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Abstract. The main limitation of software model checking is that, due
to state explosion, it does not scale to real-world multi-threaded pro-
grams. One of the reasons is that current software model checkers adhere
to full semantics of programming languages, which are based on very per-
missive models of concurrency. Current runtime platforms for programs,
however, restrict concurrency in various ways — it is visible especially
in the case of critical embedded systems, which typically involve only a
single processor and use a threading model based on limited preemption.
In this paper, we present a technique for addressing state explosion in
model checking of Java programs for embedded systems, which exploits
restrictions on concurrency common to current Java platforms for such
systems. We have implemented the technique in Java PathFinder and
performed a number of experiments on Purdue Collision Detector, which
is a non-trivial multi-threaded Java program. Results of experiments
show that use of the restrictions on concurrency in model checking with
Java PathFinder reduces the state space size by an order of magnitude
and also reduces the time needed to discover errors in Java programs.
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1 Introduction

Software for mission- and safety-critical systems is typically based on multi-
threaded programs, since such systems must be able to process concurrent inputs
from their environment in a timely manner. This is the case, for example, of
software in control systems in vehicles (cars, aircrafts) and software running on
high-availability server systems. A significant part of the development process of
programs for critical systems is devoted to testing and verification, since runtime
errors in such programs are very costly. The errors particularly relevant for
multi-threaded software used in critical systems are violations of temporal safety
and liveness properties and also concurrency errors (e.g., deadlocks and race
conditions). The verification technique most suitable for detection of such errors
is model checking. A model checker systematically traverses the whole state space
of a given program with the goal of detecting property violations and errors.
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The main limitation of model checking is that it does not scale to complex
multi-threaded programs, which are often used in critical systems, due to the
well-known problem of state explosion. The state space of a program, which a
model checker has to explore, captures all possible sequences of thread schedul-
ing choices and all possible threads interleavings that can occur during pro-
gram’s execution — the size of the state space depends roughly exponentially
on the number of threads. Although many techniques for addressing state ex-
plosion have been designed and implemented in various model checkers over the
years [17], state explosion still occurs in model checking of large and complex
multi-threaded programs written in mainstream programming languages. One of
the reasons is that semantics of mainstream programming languages (e.g., Java,
C and C#) are based on very permissive models of concurrency. For example,
semantics of such languages allow preemption to happen at any program point
and impose no restrictions on thread scheduling algorithms (e.g., any runnable
thread can be scheduled when another thread is suspended). Model checkers for
programs in such languages [24,7,2] then have to adhere to the full semantics
of the languages for the sake of generality — in particular, the model checkers
have to systematically check the behavior of programs under all possible thread
scheduling sequences allowed by the semantics of the programming languages,
including those thread scheduling sequences that cannot happen in practice due
to concurrency-related characteristics of runtime platforms for programs.

‘We propose to address state explosion in model checking by exploiting restric-
tions on concurrency that are based on characteristics and behavior of runtime
platforms formed by hardware, operating systems and, in case of languages like
Java and C#, also by virtual machines. The goal is to reduce the state space size
of multi-threaded programs such that the chance of traversing the whole state
space of such programs in limited memory and reasonable time, and thus the
chance of discovering more errors, is much greater.

To be more specific, the main contributions of this paper are:

— a technique for efficient model checking of multi-threaded Java programs,
which is based on platform-specific restrictions of concurrency,

— an implementation of the technique as an extension to the Java PathFinder
model checker (JPF) [24], and

— evaluation of the technique on Purdue Collision Detector, which is a non-
trivial multi-threaded Java program.

We focus on model checking of Java programs, since Java is used for imple-
mentation of software for many critical server-side systems and is also becoming
a language of choice for implementation of multi-threaded software for critical
embedded systems.

2 Current Platforms for Java Programs

In this section, we provide an overview of concurrency-related characteristics and
behavior of current runtime platforms for Java programs from the perspective of



Platform-Specific Restrictions on Concurrency 3

model checking with JPF and we also define terminology that is used throughout
the rest of the paper.

We consider a runtime platform for Java programs, further denoted as a Java
platform, to be a specific combination of a hardware configuration, an operating
system (OS), and a Java virtual machine (JVM). The key concurrency-related
characteristics of Java platforms are:

— the maximal number of Java threads that can run in parallel,

— athreading and scheduling model that determines the level, at which threads
in Java programs (Java threads) are implemented and scheduled, and

— a set of program points (Java bytecode instructions), at which a running
thread may be suspended (preempted) by a platform — such program points
are further referred to as thread yield points.

The maximal number of threads that can possibly run in parallel is bounded
by the number of processors in a particular hardware configuration, and can be
further limited by JVM — some processors can be dedicated to garbage collection
or non-Java tasks, or the JVM can explicitly support only a single processor.
In this text, we use the term processor to denote a logical processing unit of
any kind, including a single processor (CPU) in a multi-processor machine or a
single core in a multi-core CPU. Threading and scheduling models are typically
implemented by the operating system and/or the JVM. The scheduling models
implemented in most of the current Java platforms are based on preemption. The
platforms differ in the set of thread yield points, i.e. in the set of program points
where a running thread can be suspended, and also in the kind of preemption that
they use — some use time preemption, in which case a thread can be suspended
at any program point (i.e., all program points are considered as thread yield
points in that case), while other platforms use limited preemption, in which
case only specific Java bytecode instructions and calls of specific methods are
considered as thread yield points.

The specifications of the Java language [9] and JVM [15] define a very per-
missive model of concurrency with respect to the characteristics listed above. In
particular, (i) they do not put any restrictions on the maximal number of Java
threads running in parallel, (ii) they do not specify any particular threading
and scheduling model that should be used, and (iii) they allow threads to be
preempted at any bytecode instruction and at call of any method, i.e. they allow
the set of thread yield points to be defined as an arbitrary subset of the set of
all program points. On the other hand, the current Java platforms restrict the
concurrency in Java programs in various ways. The platforms can be divided
into the following two groups depending on the way they restrict concurrency:
(1) Java platforms for embedded systems and (2) Java platforms for server and
desktop systems.

2.1 Java Platforms for Embedded Systems

Typically, Java platforms for embedded systems use the green threading model,
hardware configurations in such platforms are based on a single processor, and
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the set of thread yield points contains only a subset of all program points. The key
idea behind green threading is that Java threads are managed and scheduled by
a JVM (at the level of JVM), out of control of the underlying operating system.
All Java threads in a program are mapped to a single native (OS-level) process
in which the JVM runs (Fig. 1a), and therefore only a single thread can run at a
time — the threads in a program are effectively interleaved. The green threading
model is supported, for example, by Purdue OVM [3], which is a research JVM
aiming at embedded and real-time systems, and also by the CLDC HotSpot Im-
plementation [5], which is an industrial JVM for embedded devices compliant
with the Java ME CLCD profile (e.g., mobile phones). Java platforms in this
group also do not use scheduling based on time preemption. The platforms typ-
ically consider as thread yield points only those program points that correspond
to one of the following actions: acquiring and releasing of locks (monitors), calls
of blocking native methods (I/0O), calls of selected methods of the Thread class
(e.g., sleep, start, and yield), calls of the wait and notify methods, and,
in case of more complex JVMs, also method invocations (method prologues),
returns from methods (method epilogues), and back-branches (back-jumps to
the beginning of a loop). For example, Purdue OVM counsiders back-branches as
thread yield points, while the CLDC Hotspot Implementation does not. Selec-
tion of program points to be used as thread yield points is motivated mainly by
performance and implementation reasons — the goal is to ensure that all threads
get a fair share of processor time and also to allow easier implementation of JVM.

Although most embedded systems use only a single processor, there are also
some embedded systems that employ multiple processors and therefore can run
multiple threads in parallel. In case of such systems, either native threading
model (explained in Sect. 2.2) or quasi-preemptive threading model can be used.
The quasi-preemptive threading model is a generalization of green threading to
multiple processors, which supports mapping of Java threads to N native (OS-
level) processes such that N > 2 — the native processes may run truly in parallel
and therefore also Java threads mapped to them may run truly in parallel.
Still, Java threads are suspended and scheduled only at specific program points
enumerated above (at the same program points as in the green threading model).
A specific variant of the quasi-preemptive threading model is implemented in the
Jikes Research Virtual Machine (RVM) [14].

An important subclass of embedded systems is formed by real-time sys-
tems, which must satisfy temporal constraints (e.g., meeting all deadlines). The
key characteristic of real-time systems is that thread schedulers strictly enforce
thread priorities. In case of non-real-time systems, thread priorities are not
strictly enforced; however, threads with higher priorities should be in general
scheduled more likely compared to threads with lower priorities.

To summarize, the key restrictions of concurrency in Java platforms for em-
bedded systems are: (i) a bound on the number of threads that can run in paral-
lel, which is determined by the number of processors, (ii) use of green threading
model such that only specific bytecode instructions and calls of specific methods
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are considered as thread yield points, and, in case of real-time systems, (iii) strict
enforcement of thread priorities.

a) b)
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Java program Java program
Java Java Java Java Java Java
thread thread e thread thread thread e thread
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Fig. 1. Threading models in Java platforms: a) green threads; b) native threads

2.2 Java Platforms for Server and Desktop Systems

Java platforms for server and desktop systems use native threading model, and
the hardware configurations in such platforms are typically based on multiple
processors. In the case of a native threading model, Java threads are directly
mapped to native (OS-level) threads that are scheduled by the OS-level scheduler
(Fig. 1b); therefore, Java threads can run truly in parallel if multiple processors
are available in a Java platform. Moreover, since schedulers in current operating
systems use time preemption, the Java threads can be suspended at any program
point (i.e., all program points have to be considered as potential thread yield
points). It follows that the only important restriction of concurrency used in
Java platforms for server and desktop systems is the bound on the number of
threads that can possibly run in parallel.

Note that most industrial JVMs use native threading and time preemption-
based scheduling — in particular, this applies to Sun Java Hotspot [23] and
IBM J9 [12], which are both state-of-the-art industrial JVMs for desktop and
server-side Java applications.
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3 Running Example

The concepts and ideas presented in the paper will be illustrated on the Java
program shown in Fig. 2, which is an instance of the producer-consumer design
pattern. We selected the producer-consumer design pattern, since it forms the
basis of many multi-threaded programs for critical systems (both embedded
and server-side), including Purdue Collision Detector (PCD) that we use for
evaluation of the proposed technique (details in Sect. 6).

4 Java PathFinder

Java PathFinder (JPF) [24] is an explicit state model checker for Java bytecode
programs, which is based on a special Java virtual machine (JPF VM) that sup-
ports backtracking and state matching. It is highly extensible and configurable,
and supports common optimizations of state space traversal like partial order
reduction and thread/heap symmetry reduction.

The key features of JPF in the context of this paper are that (i) it implements
the concurrency model of Java with no restrictions (i.e., it adheres to the full
semantics of Java) and (ii) it does not model real time. To be more specific, JPF
checks the behavior of a given Java program under the following assumptions:

— an unlimited number of processors is available,

— time preemption-based scheduling with an arbitrary (and dynamically chang-
ing) size of time slots is used, and

— all program points are considered as potential thread yield points.

The contention of multiple threads for shared data (variables) under such a model
of concurrency is captured in JPF by systematic exploration of all interleav-
ings of concurrent accesses to shared variables that are performed by individual
threads. Technically, JPF suspends threads also at Java bytecode instructions
corresponding to accesses to shared variables in addition to thread yield points,
and selects the thread to be scheduled from the set of all runnable threads (in-
cluding the one that was just suspended, if it is not blocked) at each thread
scheduling choice point — this means that when a thread performs an access to
a shared variable and is then suspended, any runnable thread may execute the
next access to a shared variable. This is sufficient to capture the contention for
shared variables both in case of threads running concurrently on a single proces-
sor, which are effectively interleaved, and also in case of threads running truly
in parallel (on multiple processors), since parallel accesses to shared memory
are actually serialized in the hardware (a particular interleaving of the parallel
accesses is non-deterministically selected by hardware).

The actual state space of a given Java program is constructed by JPF on-
the-fly in a way that reflects the concurrency model described above and the
supported optimizations of state space traversal. A transition is a sequence of
bytecode instructions performed by a single thread, which is terminated either
by a scheduling-relevant instruction (thread yield point or an access to a shared
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Platform-Specific Restrictions on Concurrency

class Consumer extends Thread {
private Object[] buffer;

public void run() {
int pos = 0;
while (true) {
synchronized (buffer) {
while (buffer[pos] == null) buffer.wait();
}

Object msg = buffer[pos];

buffer[pos] = null;

pos++;

synchronized (buffer) {
buffer.notify();

}

}
}
}

class Producer extends Thread {
private Object[] buffer;

public void run() {
int pos = 0;
while (true) {
synchronized (buffer) {
while (buffer[pos] != null) buffer.wait();
}

// code that creates a message is omitted

buffer[pos] = msg;

pos++;

synchronized (buffer) {
buffer.notify();

}

}
}
}

public static void main(String[] args) {
Object[] buffer = new Object[10];
Consumer cons = new Consumer (buffer);
Producer prod = new Producer(buffer);
cons.start();
prod.start();

Fig. 2. Example Java program: producer-consumer pattern
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variable) or by an instruction corresponding to non-deterministic data choice
(e.g., use of a random generator). A state in the state space of a Java program
is a snapshot of the current state of the JPF VM at the end of a transition,
including complete heap and stacks of all threads.

Given the Java program on Fig. 2, JPF may terminate a transition at any
instruction corresponding to the following program points:

— accesses to the buffer variable in all threads (source code lines 8, 11, 12,
28, and 32),

— attempts to acquire a monitor, i.e. attempts to enter a synchronized block
(lines 7, 14, 27, and 34),

— calls of the wait and notify methods (lines 8, 15, 28, 35), and

— start of a new thread (lines 45 and 46).

JPF provides a powerful API that allows to extend it in various ways. With
respect to the technique proposed in this paper, the key parts of JPF’s API
are: (i) configurable scheduling model and (ii) choice generators. Configurability
of thread scheduling allows to use a domain-specific scheduling algorithm (e.g.,
one based on thread priorities) and, in particular, to restrict concurrency in
various ways. The mechanism of choice generators unifies all possible causes for
a branch in the state space of a Java program, including thread scheduling and
non-deterministic data value choice. A specific instance of a choice generator
is associated with each state — it maintains the list of enabled and unexplored
transitions leading from the state. The choice generator API also provides means
for altering the set of enabled and unexplored transitions; for example, it is
possible to select specific transitions that should be explored.

5 Restrictions of Concurrency in Model Checking Java
Programs with Java PathFinder

The key idea behind our approach is that it is not necessary to check the behavior
of a Java program under all possible sequences of thread scheduling choices
that are allowed by the concurrency model and semantics of Java, when Java
platforms restrict concurrency in such a way that some of the sequences of thread
scheduling choices cannot occur during execution of a Java program.

It follows from the overview of current Java platforms (Sect. 2) and JPF
(Sect. 4) that no significant restriction of concurrency in model checking with
JPF is possible in case of Java platforms for server and desktop systems, which
typically involve multiple processors and use native threading with time preemp-
tion-based scheduling. Therefore we focus only on Java platforms for embedded
systems, where significant restrictions of concurrency are possible. Such plat-
forms typically involve only a single processor, in which case the green threading
model is used, or a very low number of multiple processors, in which case the
quasi-preemptive threading can be used. In both cases, time preemption-based
scheduling is not used and thus only specific program points are considered as
thread yield points. As indicated in Sect. 2.1, there are also Java platforms for
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real-time embedded systems that strictly enforce thread priorities and perform
priority-based thread scheduling. However, in this paper we focus only on Java
platforms for non-real-time embedded systems that involve JVMs like CLDC [5]
— we assume (i) that all threads in a Java program have the same priority
during the whole lifetime of a program and (ii) that bytecode instructions corre-
sponding to back-branches, method prologues and method epilogues are not used
as thread yield points by the JVM. We leave support for thread priorities and
priority-based scheduling to our future work (see the end of Sect. 7 for details).
We propose to use two platform-specific restrictions of concurrency for the
purpose of addressing state explosion in model checking of Java programs for
such platforms with JPF — specifically, we propose (i) to bound the maximal
number of threads that can run in parallel, and (ii) to consider only specific
bytecode instructions and calls of specific methods as thread yield points.

Maximal number of parallel threads. The rationale behind this restriction
is that if there are N processors in a Java platform and M threads running in
parallel, such that M > N, only at most IV threads can compete for a particular
shared variable at a specific moment in time (exactly N threads can compete
only if there are N active threads at the moment). Therefore, if this restriction
is applied, JPF has to explore only those thread interleavings that correspond
to parallel execution of some N threads at most at each point in the program’s
running time. In particular, it is not necessary to explore those interleavings that
involve suspending of a thread T;, 1 < < N, and scheduling of another thread
T;, N+1<j <M, when an access to a shared variable occurs in 7.

Thread yield points. Since we focus only on Java platforms for non-real-
time embedded systems that involve JVMs like CLDC, for the purpose of model
checking of Java programs with JPF it is sufficient to consider as thread yield
points only those bytecode instructions and method calls, whose effects are visi-
ble to other threads and may therefore influence their behavior. Effects visible to
other threads are, most notably, changes of shared variables’ values and changes
of threads’ status (including synchronization). Therefore, the set of program
points considered as thread yield points by JPF has to include (i) bytecode in-
structions that correspond to acquiring and releasing of monitors (locks) and
(ii) calls of methods that change status of a thread (specific methods of the
Thread class, and the wait and notify methods). If the platform involves mul-
tiple processors, JPF has to consider as thread yield points also bytecode in-
structions corresponding to accesses to shared variables — this is necessary in
order to properly capture the contention for the shared variables among multiple
threads running concurrently or truly in parallel.

Consequences on model checking with JPF. A consequence of applica-
tion of both restrictions of concurrency in model checking with JPF is that the
number of thread scheduling choices on any execution path in a checked Java
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program is greatly reduced, which implies that the number of paths (branches)
in the state space of the Java program is greatly reduced. Therefore, the whole
reachable state space of a multi-threaded Java program is much smaller and thus
model checking of such a program with JPF is less prone to state explosion. Note,
however, that if there is a thread yield point (e.g., acquire of a monitor or call
of wait) between each pair of accesses to shared variables in the program code,
then the proposed restrictions would not help very much (even if the number of
processors is set to 1) — the state space size would be the same as in the case
of default JPF with no restriction.

Given the Java program on Fig. 2, JPF with both restrictions and the num-
ber of processors set to 1 may terminate transitions (i.e. suspend and schedule
threads) only at program points corresponding to bytecode instructions for: en-
try to a synchronized block (source code lines 7, 14, 27 and 34), call of the
wait method (lines 8 and 28), call of the notify method (lines 15 and 35), and
start of a thread (lines 45 and 46). This means, for example, that the code at
lines 11 and 12 will be executed atomically (in a single transition) by JPF. If the
number of processors is set to 2, JPF may terminate transitions also at program
points (bytecode instructions) corresponding to accesses to shared variables —
this includes, in particular, accesses to the buffer variable (source code lines 8,
11, 12, 28 and 32).

JPF extension. We have implemented the proposed restrictions of concur-
rency in a JPF extension. The extension has two components: a custom choice
generator, which maintains the mapping of threads to processors, and a custom
scheduler, which creates an instance of the choice generator at each scheduling-
relevant instruction (corresponding to a thread yield point or an access to a
shared variable). An instance of the choice generator, which is associated with a
particular state, determines the correct set of threads that can be scheduled at
that state with respect to the JPF extension’s configuration. The configuration
consists of the number of processors in a Java platform (unlimited by default)
and of a boolean flag that determines whether thread yield points should be at-
tached only to selected program points (for green or quasi-preemptive threading)
or to all program points (for time preemption).

6 Experiments

We have performed a number of experiments with our JPF extension in order to
find how much the proposed platform-specific restrictions of concurrency help in
addressing state explosion in model checking of multi-threaded Java programs
with JPF. To be more specific, we performed two sets of experiments — the
goal of the first set of experiments was to show how much the restrictions of
concurrency reduce the size of the whole state space, and the goal of the second
set of experiments was to show how much the restrictions reduce the time and
memory needed to find concurrency errors.
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All the experiments were performed on the Purdue Java Collision Detector
(PCD), which is a plain-Java version of the Purdue Real-Time Collision Detec-
tor [18,1] developed at the Purdue university as a benchmark for Java virtual
machines. PCD is a non-trivial model (12Kloc in Java) of a multi-threaded Java
application that could be run on Java platforms for embedded systems. The
architecture of PCD is an instance of the classic producer-consumer pattern
that involves three threads running in parallel — the main thread that starts
other threads and waits till they finish (via Thread.join), simulator thread
(producer), and detector thread (consumer). The simulator thread computes ac-
tual positions of physical objects (aircrafts) with respect to time and generates
messages with information about positions of the objects, which it sends to the
detector thread via a shared buffer. The detector thread performs the actual
detection of collisions on the basis of information received from the simulator
thread. The aspect of PCD’s code that has the greatest influence on the size of
its state space is the number of messages generated by the simulator thread and
sent to the detector thread — the number of messages to be exchanged between
the threads in a particular run of PCD can be specified via one of the PCD’s
configuration variables.

Configuration of each experiment consists of (i) the number of messages ex-
changed between the simulator and detector threads and (ii) the list of restric-
tions of concurrency that are applied. If the restriction of the maximal number
of threads that can run in parallel is used, then also the number of processors
in a platform has to be provided. We selected two relatively low numbers of
messages in PCD — 5 and 10 — in order to make checking with JPF finish in
reasonable time. As for JPF, we have used three different configurations:

— native threading with time preemption and no bound on the number of
threads running in parallel (default in JPF),

— quasi-preemptive threading with two processors, and

— green threading with a single processor.

Note that both the restriction of the set of thread yield points and the bound on
the number of threads running in parallel are applied in the latter two configura-
tions. The difference is in the number of processors, which determines the bound
on the number of threads running in parallel. For the purpose of experiments in
the first set, we turned off the search for errors of any kind in JPF in order to
let JPF traverse the whole state space of PCD and we also put a limit on the
maximal running time of JPF and on the available memory — the limits were
set to 5 days (432000 seconds) and 3 GB, respectively.

The results of experiments are listed in Tables 1 and 2. We measured the
following characteristics of JPF runs: time in seconds, memory in MB and total
number of states. If checking with JPF exceeded the time limit in case of exper-
iments in the first set, then the value of the 'Time’ column is set to 7> 432000”
(number of seconds in 5 days) and the value of the '"Memory’ column shows the
peak in memory usage up to the point of limit’s exceeding. Similarly, if checking
with JPF run out of available memory, then the value of the '"Memory’ column
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Restrictions [ Time (s) [ Mem (MB) [ States
5 messages

default JPF (no restriction) > 432000 1967|19992569
quasi-preemptive threading + two processors 2317 1535 102482
green threading + single processor 127 740 5217
10 messages

default JPF (no restriction) > 432000 1725|19986412
quasi-preemptive threading + two processors 41803 2249| 2016072
green threading + single processor 3369 1336/ 162093

Table 1. Results of experiments on PCD: traversal of the whole state space

Restrictions [ Time (s) [ Mem (MB) [ States
5 messages

default JPF (no restriction) 38 487| 1260
quasi-preemptive threading 4+ two processors 16 396 236
green threading + single processor 17 401 236
10 messages

default JPF (no restriction) 42 496| 1420
quasi-preemptive threading 4+ two processors 21 416 391
green threading + single processor 20 411 391

Table 2. Results of experiments on PCD: search for concurrency errors

is set to 7> 3 GB” and the value of the 'Time’ column shows the time of run-
ning out of memory. The ’States’ column shows the number of states traversed
up to the moment of exceeding the limit in both cases. The concurrency errors
discovered by experiments in the second set were race conditions in accesses to
the shared buffer that were already present in the code of PCD.

7 Evaluation and Related Work

The results of experiments on PCD (Sect. 6) show that the proposed platform-
specific restrictions of concurrency help quite significantly in addressing state
explosion in model checking of multi-threaded Java programs for embedded sys-
tems with JPF. Specifically, the restrictions reduce the size of the state space
of such Java programs by an order of magnitude and they also reduce the time
needed to discover concurrency errors in the code. In case of really complex
multi-threaded Java programs, for which model checking with JPF may still not
be realistic due to state explosion, the proposed restrictions at least make it
possible for JPF to explore a larger part of the programs’ state space and thus
also to discover more errors in the code. This is very important in particular for
programs used in critical systems, where the costs of errors (and fixing of errors
in already deployed systems) are typically very high.

An inherent drawback of the proposed restrictions is that results of model
checking with JPF are specific to a particular platform. A given Java program
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has to be verified separately for each Java platform on which it will be deployed,
since a run of JPF will discover only those errors that may occur on a particular
Java platform characterized by the specific configuration of the restrictions. Nev-
ertheless, this is not a big issue in the domain of embedded systems, since both
the hardware and software configurations of an embedded platform are typically
specified in advance — this is the case especially for critical embedded systems.

Also, the restrictions of concurrency are not specific to Java programs and
neither to model checking with JPF — the same or similar platform-specific
restrictions could be applicable to programs in any mainstream programming
language that supports multi-threading (e.g., C# and C), and they could be
implemented in any model checker for such languages with the goal of improving
performance and scalability of verification.

Related work. Many techniques for addressing state explosion in model check-
ing were proposed and implemented over the years — an extensive overview
of the techniques can be found in [17]. Focusing on model checking of multi-
threaded programs, the techniques most closely related to our approach can be
divided into two groups:

1. techniques for reduction of the number of states and paths in the state space
that have to be explored in order to check the behavior of a given program
under all possible sequences of thread scheduling choices, and

2. techniques for efficient discovery of some errors only that are based on traver-
sal of a part of the state space.

The first group of techniques includes, for example, partial order reduction [8]
and thread symmetry reduction [13], while the second group includes heuristics
for state space traversal [10] (directed model checking) and techniques based on
bounding of the number of thread context switches [19,20,16]. All these tech-
niques are complementary to our approach — they can be applied in combination
with the platform-specific restrictions of concurrency in order to mitigate state
explosion even further.

We are, however, not aware of any approach or technique that attempts to
exploit concurrency-related characteristics and properties of a specific platform
(runtime environment) for programs with the goal of addressing state explo-
sion. The only approach in a similar direction that we are aware of is memory
model-sensitive model checking [11, 6], which aims to improve the completeness
of model checking with respect to behavior of state-of-the-art compilers for mod-
ern programming languages (Java, C#). The key idea is to also take into account
possible reorderings of operations that are allowed by the memory model and/or
concurrency model of a language — typically, reorderings of writes to variables
are performed by compilers for the purpose of performance optimization.

Future directions. Although the proposed restrictions of concurrency help
quite significantly in addressing state explosion in model checking of multi-
threaded Java programs with JPF, still there is much space for further opti-
mization. We have identified several additional platform-specific restrictions of



14 P. Parizek and T. Kalibera

concurrency that could reduce the state space size of multi-threaded Java pro-
grams even further, thus making model checking with JPF even more scalable.
The additional restrictions can be divided into two groups: (i) restrictions im-
posed by the Real-Time Specification for Java (RT'SJ) [4] and (ii) more realistic
modeling of time preemption.

Ad (i) The key aspect of concurrency imposed by RTSJ is strict enforcement
of thread priorities, which means that a runnable thread with the highest priority
always has to be scheduled at each thread scheduling choice point. The number
of thread scheduling sequences can be significantly reduced in this way. On the
other hand, it is necessary to capture asynchronous unblocking of threads with
high priorities (e.g., when a higher priority thread was blocked in an attempt
to read data from a file and the data become available) and dynamic changes
of priorities during a program run (e.g., via the setPriority method of the
Thread class). Moreover, bytecode instructions corresponding to back-branches,
and probably also bytecode instructions corresponding to method prologues and
epilogues, would have to be considered as thread yield points by JPF in order to
faithfully capture the concurrency-related behavior and characteristics of Java
platforms for real-time systems (e.g., such that involve Purdue OVM [3]). An-
other option related to real-time programs is to consider only those sequences of
thread scheduling choices that are determined as valid with respect to temporal
constraints (e.g., real-time deadlines) by WCET analysis [25]. Technically, the
restriction to valid sequences of thread scheduling choices can be implemented
by a specific choice generator and the WCET analysis can be performed by an
external tool.

Ad (ii) A possible approach to more realistic modeling of time preemption
in JPF is to suspend a thread at a Java bytecode instruction with visible effects
on shared variables only when the thread has run out of its time slot. This way
it could be possible to model-check complex server-side business applications
in Java (i.e. such as those that typically run on Java platforms for server and
desktop systems), which are characteristic by a great number of accesses to
shared variables. Nevertheless, a prerequisite for this optimization is support for
modeling of real time and execution cost of bytecode instructions in JPF.

Restrictions of concurrency of some form could also be applied for the purpose
of efficient model checking of programs that use actor concurrency and huge
numbers of lightweight threads (JVM-level threads). This is, for example, the
case of programs written in the Scala language [21], which are compiled to Java
bytecode and run on JVMs, or Java programs using the Kilim library [22].

8 Conclusion

In this paper, we proposed a technique for addressing state explosion in model
checking of multi-threaded Java programs for embedded systems, which is based
on restrictions of concurrency and thread scheduling that are common in current
Java platforms for embedded systems. The technique is complementary to ex-
isting approaches for addressing state explosion — it aims to reduce the size of
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the whole state space of a given program, while most of the existing techniques
aim to reduce the number of states and paths in the state space that have to be
explored by a model checker to check all behaviors of a program. We have imple-
mented the technique as an extension to Java PathFinder and performed several
experiments on Purdue Collision Detector, which is a non-trivial multi-threaded
Java program, in order to show the benefits of the technique. The results of our
experiments show that the proposed restrictions (i) reduce the state space size
of Java programs by an order of magnitude and (ii) reduce the time needed to
discover concurrency errors.

While the proposed technique helps in addressing state explosion quite sig-
nificantly, there is a number of additional platform-specific restrictions of con-
currency and optimizations that could be used to mitigate state explosion even
further. We plan to focus especially on restrictions and optimizations related to
Real-Time Specification for Java (RTSJ), since software for critical embedded
systems often has real-time characteristics.
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