the transition,
the live variables are again TreeNode@1.value, TreeNode@5.left, and TreeNode@5.value.

In [LJ06], Lewis et al. introduce DVA, which uses dynamic information obtained at runtime to improve
the precision of static analysis. Their analysis supports heap and interrupts; however, it lacks support for
multi-threaded programs. Once a state is reached, Lewis’s DVA spawns an additional forward simulation
to get a depth-limited knowledge about future behaviour of the state. The results from the simulation are
used in subsequent static analysis. In particular, the information of the simulation is used for elimination
of the edges in CFG that cannot be taken. Our approach differs from that of Lewis in three aspects: our
DDVA (i) has full knowledge about future behaviour, (ii) computes this information cheaply during state
space exploration, and (iii) is thus more precise. Consider Lewis’s DVA with a bound of two transitions.
In this case, the simulation also finds the trace S1 → S2 → S5 where both threads stop at the read of
TreeNode@5.value. Hence, using this bound, the analysis is not able to block the path in CFG that accesses
the TreeNode.right fields. In turn, Lewis’s analysis will imprecisely mark TreeNode.right fields in S1 as
live, in contrast to our dynamic analysis which correctly identifies these fields as dead and ignores their
values.

The DDVA introduced by Self and Mercer [SM07] is similar to our approach. Live addresses are computed
from observed reads and writes in the same way. The approaches differ in the way non-determinism is handled;
our DDVA explores all possible future executions from a state (i.e., all outgoing traces) and then merges their
live variables, while DDVA of [SM07] operates only on a single trace. It lacks knowledge about reads and
writes on other traces, hence, at non-deterministic (branching) states, it marks all the variables as live. In our
running example, both analyses get the same result for S3, however in S2, where a non-deterministic choice
is present, DDVA of [SM07] marks all fields as live in contrast to our analysis. The dynamic DVA in [SM07]
seems to be more reasonable for sequential programs, where it provides (some) dead variables even for states
which are not fully processed. However, our approach is better suited for multi-threaded programs, where
transitions are quite short (often only a few instructions), and where DDVA of [SM07] becomes considerably
less precise.

In the case of programs without non-determinism both methods equal and yield the DVA maximal
reduction [SM07], while in the other case, our approach provides more precise results (as shown above).
Moreover, for our Dynamic DVR, we also proved bisimulation between the original transition system and
the transition system over reduced states (without dead variables). However, in [SM07], their definition
permits additional transitions in DVA abstract state space which do not have pre-image transitions in the
full state space. From this point of view, it is obvious that the original state space and the corresponding
reduced one cannot be bisimilar.

8. On Partial State Matching

112

26 Pavel Janč́ık, Jan Kofroň

Hybrid DVA. Similar DVA focusing just on local variables is used in, e.g., the SPIN model checker [Hol04],
MURPHI [mur, YG04], and BANDERA [C+00]. To obtain complete results for global variables and static
fields, the effects of other threads need to be considered; in [BFG99], a control-graph – cross-product of all
locations of all threads is created and static DVA is done over this structure; for programs, this can be a
bottleneck. Each thread (its ICFG) is composed of a large number of locations, thus their cross-product can
be potentially of the same size as the state space, e.g., if values of variables are determined by the location as
in the classical Dining Philosophers problem. Moreover, the number of parallel threads can be unbounded,
and in such cases the approach of [BFG99] cannot be used at all.

To our best knowledge, the analysis presented in [BFG99] is the only (Static) DVA, which supports
concurrency and global variables. However, it does not support heap (instances), since it was designed for
verification of specification languages. In contrast to our Hybrid DVA, which uses cheap ICFG analysis, the
analysis of [BFG99] creates so called control graph – a cross-product of all possible locations in all threads,
whose size can be comparable to the one of the corresponding (full) state space. The live addresses are
computed by static analysis over the control graph, i.e., as the least fixpoint using reads and writes of the
actions. This implies that their analysis is expensive for multi-threaded programs, which have thousands of
locations (i.e., instructions) per thread.

8. Conclusion and future work

In this article, we presented two novel dead variable analyses, one purely dynamic, the other, hybrid, com-
bining static and dynamic analyses. Based on them, we designed dead variable reductions of the state space
for Java programs. We presented a proof of bisimulation between the original and reduced state spaces,
which allows us for establishing properties of the original program by means of analysis (model checking) of
the reduced state space. We have implemented our technique in Java PathFinder, an explicit-state software
model checker for Java programs. Using a large set of both real and academic programs, we demonstrated
the benefits of the proposed reduction in terms of both verification time and memory consumption.

As aforementioned, local variables are a target of other analyses and thus we do not focus on them. As
future work we envision a combination of dead variable reduction on the local and global level, i.e., involving
both local and heap variables. Also, as already mentioned, we plan to investigate the impact of a precise
dead variable analysis for loops, which, on the one hand, require both more time and memory to compute,
while on the other hand provides precise information about dead variables.

References

[A+06] Jǐŕı Adámek et al. Component Reliability Extensions for Fractal Component Model. http:
//d3s.mff.cuni.cz/software/ft/, 2006.

[B+04] Eric Bruneton et al. An open component model and its support in java. In Ivica Crnkovic,
Judith A. Stafford, Heinz W. Schmidt, and Kurt C. Wallnau, editors, CBSE, volume 3054 of
LNCS, pages 7–22. Springer, 2004.

[B+07] Lubomı́r Bulej et al. CoCoME in Fractal. In LNCS 5153, pages 357–387, 2007.

[BFG99] Marius Bozga, Jean-Claude Fernandez, and Lucian Ghirvu. State space reduction based on live
variables analysis. In Agostino Cortesi and Gilberto Filé, editors, Static Analysis, 6th Interna-
tional Symposium, SAS ’99, Venice, Italy, September 22-24, 1999, Proceedings, volume 1694 of
Lecture Notes in Computer Science, pages 164–178. Springer, 1999.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. The MIT Press, Cambridge,
Mass, 2008.

[C+00] James C. Corbett et al. Bandera: extracting finite-state models from java source code. In Carlo
Ghezzi, Mehdi Jazayeri, and Alexander L. Wolf, editors, Proceedings of the 22nd International
Conference on on Software Engineering, ICSE 2000, Limerick Ireland, June 4-11, 2000., pages
439–448. ACM, 2000.

[CTC] Concurrency Tool Comparison repository. https://facwiki.cs.byu.edu/vv-lab/index.php/
Concurrency_Tool_Comparison.

8. On Partial State Matching

113

On Partial State Matching 27

[Dil09] Bruno Dillenseger. Clif, a framework based on fractal for flexible, distributed load testing. Annals
of telecommunications - annales des télécommunications, 64(1):101–120, 2009.

[FBG03] Jean-Claude Fernandez, Marius Bozga, and Lucian Ghirvu. State space reduction based on live
variables analysis. Sci. Comput. Program., 47(2-3):203–220, 2003.

[Hol04] Gerard J. Holzmann. The SPIN Model Checker - primer and reference manual. Addison-Wesley,
2004.

[Huf52] David A. Huffman. A Method for the Construction of Minimum-Redundancy Codes. Proceedings
of the Institute of Radio Engineers, 9(40):1098–1101, September 1952.

[JK16] Pavel Janč́ık and Jan Kofroň. Dead variable analysis for multi-threaded heap manipulating
programs. In Proceedings of 31st ACM Symposium on Applied Computing. ACM, 2016.

[JPK12] Pavel Janč́ık, Pavel Paŕızek, and Jan Kofroň. BeJC: Checking Compliance Between Java Imple-
mentation and Behavior Specification. In Proceedings of the 17th International Doctoral Sym-
posium on Components and Architecture, WCOP ’12, pages 31–36, New York, NY, USA, 2012.
ACM.

[LJ06] Micah Lewis and Michael Jones. A dead variable analysis for explicit model checking. In John
Hatcliff and Frank Tip, editors, Proceedings of the 2006 ACM SIGPLAN Workshop on Partial
Evaluation and Semantics-based Program Manipulation, 2006, Charleston, South Carolina, USA,
January 9-10, 2006, pages 48–57. ACM, 2006.

[mur] MURPHI Model Checker. http://formalverification.cs.utah.edu/Murphi/.

[NR09] Viet Yen Nguyen and Theo C. Ruys. Proceedings of Tools and Algorithms for the Construction
and Analysis of Systems, chapter Memoised Garbage Collection for Software Model Checking,
pages 201–214. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[Pel93] Doron Peled. All from one, one for all: On model checking using representatives. In Proceedings
of the 5th International Conference on Computer Aided Verification, CAV ’93, pages 409–423,
London, UK, UK, 1993. Springer-Verlag.

[PJB] Parallel Java Benchmarks. https://bitbucket.org/pag-lab/pjbench.

[PL11] Pavel Paŕızek and Ondřej Lhoták. Identifying future field accesses in exhaustive state space traver-
sal. In Perry Alexander, Corina S. Pasareanu, and John G. Hosking, editors, 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2011), Lawrence, KS, USA,
November 6-10, 2011, pages 93–102. IEEE Computer Society, 2011.

[PL15] Pavel Paŕızek and Ondřej Lhoták. Model checking of concurrent programs with static analysis
of field accesses. Science of Computer Programming, 98, Part 4:735 – 763, 2015.

[rle] Run-length encoding. https://en.wikipedia.org/wiki/Run-length_encoding.

[SM07] Joel P. Self and Eric G. Mercer. On-the-fly dynamic dead variable analysis. In Dragan Bosnacki
and Stefan Edelkamp, editors, Model Checking Software, 14th International SPIN Workshop,
Berlin, Germany, July 1-3, 2007, Proceedings, volume 4595 of Lecture Notes in Computer Science,
pages 113–130. Springer, 2007.

[VHB+03] Willem Visser, Klaus Havelund, Guillaume P. Brat, Seungjoon Park, and Flavio Lerda. Model
checking programs. Autom. Softw. Eng., 10(2):203–232, 2003.

[YG04] Karen Yorav and Orna Grumberg. Static analysis for state-space reductions preserving temporal
logics. Formal Methods in System Design, 25(1):67–96, 2004.

8. On Partial State Matching

114

CHAPTER 9

Framework for Static Analysis of PHP Applications

Authors: David Hauzar and Jan Kofroň

[2] Proceedings of the 29th European Conference on Object-Oriented Programming
(ECOOP 2015),
DOI: 10.4230/LIPIcs.ECOOP.2015.68910.4230/LIPIcs.ECOOP.2015.689, Prague,
Czech Republic, July 2015

115

Framework for Static Analysis of PHP
Applications∗

David Hauzar and Jan Kofroň

Department of Distributed and Dependable Systems
Faculty of Mathematics and Physics
Charles University in Prague, Czech Republic

Abstract
Dynamic languages, such as PHP and JavaScript, are widespread and heavily used. They pro-

vide dynamic features such as dynamic type system, virtual and dynamic method calls, dynamic
includes, and built-in dynamic data structures. This makes it hard to create static analyses,
e.g., for automatic error discovery. Yet exploiting errors in such programs, especially in web
applications, can have significant impacts. In this paper, we present static analysis framework
for PHP, automatically resolving features common to dynamic languages and thus reducing the
complexity of defining new static analyses. In particular, the framework enables defining value
and heap analyses for dynamic languages independently and composing them automatically and
soundly. We used the framework to implement static taint analysis for finding security vulner-
abilities. The analysis has revealed previously unknown security problems in real application.
Comparing to existing state-of-the-art analysis tools for PHP, it has found more real problems
with a lower false-positive rate.

1998 ACM Subject Classification F.3.1

Keywords and phrases Static analysis, abstract interpretation, dynamic languages, PHP, secu-
rity

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2015.999

1 Introduction

To analyze programs precisely and soundly, static analysis needs to resolve method calls,
include statements, and accesses to data structures. Since in dynamic languages, targets of
method calls and include statements can depend on information about values (and types) of
expressions, value analysis tracking values of all primitive data types present in the language
needs to be performed. Moreover, due to frequent use of dynamic data structures such as
associative arrays and objects, value analysis needs to be combined with heap analysis. These
depend on each other also the other way round—since array indices and object properties
can be accessed using arbitrary expressions, heap analysis needs value analysis to evaluate
these expressions. This makes any end-user static analysis that takes this into account overly
complex.

In this paper we present a static analysis framework for languages with dynamic fea-
tures [10] based on abstract interpretation [1]. The framework automatically resolves dynamic
features and makes it possible to define static analyses without taking these features explicitly
into account.

∗ This work was partially supported by the Grant Agency of the Czech Republic project 14-11384S and
by the Joint Laboratory ProofInUse (ANR-13-LAB3-0007, http://www.spark-2014.org/proofinuse) of
the French national research organization.

© David Hauzar and Jan Kofroň;
licensed under Creative Commons License CC-BY

29th European Conference on Object-Oriented Programming (ECOOP’15).
Editor: John Tang Boyland; pp. 999–1021

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

9. Framework for Static Analysis of PHP Applications

116

1000 Framework for Static Analysis of PHP Applications

Lattice (L,v,t) (Bool, =⇒ ,∨)
Initial value init(v) true if v ∈ $_POST ∪ $_GET ∪ ...

false otherwise
Transfer function JLHS = RHSK var =

∨
r∈RHS

r if var ∈ LHS

var = var otherwise
JstK var = var if st is not assignment

Table 1 Propagation of tainted data.

In particular, our contributions include:
The architecture of the static analysis framework for dynamic languages and the way
dynamic features are automatically resolved.
Description of all necessary analyses that are needed to automatically resolve dynamic
features. We define value analysis that tracks values of all primitive data types of PHP.
We articulate our assumptions on heap analysis to take dynamic index and property
accesses into account—indices and properties are created when they are accessed for
the first time and accesses can be performed using arbitrary value expressions, yielding
statically unknown values.
Composition of all necessary analyses allowing to define these analyses independently.
Here the main challenge is defining the interplay of value analysis and heap analysis
taking dynamic features into account. The composition is sound; if the analyses being
composed are sound, the resulting analysis is sound as well.

2 Motivation

As a motivation example, consider static taint analysis, which is often used for security analysis
of web applications. It can be used for detection of security problems, e.g., vulnerability
of an application to SQL injection and cross-site scripting attacks. Static taint analysis
can be described as follows. The program point that reads user-input, session ids, cookies,
or any other data that can be manipulated by a potential attacker is called source, while
a program point that prints out data to a browser, queries a database, etc. is referred to
as sink. Data at a given program point are tainted if they can pass from a source to this
program point. Tainted data are sanitized if they are processed by a sanitization routine (e.g.,
htmlspecialchars in PHP) to remove potentially malicious parts. Program is vulnerable if
it contains a sink that uses data that are tainted and not sanitized.

Static taint analysis can be performed by computing the propagation of tainted data and
then checking whether tainted data can reach a sink. The specification of forward data-flow
analysis computing the propagation of tainted data is shown in Tab. 11. The analysis is
specified by the lattice of data-flow facts and lattice operators, the initial values of variables,
and the transfer function.

Consider now the code in Fig. 1. The code contains two vulnerabilities to XSS attack [7].
The first vulnerability corresponds to the call at line (25), the second vulnerability corresponds
to the call at line (26). In both cases the method show of Templ1 can be called (line (5)) with
the parameter $msg being tainted and going to the sink. Taint analysis defined using our
framework uses just the information in Tab. 1 and can still detect both vulnerabilities. This

1 For simplicity we omit the specification of sanitization.

9. Framework for Static Analysis of PHP Applications

117

D. Hauzar, J. Kofroň 1001

1 class Templ {
2 function log($msg) {...}
3 }
4 class Templ1 : Templ {
5 function show($msg) { sink($msg); }
6 }
7 class Templ2 : Templ {
8 function show($msg) { not_sink($msg); }
9 }

10 function initialize(&$users) {
11 $users[’admin’][’addr’] = get_admin_addr_from_db();
12 }
13 switch (DEBUG) {
14 case true: $mode = "log"; break;
15 default: $mode = "show";
16 }
17 switch ($_GET[’skin’]) {
18 case ’skin1’: $t = new Templ1(); break;
19 default: $t = new Templ2();
20 }
21 initialize($users);
22 $id = $_GET[’userId’];
23 $users[$id][’name’] = $_GET[’name’];
24 $users[$id][’addr’] = $_GET[’addr’];
25 $t−>$mode($users[$id][’name’]);
26 $t−>$mode($users[’admin’][’addr’]);

Figure 1 Running example

is possible only because the framework automatically resolves control flow and accesses to
built-in data structures. That is, the framework computes that the variable $t can point to
objects of types Templ1 and Templ2 and that the variable $mode can contain values "show"
and "log". Based on this information, it automatically resolves calls at lines (25) and (26).
As the framework automatically reads the data from and updates the data to associative
arrays and objects, tainted data written at line (23) are read at line (25). Moreover, at line
(24), the tainted data are automatically propagated to index $users[’admin’][’addr’]
defined at line (11). Consequently, the access of this index at line (26) reads this tainted
data.

3 Static Analysis Framework

The architecture of the framework is shown in Fig. 2. The analysis is split into two phases. In
the first phase, the framework computes control flow of the analyzed program together with
the shape of the heap and information about values of variables, array indices and object
properties and evaluates expressions used for accessing data. The control flow is captured
in the intermediate representation (IR), while the other information can be accessed using
the data representation. In the second phase, end-user analyses of the constructed IR are
performed.

Data representation allows accessing analysis states. In particular, it allows reading and
writing values, and modifying shape of data structures. Next, it performs join and widening
of analysis states and defines their partial order. Importantly, data representation defines
the interplay of heap, value, and declaration analyses allowing each analysis to define these
operations independently on other analyses.

The implementation of heap analysis tracks the shape of the heap and must provide

ECOOP’15

9. Framework for Static Analysis of PHP Applications

118

1002 Framework for Static Analysis of PHP Applications

PHP
parser

Static Analysis Framework

First phase
framework

End-user analysis
framework

Data representation
- heap domain
- value domain
- declaration domain

AST
IR

Output

Heap analysis

Figure 2 Architecture of the framework.

information that the value analysis needs to read values from data structures, update values
to data structures, and to join values stored in data structures.

The implementation of the first phase must provide information necessary for computing
control flow of the program and the information that the heap analysis needs to access data.
That is, it must define value analysis that tracks values of PHP primitive types, evaluates value
expressions modeling native operators, native functions, and implicit conversions. Next, the
implementation must define declaration analysis handling declarations of functions, classes,
and constants. Finally, it must compute targets of throw statements, include statements,
and function and method calls.

The implementations of end-user analyses define additional value analyses. In contrast
to value analysis for the first phase, which must track values of PHP primitive types,
end-user value analyses can use an arbitrary value domain. This is possible because (1)
control flow is already computed, (2) the shape of the heap is computed and dynamic data
accesses are resolved (i.e., value expressions specifying data accesses are evaluated). That
is, all information that the data representation needs to determine accessed variables, array
indices, and object properties is available. (3) Data representation combines heap, value, and
declaration analyses automatically.

3.1 Intermediate Representation
The intermediate representation (IR) of our analysis is a graph, in which each node contains
an instruction. There are two types of nodes in the graph—value nodes and non-value nodes.
Value nodes compute and store representation of values while non-value nodes perform other
actions. The graph has two types of edges. Flow edges represent potential control flow
between instructions of the program—they define ordering in which program instructions
can be executed. Value edges connect nodes that use values (e.g., operators) with nodes that
represent these values (e.g., operands).

Each node has associated an analysis state stored in data representation. The state is
modified by transfer function defined for the node and the resulting state is propagated to
successor nodes connected with flow edges. If a node has more predecessors the states of
predecessors are joined.

Note that transfer functions for most of the value nodes are defined as identity—they
do not modify the analysis state. That is, most of the value nodes just compute values
(e.g., evaluate expressions) or compute information that specify data access to values (e.g.,
compute possible names of variables that they represent). This information is stored in data
representation, but it is not a part of the analysis state and thus it is not propagated to
successor nodes. Instead, nodes that use these values (e.g. operator nodes) are connected
with value nodes (e.g. operands) using value edges. If an operand value is needed when

9. Framework for Static Analysis of PHP Applications

119

D. Hauzar, J. Kofroň 1003

evaluating the operator, the value edge is used to get the value from the operand.

Example 1: As an example, consider the intermediate representation corresponding
to the statement $$a=b($c). The statement assigns the value computed by function b to
a variable with the name given by the value of variable $a. The resulting intermediate
representation is depicted in Fig. 3. Note that the node corresponding to the assignment
instruction is connected using a value edge with the source of the assignment (the node
containing the value computed by the function b) and with the target of the assignment (the
node representing the assigned variable—$). Next, the latter node is connected using a value
edge with the node representing possible names of the assigned variable (node $a). 4

The nodes can be of different types. In the following, we denote value nodes by adding
superscript V ; for each node, its parameters are the value nodes that are connected with the
node using value edges:

variableV [nV]: represents a variable—stores the information necessary for accessing the
variable in data representation. The parameter nV is the value node that represents the
name of the variable. Note that reading nV yields an arbitrary value from the abstract
string domain and can thus represent more concrete string values—names. Consequently,
the variable node can represent more concrete variables.

property-useV [oV , fV], index-useV [aV , iV]: property-useV stores the information for ac-
cessing a property of the given object. Parameter oV is the value node storing the
representation of the object and fV is the value node storing the name of the property.
Again, reading oV and fV yields abstract values and the property-useV node can get
representation of more properties. The index-useV is similar and it is used for accessing
arrays.

assignV [lV , rV]: represents the assignment of the right operand rV to the left operand lV
and stores the information for accessing this value. While the parameter lV is a value
node whose type can be variable, property-use, and item-use, the parameter rV is an
arbitrary value node.

aliasV [lV , rV]: represents the alias statement. The alias statement is similar to the assign-
ment statement. However, besides performing the assignment, the alias statement creates
explicit alias between its parameters and both parameters of the alias statement must be
variables, object properties, or array indices.

expressionV [e, oV
1 , ..., o

V
n]: represents the expression e with operands oV

1 , ..., o
V
n . It stores

the representation of the result.
assume[c]: represents assumption implied, e.g., by if and while statements. It indicates
whether the condition c is satisfiable. If the condition is unsatisfiable, the flow is not
propagated to descendant nodes. If the condition is satisfiable, the analysis state is refined
according to the condition and then propagated to descendant nodes.

constant-declaration[d]: represents declaration of a constant.
function-declaration[d]: represents declaration of a function.
class-declaration[d]: represents declaration of a class.
callV [nV , oV , a], constructV [nV , a]: represents a call of a function whose name is specified

using the value node nV on an object specified using the value node oV with arguments
specified using a list of value nodes a. The constructV nodes are similar to callV nodes
and are used for new expressions. Note that reading nV , oV , and elements of a yields
abstract values that can represent more concrete values.

ECOOP’15

9. Framework for Static Analysis of PHP Applications

120

1004 Framework for Static Analysis of PHP Applications

return[eV]: represents a return from a function. eV represents the value of a return
expression.

include[pV]: represents the inclusion of the script given by the path specified by the value
node pV . Again, a path can represent more concrete values.

eval[cV]: evaluates the code fragment specified by value node cV .
native-methoda[]: represents execution of a native method or a native function with argu-

ments specified using a list of value nodes a.
extension[f, a]: is used to dynamically extend the control from IR node f . This is necessary
when the information needed to determine the control flow from the node is computed by
the analysis. This is the case of calls to functions, methods and constructors, and the
include and eval statements. During analysis, for each dynamically discovered control
flow from the node, a single extension node is added. Parameter f is the node that is
extended. Parameter a is used in the cases that the control flow is extended because
of a function, method, and constructor call and it is a list of value nodes representing
parameters of the call.

extension-sink[n]: represents a join point of all the extensions of node n.
try-scope-start[c] and try-scope-end[c] represent the start and the end of a try block.

Parameter c represents catch blocks associated with the try block.
throw[vV]: represents the throw statement. Parameter vV is the node representing the
value to be thrown.

catch[vV]: represents a catch block. It contains a node representing the first node of the
catch block as a flow child. Parameter vV is the node representing the value to be thrown.

$c b() $a $ =

Figure 3 Intermediate representation of the statement $$a=b($c). Solid edges are flow edges,
dashed edges are value edges.

3.2 Building IR
To determine control flow of the analyzed application, the information from value analysis is
needed. Thus, the IR is built gradually during the analysis.

Initially, IR for the entry script of the application (typically index.php) is built. This
IR contains caller nodes—the nodes corresponding to function, method, and constructor
calls, script inclusions, and eval statements. Since at this point, the information needed
to compute control flow from these nodes is not yet available, the control flow is initially
directed to the nodes that follow the calls.

The control flow is then extended during static analysis. When processing a caller
node, the analysis framework provides the first phase implementation with all information
already computed by the analysis that is relevant to determine the control flow. Using this
information, the first phase implementation finds appropriate function or method definitions
or scripts to be included, and it computes IRs representing their control flow. The first phase
implementation can build new IRs or use existing IRs, which are then shared among multiple
caller nodes. This way, the first phase implementation can control context sensitivity. Finally,
the control flow of the caller nodes is extended with computed IRs.

9. Framework for Static Analysis of PHP Applications

121

D. Hauzar, J. Kofroň 1005

IRs are not connected to caller nodes directly—extension node is inserted between each
caller node and the entry node of the connected IR and extension-sink node is inserted
between each final node of the IR and the node following the call. While an extension node
binds actual parameters to formal parameters for function, method, and constructor calls, an
extension-sink joins states of final nodes of all the IRs that extend the corresponding caller
node.

Before call

After call

Caller node

Before call

After call

Caller node

extension extension

IR 1 IR 2

extension-sink

Before call

After call

Caller node

extension extension

IR

extension-sink

Before call

Caller node

After call

extension-sink

A B C

Figure 4 Building IR. Initial IR—the control flow of the caller node has not yet been extended
(A). IR after processing the caller node during static analysis. The control flow of the caller node is
extended with two IRs—IR 1 and IR 2 (B). Single IR shared between multiple caller nodes (C).

Example 2: Fig. 4-A shows IR after it is initially built. Fig. 4-B shows IR after extending
the caller node during the analysis. In this case, the caller is extended with more IRs—this
can happen, e.g., if a method is called on an object that can be of more types. Fig. 4-C
shows the case when a single IR is shared by multiple callers. 4

3.3 Analysis Domain
The states of our abstract domain have the form of State = H × V × F where H is a state
of the heap analysis, V is a state of the value analysis, and F is a state of the declaration
analysis. The heap analysis tracks the shape of the heap and approximates concrete heap
locations with heap identifiers (HId), while the value analysis tracks values on heap identifiers.
While the heap analysis and value analysis need to interplay, the declaration analysis is
independent from both.

Declaration Analysis
Declaration analysis is necessary, because in PHP and other dynamic languages, the names
of functions, classes, and constants are bound to concrete definitions during runtime. The
analysis thus needs to track these definitions. A state of a declaration analysis F is a set of
class, function, and constant declarations and lattice operators of the analysis are 〈F ,⊆,∪,∩〉.

Example 3:
Consider the following PHP code:

ECOOP’15

9. Framework for Static Analysis of PHP Applications

122

1006 Framework for Static Analysis of PHP Applications

1 if ($_GET[1]) {
2 class A {
3 public $a = 2;
4 function f($p) { return $p + 1;}
5 }
6 } else {
7 class A {
8 public $a = −1;
9 function f($p) { return $p − 1;}

10 }
11 }
12 $x = new A();
13 $y = $x−>f($x−>a); // $y can be −2, 0, 1, 3

Since the condition at line (1) is statically unknown, the declaration analysis computes
that both declarations of class A can be used at line (12). Consequently, the call at line
(13) can be done with two possible arguments and has two possible callees resulting in four
possible results. 4

Heap Analysis
In PHP and other dynamic languages, variables as well as array indices and object properties
need not be declared and can be accessed with arbitrary expressions, which can yield statically
unknown values. If a specified variable, index, or object property exists, it is overwritten; if
not, it is created.

To be able to capture this semantics, the heap analysis approximates arrays, objects,
array indices, object fields, and even variables2 with heap identifiers and the heap analysis
can create new heap identifiers both during assignment and join operation. Whenever a
new heap identifier is created, it is initialized with an existing heap identifier that stores
values from statically unknown assignments to the new identifier that could happen before
the creation.

Creation of new heap identifiers corresponds to materialization in shape analysis [20].
The summary heap identifiers summarize all the heap elements that could be updated by
statically unknown assignments and have not been materialized yet3. When there is a need to
distinguish a heap element from other heap elements summarized by the same summary heap
identifier, a new heap identifier is materialized from the summary identifier. This happens,
e.g., when an array index is assigned for the first time with a statically known target. In
this case, the array index is approximated by the summary heap identifier representing all
indices that could be updated only by statically unknown assignments in the pre-state and
by the newly materialized heap identifier in the post-state. Materializations are defined as a
set of pairs of heap identifiers Mat = P(HId×HId). The meaning of a single materialization
is that the first heap identifier from the pair is materialized from the second, summary heap
identifier.

Note that materialization makes the naming scheme of the heap analysis flow-dependent—
depending on the program location, a concrete heap element can be approximated by different
heap identifiers. This makes an interplay of the heap analysis and the value analysis more
challenging. Since the value analysis tracks values on heap identifiers, materializations, which
change the naming scheme, need to be applied also to value analysis. Later, we define this

2 Variables are treated as indices of a special associative array representing the symbol table.
3 Heap elements that have not been assigned by any assignment are summarized by a special heap

identifier uninit.

9. Framework for Static Analysis of PHP Applications

123

D. Hauzar, J. Kofroň 1007

application using the standard abstract interpretation interface of the value analysis. This
makes it possible to update the state of the value analysis automatically, without modifying
the value analysis ad-hoc. That is, any value analysis that complies with the standard
abstract interpretation interface can be used.

Root

users

users

?

?

users-?

name ?

id

admin

users-admin

?addr

Heap id Value

id {AnyString}

? {UndefString}

Users-admin-addr {admin}

Users-admin-? {UndefString}

Users-?-name {UndefString, AnyString}

Users-?-? {UndefString}

uninit {UndefString}

HeapValue

uninit

Figure 5 The heap and string part of the value component of the state after the update at line
23 in Fig. 1.

Example 4: Fig. 5 shows the heap and value component of the analysis state after the
update at line 23 in Fig. 1. In the following, we use the heap domain developed in [11] and
the set domain as a value domain. Note that the value domain tracks values just over these
heap identifiers that can contain values. Other heap identifiers are present only in the heap
domain.

The heap component of the state contains heap identifier Root representing the array
corresponding to the symbol table and heap identifier uninit representing the uninitialized
heap elements. The symbol table array contains three heap identifiers (id, users, and ?),
which represent program variables ($id and $users) and statically unknown variables. For
heap identifier id, value analysis tracks the value AnyString, while heap identifier users is
present only in the heap domain and points to another array. Heap identifier users-admin
represents index $users[admin], while heap identifier users-? represents statically unknown
indices of array $users. Both heap identifiers represent arrays corresponding to the next
dimensions of array $users. Finally, heap identifiers users-admin-addr, users-admin-name,
users-admin-?, users-?-name, and users-?-? represent indices of these arrays. Since
these heap identifiers store values, they are tracked by the value analysis. 4

We assume that heap analysis is provided with lattice operators 〈H,vH ,tH ,uH〉. Oper-
ator vH specifies a partial order, tH is the join operator, and uH is the meet operator. The
semantics of heap analysis is given by transfer function J·KH : H 7→ H.

Moreover, we assume that the heap analysis provides function read : AE 7→ P(HId) for
reading data from the heap. The function returns a set of heap identifiers identified by
given access expression. Access expression is obtained from IR nodes of type variableV ,
property-useV , and index-useV . In the case of variableV , access expression is just the set
of values, in the case of property-useV , and index-useV , it is a sequence of sets of values.
Each set from the sequence contains values that can be used to access the corresponding
dimension of an array or the corresponding object in the object reference chain. That is,
access expressions can represent multi-dimensional updates. This is necessary in order to
model semantics of non-decomposable multi-dimensional updates [11].

ECOOP’15

9. Framework for Static Analysis of PHP Applications

124

1008 Framework for Static Analysis of PHP Applications

Example 5: Consider reading the values stored at index $users[10][’name’] from
the state depicted in Fig. 5. The access expression for the index is {users} {10} {′name′}.
Calling the read function provided by the heap component with this access expression as
argument returns the heap identifier users-?-name. This heap identifier is then used to get
the resulting values from the value domain. The value domain returns values UndefString
and AnyString meaning that the index $users[10][’name’] can be uninitialized and can
contain statically unknown string value.

Similarly, when reading the index $users[$_GET[1]][’name’], the access expression is
{users}{∗}{′name′}, the read function returns heap identifiers users-?-name and users-
admin-name, and the subsequent call to the value domain returns values UndefString,
AnyString, and ’addr’. 4

We additionally assume that the heap analysis provides function joinToValue : H ×H 7→
Mat×Mat. This function takes the heap parts of analysis states to be joined as arguments
and for each joined analysis state, it returns materializations of the heap identifiers created
when performing the join operation.

Finally, we assume that heap analysis provides function assignToValue : H × AE 7→
Mat× P(HId)× P(HId). This function takes an analysis state before the assignment and
the access expression identifying the target of the expression as arguments and returns a
triple: (i) materializations of heap identifiers created when performing the assignment, (ii)
the heap identifiers representing heap elements that certainly must be updated, and (iii) the
heap identifiers representing heap elements that only may be updated.

Value Analysis
The states of the value analysis have a form of V = V1 × V2 where V1 is a state of the value
analysis in the first phase and V2 is a state of the value analysis in the second phase (end-user
analysis). The first phase of the analysis modifies the first component of the state V1, the
second phase of the analysis modifies the second component of the state V2.

The user of the framework can define both the value analysis in the first phase and
the value analysis in the second phase. However, since values that are used to compute
control-flow and targets of data accesses are computed in the first phase, the user is more
constrained in the first phase.

Second phase

The domain for the second phase tracks information over heap identifiers and it is provided
with lattice operators 〈V2,vV2

,tV2
,uV2

〉, transfer function J·KV2
: V2 7→ V2, and widening

operator OV2
.

First phase

In the first phase, the value analysis tracks values of PHP primitive types over heap identifiers:

V1 = HId 7→ Value1

Value1 = Undef×Null× Bool×Num× String

Since PHP has dynamic type system—variables, array indices, and object properties do
not have declared types, and they can store values of different types depending on context—,
Value1 can store values of all primitive types.

9. Framework for Static Analysis of PHP Applications

125

D. Hauzar, J. Kofroň 1009

To define the value analysis of the first phase, the user of the framework must for
each component C of Value1 provide the framework with lattice operators 〈C,vC ,tC ,uC〉,
transfer function J·KC : C 7→ C, and widening operator OC . The lattice operators for Value1
are defined component-wise. Moreover, for each pair (C1, C2) of components of Value1,
functions ConvC1C2

: C1 7→ C2 and ConvC2C1
: C2 7→ C1 must be provided. These functions

are used to model type conversions, which are ubiquitous in dynamic languages.
It should be noted that even though value analysis in the first phase is defined indepen-

dently of heap analysis, which simplifies its definition, intricate value semantics of PHP makes
the definition inherently complex. The framework thus provides default implementations of
all components of Value1 including transition functions for PHP native operators and library
functions. For the default implementation of the numeric component, we used the interval
domain. For the default implementation of the string component, we used the domain based
on sets of strings. Its lattice structure is 〈P(String),⊆〉 where String are concrete strings.
To make the height of the lattice finite and thus guarantee termination, the size of sets is
limited by a constant; value AnyString represents the sets of larger sizes.

Example 6: This example illustrates the states of Value1 with the default implementa-
tion of its components.

The abstract value (⊥,⊥,AnyBool,⊥,⊥) represents concrete values true and false of
type Boolean, the abstract value (undef,⊥,⊥, true, {"foo", "bar"}) represents the following
concrete values: uninitialized value, the Boolean true, the string "foo", and the string
"bar". 4

3.4 Lattice Order and Meet

The lattice order vState and meet operator uState for analysis states are defined component-
wise:

(h1, v1, f1) vstate (h2, v2, f2) ⇐⇒ h1 vH h2 ∧ v1 vV v2 ∧ f1 ⊆ f2

(h1, v1, f1) ustate (h2, v2, f2) = (h1 uH h2, v1 uV v2, f1 ∩ f2)

3.5 Applying Materializations to Value Analysis

Materializations allow the heap analysis to create new heap identifiers during the assignment
and join operations. As discussed in Sect. 3.3, materializations change the naming scheme of
the heap analysis; since value analysis tracks values of heap identifiers, these changes must
be applied also to the value domain. This is carried out by function applyMaterializations :
(V ×Mat) 7→ V that applies materializations to a state of the value analysis:

applyMaterializations(v,M) = vn where M = {(t1, s1), (t2, s2), ..., (tn, sn)},
v0 = v,∀j ∈ [1..n] : vj = Jtj = sjKV (vj−1)

ECOOP’15

9. Framework for Static Analysis of PHP Applications

126

1010 Framework for Static Analysis of PHP Applications

3.6 Join and Widening
The join of two facts is defined as the set of all facts that are implied independently by any.
The join and widening of two states (h1, v1, f1) and (h2, v2, f2) are defined as follows:

(h1, v1, f1) tstate (h2, v2, f2) = (h1 tH h2, v′1 tV v′2, f1 ∪ f2)
(h1, v1)Ostate(h2, v2) = (h1 tH h2, v′1OV v

′
2, f1 ∪ f2)

(m1,m2) = joinToValue(h1, h2)
v′1 = applyMaterializations(v1,m1)
v′2 = applyMaterializations(v2,m2)

The declaration and heap parts of input states are joined independently on other parts.
To perform the join of value parts, heap analysis provides value analysis with materializations
of heap identifiers in each joined state. Then, the materializations are applied to the value
components of joined states and finally, the updated value parts are joined. Note that the
latter two operations are done just by means of standard abstract interpretation interface
provided by value analysis.

Example 7: Fig. 6 shows joining value and heap components of two states (v1, h1) and
(v2, h2). For brevity we omit declaration components.

First, the heap components of analysis states are joined. For the first state to be
joined, heap analysis materializes heap identifiers arr-1-3, arr-1-?, and arr-?-? from
the heap identifier uninit representing undefined heap identifier. That is, there were no
statically-unknown assignments that could update the materialized identifiers. Application
of materializations to the value component of the first analysis state to be joined thus just
adds the materialized identifiers and initializes them with value UndefString.

For the second state, heap analysis materializes heap identifiers arr-1-?, arr-1-2, and
arr-1-3. Since there was statically-unknown assignment that could update the latter
identifier, this identifier is materialized from the identifier arr-?-3 representing the target of
this statically-unknown assignment. Application of materializations to the value component
of the second analysis state to be joined thus initializes the identifier arr-1-3 with values
UndefString and ’second’.

Finally, the value components of analysis states after applying materializations v′1 and
v′2 have the same set of heap identifiers and can be joined independently on the heap
components. 4

3.7 Transfer Functions
For each kind of node in the intermediate representation, a transfer function maps an abstract
state before the node to an abstract state after the node.

We describe the transfer function for the node assignV [lV , rV], where both parameters
lV and rV are nodes of type variableV , property-useV , or index-useV . Each of these nodes
allows getting an access expression, which provides heap analysis information necessary
for accessing heap identifiers representing heap locations stored in the node. The access
expression for the left-hand side of the assignment lV is lV .AE, the access expression for the
right-hand side of the assignment rV is rV .AE.

To define the transfer function, we first define function strongUpdate : V × P(HId) ×
P(HId) 7→ V . The first parameter is a state of value analysis that is being updated, the

9. Framework for Static Analysis of PHP Applications

127

D. Hauzar, J. Kofroň 1011

Root

arr

arr

?

?

arr-1

?

1

2

Heap id Value

arr-1-2 {first}

𝒗𝟏 𝒉𝟏

Heap id Value

arr-?-3 {UndefString,
second}

Root

arr

arr

?

?

arr-?

?3

Heap id Value

arr-1-2 {first}

Heap id Value

arr-?-3 {UndefString, second}

arr-1-3 {UndefString, second}

applyMaterializations
[𝑎𝑟𝑟 − 1 − 3 = 𝑢𝑛𝑖𝑛𝑖𝑡]𝑣 𝑣1
[𝑎𝑟𝑟 − 1−?= 𝑢𝑛𝑖𝑛𝑖𝑡]𝑣 𝑣1
[𝑎𝑟𝑟−?−?= 𝑢𝑛𝑖𝑛𝑖𝑡]𝑣 𝑣1

applyMaterializations
[𝑎𝑟𝑟 − 1 − 2 = 𝑢𝑛𝑖𝑛𝑖𝑡]𝑣 𝑣2
[𝑎𝑟𝑟 − 1 − 3 = 𝑎𝑟𝑟−?−3]𝑣 𝑣2
[𝑎𝑟𝑟 − 1−?= 𝑢𝑛𝑖𝑛𝑖𝑡]𝑣 𝑣2

Root

arr

arr

?

?

arr-1

?

1

2

𝒗′𝟏 ⊔ 𝑽 𝒗′𝟐 𝒉𝟏 ⊔𝑯 𝒉𝟐

3

arr-?

?3

Heap id Value

arr-?-3 {UndefString, second}

arr-1-2 {UndefString, first}

arr-1-3 {UndefString, second}

Join

if ($_GET[1]) $arr[1][2] = ‘first‘; // (𝑣1, ℎ1)

else $arr[$_GET[1]][3] = ‘second‘; //(𝑣2, ℎ2)

A

B

C

D

𝒗𝟐 𝒉𝟐

𝒗′𝟏 𝒗′𝟐

Uninit Uninit

Uninit

Figure 6 Joining value and heap components of two states (v1, h1) and (v2, h2). The corresponding
code (A), value and heap components of joined states (B), applying materializations to value
components of states to be joined (C), result of the join (D). For the sake of space, the heap
identifiers that have just value UndefString are not depicted in value components.

second parameter is the set of heap identifiers that are updated, and the last parameter is
the set of heap identifiers representing new values:

strongUpdate(v, T, S) = vn where T = {t1, t2, ..., tn}, v0 = v

∀j ∈ [1..n] : vj =
⊔

s∈S

Jtj = sKV (vj−1)

Next, we define function weakUpdate : V × P(HId)× P(HId) 7→ V :

weakUpdate(v, T, S) =
⊔

t∈T,s∈S

v tV Jt = sKV (v)

While after strong update, heap identifiers can have just new values, after weak update,
they either can have the original values or the new ones [18]. This effect is approximated by
joining the analysis state before the update with the analysis state after the update.

ECOOP’15

9. Framework for Static Analysis of PHP Applications

128

1012 Framework for Static Analysis of PHP Applications

The transfer function for updating the state (h, v) with assignV [lV , rV] is defined as:

JassignV [lV , rV]Kstate(h, v, f) = (JlV .AE = rV .AEKH(h), v′′′, f)
(m,umust, umay) = assignToValue(h, lV .AE)
v′ = applyMaterializations(v,m)
v′′ = strongUpdate(v′, umust, read(h, rV .AE))
v′′′ = weakUpdate(v′′, umay, read(h, rV .AE))

The transfer function for the heap part of the state is defined by the heap domain itself,
and it is not influenced by the value domain. To define the transfer function for the value
part of the state, the heap domain provides the value domain with necessary information
via function assignToValue. This information consists of: (1) m—information necessary
to materialize the heap identifiers that were defined by the assignment (2) heap identifiers
representing the heap elements that are certainly targets of the assignment, and (3) heap
identifiers representing the heap elements that may be targets of the assignment.

Then, the materializations are applied to the value domain. Finally, the heap identifiers
that are certainly targets of the assignment are strongly updated with values of the heap
identifiers read from the right-hand side of the assignment, and the heap identifiers that only
may be targets of the assignment are weakly updated. The same way as in the case of the
join operation, all these updates are performed just by means of the transfer function for the
assignment provided by value analysis.

Example 8: Fig. 7 illustrates the transition function for the assignment at line 24
in Fig. 1 ($users[$id][’addr’] = $_GET[’addr’]). First, the access expressions for the
source and the target of the assignment are obtained from the corresponding IR nodes. For
the source of the assignment, the access expression is {_GET}{addr}, for the target of the
assignment, the access expression is {users}{AnyString}{addr}. Note that in the latter
case, the value for the second dimension of the access is specified by the variable $id.

Second, the access expressions are used to specify the update. During the update, the
heap component materializes the heap identifier users-?-addr and this change is propagated
to the value component via the function applyMaterializations. Note that since there have
not been any statically unknown assignments that could update this heap identifier, it is
materialized from the identifier uninit representing undefined values. That is, the identifier
users-?-addr is added to the value component and initialized with UndefString.

Finally, the heap component specifies that identifiers users-?-addr and users-ad-
min-addr are weakly updated and the update is propagated to the value component. Since the
target of the assignment is not statically known, no heap identifiers are strongly updated. 4

3.8 Summary Heap Identifiers
Value analyses are designed to track information on local variables, while we use them to
track information on heap identifiers, which can represent many concrete heap locations—
summary identifiers [9]. For an example of summary identifiers, consider heap identifiers
representing targets of statically unknown assignments and heap identifiers representing a
single allocation-site in that many concrete heap locations can be allocated. While value
analysis can treat heap identifiers that represent a single heap location exactly the same
way as local variables, for summary identifiers, it must take into account that they represent
more heap locations.

9. Framework for Static Analysis of PHP Applications

129

D. Hauzar, J. Kofroň 1013

Root

users
users

?
?

users-?

name ?

id

admin

users-admin

?addr

Root

users
users

?

?

users-?

name ?

id

admin

users-admin

?addr

Heap id Value

id {AnyString}

_GET-? {AnyString}

users-admin-addr {admin}

users-?-name {UndefString, AnyString}

$users[$id][‘addr’] = $_GET[‘addr’]

_GET

_GET

?

Heap id Value

id {AnyString}

_GET-? {AnyString}

users-admin-addr {admin}

users-?-name {UndefString, AnyString}

weakUpdate

[𝑢𝑠𝑒𝑟𝑠−?−𝑎𝑑𝑑𝑟 = 𝐺𝐸𝑇−?]𝑣 𝑣′ ⊔𝒗
 𝑣′

[𝑢𝑠𝑒𝑟𝑠 − 𝑎𝑑𝑚𝑖𝑛 − 𝑎𝑑𝑑𝑟 = 𝐺𝐸𝑇−?]𝑣(𝑣′) ⊔𝒗
 𝑣′

Heap id Value

id {AnyString}

_GET-? {AnyString}

users-admin-addr {admin, AnyValue}

users-admin-? {UndefString, AnyValue}

users-?-name {UndefString, AnyString}

applyMaterializations
[𝑢𝑠𝑒𝑟𝑠−?−𝑎𝑑𝑑𝑟 = 𝑢𝑛𝑖𝑛𝑖𝑡]𝑣 𝑣

addr

 𝒗 𝒉

 𝒗′

𝒗′′

A

B

C

D

𝑢𝑠𝑒𝑟𝑠 𝐴𝑛𝑦𝑆𝑡𝑟𝑖𝑛𝑔 {′𝑎𝑑𝑑𝑟′ =

𝐺𝐸𝑇 {′𝑎𝑑𝑑𝑟′}]𝑣(ℎ)

Uninit

Uninit

Figure 7 Transfer function for the assignment. The code of the assignment (A). The value and
the heap component (v, h) of the state before the assignment (B). Applying materialization of the
identifier users-?-addr to the value component of the state (C). The value component v′′ and the
heap component of the state after the assignment (D). For the sake of space, the heap identifiers
that have just value UndefString are not depicted in value components.

First, summary heap identifiers must be always weakly updated. In our framework, heap
analysis has to take this into account in function assignToValue, which defines identifiers
that are weakly and strongly updated by the assignment. This is enough for non-relational
value domains—these value domains can otherwise treat summary heap identifiers the same
way as local variables.

However, in the case of relational value domains, it is additionally necessary to treat
differently assignments from summary heap identifiers. Consider the code:
1 $a = $users[$_GET[1]];
2 $b = $users[$_GET[2]];
3 if ($a != $b) {...}

Our heap analysis represents both $users[$_GET[1]] and $users[$_GET [2]] by the same
summary heap identifier users-?. Our technique would thus abstract the semantics of
assignment at line (1) as Ja = users−?KV and the semantics of assignment at line (2) as
Jb = users−?KV . If v werte a relational domain, the analysis would relate both identifiers a

ECOOP’15

9. Framework for Static Analysis of PHP Applications

130

1014 Framework for Static Analysis of PHP Applications

and b with the summary identifier users-? and incorrectly infer that the if-then branch
can never be reached. This problem was studied by Gopan [9] et. al., who showed that it is
wrong to correlate summarized identifiers with non-summarized ones and they proposed a
way to extend existing relational domains to deal with this problem.

In our framework, the value domain in the first phase is non-relational and all value
domains for end-user analyses that we have implemented so far are also non-relational. To
use relational value analyses, these analyses need to be extended to summary dimensions
as described by Gopan [9] and the heap analysis has to additionally provide the framework
with the information which heap identifiers are summaries.

3.9 Soundness
Our analysis framework allows for defining sound analyses. If the semantics of heap analysis,
the semantics of value analysis, and the semantics of declaration analysis plugged into our
framework are sound, the semantics of the resulting composed analysis is sound as well. In
the following, we will state the fundamental assumptions on value and heap analyses4. The
traditional soundness argument in abstract interpretation is:

I Definition 1 (Soundness of analysis semantics). Given a set of abstract states S, abstract
semantics J·KS , a set of concrete states S, concrete semantics J·KS , and concretization function
γ : S 7→ P(S), the abstract semantics J·KS is sound with respect to the concrete semantics
J·KS iff for each statement st and analysis state s ∈ S it holds:

(JstKS(s) = s′ ∧ JstKS(γ(s)) = s′) =⇒ s′ ⊆ γ(s′)

Hence, to prove the soundness of the analysis semantics, it is necessary to define the
structure of concrete states, their semantics, concretization function, and then prove that it
satisfies proposition of Def. 1.

The soundness argument is based on the assumption that the heap semantics and the
value semantics are sound. While for the value semantics, the soundness can be specified
just using Def. 1 and we can thus use any sound value analysis in our framework, for the
heap semantics, we must pose further assumptions.

First, we assume that function read provided by heap analysis complies with the semantics
of concrete dereferencing. That is, for each abstract state and each access expression, the
heap identifiers returned by function read must represent all concrete locations given by
dereferencing using the access expression in all the concretizations of the abstract state.

Next, we assume that the updates given by semantics function assignToValue are sound
with respect to the semantics of concrete dereferencing. That is, for the left hand site of
assignment, the heap identifiers representing updates given by function assignToValue and
an access expression in an abstract state must represent all concrete heap locations R given
by dereferencing using the access expression in all the concretizations of the abstract state.
Moreover, all the heap identifiers that are in the strong-update set (umust) must exactly
represent all the heap locations in set R and all the other heap identifiers that represent the
sets of heap locations with non-empty intersection with R must be in the may-update set
(umay).

Finally, we assume that the materializations produced by heap analysis are coherent
with respect to the modifications of heap analysis. That is, (1) in the post-state, the heap

4 We will omit the declaration analysis. It needs not interplay with the other analyses and can be treated
completely separately.

9. Framework for Static Analysis of PHP Applications

131

D. Hauzar, J. Kofroň 1015

identifiers that are not sources of materializations must represent the same concrete heap
locations as in the pre-state, (2) for each heap identifier that is materialized and its source it
must hold that in the post-state each of them represents the subset of the heap locations
represented by the source of the materialization in the pre-state, and (3) in the post-state
both heap identifiers together must represent all the heap locations represented by the source
of the materialization in the pre-state.

Note that we do not require different heap identifiers to represent non-overlapping
portions of concrete heap. That is, there can exist two different heap identifiers with
overlapping concretizations, i.e., there exists a concrete heap location approximated by both
heap identifiers. This allows using heap analyses modeling the semantics of assignment
by reference more precisely [11]. Consider, e.g., the statement $a = &$b. In the concrete
semantics, the statement makes $a and $b pointing to the same heap location. We allow
heap analysis to model this concrete location by more heap identifiers with overlapping
concretizations—e.g., heap identifier i1 for variable $a and heap identifier i2 for variable
$b. To be sound, heap analysis must update these heap identifiers coherently—e.g., if heap
identifier i1 is updated, heap identifier i2 is updated as well. This is guaranteed by the
soundness of updates stated above. Heap identifiers with overlapping concretizations can
enable more strong updates. Consider the following example:
1 if ($_GET[’INPUT’]) $a = &$b;
2 else $a = &$c;
3 $a = 1;

There are two concrete heap locations in this example. If heap analysis uses less than
three heap identifiers to represent these concrete locations, it must perform weak update at
line 3. In case of three heap identifiers, their concretizations must overlap; it allows heap
analysis to perform strong update on the heap identifier for $a and weak updates of those
for $b and $c.

4 Evaluation

To evaluate the precision and scalability of our framework, we used it to implement static
taint analysis and we applied it to the NOCC webmail client5 and a benchmark application
comprising of a fragment of the myBloggie weblog system6, with a total of over 16 kLoC.
The benchmark application contains 13 security problems; the number of problems contained
in the webmail client is not known.

We compared the results of our analysis with Pixy [15] and Phantm [17], the state-of-
the-art tools for security analysis and error discovery in PHP applications. Both these tools
compute control-flow of analyzed applications, model PHP data structures, and perform value
analysis. Both these tools detect accesses to uninitialized elements. In addition, Phantm
detects type mismatch errors and Pixy detects taint errors, i.e., flows of sensitive data to
critical commands. Our analysis detects both type of errors.

Tab. 2 shows the summary of results. Out of 13 errors in the benchmark application, 8
errors were accesses to uninitialized elements and 5 errors were taint errors. Since Pixy is
not designed to detect taint errors we did not use taint errors to assess the error coverage
for Pixy. The table shows that the analysis defined using our framework outperforms
the other tools both in error coverage and number of false positives when analyzing the

5 http://nocc.sourceforge.net/
6 http://mybloggie.mywebland.com/

ECOOP’15

9. Framework for Static Analysis of PHP Applications

132

1016 Framework for Static Analysis of PHP Applications

myBloggie NOCC 1.9.4
Lines 648 15,605

W C F T W C F T
Our framework 16 100 19 0.9 34 NA 62 84
Pixy 16 69 44 0.6 NA
Phantm 43 38 93 2.5 426 NA NA 90

Table 2 Comparison of tools for static analysis of PHP. W/C/F/T: Warnings / error Coverage
(in %) / False-positives rate (in %) / analysis Time (in s).

benchmark application. As to the analysis of NOCC, while Pixy was even not able to
analyze the application, Phantm reported a huge number of alarms, which together with a
high false-positive rate made its output almost useless7.

Our analysis discovered all 13 problems in myBloggie. One of the false alarms reported
by our analysis is caused by imprecise modeling of the built-in function date. Our analysis
only models this function by types and deduced that any string value can be returned by
this function. However, while the first argument of the function is "F", the function returns
only strings corresponding to English names of months. When the value returned by this
function is used to access the index of an array, our analysis incorrectly reports that an
undefined index of the array can be accessed. Two remaining false alarms are caused by
path-insensitivity of the analysis. The sanitization and sink commands are guarded by the
same condition, however, there is a joint point between these conditions, which discards the
effect of sanitization from the perspective of path-insensitive analysis.

Our analysis found three previously unknown vulnerabilities in the NOCC email client
and ten other problems (e.g., calling a function with an argument that is not declared and
superfluous implicit conversions). False-positive alarms were caused by imprecise modeling
of PHP built-in functions, path-insensitivity of the analysis, and using non-relational value
domains.

5 Related Work

The present work builds on a large body of work on static program analysis of dynamic
languages. The pioneering works [12, 30, 26, 27] omit modeling some of the important parts
of the analyzed languages. The unmodeled parts include references, dynamic accesses to
associative arrays, and object-oriented features.

Pixy [16] performs security taint analysis of PHP programs and provides information
about the flow of tainted data. Pixy performs a flow-sensitive, interprocedural, and context-
sensitive data flow analysis along with literal and alias analysis to achieve precise results. Its
main limitations include an incomplete support for statically-unknown updates to associative
arrays, ignoring classes and the eval command, omitting type inference, and a limited
support for handling file inclusion and aliasing. Alias analysis introduced in Pixy incorrectly
models aliasing when associative arrays and objects are involved.

Andromeda static taint analyzer [24] fights the problem of scalability of taint analysis by
computing data-flow propagations on demand. It uses forward data-analysis to propagate

7 Because of a huge number of alarms reported by Phantm, we assessed its false-positives rate just for
myBloggie, not for NOCC.

9. Framework for Static Analysis of PHP Applications

133

D. Hauzar, J. Kofroň 1017

tainted data and ignores propagation of other data. If tainted data are propagated to
the heap, it uses backward analysis to compute all targets to which the data should be
propagated. Andromeda analyzes Java, .NET, and JavaScript applications. The drawback of
the approach is that it propagates only taint information. Especially for dynamic languages,
the control-flow of the application can depend on other kind of information which is then
not available. To reduce this problem, Andromeda uses F4F [21], which reduces the amount
of information that is not known statically.

Phantm [17] is a PHP 5 static analyzer for type mismatch based on data-flow analysis;
it aims at detection of type errors. To obtain precise results, Phantm is flow-sensitive, i.e.,
it is able to handle situations when a single variable can be of different types depending
on program location. However, it omits updates of associative arrays and objects with
statically-unknown values and aliasing, which can lead to both missing errors and reporting
false positives.

TAJS [14] is a JavaScript static program analysis infrastructure that infers type in-
formation. To gain precise results, the analysis is context-sensitive and precisely models
intricate semantics of JavaScript, including prototype objects and associative arrays, dynamic
accesses to these data structures, and implicit conversions. It tackles the problem that
dynamic features of JavaScript make it impossible to construct control-flow before static
analysis by constructing control-flow on-the-fly during the analysis. Since TAJS models
JavaScript semantics precisely, it has been successfully used to enable additional analyses.
In [4, 5], the TAJS program analysis infrastructure is used to build a tool for refactoring
JavaScript programs and in [13] TAJS is used to enable technique of statically resolving eval
constructs. However, TAJS combines heap and value (type) analysis ad-hoc, which results
in intricate lattice structure and transfer functions. Next, TAJS assumes that updates to
multi-dimensional arrays and objects can be decomposed to updates of length one. While
this is true for JavaScript, this assumption leads to loss of precision in the case of some other
dynamic languages such as PHP and Perl.

Since the excess of information that are only available at runtime pose a major problem
to static analysis, several techniques have been developed that try to enable static anal-
ysis of dynamic languages by making this information statically available prior to static
analysis. F4F [21] focuses on static taint analysis of web applications that use frameworks.
They use a semi-automatically generated specification of framework-related behaviors to
reduce the amount of statically-unknown information, which arises, e.g., from reflective
calls. Phantm [17] reduces the number of information that static analysis must compute
and possibly overapproximate by first executing the application, collecting this information
and then invoking static analysis from a particular runtime state. Wei et. al. [28] reduce
the number of statically-unknown information in JavaScript by using a technique of blended
static analysis [2]. They first execute a test suite and for each test they record its execution
trace. Then, for each execution trace, they extract its call graph, types of created objects,
and dynamically generated code and perform static analysis of the application with using
this information. Finally, they combine solutions from different execution traces into a single
solution for the application.

Recently, there has flourished a rich body of work on precise and sound points-to analysis
for dynamic languages. Sridharan et. al. [22] present static flow-insensitive points-to analysis
for JavaScript modeling objects in JavaScript using associative arrays that can be accessed by
arbitrary expressions. To enhance the precision and scalability of the analysis, they identify
correlations between dynamic property read and write accesses. If the updated location
and stored value can be accessed by the same first class entity (variable), it is extracted to

ECOOP’15

9. Framework for Static Analysis of PHP Applications

134

1018 Framework for Static Analysis of PHP Applications

a function parametrized by this entity; this function is then analyzed context-sensitively
with the context being the variable. Thus, the correlation between the update and store
is preserved. Wei et al. [29] present points-to analysis for JavaScript. Their analysis is
partially flow-sensitive—it stores points-to information for every CFG segment with a single
state-update statement. Next, their analysis is context-sensitive—to reflect the fact that
properties can be added to objects at runtime, it uses a receiver object, its chain of prototype
objects, its local properties and their object values as a context. This makes it possible
to differentiate between two calls received by the object with the same creation site but
different properties. Finally, to perform more strong updates in case of property-writes they
use access path edges in their points-to representation. For a property-write (e.g., $x->p =
$y) where the dereferenced variable ($x) points to more objects, weak-updates of properties
in these objects (p) are performed. However, the access path edge (<x, p>) is strongly
updated. If the property is read and there exists a corresponding access path edge, it is
used instead of points-to edges (for $z = $x->p the access path edge <x, p> is used and
just objects pointed-to by variable $x are read). In our previous work [11], we presented
points-to analysis for PHP modeling associative arrays that could be accessed using arbitrary
expressions. Additionally, our analysis precisely models the semantics of PHP explicit aliases
and the semantics of multi-dimensional updates—in PHP or Perl, updates create indices if
they do not exist and initialize them with empty arrays if needed; on contrary, read accesses
do not.

While heap and value static analyses have been studied mainly as orthogonal problems,
to support verification of real programs, they usually need to be combined together [6, 25].
Since in dynamic languages, data structures can be dynamically accessed with arbitrary
expressions, this problem of combining heap and static value analysis is particularly relevant
in this domain.

Clousot [3] preprocesses the program applying heap analysis, and uses a value numbering
algorithm to compute under-approximation of must-alias to replace heap accesses with heap
identifiers. Value analysis then tracks values of variables and also of the heap identifiers.
While the approach allows for using arbitrary value analysis, it only allows for using specific
heap analysis, which cannot use the information provided by value analysis, and the technique
is not sound.

Miné et. al. [19] combine type based pointer analysis and numeric value analyses in a
generic way. The pointer analysis models pointer arithmetic, union types and records of
stack variables in C programs. The general limitation of this technique is that it relies on
type based heap analysis, which is too coarse for many applications. In particular, their
technique does not support summary nodes and dynamic allocation.

Fu [8] combines numeric value analysis and points-to analysis. His method uses points-to
analysis to partition possibly infinite set of heap references into a finite set of abstract
locations (heap identifiers) and use value analysis to track values of variables and also of
heap identifiers. The method is both generic—it allows for reusing existing analyses as
black-boxes—and automatic—it does not require any annotations specific to a particular
heap and value analysis to be provided. The fundamental limitation of the technique is that it
relies on flow-independent naming scheme for points-to analysis. That is, a concrete reference
is always mapped to the same abstract location independently of program location. On one
hand, this assumption allows the technique to assume that change of the heap component of
the analysis state has no effect on the value component of the state and that two states can
be joined component-wise. On the other hand, this assumption poses a substantial limitation
to modeling of adding new object fields and array indices using statically-unknown updates.

9. Framework for Static Analysis of PHP Applications

135

D. Hauzar, J. Kofroň 1019

To illustrate the limitation, consider that a statically-unknown index of an empty array $a
is updated ($a[rand()]=..). At this point, points-to analysis must represent all concrete
indices of the array with a single abstract location h. Next, if a concrete index of the array,
e.g., $a[1], is updated ($a[1]=..), the analysis must still represent the index $a[1] with
h and thus cannot distinguish this index from other indices in $a. That is, a statically
unknown update makes the updated array (object) index-insensitive (field-insensitive) for all
indices (fields) added after the update. As both modeling statically-unknown updates and
field-sensitivity of heap analysis is crucial for static analysis of dynamic languages [23, 29],
the assumption of flow-independent naming scheme is too limiting in this context.

Ferrara [6] introduced the concept of substitutions overcoming the limitation of flow-
indepenent naming scheme when combining value and heap analysis. Substitutions allow
heap analysis to materialize and summarize abstract locations, i.e., to replace a single abstract
location in the pre-state with more abstract locations in the post-state and to replace more
abstract locations in the pre-state with a single abstract location in the post-state. Ferrara
defined how the analyses are composed when the substitutions are given and showed the
assumptions on the heap and the value analyses in order to make their composition sound.
However, his work cannot be directly applied in the context of dynamic languages. First, it
does not model dynamically added fields and indices to objects and arrays, which is essential
for dynamic languages. Then, Ferrara allows only heap analyses with non-overlapping heap
identifiers. As we explain in Section 3.9, some heap analyses developed for dynamic languages
use overlapping heap identifiers to perform more strong updates. Moreover, his work does
not allow heap analyses to explicitly specify which updates are strong and which updates
are weak thus reducing the precision of the composed analysis. In our work we focused
specifically on heap analyses for dynamic languages overcoming these limitations.

6 Conclusion

In this paper, we presented a framework for static analysis of dynamic languages, in particular
PHP applications.

The framework employs a two-phase analysis architecture—in the first phase, the dynamic
constructs present in the analyzed code are resolved, while the analysis in the second phase
can proceed in a way similar to a one for a language without dynamic features. This way,
the framework provides a developer with high-level API for implementing various kind of
analyses upon the code without the need to cope with dynamic features of the language.
To allow resolving dynamic features, the framework combines heap, value, and declaration
analyses. We described the necessary requirements on these analyses and the way these
analyses are composed together generically and soundly. That is, our framework allows for
combining various heap and value analyses while guaranteeing that if the analyses being
composed are sound, the composed analysis is sound as well.

The framework is provided with default implementations of heap analyses and first phase
analyses. To demonstrate usefulness of our framework, we implemented taint analysis of
PHP application and applied it on real PHP application. We have shown that the tool is
able to reveal real (previously unknown) security holes, while producing less false-positive
alarms comparing to other state-of-the-art tools.

As for future work, we aim at improving the performance and precision of the analyzes
provided by the framework especially in terms of scaling to large applications. In particular,
this includes the scalability improvements of the heap analysis, implementation of more
choices of context-sensitivity, and devising precise modeling of more library functions. Next,

ECOOP’15

9. Framework for Static Analysis of PHP Applications

136

1020 Framework for Static Analysis of PHP Applications

we plan to enhance our implementation of security analysis and use the framework for
implementing additional end-user analyses.

References
1 P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis

of programs by construction or approximation of fixpoints. In POPL’77, pages 238–252.
ACM, 1977.

2 Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. Blended analysis for performance
understanding of framework-based applications. In ISSTA ’07, pages 118–128. ACM, 2007.

3 Manuel Fähndrich and Francesco Logozzo. Static contract checking with abstract interpre-
tation. In FoVeOOS ’10, LNCS, pages 10–30. Springer-Verlag, 2011.

4 Asger Feldthaus, Todd Millstein, Anders Møller, Max Schäfer, and Frank Tip. Tool-
supported refactoring for javascript. In OOPSLA ’11, pages 119–138. ACM, 2011.

5 Asger Feldthaus and Anders Møller. Semi-automatic rename refactoring for javascript. In
OOPSLA ’13, pages 323–338. ACM, 2013.

6 Pietro Ferrara. Generic combination of heap and value analyses in abstract interpretation.
In VMCAI’05, LNCS, pages 302–321. Springer-Verlag, 2014.

7 Seth Fogie, Jeremiah Grossman, Robert Hansen, Anton Rager, and Petko D. Petkov. XSS
Attacks: Cross Site Scripting Exploits and Defense. Syngress, May 2007.

8 Zhoulai Fu. Modularly combining numeric abstract domains with points-to analysis, and a
scalable static numeric analyzer for java. In VMCAI ’05, LNCS, pages 282–301. Springer-
Verlag, 2014.

9 Denis Gopan, Frank DiMaio, Nurit Dor, Thomas W. Reps, and Shmuel Sagiv. Numeric
domains with summarized dimensions. In TACAS ’04, LNCS, pages 512–529. Springer-
Verlag, 2004.

10 David Hauzar and Jan Kofroň. Weverca. http://d3s.mff.cuni.cz/projects/formal_
methods/weverca/, 2014.

11 David Hauzar, Jan Kofroň, and Pavel Baštecký. Data-flow analysis of programs with
associative arrays. In ESSS ’14, EPTCS, pages 56–70. Open Publishing Association, 2014.

12 Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee, and Sy-Yen
Kuo. Securing web application code by static analysis and runtime protection. In WWW
’04, pages 40–52. ACM, 2004.

13 Simon Holm Jensen, Peter A. Jonsson, and Anders Møller. Remedying the eval that men
do. In ISSTA 2012, pages 34–44. ACM, 2012.

14 Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for JavaScript. In
SAS’09, volume 5673 of LNCS. Springer-Verlag, August 2009.

15 Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A static analysis tool for
detecting web application vulnerabilities (short paper). In SP ’06: Proceedings of the 2006
IEEE Symposium on Security and Privacy, pages 258–263, Washington, DC, USA, 2006.
IEEE Computer Society.

16 Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A static analysis tool for
detecting web application vulnerabilities (short paper). In SP ’06, pages 258–263. IEEE
Computer Society, 2006.

17 Etienne Kneuss, Philippe Suter, and Viktor Kuncak. Runtime instrumentation for precise
flow-sensitive type analysis. In RV’10, LNCS, pages 300–314. Springer-Verlag, 2010.

18 Ondrej Lhoták and Kwok-Chiang Andrew Chung. Points-to analysis with efficient strong
updates. In POPL ’11, pages 3–16, New York, NY, USA, 2011. ACM.

19 Antoine Miné. Field-sensitive value analysis of embedded c programs with union types and
pointer arithmetics. In LCTES ’06, pages 54–63. ACM, 2006.

9. Framework for Static Analysis of PHP Applications

137

D. Hauzar, J. Kofroň 1021

20 Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program Analysis.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

21 Manu Sridharan, Shay Artzi, Marco Pistoia, Salvatore Guarnieri, Omer Tripp, and Ryan
Berg. F4f: Taint analysis of framework-based web applications. In OOPSLA ’11, pages
1053–1068. ACM, 2011.

22 Manu Sridharan, Julian Dolby, Satish Chandra, Max Schäfer, and Frank Tip. Correlation
tracking for points-to analysis of javascript. In ECOOP’12: Proceedings of the 26th Eu-
ropean Conference on Object-Oriented Programming, Lecture Notes in Computer Science,
pages 435–458, Berlin, Heidelberg, 2012. Springer-Verlag.

23 Manu Sridharan, Julian Dolby, Satish Chandra, Max Schäfer, and Frank Tip. Correlation
tracking for points-to analysis of javascript. In ECOOP’12, LNCS, pages 435–458. Springer-
Verlag, 2012.

24 Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and Salvatore Guarnieri. An-
dromeda: Accurate and scalable security analysis of web applications. In FASE’13, LNCS,
pages 210–225. Springer-Verlag, 2013.

25 Arnaud Venet. Towards the integration of symbolic and numerical static analysis. In
VSTTE 2005, LNCS, pages 227–236. Springer-Verlag, 2005.

26 Gary Wassermann and Zhendong Su. Sound and precise analysis of web applications for
injection vulnerabilities. In PLDI ’07, pages 32–41. ACM, 2007.

27 Gary Wassermann and Zhendong Su. Static detection of cross-site scripting vulnerabilities.
In ICSE ’08, pages 171–180. ACM, 2008.

28 Shiyi Wei and Barbara G. Ryder. Practical blended taint analysis for javascript. In ISSTA
2013, pages 336–346. ACM, 2013.

29 Shiyi Wei and BarbaraG. Ryder. State-sensitive points-to analysis for the dynamic behavior
of javascript objects. In ECOOP 2014, volume 8586 of LNCS, pages 1–26. Springer Berlin
Heidelberg, 2014.

30 Yichen Xie and Alex Aiken. Static detection of security vulnerabilities in scripting lan-
guages. In USENIX-SS’06. USENIX Association, 2006.

ECOOP’15

9. Framework for Static Analysis of PHP Applications

138

CHAPTER 10

WeVerca: Web Applications Verification for PHP

Authors: David Hauzar and Jan Kofroň

[1] Proceedings of the 12th International Conference on Software Engineering and Formal
Methods (SEFM’14), LNCS, DOI: 10.1007/978-3-319-10431-7 24, Grenoble, France,
September 2014

139

WeVerca: Web Applications Veri�cation
for PHP (Tool Paper)?

David Hauzar and Jan Kofro�n

Department of Distributed and Dependable Systems
Faculty of Mathematics and Physics

Charles University in Prague, Czech Republic

Abstract. Static analysis of web applications developed in dynamic lan-
guages is a challenging yet very important task. In this paper, we present
WeVerca, a framework that allows one to de�ne static analyses of PHP
applications. It supports dynamic type system, dynamic method calls,
dynamic data structures, etc. These common features of dynamic lan-
guages cause implementation of static analyses to be either imprecise or
overly complex. Our framework addresses this problem by de�ning end-
user static analyses independently of value and heap analyses necessary
just to resolve these features. As our results show, taint analysis de�ned
using the framework found more real problems and reduced the number
of false positives comparing to existing state-of-the-art analysis tools for
PHP.

1 Introduction

PHP is the most common programming language used at the server side of web
applications. It is notably used, e.g., by Wikipedia and Facebook. PHP as well
as other dynamic languages contains dynamic features, such as dynamic type
system, dynamic method calls (names of called methods are computed at run-
time), and dynamic data structures (names of object �elds are computed at
run-time and object �elds can be added at run-time). These features provide
exibility accelerating the development. However, they make applications more
error-prone and less e�cient. Consequently, they shift more work to tools for
error detection, code refactoring, and code optimization.

For most of these tools, static program analysis is a necessary prerequisite.
Unfortunately, dynamic features pose major challenges here. To precisely resolve
these features, the end-user analysis (e.g., taint analysis) needs to be combined
with value and heap analyses. Importantly, these analyses must interplay. To
resolve dynamic accesses to data structures, the heap analysis needs to evaluate
value expressions and the value analysis must track values over heap elements|
array indices and object �elds.

In this paper we present WeVerca
1, an open-source static analysis frame-

work for PHP.WeVerca allows to de�ne end-user static analyses independently

? This work was partially supported by the Grant Agency of the Czech Republic
project 14-11384S and by Charles University institutional funding SVV-2014-260100.

1 http://d3s.mff.cuni.cz/projects/formal_methods/weverca/

10. WeVerca: Web Applications Verification for PHP

140

of dynamic features. This is possible because: (1) WeVerca de�nes an inter-
play of value and heap analyses allowing to de�ne these analyses independently
of each other. (2) WeVerca comes with default implementations of context-
sensitive heap and value analyses that model associative arrays and prototype
objects, track values of PHP primitive types, and model library functions, native
operators, and type conversions. (3) WeVerca de�nes how information from
heap and value analyses are used to resolve dynamic features (i.e., to compute
control-ow and resolve dynamic data accesses). As a proof of the concept, we
implemented static taint analysis for detection of security problems.

2 Example

As an example, consider static taint analysis, which is commonly used for web
applications. It can be used for detection of security problems, e.g., SQL injection
and cross-site scripting attacks. The program point that reads user-input, session
ids, cookies, or any other data that can be manipulated by a potential attacker
is called source, while a program point that prints out data, queries a database,
etc. is referred to as sink. Data at a given program point are tainted if they can
pass from a source to this program point. A tainted data are sanitized if they are
processed by a sanitization routine (e.g., htmlspecialchars in PHP) to remove
potential malicious parts of it. Program is vulnerable if it contains a sink that
uses data that are tainted and not sanitized.

Static taint analysis can be performed by computing the propagation of
tainted data and then checking whether tainted data can reach a sink. The
propagation of tainted data computed by forward data-ow analysis is shown
in Tab. 12. The analysis is speci�ed by giving the lattice of data-ow facts, the
initial values of variables, the transfer function, and the join operator.

Lattice L true

Top > Bool
Initial value init(v) true if v 2 $ SESSION [::

false otherwise
Transfer function TF (LHS = RHS) var =

W
r2RHS

r if var 2 LHS

var = var otherwise
TF (n) var = var if n is not assignment

Join operator t(x; y) x _ y

Table 1. Propagation of tainted data.

Consider now the code in Fig. 1. At lines (1){(9) classes for processing the
output are de�ned. They can either log the output or show the output to the
user. While the Templ1 class uses a sink command to show the output, Templ2
uses a non-sink command (e.g., does not send the output to the browser directly,
but sanitizes it �rst). At lines (13){(16) the application mode is set based on
the value of DEBUG either to log|the application will log the output|or to
show|the application will show the output to the user. At lines (17){(20) the
skin is set based on user input. At line (21), the array $users is initialized with

2 For simplicity we omit the speci�cation of sanitization.

10. WeVerca: Web Applications Verification for PHP

141

the address of administrator. This value is not taken from any source and can
be directly shown to the user. Note the update at line (11) is correct even if the
variable $users is uninitialized. In PHP, if a non existing index is updated, it is
automatically created and if the update involves next dimension, the index is ini-
tialized with an empty array. At lines (23){(24) information about the user name
and user address is assigned to the array $users. Note that this information is
tainted. Finally, at lines (25){(26) data are processed to the output.

1 class Templ f
2 function log($msg) f...g
3 g
4 class Templ1 : Templ f
5 function show($msg) f sink($msg); g
6 g
7 class Templ2 : Templ f
8 function show($msg) f not sink($msg); g
9 g

10 function initialize(&$users) f
11 $users['admin']['addr'] =

get admin addr from db();
12 g
13 switch (DEBUG) f

14 case true: $mode = "log"; break;
15 default: $mode = "show";
16 g
17 switch ($ GET['skin']) f
18 case 'skin1': $t = new Templ1(); break;
19 default: $t = new Templ2();
20 g
21 initialize($users);
22 $id = $ GET['userId'];
23 $users[$id]['name'] = $ GET['name'];
24 $users[$id]['addr'] = $ GET['addr'];
25 $t�>$mode($users[$id]['name']);
26 $t�>$mode($users['admin']['addr']);

Fig. 1. Running example

The code contains two vulnerabilities. At lines (25) and (26) the method
show of Templ1 can be called, its parameter $msg can be tainted and the pa-
rameter goes to the sink. Taint analysis de�ned using WeVerca detects both
vulnerabilities. Note that the de�nition of taint propagation uses just the infor-
mation in Tab 1. This is possible only becauseWeVerca automatically resolves
control-ow and accesses to built-in data structures. That is, WeVerca com-
putes that the variable $t can point to objects of types Templ1 and Templ2

and that the variable $mode can contain values show and log. Based on this
information, it resolves calls at lines (25) and (26). Moreover, as WeVerca

automatically reads the data from and updates the data to associative arrays
and objects, at line (24), the tainted data are automatically propagated to index
$users['admin']['addr'] de�ned at line (11). Consequently, the access of this
index at line (26) reads tainted data.

3 Tool description

The architecture of WeVerca is shown in Fig. 2. For parsing PHP sources
and providing abstract syntax tree (AST) WeVerca uses Phalanger3. The
analysis is split into two phases. In the �rst phase, the framework computes
control-ow of the analyzed program together with the shape of the heap and
information about values of variables, array indices and object �elds. Then it
also evaluates expressions used for accessing data. The control-ow is captured
in the intermediate representation (IR), while the other information is stored in
the data representation. IR de�nes the order of instructions' execution and has
function calls, method calls, includes, and exceptions already resolved. In the

3 http://www.php-compiler.net/

10. WeVerca: Web Applications Verification for PHP

142

Phalanger
parser

Static Analysis Framework

First phase
framework

End-user analysis
framework

Data representation

AST

IR

Output

<<uses>>

<<uses>>

First phase
implementation

Heap analysis
implementation

End-user analysis
implementation

<<uses>>

<<uses>>

<<uses>>

<<uses>>
<<uses>>

Fig. 2. The architecture of WeVerca

second phase, end-user analyses of the constructed IR are performed. The tool
includes the following parts:

{ Data Representation stores analysis states and allows to access them|it
allows to read values from data structures, write values to data structures,
and modify the shape of data structures. Next, it performs join and widening
of the states and de�nes their partial order. Importantly, data representation
de�nes the interplay of heap and value analyses allowing each analysis to
de�ne these operations independently. WeVerca contains implementation
of heap analysis described in [1]. It supports associative arrays and objects of
an arbitrary depth (in PHP, updates create indices and properties if they do
not exist and initialize them with empty arrays and empty objects if needed;
on contrary, read accesses do not, so updates of such structures cannot be
decomposed). Accesses to these structures can be made using an arbitrary
expression yielding even statically unknown values.

{ First-phase implementation must de�ne value analysis that tracks values
of PHP primitive types and evaluates value expressions. Next, it must han-
dle declaration of functions, classes, and constants. Finally, it must compute
targets of include statements and function and method calls, and it must de-
�ne context sensitivity.WeVerca contains a default implementation of the
�rst phase providing fully context-sensitive value analysis precisely modeling
native operators, native functions, and implicit conversions.

{ End-user analyses can be speci�ed using an arbitrary value domain. This
is possible because (1) control-ow is already computed, (2) the shape of
the heap is computed and dynamic data accesses are resolved|all informa-
tion that data representation needs to discover accessed variables, indices,
and �elds are available. (3) Data representation combines heap and value
analyses automatically, i.e., to perform operations with analysis states, it
uses standard operations of combined analyses. The framework contains an
implementation of static taint analysis as a proof-of-the-concept.

4 Results

To evaluate the precision and scalability of the framework, we used the frame-
work to implement static taint analysis and we applied it to a NOCC webmail
client4 and a benchmark application comprising of a fragment of the myBlog-

4 http://nocc.sourceforge.net/

10. WeVerca: Web Applications Verification for PHP

143

gie weblog system5, with a total of over 16,000 lines of PHP code. While the
benchmark application contains 13 security problems, in the case of the webmail
client, the number of problems is not known.

Tab. 2 shows the summary of results together with the results of Pixy [3] and
Phantm [4], the state-of-the-art tools for security analysis and error discovery
in PHP applications. The table shows that the analysis de�ned usingWeVerca

outperforms the other tools both in error coverage and number of false positives
when analyzing the benchmark application. While it tookWeVerca more than
5 minutes to analyze the webmail client and 52 alarms were reported, Pixy was
even not able to analyze this application. Phantm analyzed the application in
two minutes, however, the false-positive rate of 93% makes its output almost
useless.

Out of 13 problems in the benchmark application, WeVerca discovered all
of them. One of the false alarms reported by WeVerca is caused by imprecise
modeling of the built-in function date. WeVerca only models this function
by types and deduced that any string value can be returned by this function.
However, while the �rst argument of the function is "F", the function returns
only strings corresponding to English names of months. When the value returned
by this function is used to access the index of an array, WeVerca incorrectly
reports that an unde�ned index of the array can be accessed. Two remaining
false alarms are caused by path-insensitivity of the analysis. The sanitization
and sink commands are guarded by the same condition, however, there is a joint
point between these conditions, which discards the e�ect of sanitization from
the perspective of path-insensitive analysis. While the �rst false-alarm can be
easily resolved by modeling the built-in function more precisely, the remaining
false alarms would require more work. One can either implement an appropriate
relational abstract domain or devise a method of path-sensitive validation of
alarms.

Lines WeVerca
W/C/F/T

Pixy
W/C/F/T

Phantm
W/C/F/T

myBloggie 648 16/100/19/2.2 16/69/44/0.6 43/23/93/2.5
NOCC 1.9.4 15605 52/NA/NA/332 NA 426/NA/NA/130

Table 2. Comparison of tools for static analysis of PHP. W/C/F/T:Warnings / error
Coverage (in %) / False-positives rate (in %) / analysis Time (in s). The best results
are in bold.

5 Related work

The existing work on static analysis of PHP and other dynamic languages is
primarily focused on speci�c security vulnerabilities and type analysis.

Pixy [3] performs taint analysis of PHP programs and it provides information
about the ow of tainted data using dependence graphs. It involves a ow-
sensitive, interprocedural, and context-sensitive data ow analysis along with

5 http://mybloggie.mywebland.com/

10. WeVerca: Web Applications Verification for PHP

144

literal and alias analysis to achieve precise results. The main limitations of Pixy
include limited support for statically-unknown updates to associative arrays,
ignoring classes and the eval command, omitting type inference, and limited
support for handling �le inclusion and aliasing. Alias analysis introduced in Pixy
incorrectly models aliasing when associative arrays and objects are involved.

Phantm [4] is a PHP 5 static analyzer for type mismatch based on data-ow
analysis; it aims at detection of type errors. To obtain precise results, Phantm
is ow-sensitive, i.e., it is able to handle situations when a single variable can be
of di�erent types depending on program location. However, they omit updates
of associative arrays and objects with statically-unknown values and aliasing,
which can lead to both missing errors and reporting false positives.

TAJS [2] is a JavaScript static program analysis infrastructure. To gain pre-
cise results, it models prototype objects and associative arrays, dynamic accesses
to these data structures, and implicit conversions. However, TAJS combines com-
bines heap and value analysis ad-hoc, which results in intricate lattice structure
and transfer functions.

6 Conclusion and future work

In this paper, we presented WeVerca, a framework for static analysis of PHP
applications. WeVerca makes it possible to de�ne static analyses indepen-
dently of dynamic features, such as dynamic includes, dynamic method calls,
and dynamic data accesses to associative arrays and objects. These features are
automatically resolved using information from heap and value analyses, which
are automatically combined.

Our prototype implementation of static taint analysis outperforms state-of-
the-art tools for analysis of PHP applications both in error coverage and the false-
positive rate. We believe that WeVerca can accelerate both the development
of end-user static analysis tools and the research of static analysis of PHP and
dynamic languages in general.

For future work, we plan to improve the scalability and precision of analy-
ses provided by the framework. In particular, this includes the scalability im-
provements of data representation, implementation of more choices of context-
sensitivity, more precise widening operators, and devising precise modeling of
more library functions.

References

1. D. Hauzar, J. Kofro�n, and P. Ba�steck�y. Data-ow analysis of programs with asso-
ciative arrays. In ESSS'14, EPTCS, 2014.

2. S. H. Jensen, A. M�ller, and P. Thiemann. Type analysis for JavaScript. In SAS'09.
Springer-Verlag, 2009.

3. N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: a static analysis tool for detecting
Web application vulnerabilities. In S&P'06. IEEE, 2006.

4. E. Kneuss, P. Suter, and V. Kuncak. Phantm: PHP Analyzer for Type Mismatch.
In FSE'10. ACM, 2010.

10. WeVerca: Web Applications Verification for PHP

145

10. WeVerca: Web Applications Verification for PHP

146

CHAPTER 11

On Interpolants and Variable Assignments

Authors: Pavel Janč́ık, Jan Kofroň, Simone Fulvio Rollini, and Natasha Shary-
gina

[5] Proceedings of Formal Methods in Computer-Aided Design 2014,
DOI: 10.1109/FMCAD.2014.6987604, Lausanne, Switzerland, October 2014

147

On Interpolants and Variable Assignments
Pavel Jancik, Jan Kofroň

Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

Email: name.surname@d3s.mff.cuni.cz

Simone Fulvio Rollini, Natasha Sharygina
Faculty of Informatics,

University of Lugano, Switzerland,
Email: name.surname@usi.ch

Abstract—Craig interpolants are widely used in program
verification as a means of abstraction. In this paper, we (i)
introduce Partial Variable Assignment Interpolants (PVAIs) as
a generalization of Craig interpolants. A variable assignment
focuses computed interpolants by restricting the set of clauses
taken into account during interpolation. PVAIs can be for
example employed in the context of DAG interpolation, in
order to prevent unwanted out-of-scope variables to appear in
interpolants. Furthermore, we (ii) present a way to compute
PVAIs for propositional logic based on an extension of the
Labeled Interpolation Systems, and (iii) analyze the strength of
computed interpolants and prove the conditions under which they
have the path interpolation property.

I. INTRODUCTION

In software model checking Craig interpolants play an
important role. They are typically used to refine an abstraction
of a program. Many techniques have been introduced to
compute interpolants for various theories such as proposi-
tional logic, conjunctive fragments of linear arithmetic, and
octagon domain. For propositional logic, McMillan’s [9] and
Pudlák’s [11] interpolation systems are well established; they
are generalized by the Labeled Interpolation Systems [6]
(LISs), which permit to systematically compute interpolants
of different logical strength from the same refutation.

Given two formulas A and B such that A ∧ B is un-
satisfiable, a Craig interpolant is a formula I such that A
implies I , I is inconsistent with B and I is defined over
the common variables of A and B. In other words, I is
an over-approximation of A (which can be used to abstract
the behavior of a system, represented by A) disjoint from B
(which often represents unacceptable behaviors).

In this paper, we introduce Partial Variable Assignment
Interpolants (PVAIs) – a generalization of Craig interpolants
– which, in addition to the standard subdivision of an un-
satisfiable formula (the interpolation problem) into A and
B, is parametric in a partial variable assignment (PVA). A
PVA defines a sub-problem on which a PVAI is focused. A
sub-problem is obtained from the interpolation problem by
removing the clauses (constraints) satisfied by the assignment.
Due to the specialization, (1) it is possible to restrict the vari-
ables occurring in an interpolant to those relevant to the sub-
problem, i.e. those shared between the A and B parts of the

This work is partially supported by: ICT COST Action IC0901, the Grant
Agency of the Czech Republic project 14-11384S, and Charles University
Foundation grant 203-10/253297.

sub-problem. Moreover, since the irrelevant constraints (those
not occurring in the sub-problem) need not be considered by
interpolation, (2) the interpolants for the sub-problem can be
of smaller size, compared to Craig interpolants computed from
the interpolation problem.

In the motivating example in Sec. II we show how PVAIs
apply to program verification. For instance, in the context
of abstract reachability graphs (ARG) (and DAG interpola-
tion [2]), an interpolation problem is the encoding of a whole
ARG (representing all paths in the ARG), while for a given
ARG node i the related sub-problem represents the set of
paths that pass through that node. An over-approximation of
the states reachable at i via these paths (a node interpolant)
can be computed by means of a PVAI. Properties of PVAIs
guarantee that the interpolant contains only in-scope program
variables.

An alternative approach could be to solve each sub-problem
separately, which involves calling a SAT/SMT solver for each
sub-problem and applying standard Craig interpolation. The
method we propose allows one to perform just a single call to a
solver for an interpolation problem which encompasses all the
sub-problems, thus (i) processing the parts common to multiple
sub-problems only once. A single solver call results in a single
proof from which all the interpolants for the sub-problems are
computed. The presence of a single proof, in turn, enables (ii)
generating collections of interpolants which satisfy properties
relevant to verification, such as path interpolation [7], [13].
Such collections are hard to obtain if multiple proofs are
involved. In the case of PVAIs, a collection may consist of
the interpolants associated with different sub-problems.

We also propose the new framework of Labeled Partial
Assignment Interpolation Systems (LPAISs) – a generalization
of LISs, which computes PVAIs for propositional logic. We de-
fine the notion of logical strength for LPAISs and show how in-
troducing a partial order over LPAISs allows to systematically
compare the strength of the computed interpolants (a feature
intuitively relevant to verification since it affects the coarseness
of the over-approximations realized by interpolants [12]). We
also show how LPAISs can be used to generate collections
of interpolants which enjoy the path interpolation (inductive
step) property. These results can be applied in the context
of ARGs, where the path interpolation property of computed
node interpolants (labels) guarantees well-labeledness [10] of
the ARG.

11. On Interpolants and Variable Assignments

148

1: int max(int i, int j) {
2: if (i > j)
3: return i;

else
4: return j;
5: }

// The main function
6: assert(max(random(), 0) >= 0);

Figure 1. Motivating example

2

1

3 4

5

6

τ12 ≡ j = 0
τ23 ≡ i > j τ24 ≡ ¬(i > j)

τ35 ≡ result = i τ45 ≡ result = j

τ56 ≡ ¬(result >= 0)

Figure 2. Abstract reachablity graph

µ1 ≡ (n1 ⇒ n2) ∧ ((n1 ∧ n2)⇒ τ12)
µ2 ≡ (n2 ⇒ (n3 ∨ n4)) ∧ ((n2 ∧ n3)⇒ τ23) ∧

∧ ((n2 ∧ n4)⇒ τ24)
µ3 ≡ (n3 ⇒ n5) ∧ ((n3 ∧ n5)⇒ τ35)
µ4 ≡ (n4 ⇒ n5) ∧ ((n4 ∧ n5)⇒ τ45)
µ5 ≡ (n5 ⇒ n6) ∧ ((n5 ∧ n6)⇒ τ56)

Cond ≡ n1 ∧ µ1 ∧ µ2 ∧ µ3 ∧ µ4 ∧ µ5

Figure 3. The Cond formula

II. MOTIVATION

In the following, we illustrate a possible application of
PVAIs, which originally motivated this work; nonetheless, the
proposed PVAIs are not limited to this context. As an example,
consider the source code on the left-hand side of Fig. 1 and
the corresponding ARG in Fig. 2. Node i is associated with
location i in the program. Node 1 is the initial node, while
node 6 is the node representing an error location. The edge
constraints τij encode the semantics of the corresponding
program statements. Note that τ12 originates from the call to
the max function in main, on line 6. Further, in node 3, the
parameter i is the only in-scope variable; similarly in node 4
the parameter j is the only in-scope variable. A variable is
in-scope at a given node, if there is a path through the node
where the variable is used before as well as after the node.

In the context of software verification, an important question
is whether an error location is actually reachable from the
initial location of a program – this is known as the reachability
problem. The question can be answered by computing, for
each node i, the set of states reachable at i via paths in the
program ARG [4], [10]. Typically, it is enough to compute
an over-approximation of these states, i.e. a node interpolant.
To this end, the ARG is converted into a Cond formula1,
which represents all execution paths in the ARG. An auxiliary
structure-encoding Boolean variable ni is introduced for each
node i in the ARG; for each i (except for the error node), a
node formula µi is created, which encodes the labels on the
outgoing edges (Fig. 3).

For illustration, we describe the meaning of µ2. The first
conjunct n2 ⇒ (n3∨n4) expresses that after reaching node 2,
a path has to proceed to a successor node (3 or 4). The second
conjunct (n2 ∧ n3) ⇒ τ23 guarantees that if a path goes via
the edge 2 → 3, the semantics of the edge is preserved (i.e.,
the constraint τ23 is satisfied). Similarly, the third conjunct
enforces the semantics of the edge 2→ 4.

The Cond formula is satisfiable if and only if a feasible path
exists that leads from node 1 to node 6 in the ARG. Suppose
now that Cond is unsatisfiable; then a node interpolant for each
node i can be computed. First the ARG needs to be partitioned
into A and B – so that A corresponds to the antecedents of i, B
to all the other nodes in the ARG – and then a Craig interpolant
I is generated as an over-approximation of the states reachable
at i. For instance, in the case of node 3, A would be set to

1Cond has the same meaning as ArgCond in [3].

n1 ∧ µ1 ∧ µ2 and B to µ3 ∧ µ4 ∧ µ5. However, employing
standard Craig interpolation in this manner to compute a node
interpolant I is not sufficient; out-of-scope variables might
in fact belong to both A and B, they could therefore appear
in I , and should be consequently eliminated. Variable j, for
example, could appear in the interpolant for node 3. Even
though out-of-scope variables can be eliminated by resorting
to quantification, followed by a quantifier-elimination phase,
this approach is a well-known bottleneck in verification.

Computing node interpolants using PVAIs effectively solves
the problem of out-of-scope program variables. Suppose that
a node interpolant is to be computed for a node k; the
created PVA assigns False to all structure-encoding variables
corresponding to nodes not lying on the paths through k.
By setting a variable nj to False, in fact, the paths via
node j are blocked; moreover, the whole node formula µj
is satisfied and thus µj is not a part of the sub-problem for
node k. On the other hand, the PVA assigns nk to True to
express that each considered path has to pass through k (the
node for which the interpolant is computed). In particular, to
compute an interpolant for node 3, we assign n3 to True and
n4 to False to block the path through node 4; the rest of
variables remain unassigned. This assignment satisfies (and
thus removes) n2 ⇒ (n3 ∨n4), (n2 ∧n4)⇒ τ24 and µ4 from
the sub-problem (see Fig. 4). In the A part, the sub-problem for
node 3 contains the edge labels (and consequently the program
state variables) related to the path from node 1 to node 3, and
in the B part information related to the path from node 3 to
node 6. The program state variables shared by the A and B
parts of the sub-problem are the in-scope variables, which are
exactly those that may appear in PVA interpolants.

III. PRELIMINARIES

A clause is a finite disjunction of literals. We use angle
brackets 〈Θ〉 to denote the clause built over the literals in Θ.
Let 〈Θ, p〉 and 〈Θ′, p〉 be clauses. Using variable p as the pivot,
their resolution yields the clause 〈Θ,Θ′〉. In the following, we
consider propositional formulas in conjunctive normal form,

π3 ≡ n3 ∧ n4
A3 ≡ n1∧

(n1 ⇒ n2) ∧ ((n1 ∧ n2)⇒ j = 0)∧
∧ ((n2 ∧ n3)⇒ i > j)

B3 ≡ (n3 ⇒ n5) ∧ ((n3 ∧ n5)⇒ result = i)∧
(n5 ⇒ n6) ∧ ((n5 ∧ n6)⇒ ¬(result >= 0))

Figure 4. The A and B parts of the sub-problem for node 3

11. On Interpolants and Variable Assignments

149

i.e., as conjunctions (or equivalently sets) of clauses. We use
Var(l) to denote the variable of literal l and Var(A) for the
variables occurring in the set of clauses A.

We adopt the definition of resolution proof from [6]: a
resolution proof is a tuple (V,E, cl, piv, s), where V is a set of
vertices in the proof, E is a set of edges. Each inner vertex v
represents resolution of its antecedent vertex-clauses (specified
by cl) using the pivot piv(v). A refutation proof derives an
empty clause in the sink vertex s.

Since the resolution proofs take the set of clauses as input,
the input formula is first converted into a conjunction of
clauses. Thus in the following we use the terms formula and
set of clauses interchangeably.

A Craig interpolant [5] for the pair of formulas (A,B) such
that A∧B is unsatisfiable is a formula I such that (1) A⇒ I ,
(2) B ∧ I ⇒ ⊥, and (3) Var(I) ⊆ Var(A) ∩ Var(B).

An interpolant sequence for the unsatisfiable formula A1 ∧
A2 ∧ ... ∧ An is a tuple of formulas (I0, I1,In), where Ii
is an interpolant for (A1 ∧ ... ∧ Ai, Ai+1 ∧ ... ∧ An). If for
all i, Ii ∧Ai ⇒ Ii+1, then (I0, I1,In) is said to satisfy the
path interpolation (PI) property. In [7], it was proved that the
path interpolation property holds for any LISs, including the
well-known McMillan’s and Pudlák’s systems, whenever the
interpolant sequence is computed from the same proof.

Let A be a set of clauses. A variable assignment assigns
either True (>) or False (⊥) to each variable in the Var(A)
set. The variable assignment can be seen as a conjunction of
literals. A partial variable assignment (PVA) π assigns values
only to a subset of variables in Var(A). A PVA π can be used
as an assumption w.r.t. A (i.e., π |= A) to restrict the set of
models of A to those compatible with π.

Definition 1 (Clauses under assignment): Let A be a set of
clauses and π be a PVA over Var(A). We define the sets of
satisfied clauses Aπ = {〈Θ〉|〈Θ〉 ∈ A and π |= 〈Θ〉} and
unsatisfied clauses Aπ = {〈Θ〉|〈Θ〉 ∈ A and π 6|= 〈Θ〉}.

Satisfied clauses contain at least one literal evaluated to >
under π, while, for unsatisfied clauses, every literal is either
unassigned or falsified. The unsatisfied clauses Aπ determine
the sub-problem. We use π |= l to express that a literal l
evaluates to > in a given PVA π.

IV. PARTIAL VARIABLE ASSIGNMENT INTERPOLANTS

In this section, we formally define partial variable as-
signment interpolation, which, in addition to the subdivision
of an unsatisfiable formula into A and a B parts, requires
specification of a PVA.

Definition 2: Let R be an (A,B)-refutation and π a partial
variable assignment over Var(A ∧ B). A partial variable
assignment interpolant (PVAI) is a formula I such that:

(D2.1) π |= A⇒ I
(D2.2) π |= B ∧ I ⇒ ⊥
(D2.3) Var(I) ⊆ Var(Aπ) ∩ Var(Bπ)
(D2.4) Var(I) ∩ Var(π) = ∅

In the following we use (A,B, π) to denote that a PVAI is
computed from an (A,B)-refutation using the partial assign-
ment π.

Since π |= (A ⇔ Aπ), D2.1 and D2.2 can be equivalently
rewritten as π |= Aπ ⇒ I and π |= Bπ ∧ I ⇒ ⊥; in other
words, I is an interpolant for the sub-problem (Aπ ∧ Bπ).
Note that even after removing (the satisfied) clauses, the sub-
problem remains unsatisfiable (assuming π).

On the other hand, a PVAI cannot be obtained from standard
interpolants by application of a partial assignment (I[π]). The
reason is that, in addition to assigned variables (disallowed
by D2.4), rule D2.3 excludes from the PVAI also all unas-
signed (out-of-scope) variables that occur in satisfied clauses
only, which can still appear in I[π].

Calling a solver multiple times can be quite resource-
consuming. An (A,B)-refutation proof is independent of a
PVA; this important fact allows to call the solver only once
on the overall problem A ∧ B, and later to introduce various
PVAs (representing relevant sub-problems) for which the PVAI
can be efficiently computed.

Although Craig interpolation has many applications in pro-
gram verification, verification tools often require interpolation
sequences with specific properties [7]. The PVAI for all the
sub-problems are computed from the same proof, thus they are
related to each other. The existence of a single proof permits
the application of a standard proving technique in the area of
interpolation – structural induction over a refutation proof –
to show various properties of PVA interpolant sequences. All
the techniques where interpolants for different sub-problems
are computed using different proofs (e.g., applying a solver
directly on each sub-problem, or incremental solving with
assumptions) do not, per se, guarantee any properties of their
sequences.

V. LABELED PARTIAL ASSIGNMENT INTERPOLATION
SYSTEM

To show that PVAIs are not just a theoretical concept, we
present the framework of Labeled Partial Assignment Interpo-
lation Systems, a generalization of LISs [6], which computes
PVAIs for propositional logic, and prove its soundness. Next,
in order to prove the path interpolation property, we introduce
the concept of logical strength on LPAISs, which allows
one to systematically compare the strength of the generated
interpolants.

In order to define LPAISs, first we have to extend the
definitions of labeling functions and locality from LISs to take
variable assignments into account. Note that if no variable is
assigned, LPAISs are equivalent to LISs.

A labeling function assigns labels to literals in a refutation;
the labeling drives the computation of an interpolant from the
proof and determines its strength.

Definition 3 (Labeling function): Let L = (S,v,u,t) be
the lattice of Fig. 6, where S = {⊥, a, b, ab, d+} and ⊥ is the
least element, and let R = (V,E, cl, piv, s) be a resolution
proof over a set of literals Lit. A function LabR,L : V×Lit→ S

11. On Interpolants and Variable Assignments

150

Leaf v: 〈Θ〉, [I]

I =

〈Θ〉[π]|b,v,Lab if 〈Θ〉 ∈ Aπ Hyp-Aπ
¬〈Θ〉[π]|a,v,Lab if 〈Θ〉 ∈ Bπ Hyp-Bπ
> if 〈Θ〉 ∈ Aπ ∪Bπ Hyp-Aπ , Hyp-Bπ

Inner vertex v:
v1 : 〈p,Θ1〉, [I1] v2 : 〈p̄,Θ2〉, [I2]

〈Θ1,Θ2〉, [I]

I =

I1 ∨ I2 if Lab(v1, p) t Lab(v2, p) = a Res-a
I1 ∧ I2 if Lab(v1, p) t Lab(v2, p) = b Res-b
(I1∨p)∧ (I2∨p) if Lab(v1, p)t Lab(v2, p) = ab Res-ab
I2 if Lab(v1, p) = d+ Res-d+

I1 if Lab(v2, p) = d+ Res-d+

Figure 5. Labeled Partial Assignment Interpolation System

ab

d+

a b

⊥

Figure 6. Lattice of labels (according to v)

is called labeling function for a refutation R iff ∀v ∈ V and
∀l ∈ Lit, LabR,L satisfies the following conditions:

(D3.1) LabR,L(v, l) = ⊥ if and only if l /∈ cl(v), and
(D3.2) LabR,L(v, l) = LabR,L(v1, l)tLabR,L(v2, l), where
v1, v2 are the predecessor vertices.

From condition D3.2 it follows that the labeling function
is fully determined once the labels in the leaves have been
specified. We omit subscripts R and L if clear from the
context.

Naming conventions: Let us assume a pair of sets of clauses
(A,B) and a PVA π. The clause sets are split into four groups,
the unsatisfied clauses Aπ and Bπ which specify the sub-
problem and are taken into account during interpolation, and
the satisfied clauses Aπ and Bπ , which are disregarded.

We distinguish among the following kinds of variables,
depending on the standard notions of locality and sharedness,
as well as on where the variables appear in the four groups of
clauses. We say that a variable k is unassigned if k 6∈ Var(π).
An unassigned variable k is:

Aπ-local if k ∈ Var(Aπ) and k 6∈ Var(Bπ)
Bπ-local if k 6∈ Var(Aπ) and k ∈ Var(Bπ)
AπBπ-shared if k ∈ Var(Aπ) and k ∈ Var(Bπ)
AπBπ-clean if k 6∈ Var(Aπ) and k 6∈ Var(Bπ)

The properties above are independent of the occurrence of k
in Var(Aπ) and Var(Bπ). The “clean” variables occur only in
the satisfied clauses, thus are out-of-scope and cannot appear
in a PVA interpolant.

We say that a variable k is McMillan-labeled if, whenever
k is AπBπ-shared or AπBπ-clean, k is labeled b (the labels of
the remaining variables are not limited to b). If all variables are
McMillan-labeled, a LIS reduces to McMillan’s interpolation
system [6], which yields the strongest interpolant that LISs
(and LPAISs) can produce from a given refutation proof.

A variable k is labeled consistently if all occurrences of k
in a refutation have the same label.

Not all labeling functions can be used to generate inter-
polants; in LPAIS, interpolants are computed if a locality
preserving labeling is used.

Definition 4: A labeling function Lab for an (A,B, π)-
refutation R is locality preserving iff ∀v ∈ V, ∀l ∈ cl(v):

(D4.1) Lab(v, l) = d+ ⇔ π |= l
(D4.2) Var(l) is unassigned and Aπ-local ⇒ Lab(v, l) = a
(D4.3) Var(l) is unassigned and Bπ-local ⇒ Lab(v, l) = b
(D4.4) Var(l) is unassigned and AπBπ-clean ⇒

it is consistently labeled a or b.
Locality constraints provide freedom in labeling AπBπ-shared
and AπBπ-clean variables; the choice of labels directly affects
the strength of the computed interpolants. The label of AπBπ-
shared variables can be set freely to a, b, or ab. The same holds
for falsified literals; their labels are irrelevant since they are
removed by the assignment filter (defined below).

The D4.2 and D4.3 rules are equivalent to the locality
requirements of LIS, where A-local and B-local variables must
be labeled a and b, respectively. D4.1 concerns the satisfied
literals. The label d+ is used in the interpolation process to
identify resolutions with an assigned pivot and parts of the
proof which are not relevant to the sub-problem. The D4.4
requirement is specific to PVAI and deals with variables which
occur in the satisfied clauses only. The requirement guarantees
that such variables do not occur in the interpolant, because ab-
resolution cannot be applied. Further, note that for the empty
assignment the locality constraints reduce to those of LISs,
since D4.1 and D4.4 do not apply to any literal.

Filters: For a clause 〈Θ〉, a labeling function Lab, a resolution-
proof vertex v ∈ V, and a label c, we define the match filter |
as 〈Θ〉|c,v,Lab = {l ∈ 〈Θ〉 | c = Lab(v, l)}; it preserves only
the literals with the specified label. Similarly, we define the
upward filter � as 〈Θ〉�c,v,Lab= {l ∈ 〈Θ〉 | c v Lab(v, l)};
it preserves the literals with labels above c in Fig. 6. The
subscripts Lab, v are omitted if clear from the context. Given
a partial assignment π and a clause 〈Θ〉, we also define the
assignment filter 〈Θ〉[π] = {l ∈ 〈Θ〉 | Var(l) 6∈ Var(π))},
which removes all the assigned literals (satisfied and falsified
ones).

Moreover, we assume that filters have a higher precedence
than negation. E.g., ¬〈Θ〉[π]�a can be equivalently rewritten
as ¬((〈Θ〉[π])�a).

An interpolation system is a procedure for computing an
interpolant from a refutation. It assigns a partial vertex-

11. On Interpolants and Variable Assignments

151

interpolant to each vertex of the refutation, yielding the final
interpolant at the sink vertex.

Definition 5: For a locality preserving labeling function Lab
and an (A, B, π)-refutation R, Fig. 5 defines the Labeled
Partial Assignment Interpolation System LpaItp(Lab, R).

An LPAIS produces interpolants in the following way:
first the vertex-interpolants for leaves of the refutation proof
are computed using the rules in the upper part of Fig. 5
(hypothesis rules). Depending on the occurrence of the vertex-
clause 〈Θ〉 in A or B sets, the corresponding rule describes the
transformation of the vertex-clause into a vertex-interpolant.
Later, going down through the proof from leaves to the sink,
the vertex-interpolants for inner vertices are computed using
rules in the lower part of Fig. 5. The labels assigned to the
pivots determine how vertex-interpolants of both predecessors
are combined. This process ends at the sink vertex where the
PVAI is derived. The interpolants are computed in time linear
to the size of the proof.

The main difference compared to LISs are the additional d+

rules. For instance, consider the last rule, where Lab(v2, p) =
d+. In contrast to the standard rules, the partial interpolant
is simpler, because it does not contain I2, omitted due to the
variable assignment. Generally, these rules cut out the satisfied
sub-tree of the proof. Usually, the later in the refutation the
assigned variable is resolved, the larger sub-tree is pruned and
the smaller the resulting interpolant is.

The differences between LPAISs and LISs are motivated
by the way variable assignments work. The new d+ rules
can be seen as a specialization of the ab resolution rule if
a PVA π is assumed. A similar relationship holds for the
hypothesis rules in the leaves of a refutation. These rules are
equivalent to LIS hypothesis rules if applied on a clause under
the assumed assignment. The changes we introduce w.r.t. LISs
are of two kinds: those in LPAISs rules force specialization
of the interpolant on a sub-problem, while the changes in the
locality constraints remove unassigned out-of-scope variables
from the interpolant.

Theorem 1 (Correctness): LpaItp(Lab, R), for an (A, B, π)-
refutation R and a locality preserving labeling function Lab,
generates a partial variable assignment interpolant.

Proof sketch: By structural induction over R we show that,
for each vertex v of a resolution proof, the following invariants
hold:

π |= A ∧ ¬〈Θ〉�a,v,Lab⇒ Iv

π |= B ∧ ¬〈Θ〉�b,v,Lab⇒ ¬Iv
Iv is the partial vertex-interpolant and 〈Θ〉 is a vertex-clause
of v. These invariants yield the PVAI constraints (D2.1, D2.2)
at the sink vertex, where ¬〈Θ〉 = >. The full proof can be
found in [8].

The attentive reader may notice that the locality constraints,
as well as the way LPAISs compute interpolants, are symmetric
for the Aπ and Bπ sets of satisfied clauses. It reflects the fact

that these clauses are not a part of the sub-problem under
consideration, thus irrelevant for PVAI interpolants. Given a
fixed π, the satisfied clauses can be moved freely between
the A and B sets; both computed interpolants and locality of
the labeling functions are not affected if satisfied clauses are
moved. This fact allows us to articulate the strength theorem
in an elegant way.

A. Strength

b

ab = d+

a

⊥

Figure 7. Strength ordering (�)

Interpolation systems based
on labeling provide some free-
dom in the choice of labels
(e.g., for shared variables); this
choice affects the resulting in-
terpolants, in particular their
strength. In the following we
investigate this relationship in
more detail.

Definition 6 (Strength order): Let � be a pre-order relation
defined on the set of labels S = {⊥, a, b, ab, d+} as: b �
ab = d+ � a � ⊥ (see Fig. 7). Let Lab and Lab′ be labeling
functions for a refutation R. We say Lab is stronger than Lab′,
denoted as Lab � Lab′, if for all vertices v ∈ V and for all
literals l ∈ cl(v) it holds that Lab(v, l) � Lab′(v, l).

Note that labels ab and d+ are of the same strength and
can be exchanged if the locality requirements permit; b is the
strongest label, while a is the weakest one a literal can get.

The following theorem states that the introduced strength or-
der on labeling functions also orders the produced interpolants
by logical strength.

Theorem 2 (Interpolant strength): Let Lab be a locality
preserving labeling function for an (A, B, π)-refutation R,
and Lab′ be a locality preserving labeling function for (A, B,
π′)-R. Let I be a partial variable assignment interpolant for
LpaItp(Lab, R) and I ′ be a PVAI for LpaItp(Lab′, R).

If Lab � Lab′ then π, π′ |= I ⇒ I ′.

Note that when π and π′ are empty assignments, we obtain
exactly the theorem on interpolant strength from [6]. Also note
that the theorem permits different variable assignments for
the interpolants. Thus it relates the interpolants generated for
different sub-problems (e.g., interpolants considering different
sets of paths through a given ARG node). Since both π and π′

are assumptions of the formula I ⇒ I ′, the theorem applies to
cases common to both sub-problems (i.e., to the shared paths).
Both interpolants (I and I ′) have to be computed using the
same A and B parts, thus interpolants for different ARG nodes
cannot be compared using this theorem; a generalization in this
direction is shown in the following sub-section.

In the following proof, we need a new type of filter. Let Lab
and Lab′ be labeling functions to be compared by strength and
v be a vertex of the refutation proof. The new weakened-labels
filter |�Lab,Lab′

v preserves the literals whose label is weaker in
Lab′ than in Lab. E.g., the filter preserves a literal l if the
strongest labels b (Lab(v, l) = b) is weakened into label a or

11. On Interpolants and Variable Assignments

152

ab in Lab′(v, l), while it filters-out a literal if both functions
assign label a to it. The vertex and the labeling functions are
omitted if clear from the context.

Proof sketch (Theorem 2): By structural induction over
R, we show that for each vertex of the resolution proof the
following invariant holds:

π, π′ |= Iv ∧ ¬〈Θ〉|�v⇒ I ′v

〈Θ〉 is the vertex-clause, Iv and I ′v are the partial vertex-
interpolants for the vertex v as generated by our interpolation
system using the labeling functions Lab and Lab′, respectively.
The full proof in [8] shows that the invariant holds for all
combinations of rules that can be used to define the vertex-
interpolants Iv and I ′v .

Similarly to LISs, for a fixed variable assignment there
is a lattice of LPAISs ordered according to the strength of
labeling functions. The top element of the lattice involves the
strongest labeling function, which assigns label b to AπBπ-
shared and AπBπ-clean variables, while the labeling function
of the bottom element assigns label a to them. Theorem 2
claims that LPAISs produce interpolants ordered by strength
according to the lattice.

B. Path interpolation property
Several verification approaches such as [3], [10], [14]

depend on the path interpolation property (PI). In [13] the
authors show that LISs can be employed to generate path
interpolants by providing a sequence of labeling functions that
are decreasing in terms of strength. In this subsection we study
conditions for labeling functions that have to be satisfied in
order to guarantee the PI property of interpolant sequences
generated by LPAISs.

First, we show that the PI property holds if the same
partial assignment along a sequence is used to compute the
interpolants (i.e., considering the same set of paths at different
ARG nodes). Later on, we generalize the result to permit
different partial assignments for particular interpolants (i.e.,
relating node interpolants).

Fixed PVA: To show the PI property, it is enough to prove
that, for any consecutive interpolants in the sequence, it holds:
I ∧ S ⇒ I ′, where I is an interpolant for (A,S ∪B, π), I ′ is
an interpolant for (A ∪ S,B, π), and S is a set of clauses.

For LISs, [13] defines a set of labeling constraints on the
labeling functions used to compute the interpolants I and
I ′; if the labeling constraints are satisfied, the interpolants
have the PI property. However, we prove the PI property
in another way, more suitable for LPAISs. Given a labeling
function to compute the interpolant I , we define the strongest
labeling function which can be used to compute the successor
interpolant I ′.

Definition 7: Let Lab be a labeling function for an (A,S ∪
B, π)-refutation R. The strongest successor labeling function
LabS (for the set S) is defined in Fig. 8.

It is easy to see that LabS is a valid labeling function
and that if Lab is locality preserving, then LabS is locality

preserving for (A ∪ S,B, π). Hence, LabS can be used to
compute an interpolant for (A ∪ S,B, π).

The first alternative (D7.1) forces label a for all literals
which become (Aπ ∪Sπ)-local due to the shift of the clauses
in S from the B to the A part. Any locality preserving function
Lab′ has to also assign the label a to these literals. So, it is
easy to see that if Lab � Lab′ then also LabS � Lab′. This
expresses the meaning of strongest. Moreover, Lab � LabS ,
because either the labels are equal or the weakest label a is
used in the labeling LabS .

The following lemma states the PI property for the strongest
successor labeling.

Lemma 1: Let Lab be a locality preserving labeling function
for an (A, S∪B, π)-refutation R and let LpaItp(Lab, R) = I .
Let LabS be the strongest successor labeling for Lab and S,
and LpaItp(LabS , (A ∪ S,B, π)) = I ′.

Then π |= I ∧ S ⇒ I ′.

Proof sketch: By structural induction over R, we show that
for each vertex v of the resolution proof the following invariant
holds:

π |= Iv ∧ S ∧ ¬〈Θ〉|�v⇒ I ′v

〈Θ〉 is the vertex-clause, Iv and I ′v are the partial vertex-
interpolants for the vertex v as generated by our interpolation
system using the labeling functions Lab and LabS , respec-
tively. The full proof can be found in [8].

Lemma 1 guarantees the PI property only if the sequence
of the strongest successors labeling functions is used. Below
we generalize this result in such a way that the strength of the
labeling function can decrease along the sequence; Theorem 3
states the main result for a fixed partial assignment – the path
interpolation property.

Theorem 3: Let Lab and Lab′ be locality preserving la-
beling functions for an (A, S ∪ B, π)-refutation R and
(A ∪ S, B, π)-R, respectively. Let LpaItp(Lab, R) = I and
LpaItp(Lab′, R) = I ′.

If Lab � Lab′ then π |= I ∧ S ⇒ I ′.

Proof: Let IS be the partial variable interpolant for the
strongest successor labeling function LabS . From Lemma 1
it holds that π |= I ∧S ⇒ IS . As shown above LabS � Lab′;
so Theorem 2 can be applied and π |= IS ⇒ I ′.

The result in this case is the same as for LISs. In the
following we focus on the case when different PVAs are used,
and the situation becomes more challenging.

Different PVAs: The goal to prove when different partial
assignments π and π′ are used to compute interpolants I and
I ′ (respectively) is:

π, π′ |= I ∧ S ⇒ I ′

Looking back at the motivating example, for each node in
the ARG a different partial variable assignment is typically
used; thus, the generalization done in this section is needed to
relate the interpolants of adjacent ARG nodes. Assume node

11. On Interpolants and Variable Assignments

153

LabS(v, l) =
{
a if Var(l) ∈ Var(Sπ) ∧ Var(l) 6∈ Var(Bπ) ∧ Var(l) 6∈ Var(π) (D7.1)
Lab(v, l) otherwise (D7.2)

Figure 8. Strongest successor labeling function

interpolants I2 for node 2 and I3 for node 3. The desired
property is then I2∧τ23 ⇒ I3 (well-labeledness in the context
of ARGs [3], [10]), which follows from the aforementioned
goal. In Theorem 4, we work out the conditions the labeling
functions (for I2 and I3) have to satisfy so that the interpolants
have the desired property.

Assignments: Having two different PVAs π and π′, the ex-
pression (π, π′) represents the PVA formed by the union of
π and π′. We say that a PVA σ is an extension of a PVA π,
if σ ⇒ π (viewing the PVAs as conjunctions of literals). In
other words, σ can be created from π by assigning additional
variables. In case of conflicting π and π′ (assigning one >
and the other ⊥ to a particular variable), the goal above holds
trivially and therefore we omit the case from now on.

Definition 8: We say that the variable is assignable if it is
McMillan-labeled and not Aπ-local.

Each assignable variable must have label b, therefore, after
assigning it, its label becomes weaker. The following theorem
states the main result for different PVAs.

Theorem 4: Let Lab be a locality preserving labeling
function for an (A,S ∪ B, π)-refutation R and let I =
LpaItp(Lab, (A,S ∪ B, π)). Let Lab′ be a locality preserv-
ing labeling function for (A ∪ S,B, π′)-R and let I ′ =
LpaItp(Lab′, (A ∪ S,B, π′)).

Suppose that (i) Aπ ⊆ Aπ′ , (ii) Bπ′ ⊆ Bπ , (iii) the variables
assigned by π′ and not by π are assignable in Lab, and (iv)
the variables assigned by π and not by π′ are not Bπ′ -local.

If Lab � Lab′ then it holds π, π′ |= I ∧ S ⇒ I ′.

Intuitively, the constraints (i) and (ii) prevent from com-
paring interpolants of unrelated sub-problems. The only way
to violate the constraint (i) Aπ ⊆ Aπ′ is to assign a new
variable by π′. In terms of ARGs, it means that π′ blocks
some paths in addition to those blocked by π. The interpolant
I over-approximates the states reachable in the corresponding
node via non-blocked paths in the A part. If the assignment π′

blocks some paths related to I ′ in addition to those blocked by
π, then I ′ may not cover (over-approximate) the states coming
from the blocked paths, thus it may be not implied by I . A
similar reasoning can be used for (ii).

Proof sketch: The overall idea of the proof is shown in
Fig. 9. The proof consists of four simpler steps. In the first
step (1 → 2) new variables get assigned by π′, in the second
step (2 → 3) the clauses of S are moved. In the third step
(3 → 4) the assignment π is removed, in the last step (4 →
5) the labeling function is weakened. In the second line of

Fig. 9, it is expressed how the interpolation problem is divided
into A and B parts and which PVA is used. In all but the
second step the division into A and B parts does not change,

thus Theorem 2 can be used to relate particular interpolants
with each other via implications; in the second step the partial
variable assignment does not change, so Theorem 3 is utilized.

To be able to apply this scheme (Theorems 2 and 3),
locality preserving labeling functions of decreasing strength
are needed. The third line of Fig. 9 specifies a labeling function
for each step. The idea of the approach is similar to the one
used for fixed variable assignments. In each step, we create
the strongest possible labeling function; in particular for the
first step (1 → 2) we create an extended-assignment label-
ing function (Lab+

π→(π,π′)) – the strongest locality-preserving
labeling function if new variables get assigned. For the second
step (2 → 3) we use the strongest successor labeling
function as defined in Def. 7. For the third step (3 → 4) we
create a restricted-assignment labeling function (Lab−(π,π′)→π′)
– the strongest locality-preserving labeling function if vari-
ables get unassigned. For the sake of space, we skip the
definitions of the aforementioned labeling functions and proofs
of the required properties; they can be found in [8].

Via the above construction we create the strongest locality-
preserving labeling function (Lab−(π,π′)→π′) for (A∪S,B, π′)
which satisfies Lab � Lab−(π,π′)→π′ . In the last step (4 → 5)
we decrease the strength into Lab′, in the same way as it is
done for LabS in Theorem 3.

The last line of Fig. 9 shows how the interpolants in each
step are related to each other and how the overall claim of this
theorem follows from the particular steps.

C. Application to ARGs

While the locality constraints are simple to satisfy for a
single interpolant, the situation becomes more complicated if
several interpolants need to be related by the path interpolation
property. In such a case, the labels of the literals have to be
chosen in an appropriate way. In the following, we briefly
discuss how to set labels for ARG nodes (using the same
encoding as in our motivating example) to apply Theorem 4
and, thus, to obtain well-labeled node interpolants.

Recall that in ARGs there are two kinds of variables –
(1) structure encoding (ni), which can be assigned, and (2)
program variables, which are not assigned. The first rule is
that the structure encoding variables have to be McMillan-
labeled (obtaining the strongest possible labels). This rule and
the properties of ARG encoding are enough to satisfy the (i)–
(iv) requirements of Theorem 4.

Only the last requirement – Labi � Labj – restricts also
the labels for program variables. It is easily satisfied in ARGs
by a quite simple general rule: once an AπBπ-shared or an
AπBπ-clean literal gets a label weaker than the strongest label
b at a node, the same or a weaker label has to be assigned at
all its successor nodes, until it becomes Aπ-local.

11. On Interpolants and Variable Assignments

154

1 → 2 → 3 → 4 → 5
(A,S ∪B, π) (A,S ∪B, (π, π′)) (A ∪ S,B, (π, π′)) (A ∪ S,B, π′) (A ∪ S,B, π′)

Lab � Lab+
π→(π,π′) � LabS(π,π′) � Lab−(π,π′)→π′ � Lab′

π, π′ |= I ∧ S T2=⇒ I+ ∧ S T3=⇒ IS
T2=⇒ I−

T2=⇒ I ′

Figure 9. Idea of Theorem 4

Apparently, if for all nodes in an ARG the strongest possible
labeling functions are used (i.e., all variables are McMillan-
labeled), the aforementioned rules on labeling functions are
satisfied, and well-labeled node interpolants are obtained.

A well-known inherent property of node interpolants is
that for a path p in ARG the resulting node interpolants do
not form path interpolants. A node interpolant summarizes
information about all paths via the node. To be able to express
this “summary”, the variables shared (between A and B) on
any path via the node need to be employed; we call these in-
scope variables. However these variables are not necessarily
AB-shared in the selected path p.

Still, path interpolants for a single path can be computed
from the overall problem by means of PVAIs. Using a PVA
that blocks all paths except for the one of interest, LPAISs
yield path interpolants focused only on that path and over the
variables shared on that path.

VI. RELATED WORK

To the best of our knowledge, the only strongly related
works in this area are [1], [3].

The approach of [3], implemented in the UFO tool, can han-
dle linear integer arithmetic. The main idea of the technique
is to linearize a DAG into a single path; after that, standard
path interpolants are computed and, if out-out-scope variables
are present in the interpolants, quantification is used to remove
these variables. So, in general the approach leads to quantified
interpolants, while LPAISs yield quantifier-free interpolants.

In [1], the authors present a different solution to the problem
of out-of-scope variables. Instead of quantification, the fol-
lowing operations are proposed to remove them: (a) assigning
constants to variables in the interpolant (> or ⊥ in case of
propositional logic) or (b) modifying the structure of the DAG
encoding. Comparing to (a), our approach is more general. We
naturally handle any provided assignments, thus it is possible
to assign additional variables to obtain the same interpolant
as suggested by [1]. Moreover, we provide more flexibility,
e.g., in the case of AπBπ-clean variables one may choose
either label b to obtain a stronger interpolant, or label a to
get a weaker one. In our work we also show the constraints
under which a property relevant to verification – the path
interpolation property – holds, which is not guaranteed in [1].

An aspect common to the above approaches is that they are
applied as post-processing techniques, after an interpolant has
been computed and only if it contains out-of-scope variables.
On the contrary, our method is integrated into the computation
of the interpolant, and simplifies the proof on the fly according

to the corresponding variable assignment, yielding a possibly
smaller interpolant.

VII. CONCLUSION

In this paper, we introduced the new concept of Partial
Variable Assignment Interpolants, which, unlike Craig inter-
polants, permits specialization to sub-problems specified in the
form of variable assignments. We showed how PVAIs find
application in the context of Abstract Reachability Graphs and
DAG interpolation. We also developed the new framework of
Labeled Partial Assignment Interpolation Systems, which can
be used to compute PVAIs for propositional logic, and showed
its properties.

As future work, we plan to extend the framework of
LPAISs and to introduce a PVA interpolation system for linear
integer arithmetic – a theory particularly relevant to program
verification.

Acknowledgment.: Special thanks go to Ondřej Šerý for his
valuable contribution.

REFERENCES

[1] Albarghouthi, A., Gurfinkel, A.: DAG-Interpolation for Software Model
Checking (2013), http://cav2013.forsyte.at/files/aws_albarghouthi.pdf

[2] Albarghouthi, A., Gurfinkel, A., Chechik, M.: Craig Interpretation. In:
SAS ’12. LNCS, vol. 7460, pp. 300–316 (2012)

[3] Albarghouthi, A., Gurfinkel, A., Chechik, M.: From Under-Approxima-
tions to Over-Approximations and Back. In: TACAS ’12. LNCS, vol.
7214, pp. 157–172 (2012)

[4] Albarghouthi, A., Li, Y., Gurfinkel, A., Chechik, M.: Ufo: A Framework
for Abstraction- and Interpolation-Based Software Verification. In: CAV
’12. LNCS, vol. 7358, pp. 672–678 (2012)

[5] Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating
model theory and proof theory. J. of Symbolic Logic pp. 269–285 (1957)

[6] D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant
strength. In: VMCAI’10. LNCS, vol. 5944, pp. 129–145 (2010)

[7] Gurfinkel, A., Rollini, S.F., Sharygina, N.: Interpolation Properties and
SAT-Based Model Checking. In: ATVA ’13. LNCS, vol. 8172, pp. 255–
271 (2013)

[8] Jančík, P., Kofroň, J.: On Partial Variable Assignment Interpolants.
Tech. Rep. 2013/5, Dept. of Distributed and Dependable Systems,
Charles University in Prague (2013), http://d3s.mff.cuni.cz/publications/
download/D3S-TR-2013-05-PVAI.pdf

[9] McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: CAV
’03. LNCS, vol. 2725, pp. 1–13 (2003)

[10] McMillan, K.L.: Lazy Abstraction with Interpolants. In: CAV ’06.
LNCS, vol. 4144, pp. 123–136 (2006)

[11] Pudlák, P.: Lower Bounds for Resolution and Cutting Plane Proofs and
Monotone Computations. Journal of Symbolic Logic 62(3), 981–998
(1997)

[12] Rollini, S., Alt, L., Fedyukovich, G., Hyvärinen, A., Sharygina, N.:
PeRIPLO: A Framework for Producing Effective Interpolants in SAT-
Based Software Verification. In: LPAR (2013)

[13] Rollini, S.F., Sery, O., Sharygina, N.: Leveraging Interpolant Strength in
Model Checking. In: CAV ’12. LNCS, vol. 7358, pp. 193–209 (2012)

[14] Vizel, Y., Grumberg, O.: Interpolation-sequence based Model Checking.
In: FMCAD ’09. pp. 1–8. IEEE (2009)

11. On Interpolants and Variable Assignments

155

11. On Interpolants and Variable Assignments

156

CHAPTER 12

PVAIR: Partial Variable Assignment InterpolatoR

Authors: Pavel Janč́ık, Leonardo Alt, Grigory Fedyukovich, Antti E.J. Hyväri-
nen, Jan Kofroň, and Natasha Sharygina

[3] Proceedings of FASE’16, DOI: 10.1007/978-3-662-49665-7 25, Eindhoven, Nether-
lands, April 2016

157

PVAIR: Partial Variable Assignment InterpolatoR?

Pavel Jančík2, Leonardo Alt1, Grigory Fedyukovich1, Antti E. J. Hyvärinen1,
Jan Kofroň2, and Natasha Sharygina1

1 University of Lugano, Switzerland, {name.surname}@usi.ch
2 Charles University in Prague, Faculty of Mathematics and Physics
Department of Distributed and Dependable Systems, Czech Republic

{name.surname}@d3s.mff.cuni.cz

Abstract Despite its recent popularity, program verification has to face practical
limitations hindering its everyday use. One of these issues is scalability, both in
terms of time and memory consumption. In this paper, we present Partial Vari-
able Assignment InterpolatoR (PVAIR) – an interpolation tool exploiting partial
variable assignments to significantly improve performance when computing sev-
eral specialized Craig interpolants from a single proof. Subsequent interpolant
processing during the verification process can thus be more efficient, improving
scalability of the verification as such. We show with a wide range of experiments
how our methods improve the interpolant computation in terms of their size. In
particular, (i) we used benchmarks from the SAT competition and (ii) performed
experiments in the domain of software upgrade checking.

1 Introduction

Symbolic model-checking algorithms rely on expressing a verification problem as a
logical formula and determining whether the formula satisfies a given property. Many
sub-tasks of model-checking, such as computing safe inductive invariants for programs
and summarizing functionality with respect to properties critical to program correct-
ness, rely on over-approximating parts of the formula. To keep the formal verification
manageable and the run time low it is critical that the over-approximations are suitable
for the model-checking task at hand. Craig interpolation [7] is a process for comput-
ing over-approximations of first-order formulas that has proven useful in both program
verification and automatic approximation refinement [15]. The idea in applying Craig
interpolation in model checking is to reduce the over-approximation process into find-
ing a compact interpolant I such that I is satisfied by all models of the part being
over-approximated but still entails the properties of interest with respect to the rest of
the formula. The Labeled Interpolation System (LIS) [8] is a widely used framework
for computing Craig interpolants in propositional logic from a resolution refutation.
The flexibility of LIS allows it to be used in a variety of verification tasks that place
additional requirements for the interpolants [18].

In some tasks, (e.g., when proving safety of certain types of program updates or
speeding up model-checking with parallel computing) it is useful to compute over-
approximations of the formula under assumptions which are specific to the particular
? This work was partially supported by the Grant Agency of the Czech Republic project 14-

11384S and by the SNF projects number 200020_163001 and 200021_153402.

12. PVAIR: Partial Variable Assignment InterpolatoR

158

application problem. However, the LIS framework in its original form does not allow for
computing interpolants under assumptions. There are several reasons why such focused
interpolants would be beneficial in particular in the LIS framework. Firstly, the fo-
cused interpolants are in general smaller and therefore more manageable for the model
checker. Secondly, the properties of interpolants provided by the LIS framework, such
as the path interpolation property [13], can be preserved in the focused interpolants.
Thirdly, several focused interpolants can be computed from a single resolution refuta-
tion, while constructing a resolution refutation is computationally expensive. In [12], we
introduced an interpolation system exploiting partial variable assignments to improve
efficiency of interpolant computation. We proved that following a set of requirements
put on labeling during interpolation results in interpolants with the path interpolation
property, which is required by some verification tools, e.g. [1], to work.

This paper presents the Partial Variable Assignment InterpolatoR (PVAIR), the first
implementation that is able to construct such focused interpolants. The implementation
is based on the Labeled Partial Assignment Interpolation System (LPAIS) [12], an ex-
tension of LIS which supports focusing the interpolant in the manner required by the
verification applications. The PVAIR solution is generic and can be used in various
model checking-based scenarios. In this paper, in addition to providing the description
of the tool architecture, we also report an initial experimental study on how the inter-
polants constructed with PVAIR behave in different example tasks. The results show a
significant improvement in both interpolant size and the overall model checking time,
suggesting that the approach is viable for constructing focused interpolants.

The general intuition behind the applications of PVAIR is that sometimes a sym-
bolic model checker can provide a partial truth assignment for the formula being veri-
fied, coming from the knowledge of the program structure and meaning of the variables.
As a result, some constraints of the formula can get satisfied; the LPAIS framework al-
lows for removing such clauses during the interpolant computation. This improves the
interpolation in two ways: the interpolation becomes faster, and the resulting interpolant
can be significantly smaller. Because of the latter the interpolants can be handled in a
more efficient way during the subsequent computation. PVAIR is built on top of the
open-source tool PERIPLO [18], which provides resolution proofs and is able to op-
timize the proofs for interpolation through transformations. PERIPLO has been used
in various verification projects, including function summarization in EVOLCHECK [10]
and FUNFROG [22], both as an interpolation engine and as a SAT solver.

We experimentally studied the performance of PVAIR on a set of its potential ap-
plications. We compared it to PERIPLO during computation of a summary for a partic-
ular function using EVOLCHECK. In this experiment, PVAIR was used to rule out the
program paths that do not call the function. We also applied PVAIR in more generic
settings, when constructing interpolation problems from a subset of the SAT Competi-
tion benchmarks. This experiment resembles closely the scenario of computing focused
interpolants for a divide-and-conquer approach for parallel model checking. In both
types of benchmarks, we report a substantial reduction in interpolant sizes. As shown
in the EVOLCHECK use case, smaller interpolants also result in considerably faster
upgrade-checking steps.

12. PVAIR: Partial Variable Assignment InterpolatoR

159

⊥
〈l1〉 〈l1〉

〈l1 ∨ l6〉 〈l1 ∨ l2〉 〈l1 ∨ l2〉

〈l1 ∨ l6〉 〈l1 ∨ l2〉 〈l2 ∨ l6〉 〈l2 ∨ l4〉 〈l1 ∨ l4〉

〈l1 ∨ l3〉 〈l3 ∨ l6〉 〈l1 ∨ l5〉 〈l4 ∨ l5〉

Figure 1: Refutation resolution proof; the clauses
from A-part and B-part are in dashed and full
boxes, respectively.

∧
∧ ∧

∧ [>] ∧

∧ [l1 ∨ l2] [>] [>] ∧

[>] [l3 ∨ l6] [l1 ∨ l5] [>]

Figure 2: McMillan’s interpolant.

2 Preliminaries and Background Theory

A literal is a Boolean variable l or its negation l̄. A clause is a disjunction over a set
of literals. We use angle brackets 〈Θ〉 to denote the clause built from the literals in set
Θ. A propositional formula in Conjunctive Normal Form (CNF) is a conjunction (or
equivalently set) of clauses. A resolution proof for a set of clauses Φ is a rooted DAG
with each node having either no antecedents (leaf node) or exactly two antecedents
(inner node). Each node in the resolution proof is associated with node clause; from
now on we use proof node and corresponding node clause equivalently. A leaf node
corresponds to an input clause from Φ. Each inner node with two antecedents 〈Θ1, p〉
and 〈Θ2, p̄〉 has node clause 〈Θ1, Θ2〉, thus representing a resolution where p is the
pivot variable.

Given an unsatisfiable CNF formula Φ and its (A,B)-partitioning into A∧B parts, a
Craig interpolant [7] is a formula I such that I is implied byA (|= A⇒ I), unsatisfiable
with B (|= B ∧ I ⇒ ⊥), and defined over common symbols (variables) of A and B.
An interpolant can be seen as an over-approximation of A still being strong enough to
be unsatisfiable with B.

Example 1: Fig. 1 shows a resolution refutation proof for CNF formula Φ = 〈l1 ∨
l2〉 ∧ 〈l̄3 ∨ l6〉 ∧ 〈l̄1 ∨ l5〉 ∧ 〈l1 ∨ l3〉 ∧ 〈l̄2 ∨ l̄6〉 ∧ 〈l̄4 ∨ l̄5〉 ∧ 〈l̄2 ∨ l4〉 ∧ 〈l̄1 ∨ l2〉.
Assume a (A,B)-partitioning with A consisting of the conjunction of the first three
clauses andB of the remaining five clauses. There might not be just a single interpolant
for an unsatisfiable formula; many different ones of various strengths can exist. Formula
I1 ≡ (l1∨[(l6∨l3)∧(l6∨l2)])∧(l1∨l5) is one of the possible interpolants which can be
computed from the proof in Fig. 1 using LIS. Fig. 2 shows how McMillan’s interpolant
I2 ≡ (l1 ∨ l2) ∧ (l̄3 ∨ l6) ∧ (l̄1 ∨ l5) can be derived (after constant propagation) from
the proof in Fig. 1, e.g., by LIS or LPAIS with an empty assignment. Note that for
convenience we write the partial interpolant associated to a particular node of the proof
into brackets.

As an over-approximation, Craig interpolants express properties for all models of the
formula. However, this might be unnecessarily strong for some applications. For ex-
ample, while constructing a function summary through interpolation, it is possible to

12. PVAIR: Partial Variable Assignment InterpolatoR

160

consider only the models corresponding to the paths going via the summarized func-
tion. Based on the encoding of the function body, a variable assignment blocking all
the other paths can be derived. This applies also for the case of Abstract Reachability
Graphs (ARGs). The label of a particular ARG node is an over-approximation of reach-
able states at that node. Since the paths in ARG which do not go via the node cannot
influence the reachable states at that node, for each node it is possible to compute vari-
able assignment blocking these paths; in other words, the assignment permits only the
models corresponding to paths via the node. The node labels are computed by interpo-
lation, however it is actually enough to compute a formula that is an interpolant for the
models consistent with the assignment.

Focused interpolants. A Partial Variable Assignment (PVA) π assigns value True resp.
False to some variables from formula Φ; alternatively, PVA can be seen as a con-
junction of literals. Given a partial variable assignment π, a set of clauses A can be
partitioned into Aπ – a subset of clauses from A satisfied by the assignment, and the
remaining clauses Aπ which are not satisfied by π. For a given unsatisfiable formula Φ,
its partitioning intoA∧B and a partial variable assignment π, a Partial Variable Assign-
ment Interpolant [12], shortly focused interpolant, is a formula I such that π |= A⇒ I
and π |= B∧I ⇒ ⊥ and I is defined over unassigned shared variables betweenAπ and
Bπ , i.e., the symbols common to the π-unsatisfied parts of A and B. In other words, it
is an interpolant, but only for models which agree on the values of variables assigned
by π. Due to the weakened requirements, the focused interpolants can be of a smaller
size compared to the Craig interpolants. The focused interpolants can be alternatively
seen as Craig interpolants for the unsatisfied parts of the input – sub-problem, i.e., for
Aπ ∧Bπ where literals falsified by the assignment are removed.

Example 1 (cont.): Let us assume assignment π ≡ l̄2 (i.e., assigning False to vari-
able l2) and the set of clauses from our previous example. Given the assignment, B can
be split into Bπ ≡ 〈l̄2 ∨ l̄6〉 ∧ 〈l̄2 ∨ l4〉 and Bπ ≡ 〈l̄4 ∨ l̄5〉 ∧ 〈l̄1 ∨ l2〉. Aπ is empty
thus Aπ ≡ > and Aπ ≡ A.

Craig and focused interpolants differ in the variables which could occur in the in-
terpolant. The shared variables between A and B (i.e., those that can appear in a Craig
interpolant) are l1, l2, l5 and l6. Since focused interpolants consider for the shared vari-
ables only unsatisfied parts of A resp. B (i.e., Aπ and Bπ), fewer variables are shared;
in our example only l1 and l5 could appear in a focused interpolant, which are those
which can appear in a Craig interpolant for the sub-problem.

Given an assignment and a Craig interpolant, an alternative way to reduce the
interpolant size is to assign the values inside the interpolant formula and propagate
the Boolean constants. In this case the interpolants from the above example result in
I1[π] ≡ (l1 ∨ [(l6 ∨ l3) ∧ l6]) ∧ (l1 ∨ l5) and I2[π] ≡ l1 ∧ (l3 ∨ l6) ∧ (l1 ∨ l5). None
of them is a valid focused interpolant since both contain variable l6. Note that I2[π]
can be equivalently rewritten as l1 ∧ l5 ∧ (l3 ∨ l6)x; in general, such a transformation
requires a complex analysis and not all interpolants can be transformed into focused
interpolants as I1 shows. This means that the aforementioned techniques can be used
to reduce the size of the formula, however not to compute focused interpolants. Below
we introduce a method to compute focused interpolants for propositional logic which
produces interpolants smaller than the approach above.

12. PVAIR: Partial Variable Assignment InterpolatoR

161

Leaf v: 〈Θ〉, [I]

I =

{
–〈Θ〉|b,π if 〈Θ〉 ∈ Aπ Hyp-Aπ
¬〈Θ〉|a,π if 〈Θ〉 ∈ Bπ Hyp-Bπ
> if 〈Θ〉 ∈ Aπ ∪Bπ Hyp-Aπ , Hyp-Bπ

Inner vertex v:
v1 : 〈p,Θ1〉, [I1] v2 : 〈p̄, Θ2〉, [I2]

〈Θ1, Θ2〉, [I]

I =

I1 ∨ I2 if Lab(v1, p) t Lab(v2, p) = a Res-a
I1 ∧ I2 if Lab(v1, p) t Lab(v2, p) = b Res-b
(I1 ∨ p) ∧ (I2 ∨ p) if Lab(v1, p) t Lab(v2, p) = ab Res-ab
I2 if Lab(v1, p) = d+ Res-d+

I1 if Lab(v2, p) = d+ Res-d+

Table 1: Labeled Partial Assignment Interpolation System

ab

d+

a b

⊥

Figure 3: Lattice of
labels (t).

⊥
Res-b〈l b

1 〉
Res-a

〈l̄ b
1 〉

Res-d+

〈l b
1 ∨ l̄ a

6 〉
Res-d+

〈l̄ b
1 ∨ l b

2 〉
Hyp-Bπ

〈l̄ b
1 ∨ l̄ d+

2 〉
Res-b

〈l b
1 ∨ l a

6 〉
Res-b

〈l b
1 ∨ l b

2 〉
Hyp-Aπ

〈l̄ d+
2 ∨ l̄ a

6 〉
Hyp-Bπ

〈l̄ d+
2 ∨ l b

4 〉
Hyp-Bπ

〈l̄ b
1 ∨ l̄ b

4 〉
Res-b

〈l b
1 ∨ l b

3 〉
Hyp-Bπ

〈l̄ b
3 ∨ l a

6 〉
Hyp-Aπ

〈l̄ b
1 ∨ l b

5 〉
Hyp-Aπ

〈l̄ b
4 ∨ l̄ b

5 〉
Hyp-Bπ

Figure 4: Labeled proof and rules to be applied at proof nodes.

Labeled Partial Assignment Interpolation System (LPAIS) — an extension of the La-
beled Interpolation System [8] — yields focused interpolants from the resolution refu-
tation of A ∧B.

In LPAIS, each literal in the clauses of the resolution proof is assigned a label a,
b, ab, or d+. Labels a, b, and ab have the same meaning as in LIS, while the label
d+ is used for the literals from the assignment π. The lattice of labels is defined by
the Hasse diagram in Fig. 3. The labels are specified via a labeling function Lab; e.g.,
Lab(v2, p) is the label of literal p at node v2 of the proof. The label of a literal in an
inner node v is computed using join operator t (defined by Fig. 3) from the labels of
the literal in the antecedent nodes (Lab(v, l) = Lab(v1, l) t Lab(v2, l), where v1 and
v2 are the antecedent nodes of v). Formal definition of labeling function as well as the
requirements that labels must satisfy are described in [12].

Example 1 (cont.): Fig. 4 shows how LPAIS assigns labels to literals; the label of a
literal is shown as superscript. When choosing the strongest possible labeling, LPAIS
yields, for empty assignments, McMillan’s interpolants; in particular, only variables
occurring in Aπ but not in Bπ are labeled a (i.e., l6), all the others (except for the
literals from the assignment) re-labeled b.

The labeled partial assignment interpolation system assigns a partial interpolant [I]

12. PVAIR: Partial Variable Assignment InterpolatoR

162

to each proof node according to the rules described in Tab. 1. The partial interpolants
of the leaf nodes are directly constructed from the node clauses (it means those forming
A∧B) using the rules in the upper part of Tab.1. The applied Hyp-∗ rule is determined
by the set inclusion check in the middle column; in particular by occurrence of the node
clause in Aπ , Aπ , Bπ and Bπ . A partial interpolant for the Hyp-Aπ rule, defined as
〈Θ〉|b,π , represents a clause which is created from the node clause 〈Θ〉 by omitting the
literals over the π-assigned variables and those whose label differs from b. In particular
node clause 〈l̄ b

3 ∨ l a
6 〉 yields partial interpolant 〈l̄ b

3 ∨ l a
6 〉|b,π ≡ [l3]. The leaf nodes with

clauses satisfied by π have the partial interpolant >.
For inner nodes, the rule from Tab. 1 is chosen based on the labels of the pivot in

the antecedents (denoted by v1 and v2). Note the Res-d+ rules, which correspond to the
case where the pivot is satisfied by the assignment in one of the antecedents. In these
cases, the partial interpolant is the same as the partial interpolant in the antecedent not
being satisfied by the assignment; due to such nodes the size of the LPAIS interpolant
is smaller compared to the LIS interpolant.

Example 1 (cont.): Fig. 5 shows how focused interpolant Iπ ≡ l1 ∨ l̄3 for our
example can be derived. Note the dotted arrows at nodes corresponding to Res-d+ res-
olutions; they highlight the antecedents whose partial interpolants are ignored and their
sub-trees do not contribute to final focused interpolant. Also note that the focused in-
terpolant Iπ is smaller compared to both I1[π] and I2[π] from the examples above.

An assignment applied onto (interpolant) formula (i.e., if I[π] is computed) can
reduce the size of the formula only if the assigned variable appears in the (interpolant)
formula (i.e., the variable has to be shared). However, LPAIS reduce the size of the
interpolants even if the assigned variable does not appear in the interpolant, since the
reduction is done as a part of interpolant computation and not as a post-processing step.

PVAIR implements the LPAIS framework. The tool can generate the McMillan’s [16],
Pudlák’s [17], and McMillan’s′ [8] interpolants and their equivalents in presence of
assignments. Additionally, PVAIR supports constructing different interpolants by pro-
viding different labelings for the literals in the leaves. The relative logical strength of
interpolants constructed with LPAIS from the same resolution refutation is determined

∧
∨ [I3]

[I4] [>] ∧

∧ [l1] [>] [>] ∧

[>] [l3] [l1 ∨ l5] [>]

I3 ≡ >
I4 ≡ l1

Figure 5: Focused interpolant Iπ , using labeling of Fig. 4.

12. PVAIR: Partial Variable Assignment InterpolatoR

163

V
e

ri
fi

c
a

ti
o

n
to

o
l

MINISAT

PERIPLO-based preprocessing

CNFization Proof Construction Proof Reduction

FCNF

UNSAT

PVA Interpolation engine

Interpolant
Construction

d+Labeler

LIS

Refutation proof R

PVAIR

PVA Interpolant Ii

Partitioning Pi
Assignment pi R, Pi

d+Labeling i

R, Pi

Labeling i

Figure 6: PVAIR architecture.

by the labeling function used. For instance, the McMillan’s focused interpolants are
sufficiently strong to have the path-interpolation property.

3 The Tool Architecture

The PVAIR architecture is shown in Fig. 6. It takes a propositional formula, its (A,B)-
partitioning, and a partial variable assignment as input and produces focused inter-
polants if the input formula is unsatisfiable. The input can be provided either in a file in
the SMT-LIB 2.0 format or via a C++ API.

When a verification tool decides to compute interpolants (e.g., to obtain either func-
tion summaries in the case of upgrade-checking and over-approximations of reachable
states for covering checks) it constructs an input formula Φ which encodes the program
being verified. Further, based on the way the input formula is constructed, the verifica-
tion tool decides how to partition it (e.g., to obtain a summary of a given function) and
which partial variable assignment to use (e.g., depending on the changes detected in the
new version of the program). These inputs are then passed to the PVAIR tool.

The workflow of the PVAIR tool is as follows. First, the input formula is passed
to the PERIPLO-based preprocessing module. Since the formula can be in an arbitrary
form, it is transformed into CNF (the top box in Fig. 6) using an efficient, structure-
sharing version of the Tseitin encoding [25]. Its satisfiability is then determined using
the MINISAT 2.2.0 solver [9].

In the case of an unsatisfiable input, an initial refutation is extracted from the solver
in the compact MINISAT internal proof format. The format is then transformed into
a resolution DAG to allow more efficient handling of the proof (Proof Construction).
In particular, using the resolution DAG form, the proof can be compressed using well-
known proof reduction techniques such as structural hashing or pivot recycling [19,20]

12. PVAIR: Partial Variable Assignment InterpolatoR

164

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4

CRF

RND

APP

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4

CRF

RND

APP

Figure 7: Comparison of interpolant sizes computed without variable assignment [x] and with one
variable assigned [y] (left) and five variables assigned (right).

available in PERIPLO (Proof Reduction). The proof reduction techniques can be en-
abled/disabled via a configuration file or API.

Once the resolution proofR is computed, it is passed together with the partitionings
and variable assignments to the interpolation engine (the bottom box in Fig. 6). From
this point on, any number of partial variable assignments πi and partitionings Pi (into
Ai ∧Bi) can be given as input to the tool and used to construct the corresponding inter-
polants Ii. Note that in any case only one SAT-solver call will be made during the entire
execution. The first step inside the PVA interpolation engine is labeling all the literals
in A ∧ B. The d+Labeler will distribute d+ labels among the literals according to the
assigned variables, whereas the LIS will label the remaining literals according to the
partitioning and the selected LIS-based interpolation algorithm (which can be chosen
in the configuration file or via API). When the labeling is complete, it is used together
with the partitioning and resolution proof R to compute interpolants (Interpolant Con-
struction).

The construction starts by computing partial interpolants (according to the upper
part of Tab. 1) for the leaf nodes of the refutation. The computation then proceeds from
the leaves to the root node. In each inner node, depending on the label of the pivot, a
partial interpolant of the node is computed by combining the partial interpolants from
the antecedent nodes (the bottom part of Tab. 1). During the interpolant construction
partial interpolants are optimized using Boolean constant propagation and structural
sharing (hashing). The final interpolant is computed in the root node.

For the details on PVAIR usage, we refer the reader to the Tutorial section of the
tool web page available at http://verify.inf.usi.ch/pvair.

4 Experiments

We ran PVAIR on two types of experiments: (1) SAT Competition benchmarks and (2)
computational problems generated by the EVOLCHECK tool during verification proce-
dure. To demonstrate the tool performance, we measured the size of produced inter-
polants and its effect on the total verification time.

12. PVAIR: Partial Variable Assignment InterpolatoR

165

Focused Itp. APP RND CRF All
No Assignment 344 298.7 1 308 750.1 489 469.1 776 573.9
1 var 92.8 % 83.0 % 78.1 % 83.7 %
5 vars 76.2 % 45.2 % 31.5 % 47.6 %
20 vars 48.3 % 10.1 % 4.8 % 15.0 %

Itp. from sub-prob. APP RND CRF All
No Assignment 344 298.7 1 308 750.1 489 469.1 776 573.9
1 var 69.5 % 55.0 % 65.5 % 58.8 %
5 vars 24.4 % 5.7 % 9.7 % 9.1 %
20 vars 0.12 % 0.01% 0.39% 0.09%

Table 2: Average interpolant sizes by category and number of assigned variables.

4.1 SAT Competition

From the way focused interpolants are computed by PVAIR it is obvious that they are
smaller compared to the Craig interpolants. In this part we illustrate the actual differ-
ence. Compared to experiments on functions summaries in the latter part, SAT Compe-
tition provides us with a larger set of more heterogeneous kinds of benchmarks. This
helps one to see how the reduction of the size varies among inputs from different do-
mains.

For experiments, we chose 47 unsatisfiable benchmarks from the SAT Competition3

from all categories – 12 from the Application (APP), 11 from the Crafted (CRF), and 24
from the Random (RND) sets. Since the benchmarks are not partitioned, we generated
six partitionings for each benchmark; we simulated the typical way the path interpolants
are computed, i.e., we randomly chose n, first n clauses of the benchmark belonged to
the A-part, the remaining clauses to the B-part. No assignment is given by authors of the
benchmarks, thus for each partitioning we generated five random variable assignments
consisting of a single, five, resp. twenty assigned variables. Assignments of various
sizes indicate how the reduction scales w.r.t. the number of assigned variables.

Since focused interpolants can be seen as Craig interpolants for a sub-problem,
for each pair of partitioning and assignment, we created the sub-problem instance and
used PVAIR to computed the Craig interpolant. Sub-problems are simpler compared
to the benchmark from which they were generated, so interpolants for sub-problems
are typically smaller compared to Craig interpolants of the benchmark. However, the
interpolant for each sub-problem is computed from a different refutation proof; in con-
trast to focused interpolants which, for a particular benchmark, are all computed from
the same proof. The path interpolation property [13], which is often exploited during
program model checking, might be missing in this case.

As to the interpretation of the results: No assignment reflects the state-of-the-art ap-
proaches, where Craig interpolants are used directly. Focused interpolants show how the
size of the interpolants can be reduced if the model checker (i.e., a tool generation the
input) provides a reasonable assignment together with a partitioning. The interpolants
for a sub-problem can be seen as an alternative to focused interpolants because of their
similar meaning, however these interpolants lack the properties of the focused ones.

For comparison, we use McMillan’s interpolants – a widely used approach. The
proof reduction techniques were disabled; we used the default PERIPLO settings. All
benchmarks were run on a Linux blade server with Xeon X5687 CPU using the timeout
of 60 minutes and the memory limit of 20GB using the Parallel environment [24].

Fig. 7 compares the sizes of the computed interpolants. Each point in the graph cor-
responds to a single partitioning of a benchmark; the x-axis represents the interpolant

3 http://www.satcompetition.org/

12. PVAIR: Partial Variable Assignment InterpolatoR

166

size if no assignment is provided (Craig interpolant) while the y-axis represents the size
of the focused interpolants with a single (resp. five) assigned variable(s). For presenta-
tion clarity, the y-axis is the average size of all five random assignments generated for
a given partitioning. The values on axes represent millions of nodes if an interpolant is
represented as DAG (counting literals and Boolean operators). The orange dashed line
shows the average size of Craig interpolants for sub-problems. This illustrates what
price is paid by focused interpolants for the path interpolation property and a single
SAT solver call. Both graphs show interesting reduction in size for focused interpolants
as well as substantially larger reduction in case of five assigned variables. In both graphs
the same partition of the same benchmark share the same x-value, thus it is possible,
especially for the larger ones, to compare their reductions.

Tab. 2 summarizes the results shown in the graphs above, reporting precise num-
bers. The table on the left-hand side compares the sizes of focused interpolants to Craig
interpolants (in the No assignment row). The No assignment row shows the average size
of Craig interpolants for a given benchmark type. The remaining rows show the relative
sizes of focused interpolants w.r.t. the No assignment row. The application benchmarks
exhibit a smaller reduction compared to the other types, and even for twenty assigned
variables, the interpolants are half in the size of the Craig interpolants. The table on
the right-hand side compares the sizes of Craig interpolants for the benchmark with
the Craig interpolants for sub-problems (corresponding to the assignments used in the
left table). The table shows that these interpolants are on average smaller compared to
the focused ones. The more variables are assigned, the bigger the difference is. While
the sizes are comparable for a few assigned variables, the price paid for the path in-
terpolation property of focused interpolants is high for larger assignments (e.g., twenty
variables) .

Time and memory demands are crucial properties of each interpolation tool. The
reduction in overall running time and required memory roughly correspond to the re-
duction of interpolant sizes; e.g., PVAIR is 11% faster and requires 9% less memory
on average if a single variable is assigned. The time and memory savings occur as well
during the interpolant computation phase due to smaller interpolants being handled.

4.2 Applying PVAIR for Checking Software Upgrades

The usefulness of PVAIR is motivated by the tremendous role of interpolation in model
checking. One of the possible applications of PVAIR is checking software upgrades by
means of function summarization [23] implemented in the tool EVOLCHECK. Given a
program S and an assertion a, EVOLCHECK verifies S with respect to a (i.e., proves
that S∧¬a is unsatisfiable) and, for each function call in S, it constructs the interpolant
and treats it as a function summary. In [21] we show that even if the constructed function
summary is an over-approximation of the function behavior of S, it preserves the safety
of the assertion a in S.

EVOLCHECK validates the computed function summaries to over-approximate the
behavior of the corresponding functions of a program upgrade, U . In that context, pro-
grams S and U must have a non-empty set of common function calls. EVOLCHECK
traverses this set starting from the deepest level of the (unwound during preprocess-
ing) function call-tree and checks whether each original function summary still over-

12. PVAIR: Partial Variable Assignment InterpolatoR

167

approximates the new behavior of the corresponding function. If there is a function call,
the original summary of which does not over-approximate the new behavior, EVOL-
CHECK propagates the check to the caller function. If there is no function to propagate
then U is unsafe. If at some depth of the unwound call-tree all the function summaries
are proven to be valid, then U is safe, and EVOLCHECK reconstructs the summaries for
the modified function calls.

Applying PVAIR to EVOLCHECK. Consider the case when U is obtained from S
by removing some functionality. Then by construction, the original summaries of S are
still valid over-approximation of the new function behavior in U . But at the same time,
they might be unnecessarily general and consume excessive memory. While the use of
the original summaries does not break soundness of the further upgrade checking, it is
practical to refresh (and possibly shrink) the summaries to become more accurate with
respect to U .

The refreshed summaries may be used to verify a further updated program W that
additionally may introduce new functionality with respect to U . On the other hand, the
summaries may be also used to speed up verification of a new assertion b, implanted
in the code of U [21]. To enable both scenarios, the constructed summaries need to be
externally stored and further migrated across the verification runs. Thus, the size of the
summary also becomes important.

While EVOLCHECK does not provide a way to refresh summaries except of com-
plete re-verification of U from scratch, PVAIR becomes particularly useful. Let ∆S,U

denote the behavioral difference of S and U , i.e., the set of behaviors of S not present
in U . If the set ∆S,U is non-empty, it could be exploited by PVAIR to generate the par-
tial interpolants that represent new summaries for each function in U . These updated
summaries are still guaranteed to preserve safety of the assertion a in U .

Experiments. We experimented with PVAIR on a set of 10 pairs of different bench-
marks written in C. Notably, all benchmarks used non-linear arithmetic operations. Af-
ter the required propositional encoding (i.e., bit-blasting), the resulting large-size for-
mulae have been a bottleneck for solving and interpolation using the original EVOL-
CHECK approach.

In our experiments, for each pair of programs, S and U , we obtained U from the
corresponding S by assigning guards in some conditional expressions. In particular, we
replaced if P do A else do B by assume(P); A. This is equivalent to assigning
P = true, and ∆S,U consists of the behaviors specified by assume(¬ P); B. For
simplicity, in our experiments, we assumed that ∆S,U affected only a single function f .

The results of our experiments are shown in Tab. 3. For each S and U , we identi-
fied ∆S,U and obtained the set of conditional expressions to be assigned in S (column
#var. assigned). Then we performed two steps: (1) constructed the summary of f with-
out/with ∆S,U ; and (2) validated the corresponding summaries of f with respect to the
new code in U . This experiment illustrates to what extent:

– the use of PVAIR yields smaller summaries compared to the ones by PERIPLO,
– the use of smaller summaries improves the overall performance of EVOLCHECK.

We collected the size of the resulting interpolants and total verification time needed to
perform steps (1) and (2). We used the Pudlák interpolation algorithm [17] to construct
the “orig” interpolants (the ones constructed without ∆S,U).

12. PVAIR: Partial Variable Assignment InterpolatoR

168

C program Interpolant (function summary) size Verification time (sec)
name # var. assigned # var. orig. # var. PVAI # cl. orig # cl. PVAI boot. orig. boot. PVAI upgr. orig. upgr. PVAI
Test 0 3 vars 15227 62.61 % 45192 62.21 % 18.93 99.17 % 4.025 65.96 %
Test 1 1 var 23273 78.46 % 69330 78.31 % 10.36 99.24 % 4.034 77.79 %
Test 2 2 vars 31278 59.19 % 93345 58.98 % 8.71 100.32 % 3.878 57.61 %
Test 3 1 var 12236 63.80 % 36219 63.31 % 7.34 100.12 % 1.256 71.50 %
Test 4 2 vars 20447 74.57 % 60852 74.37 % 12.40 101.94 % 2.982 81.35 %
Test 5 3 vars 24716 32.50 % 73659 32.05 % 12.20 102.94 % 3.855 39.46 %
Test 6 3 vars 33076 37.89 % 98739 37.58 % 12.63 102.16 % 7.951 40.05 %
Test 7 1 var 12478 57.47 % 36945 56.91 % 8.88 100.29 % 2.350 57.96 %
Test 8 1 var 21201 50.42 % 63114 50.04 % 14.46 97.55 % 3.706 50.94 %
Test 9 2 vars 20314 39.71 % 60453 39.22 % 21.42 101.26 % 4.581 40.30 %

Table 3: EVOLCHECK verification statistics.

As can be seen from the table, the use of PVAIR helped EVOLCHECK to make the
function summaries up to 60% smaller compared to the ones produced by PERIPLO
(columns #var. orig vs. #var. PVAI, and #cl. orig vs. #cl. PVAI), while taking almost
no additional time (columns boot. orig. vs. boot. PVAI). Furthermore, EVOLCHECK
spent up to 60% less effort in the validating step (columns upgr. orig. vs. upgr. PVAI),
in which the model checker finally confirmed that the new code is safe. In other words,
in the considered verification scenario and driven by PVAIR, EVOLCHECK improved
both, the size of the summaries and the overall verification time, without sacrificing
soundness of the entire model checking procedure.

5 Related work

This section compares the PVAIR approach with various techniques for reducing the
size of an interpolant based on variable assignments, proof compression, and interpolant
post-processing.

Variable assignments. Given a variable assignment, the most straightforward way
to reduce the interpolant size is to apply the assignment directly onto the interpolant
formula and propagate Boolean constants. This idea is used in the UFO [1] tool. Due
to the tight integration into the interpolation process, LPAIS yields smaller interpolants
compared to this simple approach. Since the assignment is considered by LPAIS already
during the interpolant construction, this results in larger parts of the interpolant being
cut away.

Proof compression. Interpolants are often derived from a resolution proof and there-
fore their size is roughly proportional to the size of the proof. Several methods for com-
pressing a resolution proof exist [2,11,4,2,19,6]. Different variants of these techniques
are applied in PdTRAV [5] verification framework, the PERIPLO tool, and the Skep-
tik [3] proof transformer, just to name a few examples. In this work, the reduction of
the interpolant size is based on the fact that only a proof of the unsatisfied part of the
input formula is needed. Since the omitted (i.e., satisfied) parts can be important w.r.t.
other assignments, the proof compression techniques cannot remove these parts from
the proof. As a result, these techniques are orthogonal and PVAIR can benefit from
proof compression if applied.

Interpolant post-processing. Once an interpolant is computed, various techniques
can be used to reduce its size. Such techniques include constant propagation, structural

12. PVAIR: Partial Variable Assignment InterpolatoR

169

sharing, and various equivalence and subsumption checks. PdTRAV, for example, in-
ternally uses BDD-based sweeping to detect the equivalences and balancing/rewriting
over And-Inverter Graphs [14] representation to further reduce the size of an inter-
polant. Any such post-processing technique producing smaller equivalent formulae can
be applied to the interpolants produced by the PVAIR tool.

6 Conclusions

In this paper we presented the PVAIR interpolation tool, which exploits partial vari-
able assignments obtained from an application-specific source to compute focused in-
terpolants. The tool uses the extension of the labeled interpolation system, LPAIS, to
construct the interpolants from a resolution refutation. We presented a potential appli-
cation for the focused interpolants, in particular in software upgrade checking where we
require the path interpolation property. We performed an initial study using a wide range
of experiments varying the size of the partial variable assignment. The results show a
good improvement compared to the baseline and suggest that the approach taken for
computing focused interpolants has significant potential in reducing the interpolant size
and model checking time. In the future we plan to integrate the PVAIR tool into a con-
crete implementation of a parallel model checker as well as to study other applications
of model checking where partial assignments arise naturally.

References

1. A. Albarghouthi, A. Gurfinkel, and M. Chechik. From Under-Approximations to Over-
Approximations and Back. In TACAS, pages 157–172, 2012.

2. O. Bar-Ilan, O. Fuhrmann, S. Hoory, O. Shacham, and O. Strichman. Linear-Time Reduc-
tions of Resolution Proofs. In HVC, pages 114–128, 2008.

3. J. Boudou, A. Fellner, and B. W. Paleo. Skeptik: A Proof Compression System. In IJCAR,
pages 374–380, 2014.

4. J. Boudou and B. W. Paleo. Compression of propositional resolution proofs by lowering
subproofs. In TABLEAUX, pages 59–73, 2013.

5. G. Cabodi, C. Loiacono, and D. Vendraminetto. Optimization Techniques for Craig Inter-
polant Compaction in Unbounded Model Checking. In DATE, pages 1417–1422, 2013.

6. S. Cotton. Two Techniques for Minimizing Resolution Proofs. In SAT, pages 306–312, 2010.
7. W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof

theory. Symbolic Logic, pages 269–285, 1957.
8. V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Interpolant Strength. In

VMCAI, pages 129–145, 2010.
9. N. Eén and A. Biere. Effective Preprocessing in SAT Through Variable and Clause Elimina-

tion. In SAT, pages 61–75, 2005.
10. G. Fedyukovich, O. Sery, and N. Sharygina. eVolCheck: Incremental upgrade checker for C.

In TACAS, pages 292–307, 2013.
11. P. Fontaine, S. Merz, and B. W. Paleo. Compression of Propositional Resolution Proofs via

Partial Regularization. In CADE-23, pages 237–251, 2011.
12. P. Jancik, J. Kofroň, S. F. Rollini, and N. Sharygina. On Interpolants and Variable Assign-

ments. In FMCAD, pages 123–130, 2014.

12. PVAIR: Partial Variable Assignment InterpolatoR

170

13. R. Jhala and K. L. McMillan. A Practical and Complete Approach to Predicate Refinement.
In H. Hermanns and J. Palsberg, editors, TACAS 2006, volume 3920 of Lecture Notes in
Computer Science, pages 459–473. Springer, 2006.

14. A. Kuehlmann, M. K. Ganai, and V. Paruthi. Circuit-based Boolean Reasoning. In DAC,
pages 232–237, 2001.

15. K. L. McMillan. Interpolation and SAT-Based Model Checking. In CAV, pages 1–13, 2003.
16. K. L. McMillan. An Interpolating Theorem Prover. In TACAS, pages 16–30, 2004.
17. P. Pudlák. Lower Bounds for Resolution and Cutting Plane Proofs and Monotone Computa-

tions. Symbolic Logic, pages 981–998, 1997.
18. S. F. Rollini, L. Alt, G. Fedyukovich, A. E. J. Hyvärinen, and N. Sharygina. PeRIPLO: A

Framework for Producing Effective Interpolant-based Software Verification. In LPAR, pages
683–693, 2013.

19. S. F. Rollini, R. Bruttomesso, N. Sharygina, and A. Tsitovich. Resolution Proof Transfor-
mation for Compression and Interpolation. Formal Methods in System Design, pages 1–41,
2014.

20. S. F. Rollini, O. Sery, and N. Sharygina. Leveraging Interpolant Strength in Model Checking.
In CAV, pages 193–209, 2012.

21. O. Sery, G. Fedyukovich, and N. Sharygina. Interpolation-based Function Summaries in
Bounded Model Checking. In HVC, pages 160–175, 2011.

22. O. Sery, G. Fedyukovich, and N. Sharygina. FunFrog: Bounded model checking with
interpolation-based function summarization. In ATVA, pages 203–207, 2012.

23. O. Sery, G. Fedyukovich, and N. Sharygina. Incremental upgrade checking by means of
interpolation-based function summaries. In FMCAD, pages 114–121, 2012.

24. O. Tange. GNU Parallel – The Command-Line Power Tool. The USENIX Magazine, pages
42–47, 2011.

25. G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus. In Studies in
Constructive Mathematics and Mathematical Logic, 1969.

12. PVAIR: Partial Variable Assignment InterpolatoR

171

12. PVAIR: Partial Variable Assignment InterpolatoR

172

CHAPTER 13

Conclusion and future work

This thesis provides an overview of my contribution to the field of software verification. It
ranges from creating semantic models for behavior of software components to techniques
improving the practical complexity of the verification tools. I emphasized that while
advances in the direction of new algorithms’ development are of a great importance, new
optimizations of verification tools and their performance are a necessity.

Building reliable and error-free software is a very important goal nowadays. Absence of
errors in software can be achieved by different means, at various stages of the development
process. On one hand, a formal specification of desired properties at the design phase
helps to create software that is maintainable, scalable, and satisfies high-level requirements.
On the other hand, verification of properties at the code and bytecode level can assure
absence of low-level errors at runtime. Thus, we address the issues of software correctness
during the whole development process, at all levels of design.

Verification (especially by means of model checking) of software properties is an algo-
rithmically undecidable problem in general. Nonetheless, successful attempts to develop
methods and tools deciding validity of certain properties in particular cases have been
made; despite being often either unsound or incomplete, such tools are very useful in
practice. Another challenge in this area is capturing (and verifying) high-level design
properties, such as security and privacy aspects of user data, at the code level; while
finding a possible assertion violation is definitely very useful in the debugging phase,
high-level properties are usually not provable at the code level. In addition, maintaining
correspondence of a high-level design with the code in important aspects is rarely addressed
in research. Hence in my view, the next step to be taken in this area is to develop methods
for linking the high-level (design) properties with abstractions at the code level allowing
for maintaining and verifying consistency between these two levels. This can be achieved,
e.g., by inserting assert-like statements and special annotations into the code or creating a
particular structure of method (or function) bodies. Even though some tools providing
such functionality have already been made, e.g., for UML, little attention has been paid
to preserving important properties so far (traceability) during the development process.

173

13. Conclusion and future work

To achieve this goal, extending an existing programming language by new abstractions
or design a new one, supporting this kind of connections, is needed. To avoid changes
breaking desired properties, support at the side of an integrated development environment
(IDE), preferably also providing the verification functionality, becomes a necessity.

While the paragraphs above describe our vision at a high level, below, we pinpoint particular
steps to be taken helping in achieving the goal of a practically usable verification platform.

In the area of static analysis of dynamic languages, we plan to improve the efficiency of the
memory representation to keep precision of our analysis and improve the performance in
terms of memory consumption, which is currently the main limiting factor of the framework.
While the precision is satisfactory—an acceptable rate of false negatives is produced, unlike
in the case of other tools, memory demands for analysis of more complex PHP programs is
beyond what a usual desktop PC can offer, making the framework hard to be used on daily
basis by software developers. This means either proposing a better memory representation
or extending the analysis algorithm to differentiate among particular situations (memory
patterns) making the representation more compact.

In the area of symbolic software-verification methods, improving performance is one of the
main factors motivating further research. Even though by our improvements, we manage
to decrease both memory demands and verification time significantly, our method still
suffers from low practical usability in terms of scaling to large programs. A very promising
direction here is to extend the partial variable assignment interpolation system currently
encoding the input program into propositional formulas to a first-order logic. Using a
logic such as Linear Integer Arithmetic (LIA) allows one to drop the expensive step of
encoding the program variables into Boolean ones, substantially decreasing the size of the
verification condition. Instead of an SAT solver, an SMT solver is to be used, then. Even
though an SMT call is usually more expensive than an SAT call, the size of the formula
can be significantly smaller for a higher-order logic; recent research results show viability
of such an approach.

174

Bibliography

Included Publications

[1] D. Hauzar and J. Kofroň. WeVerca: Web Applications Verification for PHP. In
D. Giannakopoulou and G. Salaün, editors, Software Engineering and Formal Methods:
12th International Conference, SEFM 2014, Grenoble, France, September 1-5, 2014.
Proceedings, pages 296–301, Cham, 2014. Springer International Publishing.

[2] D. Hauzar and J. Kofroň. Framework for Static Analysis of PHP Applications. In J. T.
Boyland, editor, 29th European Conference on Object-Oriented Programming (ECOOP
2015), volume 37 of Leibniz International Proceedings in Informatics (LIPIcs), pages
689–711, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[3] P. Janč́ık, L. Alt, G. Fedyukovich, A. E. J. Hyvärinen, J. Kofroň, and N. Sharygina.
PVAIR: Partial Variable Assignment InterpolatoR. In P. Stevens and A. Wasowski,
editors, Fundamental Approaches to Software Engineering: 19th International Con-
ference, FASE 2016, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2–8, 2016,
Proceedings, pages 419–434, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[4] P. Janč́ık and J. Kofroň. On partial state matching. Formal Aspects of Computing,
pages 1–27, 2017.

[5] P. Jancik, J. Kofroň, S. F. Rollini, and N. Sharygina. On Interpolants and Variable
Assignments. In Proceedings of the 14th Conference on Formal Methods in Computer-
Aided Design, FMCAD ’14, pages 22:123–22:130, Austin, TX, 2014. FMCAD Inc.

[6] J. Kofroň. Checking Software Component Behavior Using Behavior Protocols and
Spin. In Proceedings of the 2007 ACM Symposium on Applied Computing, SAC ’07,
pages 1513–1517, New York, NY, USA, 2007. ACM.

[7] J. Kofroň, F. Plášil, and O. Šerý. Modes in Component Behavior Specification via
EBP and Their Application in Product Lines. Inf. Softw. Technol., 51(1):31–41, Jan.
2009.

[8] M. Mach, F. Plášil, and J. Kofroň. Behavior Protocol Verification: Fighting State
Explosion. International Journal of Computer and Information Science, 6(1):22–30,
2005.

175

Bibliography

[9] T. Poch, O. Šerý, F. Plášil, and J. Kofroň. Threaded behavior protocols. Formal
Aspects of Computing, 25(4), July 2013.

Referenced Publications

[10] The consolidated Ada Reference Manual, consisting of the International Standard
(ISO/IEC 8652:2012): Information Technology – Programming Languages – Ada,
2012.

[11] Autosar: AUTomotive Open System ARchitecture. http://www.autosar.org/.

[12] O. Bar-Ilan, O. Fuhrmann, S. Hoory, O. Shacham, and O. Strichman. Linear-Time
Reductions of Resolution Proofs. In HVC, pages 114–128, 2008.

[13] S. Becker, H. Koziolek, and R. Reussner. Model-based performance prediction with
the palladio component model. In V. Cortellessa, S. Uchitel, and D. Yankelevich,
editors, WOSP, pages 54–65. ACM, 2007.

[14] E. Borde and J. Carlson. Towards verified synthesis of procom, a component model
for real-time embedded systems. In 14th International ACM SIGSOFT Symposium
on Component Based Software Engineering (CBSE). ACM, June 2011.

[15] J. Boulanger. Static Analysis of Software: The Abstract Interpretation. Wiley, 2011.

[16] M. Bozga, J. Fernandez, and L. Ghirvu. State space reduction based on live variables
analysis. In Static Analysis, 6th International Symposium, SAS ’99, Venice, Italy,
September 22-24, 1999, Proceedings, pages 164–178, 1999.

[17] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The fractal
component model and its support in java: Experiences with auto-adaptive and
reconfigurable systems. Softw. Pract. Exper., 36(11-12):1257–1284, Sept. 2006.

[18] T. Bures, P. Hnetynka, and F. Plasil. Runtime concepts of hierarchical software
components. International Journal of Computer & Information Science, 8(S):454–463,
sep 2007.

[19] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Logic of Programs, Workshop, pages 52–71,
London, UK, UK, 1982. Springer-Verlag.

[20] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst., 8(2):244–263, Apr. 1986.

[21] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 2000.

176

Bibliography

[22] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. Vcc: A practical system for verifying concurrent c. In
Proceedings of the 22Nd International Conference on Theorem Proving in Higher
Order Logics, TPHOLs ’09, pages 23–42, Berlin, Heidelberg, 2009. Springer-Verlag.

[23] S. Cotton. Two Techniques for Minimizing Resolution Proofs. In SAT, pages 306–312,
2010.

[24] W. Craig. Three uses of the herbrand-gentzen theorem in relating model theory and
proof theory. Journal of Symbolic Logic, 22(3):269–285, 1957.

[25] E. Emerson and E. Clarke. Characterizing correctness properties of parallel programs
using fixpoints. Automata, Languages and Programming, 85/1980:169–181, 1980.

[26] M. Fahndrich. Static verification for code contracts. In SAS’10 Proceedings of the
17th international conference on Static analysis. Springer Verlag, September 2010.

[27] G. Fedyukovich, A. C. D’Iddio, A. E. J. Hyvärinen, and N. Sharygina. Symbolic
detection of assertion dependencies for bounded model checking. In A. Egyed and
I. Schaefer, editors, Fundamental Approaches to Software Engineering: 18th Inter-
national Conference, FASE 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015,
Proceedings, pages 186–201, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[28] P. Fontaine, S. Merz, and B. W. Paleo. Compression of Propositional Resolution
Proofs via Partial Regularization. In CADE-23, pages 237–251, 2011.

[29] J. Hatcliff, G. T. Leavens, K. R. M. Leino, P. Müller, and M. Parkinson. Behavioral
interface specification languages. ACM Comput. Surv., 44(3), 2012.

[30] K. Havelund. Java pathfinder user guide. NASA Ames Research, 1999.

[31] G. Holzmann. The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading, Massachusetts, 2003.

[32] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic
real-time systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd Interna-
tional Conference on Computer Aided Verification (CAV’11), volume 6806 of LNCS,
pages 585–591. Springer, 2011.

[33] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. International Journal
on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

[34] G. T. Leavens and A. L. Baker. Enhancing the pre- and postcondition technique for
more expressive specifications. In J. M. Wing, J. Woodcock, and J. Davies, editors,
FM’99 — Formal Methods: World Congress on Formal Methods in the Development
of Computing Systems Toulouse, France, September 20–24, 1999 Proceedings, Volume
II, pages 1087–1106, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

177

Bibliography

[35] M. Lewis and M. Jones. A dead variable analysis for explicit model checking. In Pro-
ceedings of the 2006 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
based Program Manipulation, 2006, Charleston, South Carolina, USA, January 9-10,
2006, pages 48–57, 2006.

[36] K. L. McMillan. Symbolic model checking — an approach to the state explosion
problem. PhD thesis, Carnegie Mellon University, 1992.

[37] K. L. McMillan. Interpolation and SAT-Based Model Checking. In Proc. CAV’03,
pages 1–13, 2003.

[38] B. Meyer. Applying “design by contract”. Computer, 25(10):40–51, Oct. 1992.

[39] P. Paŕızek, F. Plášil, and J. Kofroň. Model checking of software components: Com-
bining java pathfinder and behavior protocol model checker. 2012 35th Annual IEEE
Software Engineering Workshop, 00:133–141, 2006.

[40] PHP: Hypertext Preprocessor. http://www.php.net/.

[41] P. Pudlák. Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symb. Log., 62(3):981–998, 1997.

[42] C. S. Pǎsǎreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet, M. Lowry, S. Person,
and M. Pape. Combining unit-level symbolic execution and system-level concrete
execution for testing nasa software. In Proceedings of the 2008 International Sym-
posium on Software Testing and Analysis, ISSTA ’08, pages 15–26, New York, NY,
USA, 2008. ACM.

[43] J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in cesar.
In Proceedings of the 5th Colloquium on International Symposium on Programming,
pages 337–351, London, UK, 1982. Springer-Verlag.

[44] R. Reussner, I. Poernomo, and H. W. Schmidt. Reasoning about software architectures
with contractually specified components. In Component-Based Software Quality, pages
287–325, 2003.

[45] S. F. Rollini, R. Bruttomesso, N. Sharygina, and A. Tsitovich. Resolution Proof
Transformation for Compression and Interpolation. Formal Methods in System Design,
pages 1–41, 2014.

[46] S. F. Rollini, O. Sery, and N. Sharygina. Leveraging interpolant strength in model
checking. In Proc. CAV’12, volume 7358 of LNCS, pages 193–209. Springer, 2012.

[47] J. P. Self and E. G. Mercer. On-the-fly dynamic dead variable analysis. In Model
Checking Software, 14th International SPIN Workshop, Berlin, Germany, July 1-3,
2007, Proceedings, pages 113–130, 2007.

[48] M. Shema. Hacking Web Apps: Detecting and Preventing Web Application Security
Problems. Syngress Media. Syngress, 2012.

178

Bibliography

[49] V. Štill, P. Ročkai, and J. Barnat. Divine: Explicit-state ltl model checker. In
M. Chechik and J.-F. Raskin, editors, Tools and Algorithms for the Construction and
Analysis of Systems: 22nd International Conference, TACAS 2016, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2016,
Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, pages 920–922, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

[50] Tesla car crash. https://www.theguardian.com/technology/2016/jun/30/tesla-
autopilot-death-self-driving-car-elon-musk, June 2016.

[51] N. Tillmann and P. de Halleux. Pex - white box test generation for .net. In Proc.
of Tests and Proofs (TAP’08), volume 4966, pages 134–153, Prato, Italy, April 2008.
Springer Verlag.

[52] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. The koala component
model for consumer electronics software. Computer, 33(3):78–85, Mar. 2000.

[53] Microsoft Visual Studio. https://www.visualstudio.com/.

179

	Introduction
	Specification of Software Behavior
	Software components and services

	Verification of Source Code
	Explicit model checking
	Static analysis
	Symbolic verification methods

	Behavior Protocols Verification: Fighting State Explosion
	Checking Software Component Behavior Using Behavior Protocols and Spin
	Modes in component behavior specification via EBP and their application in product lines
	Threaded Behavior Protocols
	On Partial State Matching
	Framework for Static Analysis of PHP Applications
	WeVerca: Web Applications Verification for PHP
	On Interpolants and Variable Assignments
	PVAIR: Partial Variable Assignment InterpolatoR
	Conclusion and future work

