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Abstract: Many techniques of automated verification target multithreaded programs, because subtle
interactions between threads may trigger concurrency errors such as deadlocks and data races. While
many techniques and tools involving systematic exploration of the whole space of possible thread in-
terleavings have already been developed, a great majority of them does not scale to large real-world
software systems, despite various clever algorithmic optimizations. A viable approach is to use incre-
mental verification techniques that, in each run, focus just on the recently modified code and the rela-
tively small number of affected execution traces, and therefore can provide analysis results (including
bug reports) very quickly.

We present a new algorithm for incremental verification of multithreaded programs that is based on
the pairwise approach. The key idea of the pairwise approach is systematic exploration of possible thread
interleavings just for specific pairs of threads, such that behavior of the subject program is analyzed
separately for every relevant thread pair.

We implemented the algorithm with Java Pathfinder as the backend verification tool, and evaluated
it on several multithreaded Java programs. Results show that our incremental algorithm (1) can find
errors very fast, (2) greatly reduces time needed for complete safety verification, and (3) it can find the
same errors as full verification of the whole state space. Performance of our prototype implementation
of the algorithm is also comparable with state-of-the-art techniques based on static analysis.
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1 Introduction

An important subject of automated verification and bug detection techniques are multithreaded pro-
grams, especially because subtle interactions between threads, unforeseen by the developers, may trig-
ger concurrency errors such as deadlocks and data races (atomicity violations in general) during the pro-
gram execution. Techniques most suitable for precise detection of possible concurrency errors involve
systematic exploration of the whole space of all possible thread interleavings that may occur at run-
time. While many techniques and tools in this category have already been developed (cf. [22, 32, 6, 11]),
exhaustive systematic verification does not scale to large real-world multithreaded software systems
due to state space explosion [4]. The main cause of limited scalability is the huge number of thread
interleavings that have to be analyzed even for rather small multithreaded programs. State-of-the-art
techniques and tools partially address this challenge by using many clever algorithmic improvements,
optimizations and heuristics, including different variants of partial order reduction [1, 9, 10], thread-
modular verification [8], iterative context-bounded verification [21], and symbolic predictive analysis
based on dynamic event recording [33]. Nevertheless, scalability of verification to large and complex
software systems remains to be an issue.

One viable approach is to use incremental verification techniques that, in each run, analyze just
the recently modified source code (differences from the previous version) and the corresponding small
subset of affected thread interleavings. The main practical benefit of such incremental procedures is that
they can be run very often — for example, after each commit to a source code repository, or possibly
even on-the-fly as a background process in an IDE while developers are editing the source code —
and they provide results in the form of a list of detected bugs very quickly, allowing the developers
to fix the reported bugs while they have the respective code in fresh memory. Several research groups
already published some work in this direction [2, 13, 19, 35], targeting also efficient incremental search
for concurrency errors.
Overview. In this paper, we present an algorithm for incremental verification of multithreaded pro-
grams that is based on systematic exploration of possible thread interleavings just for specific pairs of
threads. We call it the pairwise approach. The key idea behind our pairwise approach is that, when devel-
opers edit the code of a specific program thread, it is sufficient to check all possible interleavings of the
modified code with other threads just in a pairwise manner — that means checking the interleavings
for each relevant pair of threads separately. Every run of our verification algorithm focuses just on the
most recent source code modification, that means on detecting possible concurrency errors that involve
the modified code, assuming the previous version of the input program was already verified earlier and
deemed free of concurrency errors.

For the purpose of explaining our approach here and in the rest of this paper, we consider only
those source code modifications that involve program statements that represent possible interaction
between threads — reading or writing a field of a shared heap object, reading or writing an element of
a shared array, lock acquire statement, lock release, starting of a new thread, and other means of thread
synchronization. In this paper, we use the phrase thread interaction statements to denote such statements.
Thread interaction statements may be identified using static analysis that computes over-approximate
sets of shared heap objects (fields, array elements) [29, 24, 25].

A run of the incremental verification procedure based on our pairwise approach is triggered when
the developer inserts or deletes a thread interaction statement to/from the program source code. By
starting the verification procedure only upon a source code modification that involves some thread
interaction statements, we avoid the issue of running the verification procedure too frequently (e.g.,
after each inserted character or keyword). As the first step, the verification procedure then identifies all
static program threads that may execute the modified code fragment. We denote this set of threads by
the term modified threads. Subsequently, the procedure checks all possible interleavings for every pair
of threads, where at least one element of a pair belongs to the set of modified threads. In this way, our
verification procedure checks all possible interactions of the modified source code fragment (affected
block of program statements) in the respective threads with the current version of the source code in
all other threads, and performs the checks in a pairwise manner. Note that, unlike some other existing
techniques (cf. [13, 35, 14]), our algorithm does not have to compute the set of possibly affected thread
interleavings (schedules) because it explores all interleavings between the relevant pairs of threads in
order to search for concurrency errors.

For illustration, consider the program in Figure 1, which involves three static threads (T1, T2, and
T3). Two dynamic instances of T2 are created at runtime, while just one instance is created for each of
the other threads T1 and T3. When the developer adds a call of print(o.f) into the code of T2, which is
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underlined in the source code listing, then our incremental verification algorithm checks the following
pairs of threads: (T2 T1), (T2 T2), (T2 T3). The pair (T2 T2) has to be analyzed because the program
involves two dynamic instances of thread T2.� �
1 T1 : o . f = x ; t2a = start T2 ; t2b = start T2
2 T2 : evaluate ( o ) ; print(o.f)
3 T3 : y = p . g ; z = r . h ; w = y + z� �

Figure 1: Example program

We also want to emphasize that, even though our verification algorithm checks all interleavings just
for each pair of threads separately, it reports all concurrency errors that involve the modified code —
and, in particular, even all errors in synchronization patterns that involve more than two concurrent
threads. Details are provided in Section 3.4.

One important practical aspect related to usage of this incremental verification procedure is that the
developer may continue to edit the program source code while the procedure runs in the background.
When the analyzed code is edited again, the verification results might be obsolete and therefore the
currently running verification process should be terminated or restarted. However, for the purpose of
explaining our algorithm in the paper, we ignore this scenario.
Contribution. The main research contributions presented in this paper include:

• Algorithm for incremental verification of multithreaded programs based on exploring all possible
interleavings just for specific pairs of threads.

• Experimental evaluation of the prototype implementation of our algorithm within Java Pathfinder [38]
on 9 multithreaded Java programs.

Results of experiments that we performed show that runs of the incremental verification procedure fin-
ish very quickly for every subject program and every source code modification that we considered in
our evaluation. Its performance is comparable with state-of-the-art techniques based on static analysis.
For the most complex program in our benchmark set, the verification procedure finished on average in
16 seconds (when considering just experiments focused on fast search for concurrency errors), respec-
tively in 18 seconds (experiments focused on checking safety). In addition, our incremental verification
algorithm can find the same errors as if the full verification of the whole program state space is run
every time.

In the next section, we define important terminology and notation used within the rest of this paper.
Technical details of our pairwise approach to incremental verification are explained in Section 3. We
present the results of our experimental evaluation in Section 4 and discuss related work in Section 5.
Finally, in Section 6 we provide the concluding remarks.

2 Notation and Terminology

We define thread interaction statements more precisely as follows. It is any program statement that ac-
cesses (reads or updates) a memory location reachable from multiple threads. The memory location
can be an object field, an array element, or a lock status variable, for example. Execution of a thread
interaction statement represents possible exchange of information between multiple threads, or their
mutual synchronization.

An atomic transition in the program state space is defined as a sequence of statements that (i) begins
with a thread interaction statement and (ii) then contains any number of thread-local statements, whose
effects are not visible to other threads. All statements within a transition are executed by the same
thread. A program code location is marked as a scheduling-relevant point, if the next instruction to be
executed represents a thread-interaction statement.

We use the term modified code fragment to denote a piece of source code that includes at least one
added or deleted thread interaction statement, together with the affected nearby code within the same
procedure. More precisely, we define the modified code fragment as a list lmod of adjacent program
statements within a single procedure. Without loss of generality, here we assume that the developer
edited (added or removed) just a single thread interaction statement st in each step of iterative program
development. Every modified thread interaction statement (i.e., the corresponding modified fragment)
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must be processed separately (one by one). In the case of addition, the modified code fragment lmod cov-
ers the statement st just inserted by the developer, together with all the nearby code (other statements)
that load operands for st and use its result. For example, when considering addition of a field read
statement, lmod has to include (1) the statement that loads a reference to a target heap object and (2) the
following code (located after the added statement) that uses the read field value. In the case of deletion,
the modified code fragment lmod covers the removed statement st , together with all the nearby code
that loads operands for st and uses its result. Note also that the whole sequence lmod always belongs to
the code of single program thread T .

3 Exploration of Thread Interleavings: Pairwise Approach

For the purpose of explaining our approach, we assume that the input for a run of the verification
procedure consists of a modified code fragment, which is specified by a pair of program code locations
that represent boundaries of the respective sequence lmod of program statements. We use the symbol
Tmod to denote the static modified thread (in the program source code) that contains the modified code
fragment lmod.

The static thread Tmod is identified according to reachability of procedures in the program call graph.
If the modified source code procedure, which contains the list lmod of statements, is reachable from the
entry point procedure of a given thread T then such thread is the modified thread Tmod.

If the given subject program involves multiple dynamic threads (instances) of the static thread Tmod,
our verification algorithm processes every dynamic instance of Tmod separately. This also means that
our algorithm considers every two dynamic instances of Tmod as distinct dynamic threads for the pur-
pose of creating pairs of threads subject to verification. All the dynamic instances of Tmod will contain
the updated code. Note also that the set T of dynamic threads can change between states of the pro-
gram subject to verification. In each run, our algorithm considers the upper bound of the set of possible
dynamic thread instances.

3.1 Main Algorithm

When given the modified code fragment lmod and the static modified thread Tmod as input, our core ver-
ification algorithm explores all possible interleavings that involve lmod for all pairs (Ti, Tj) of dynamic
threads, where Ti is a dynamic instance of Tmod and Tj is a dynamic instance of some static thread from
the set T of all program threads. Note that, in case of a modified thread with several dynamic instances,
also these instances will be paired with each other and checked. As we indicated above, the key feature
of the verification algorithm is that it processes each pair of threads separately, one pair at a time. Fig-
ure 2 captures the most important aspects of our verification algorithm, which we explain below in this
section.� �
1 for Ti ∈ getDynamicInstances (Tmod ) do
2 for Tj ∈ getDynamicInstances (T ) do
3 exploreInterleavingsForThreadPair (T , Ti, Tj )
4 end for
5 end for
6

7 procedure onThreadSchedulingChoice (Tcur, Ti, Tj )
8 pi = getThreadCurrentPC (Ti )
9 if Tcur == Tj then

10 if pi == lmod.entry then return {Ti, Tj}
11 end if
12 if Tcur == Ti then
13 if pi ∈ lmod then return {Ti, Tj}
14 end if
15 return {Tcur}
16 end proc� �

Figure 2: Main algorithm that explores all interleavings for a pair of threads

The set Ii,j of thread interleavings explored for a given pair of dynamic threads, (Ti, Tj), where
Ti is a dynamic instance of Tmod, is defined as follows. For every scheduling-relevant point pj in the
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code of Tj , the set Ii,j contains an interleaving in which the first statement in the sequence lmod is
scheduled to be executed at pj . Thread Ti executes the code fragment lmod in that particular interleaving.
In addition, for each specific point pj and for the specific thread interleaving, in which execution of
statements in lmod immediately follows the point pj , the set Ii,j also contains a thread interleaving
for every scheduling-relevant point pi in lmod where thread Tj is scheduled to run at pi within that
particular interleaving. This definition of the set Ii,j covers also the case when program execution
begins with the statements in the sequence lmod, because all thread start events are scheduling-relevant
points too. All the possible interleavings of the modified code fragment lmod with the existing code
of thread Tj are captured in this way. The body of the event handler onThreadSchedulingChoice in
Figure 2, invoked within the scope of the procedure exploreInterleavingsForThreadPair, captures the
definition of Ii,j in an imperative style. Here, the symbol Tcur represents the current (running) thread
in the program state when a scheduling choice was reached on the currently explored state space path.
This event handler procedure is called for each program state where a thread scheduling choice needs
to be created; it returns the set of all threads to be explored from that state. The backend verification
tool, which is actually used to systematically explore possible interleavings for the given pair of threads,
has to create all the required thread scheduling choices in the program state space, in order to ensure
that all thread interleavings in the set Ii,j are truly explored. Figure 3 shows just a fragment of the tree
of all thread interleavings and scheduling choices.
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Figure 3: A fragment of the tree of all thread interleavings and thread scheduling choices

Note that the set Ii,j , defined above, has to include just those interleavings where thread preemption
is enabled from the state in which the next instruction to be executed by thread Ti is the first instruction
of the sequence lmod. Therefore, all preemptive non-deterministic thread scheduling choices may be
disabled on the particular analyzed execution trace in the program state space, until Ti reaches the be-
ginning of lmod on the execution trace. When exploring the respective prefix of the execution trace, the
backend verification tool just needs to pick a single runnable thread at all scheduling-relevant points
— a heuristic optimization that we implemented is to always pick thread Ti, when it is runnable. In
addition, since the purpose of our algorithm is to explore just all the possible interleavings of the mod-
ified code fragment lmod with the existing code of other threads, this also means that the set Ii,j does
not have to include any thread interleaving, in which the execution of any thread is preempted at a
non-blocking statement while the next instruction of Ti does not belong to the sequence lmod.

Other specific requirements on the backend verification procedure that actually explores thread in-
terleavings in the set Ii,j are discussed below in Section 3.3.
Exploring relevant interleavings of multiple threads. In order to enable sound detection of all error
states (e.g., deadlocks) that involve N threads for N > 2, we extended our core verification algorithm
(described above) such that it uses a dynamic happens-before ordering relation [16] computed over the
execution trace prefix up to the first instruction (exclusively) of the modified code fragment lmod. Note
that if lmod is reached multiple times on a given execution trace, then each of these cases is processed
separately with respect to the whole respective trace prefix. Given an execution trace prefix w, our
algorithm determines the list E of relevant events (such as lock acquire, lock release, and thread join) in
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the prefix w, where each event in the list satisfies these two conditions: (1) it is associated with a thread
other than Ti or Tj , and (2) it is not guaranteed to happen strictly before the first instruction of lmod is
reached by Ti. For every event e ∈ E, the algorithm has to consider both cases with respect to thread
scheduling; it explores (i) the interleaving in which the instruction corresponding to e is executed before
the first instruction of lmod and (ii) also the complementary interleaving where the event e occurs after
the end of lmod, all that while preserving the program code order for all events associated with the same
dynamic thread instance. The set Ii,j is expanded to contain the additional interleavings that involve
events in the list E.

For illustration, consider an example program that involves the global initialization statement i = 0,
four dynamic threads T1− T4 with the same code i++; i−−, and one dynamic thread T5 with the
code assert(i < 4). When the modified thread is T5 and the verification procedure analyzes inter-
leavings for the pair of threads T4 and T5, the computed dynamic happens-before ordering relation
specifies that actions of other threads (T1, T2, T3) do not happen strictly before or after T5 and there-
fore belong to the set E. Our algorithm will then explore also the interleaving (trace) beginning as
T1 : i++, T2 : i++, T3 : i++, T4 : i++, T5 : assert(i < 4), ..., which reaches the error state (as-
sertion violation).

3.2 Affected Thread Interleavings

The key ideas behind our algorithm, described in the previous subsection, express also our general
approach to identification of the set of affected thread interleavings, which have to be explored for a
given program code modification to guarantee sound verification and search for possible concurrency
errors.

Unlike some existing techniques, our algorithm does not have to precisely identify the sets of thread
interleavings and execution paths that are possibly affected by a specific change of the program source
code. In particular, our algorithm does not have to compare the previous and new version of the pro-
gram code by performing some kind of change-impact analysis [13], for example, and it also does not
need to compute differences between the respective program versions in terms of possible behaviors
using techniques such as directed incremental symbolic execution [26].

When the set Ii,j of all interleavings between a given pair of threads, which captures all their possible
interactions that involve lmod, is relatively small, then performing a dedicated comparatively expensive
analysis to precisely identify the set of affected thread interleaving (i.e., a subset of Ii,j) would incur
an unnecessary overhead. The set Ii,j effectively represents an over-approximation of the set of really
affected thread interleavings, which is generated implicitly during the process of exploration. Usage of
such over-approximation has the consequence of some parts of the whole program state space possibly
being explored repeatedly, over the whole process of incremental program development and over all
runs of the verification procedure — but that is not a problem with respect to performance and scala-
bility, as long as each run of the verification procedure explores just a small part of the state space and
finishes quickly.

Our verification procedure also does not have to use change-aware prioritization of thread interleav-
ings [14], because all thread interleavings that are explored in a given step of incremental verification
involve the modified code (lmod).

3.3 Backend Verification Procedure

The backend verification procedure, actually used to analyze the set Ii,j of possible interleavings for
given pair of threads, may involve any of the commonly used approaches — including static pro-
gram analysis, model checking, dynamic analysis, or systematic testing — and their combinations.
Even rather expensive techniques, such as precise dynamic analyses with the happens-before ordering
(cf. [7]), can be used in this setting, because the set Ii,j should be quite small for most pairs of threads.
We provide evidence for this claim in our experimental evaluation (Section 4).

Nevertheless, selection of the specific backend verification procedure (tool) is orthogonal to the main
algorithm. The only important requirement imposed on the backend procedure is that it has to system-
atically analyze the visible behavior of the input program under every thread interleaving from the set
Ii,j , as defined in Section 3.1. In particular, the backend procedure must be able to find all possible
concurrency errors in the given set of thread interleavings.
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3.4 Properties of the Algorithm

In this section, we discuss important properties of our verification procedure based on the pairwise
approach, including soundness and coverage, all that especially with respect to the ability of detecting
concurrency errors.

Even though our verification algorithm explores all possible interleavings just for pairs of threads,
it detects also concurrency errors that involve the modified code fragment and N threads for N >
2. We discuss what thread interleavings (execution traces) have to be explored in order to detect all
concurrency errors for N threads, and we also show that all these (required) interleavings are really
covered by our verification algorithm. In particular, we show that, for each error in a given program, our
algorithm explores at least one trace leading to the corresponding error state. Our discussion focuses
on three main kinds of concurrency errors — deadlocks, atomicity violations and ordering violations.
We begin with deadlocks.

3.4.1 Deadlocks over N threads.

Here we leverage the assumption, mentioned already in Section 1, that the whole program state space
did not contain any deadlock before the modifications represented by lmod in the code of Ti were made
by developers. Execution of the modified code fragment lmod by Ti is a necessary precondition for
reaching a deadlock introduced through statements in lmod. Therefore, we consider an arbitrary thread
interleaving that reaches a deadlock state involving the set TD of N threads, where TD contains at
least the pair (Ti, Tj) of threads for some Tj . We use the symbol πD to denote this execution trace
(thread interleaving). Next, we explain how it is guaranteed that our verification algorithm explores
the trace πD, discovering the respective deadlock state along the way.

The trace πD has the following three parts: (1) actions guaranteed to happen strictly before execution
of the first action in the sequence lmod according to the dynamic happens before ordering described at
the end of Section 3.1, then (2) some interleaving of the sequence of all actions in lmod executed by Ti

with actions of Tj and threads in the set TD \ {Ti, Tj}, which can happen concurrently with lmod, and
finally (3) actions guaranteed to happen strictly after execution of the last action in the sequence lmod.
Note that we use the partitioning of πD only here in this discussion. It is not computed during the run
of our algorithm. In order to detect the deadlock state reached by πD, our verification algorithm needs
to explore a thread interleaving π′

D that may differ from πD only in the sub-sequence of independent
actions within the middle part. We exploit the fact that lmod contains just a single thread interaction
statement st . Therefore, all other statements in lmod can be moved next to st in π′

D, using the concept
of left movers and right movers [18]. Given the set E of actions by threads in the set TD \ {Ti}, such
that actions in E may happen concurrently with lmod, the interleaving π′

D satisfies the property that
each action in the set E is located either before the first statement of lmod or after the last statement of
lmod. Such trace π′

D is explored by our verification algorithm for some pair (Ti, Tj) of threads, using
the extension described at the end of Section 3.1, and it reaches the same deadlock error state as the
execution trace πD.

We illustrate how the verification algorithm works on the example of a deadlock involving three
threads. Consider the scenario where thread 1 attempts to acquire the lock for resources A and B,
thread 2 attempts to lock the resources B and C, and finally thread 3 attempts to lock C and A. There
is an interleaving in which every thread acquires the lock for the first resource but then waits for the
second resource — more specifically, thread 1 owns the resource A and waits for B, thread 2 owns B
and waits for C, and thread 3 has access to the resource C but waits for A. For the purpose of our
illustration, we assume that source code of thread 1 was edited most recently, meaning that the attempt
to acquire the lock for resource B was added into the code of thread 1 in the last source code edit. Then
our algorithm checks all possible interleavings for the pair of thread 1 with thread 2 over the modified
code segment in these two cases:

• Thread 3 acquires the lock for the resource A before thread 1 or 2 reach the modified code segment
on a particular execution trace, and no deadlock occurs.

• Here, thread 3 attempts to acquire the lock for A only after both threads 1 and 2 leave the modified
code segment, when the resource A is already locked by thread 1 (that now waits for B), and
therefore deadlock is observed. This state corresponds to the thread interleaving described above
in the previous paragraph.

Note that, in both cases, thread 3 acquires the lock for C before the execution trace reaches the modified
code segment.

6



D3S, Technical Report no. D3S-TR-2022-01 3.4 Properties of the Algorithm

3.4.2 Atomicity violations.

In the case of atomicity violations, the problem is much simpler than for deadlocks. Given an atomicity
violation, for example a data race, that involves a set TAV of N threads, it can be observed when any
two threads from the set TAV access a shared memory location without proper synchronization (mutual
exclusion). Our verification algorithm detects such data race by exploring all possible interleavings of
every pair of threads in the set TAV .

3.4.3 Ordering violations.

Finally, if some statements from the sequence lmod representing the input modified code fragment are
involved in an ordering violation error, then the wrong order of actions must be observed for some
interleaving of the modified fragment lmod executed by thread Tmod with some other thread Tj , i.e. for
the pair (Tmod, Tj) of threads, and with concurrent actions by other program threads. Note that we
assume there was no ordering violation error before changes represented by lmod were made in the
scope of the whole iterative software development process.

3.4.4 Coverage of all thread interleavings.

Another desired property of our incremental verification algorithm is the ability to cover, for the fi-
nal (most recent) version of an input program, the set of all possible thread interleavings that reach a
concurrency error state and would be explored by full verification of the whole program state space at
once. In particular, we show that our algorithm truly explores all thread interleavings (traces) needed
to detect all concurrency errors for an arbitrary number N of threads.

We use an inductive approach over incremental code modifications to show that, in order to achieve
the desired coverage, it is sufficient to perform systematic exploration of possible interleavings just
for pairs of threads and incremental modifications of program code during the software development
process. More specifically, we show that every possibly relevant thread interleaving (i.e., that needs to
be explored in order to find all errors) in the whole state space of the final (most recent) program version
is covered by the pairwise approach to incremental verification for some modified code fragment at a
particular step of the incremental program development.

As the base case, we assume that every relevant thread interleaving for the already existing code,
that means before the program source code modification represented by lmod is performed, is covered
by our verification algorithm in some previous iteration.

Then we need to show that, for an input modified code fragment lmod, our verification algorithm
explores all thread interleavings that (1) contain statements from the sequence lmod and (2) may reach
an error state. Without loss of generality, we pick an arbitrary interleaving π that involves the modified
code lmod. The interleaving π can be decomposed into three segments: the prefix πpf , the middle seg-
ment πmod containing all of the modified code (lmod) together with the set E of relevant actions by other
threads (not guaranteed to be executed before the first instruction of lmod or after the last instruction of
lmod), and the suffix πsf . Note that any of the prefix πpf , the suffix πsf , or the set E can be empty.

From the base case assumption of inductive reasoning, we know that an execution trace created by
concatenation of πpf with πE and πsf , where πE corresponds to a subsequence of πmod that contains
only elements of the set E, is covered by a previous run of our verification algorithm. The current run
of the algorithm for the input fragment lmod explores various interleavings of actions in lmod executed
by Tmod with actions in E (see details at the end of Section 3.1) Note that, in each of those interleavings,
some actions from the set E are executed by a thread Tj that makes a pair with Tmod associated with
the particular interleaving. The middle segment πmod of π corresponds to an interleaving π′

mod that is
defined as a concatenation of three parts, specifically (i) a sequence of actions in the set E1, (ii) actions
in lmod, and (iii) actions in the set E2, where E1 ∪ E2 = E. Since lmod contains just a single thread
interaction statement st, the interleaving π′

mod can be soundly transformed by changing the order of all
other statements from lmod in a way that matches πmod. Consequently, also the interleaving π is covered
by our algorithm.

To summarize, the discussion above implies that our pairwise approach to incremental verification
has the same coverage of thread interleavings as if systematic exploration of the whole program state
space was performed after each source code modification.

When the run of the core verification procedure for a specific input modified fragment lmod is com-
pleted, it is guaranteed that our algorithm explored — over all its runs for different code fragments
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during the whole incremental program development process — all the relevant interleavings of threads
as defined within the most recent version of the program code that includes lmod as the last change.

3.4.5 Termination and Decidability.

An important limitation of our approach is that it may not terminate because general pairwise reacha-
bility is undecidable [28], and reachability for three or more threads is still an open problem. However,
when the run of our algorithm finishes, it covers all relevant thread interleavings and reaches all error
states even for N > 2 concurrent threads. We are aware of specific restrictions on locking strategies
in multithreaded programs for which the reachability problem is decidable (see, e.g., [3] and [15]), but
their detailed discussion is out of scope of this paper.

4 Experimental Evaluation

We have implemented our verification algorithm based on the pairwise approach in the Java Pathfinder
(JPF) framework [38]. Java Pathfinder satisfies all the requirements on a backend verification tool, de-
fined in Section 3.3 — it performs systematic traversal of concrete state space of a subject program,
creates non-deterministic thread scheduling choices at possible thread interaction statements, and faith-
fully simulates effects of concrete program statements.

In our prototype implementation, we replaced the default JPF module for creating thread scheduling
choices with our own component that precisely follows the algorithm described in Section 3.1 (exploring
all interleavings just for pairs of threads). We also created a listener module that observes the process
of state space traversal to determine whether the current program location on the currently analyzed
execution trace is within the sequence of statements that represents the modified code fragment.

Source code of the implementation, together with benchmark programs, scripts and configuration
files needed to run all the experiments, is available at https://github.com/d3sformal/incverif-pairwise.

Our main goal for the experimental evaluation was to show (1) that incremental verification based
on the pairwise approach finds bugs within the modified code very quickly, and (2) that it detects
exactly the same set of errors in subject programs as full verification of the whole state space from
scratch, the latter meaning especially to show that our incremental verification algorithm is not less
precise than full verification (with respect to possible spurious errors). We also wanted to show that
running the incremental verification procedure after each step of the incremental software development
process (i.e., after each source code modification) is more efficient than running full verification each
time — despite that possible interleavings are explored for many distinct pairs of threads in each run
of the incremental procedure. Here we focus mainly on the error detection performance, because fast
search for errors is the main usage scenario of incremental verification procedures to be deployed within
software development environments (IDEs), but we also evaluate performance improvements achieved
for full verification of safety.

4.1 Benchmarks

The set of subject programs that we used for evaluation includes 9 multithreaded Java programs from
widely known benchmark collections. More specifically, the set contains five programs from the CTC
repository [37] (Alarm Clock, Prod-Cons, RAX Extended, Rep Workers and SOR), two programs from
the pjbench suite [39] (Cache4j and Elevator), QSort MT from the Inspect suite [34], and plain Java
version of the PapaBench real-time benchmark [23]. The smallest program is Prod-Cons with 130 lines
of source code and 2 threads, and the most complex program is jPapaBench with 4500 lines of code
and 7 threads. Regarding the level of concurrency, Alarm Clock involves contention of 3 threads over
a single common lock, and RAX Extended starts 3 concurrent threads that access a single shared heap
object. All other benchmarks involve synchronization just between two threads at a time.

4.2 Methodology and Setup of Experiments

In order to evaluate the performance of our incremental verification algorithm in the setting where it is
run for each modified source code fragment, we needed to simulate incremental development of subject
programs. The methodology that we actually used was inspired by Conway et al. [5]. We describe the
main steps of the procedure that we applied to each subject program.
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As the first step, all the possible thread interaction statements in the program code are identified
by static analysis. Then, for every thread interaction statement, the respective modified code fragment
(that includes the affected nearby code in the same Java method, as defined in Section 2) is determined
using traversal of the list of program statements. A set CF of target code fragments for the program is
created in this way.

For each code fragment F in the set CF collected for the program, we performed multiple experi-
ments with different configurations. One group of experiments was configured to simulate the scenario
in which the fragment F was added into the program source code by the developer (i.e., using the orig-
inal version of the subject program), and the other group of experiments simulates the scenario where
the fragment F was deleted from the program code. Then, for each of those groups, we performed
experiments focused on fast search for concurrency errors (bug finding) and experiments focused on
verifying safety. Our rationale behind this setup of experiments is the following. When some piece of
code (the fragment F ) is added or deleted by the developer, typically several iterations of fixing bugs
take place, followed by the check for safety performed at the end, before the developer moves on to the
next incremental change. Therefore, we cover both scenarios in our experimental evaluation. In order
to compare incremental verification with full verification of the whole program state space, we also ran
full verification with the default configuration of JPF for all scenarios. That means we ran full verifica-
tion with the original code and with the modified code (from which the respective thread interaction
statement was removed). For the purpose of evaluating the ability to find concurrency errors quickly,
we injected synthetic errors into Prod-Cons, Cache4j, Elevator and jPapaBench. But within the scope
of experiments focused just on the verification of safety, we used the original benchmarks without any
synthetic errors.

In the case of incremental verification, JPF was configured to use our module for creating non-
deterministic thread scheduling choices that implements the pairwise approach to state space explo-
ration driven by the respective modified code fragment F — this is the main difference in the setup of
JPF from the full verification where all threads are considered at each thread scheduling choice. How-
ever, while the actual input code fragment F can be directly used to control the state space exploration
in experiments that simulate addition, for the other experiments that simulate deletion it is necessary
to use the smallest different code fragment (from the set CF collected in the first step of the evaluation
procedure) that fully wraps the input fragment F . The range of program statements that covers the
whole respective Java method, i.e. the method that contains the input target code fragment F , is used
as a fallback if the set of all target code fragments does not contain any fragment that wraps the input
one.

When preparing all the experiments, for each modified code fragment we generated a variant of the
input program where the respective code fragment is removed. For that purpose, we used our custom
version generator tool, which is built upon the ASM bytecode manipulation framework [36].

This approach is robust because the results of experiments do not depend on the order in which the
individual modified code fragments are processed.

Regarding the backend verification tool, Java Pathfinder (JPF), we configured it to search for dead-
locks, race conditions and uncaught exceptions (including violated assertions). In the case of incremen-
tal verification, we used the time limit of 60 seconds for each run of JPF within the scope of experiments
focused on bug-finding, and the limit of 10 minutes for experiments focused on safety verification. In
the case of full verification, we used the time limit of 1 hour as a practical upper bound. We configured
these limits in order to give each run of JPF enough time to explore the whole state space at least for
smaller benchmarks. The memory limit was set to 16 GB.

4.3 Results and Discussion

Table 1 contains the aggregate results of all our experiments focused on quick bug-finding and espe-
cially on fast search for concurrency errors. The second column, labeled as |CF|, shows the number
of code fragments considered for each program. For both pairwise incremental verification and full
verification, we report the average running time and standard deviation over all code fragments. The
running time for a particular code fragment is computed as the sum of the running times of JPF for all
pairs of threads. Note that, when computing the overall running times for incremental verification, we
ignored the runs of JPF that did not finish within the time limit — the percentage of timed-out JPF runs
is reported separately. Similarly, we report the percentage of JPF runs in the full verification mode that
failed (i.e., run out of the memory or time limit).

Table 2 contains the aggregate results of experiments focused on checking safety (i.e., when the
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Table 1: Results of experiments focused on fast search for concurrency errors (bug-finding)

pairwise incremental verification full verification
timed out found failed

program |CF| time: avg ± dev runs bugs time: avg ± dev runs
Alarm Clock 56 0.25 ± 0.22 s 0 % yes 1.20 ± 2.60 s 0 %
Prod-Cons 38 0.14 ± 0.08 s 0 % yes 0.16 ± 0.04 s 0 %
RAX Extended 44 0.17 ± 0.23 s 0 % yes 0.15 ± 0.05 s 1.1 %
Rep Workers 126 4.67 ± 12.14 s 3.4 % yes 5.31 ± 29.30 s 2.8 %
SOR 56 0.09 ± 0.17 s 0 % yes 0.83 ± 0.92 s 0 %
Cache4j 110 8.14 ± 15.06 s 0.84 % yes 32.46 ± 283.76 s 0 %
Elevator 106 7.92 ± 16.14 s 1.67 % yes* 12.19 ± 71.40 s 1.0 %
QSort MT 71 1.01 ± 2.27 s 1.25 % yes* 0.61 ± 0.41 s 0.7 %
jPapaBench 374 15.96 ± 25.93 s 0 % yes 28.52 ± 178.98 s 0 %

Table 2: Results of experiments with focused on checking safety (full state space traversal)

pairwise incremental verification full verification
timed out failed

program |CF| time: avg ± dev runs time: avg ± dev runs
Alarm Clock 56 0.25 ± 0.24 s 0 % 249.54 ± 143.48 s 0 %
Prod-Cons 38 0.16 ± 0.11 s 0 % 6.33 ± 1.82 s 0 %
RAX Extended 44 0.17 ± 0.24 s 0 % 12.71 ± 35.15 s 1.1 %
Rep Workers 126 41.32 ± 128.76 s 4.6 % 4494.43 ± 2859.57 s 14.7 %
SOR 56 0.09 ± 0.16 s 0 % 352.02 ± 74.26 s 0.9 %
Cache4j 110 46.18 ± 128.60 s 2.1 % 4936.50 ± 1987.80 s 2.7 %
Elevator 106 27.38 ± 54.99 s 0.6 % 102.96 ± 394.04 s 88.2 %
QSort MT 71 23.72 ± 92.62 s 3.8 % 735.84 ± 360.06 s 5.6 %
jPapaBench 374 18.41 ± 32.01 s 0 % 8.19 ± 168.26 s 89.3 %

benchmarks do not contain any injected synthetic errors). The meaning of all columns and reported
metrics is the same as for the other table.

Results of experiments focused on evaluating the ability to find errors fast, which are provided
in Table 1, show that each run of our incremental verification procedure finishes very quickly for all
benchmarks and for every modified code fragment. The improvement in running time is apparent es-
pecially in the case of large and more complicated benchmarks (Cache4j, jPapabench). Specifically, for
the most complex benchmark that we used (jPapaBench), incremental verification of thread interleav-
ings affected by code updates finishes in 16 seconds on average.

The time limit of 60 seconds was reached for a very low percentage of JPF runs over specific pairs of
threads. One reason is that no error was discovered by JPF and therefore all the relevant thread inter-
leavings had to be analyzed systematically. Another reason observed in few cases is that the respective
experiment simulated the scenario where the removed code fragment was essential for termination of
the program run on all thread interleavings (execution traces). For example, in some experiments with
Rep Workers, the removed code fragment was responsible for adding smaller parts of input data to the
worklist of a recursive divide-and-conquer algorithm — clearly, when such functionality is missing, the
program cannot terminate in a standard way.

On the other hand, data in Table 1 also show that the performance benefits of incremental verifica-
tion in the case of focus on finding bugs quickly are slim for small programs, since also full verification
finds errors in such programs very quickly, especially when the errors are shallow. The overhead as-
sociated with incremental verification (exploring interleavings for multiple pairs of threads after each
program code change) makes the approach useful especially for large programs. As a side remark, here
we also want to emphasize that the performance of our pairwise approach to incremental verification
is comparable with state-of-the-art techniques based on static analysis, such as D4 [19]. Details can be
found in Section 5.

Results of experiments focused on safety verification, presented in Table 2, show that usage of our
pairwise approach to incremental verification greatly improves the speed compared to full verifica-
tion. In particular, full verification of safety run out of the time limit for a great majority of modified
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code fragments in the case of some benchmarks (such as Elevator and jPapaBench), while the pairwise
incremental verification succeeded in most cases within the limited time and memory resources.

Based on thorough inspection of log files and reports by JPF, we have validated that, for every
subject program in our evaluation, our incremental verification algorithm can find the same errors as
if the full verification of the whole program state space is run every time. More specifically, for each
actual error reported by JPF running in the full verification mode over a given subject program, there
was a run of JPF in the incremental verification mode that reported the same error (pointing to the same
program code locations with racy statements or actions causing a deadlock state). However, we want
to emphasize two specific cases related to the Elevator and QSortMT programs, which are marked by
* in the fifth column of Table 1. In the case of Elevator, full verification reported one spurious error —
race condition involving an array element — caused by imprecise over-approximate handling of arrays
by the race detector plugin distributed with JPF. In case of QSortMT, we found out that, in the scope
of experiments over several certain target code fragments, the first error state reached by JPF running
in the incremental verification mode is different from the first error reached by JPF running in the full
verification mode — this happens because, in each mode, possible thread interleavings are explored in
a different order during the state space search.

Some errors reported by JPF are caused by removal of the respective program code fragment. This
corresponds to the scenario of an incomplete program still under development, where the run of incre-
mental verification is started at a time when the source code of the subject program is not yet complete
— for example, when some arguments to a specific procedure are not yet defined in some caller (so the
null value is used).

5 Related Work

We compare our work presented in this paper to other techniques and tools that have similar goals
(motivation), address the same problems, or use closely related approaches.
Incremental state space exploration. We begin with an overview of techniques based on incremental
state space exploration. The work of Lauterburg et al. [17] focuses mainly on efficient incremental model
checking of data-intensive properties for programs written in object-oriented languages. Its distinctive
features include, for example, saving the full state space after a completed exploration for later reuse
(to determine affected execution traces after a program code change) and restoring states through re-
execution instead of loading them from disk. On the other hand, Lauterburg et al. do not discuss
how the transitions affected by a program code modification are precisely identified. An important
difference from our work is that we focus on multithreaded programs and interaction between threads
affected by recent source code edits.

Guo et al. [13] developed Conc-iSE, a tool and method for incremental symbolic execution of multi-
threaded software. The most important component of this method is an inter-thread and inter-procedural
change impact analysis that can precisely identify program statements, execution traces and thread
schedules not affected by a specific change in the program source code, eliminating such traces and
schedules from re-exploration. Their change impact analysis considers also data values through sym-
bolic execution in order to identify more redundant execution traces that do not have to be explored
again. Unlike the Conc-iSE method, in our approach we do not use symbolic input values, since we
focus mainly on the search for concurrency errors where we do not need to know symbolic values of
program variables.

We are aware of several other prior works that belong into this category. For example, Conway
et al. [5] proposed incremental variants of model checking algorithms that detect violations of safety
properties. The main limitation of this work from our perspective is the missing support for concur-
rency. Sery et al. [30] designed an incremental variant of bounded model checking, which uses function
summaries derived from Craig interpolants to avoid checking the whole input program from scratch
every time. Again, there is no support for programs with multiple threads in this approach.
Fast detection of concurrency errors. The second group of related techniques and tools consists of those
focused on very fast detection of concurrency errors and the corresponding bugs in the program source
code.

Blaser [2] has developed a tool for efficient detection of concurrency bugs on-the-fly while the devel-
oper edits the source code in some IDE. This work has very similar goals to our approach, including the
aim for a very fast response, but it performs just bounded concrete interpretation of the input program
code and simulates random thread scheduling. On the contrary, our approach is designed to be sound,
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i.e. to find all the concurrency errors — in particular, we do not use artificial bounds on the number of
explored program steps and thread schedules.

Zhan and Huang [35] developed ECHO, an incremental data race detection technique that can report
possible races on shared developers almost immediately after they are introduced to the source code
through edits performed by developers within an IDE. ECHO leverages the fact that small code updates
can be typically checked very quickly, avoiding re-analysis of the whole program from scratch. The key
components of ECHO include (1) incremental change-aware static points-to and happens-before analy-
ses (the latter using a novel graph representation of the happens-before relation), and (2) change-aware
race detection algorithm based also on lockset information for heap locations and checking of possibly
conflicting accesses to shared heap locations. Evaluation of the ECHO tool on real-world applications,
presented in [35], show that is has a very good performance. However, like many other static race
detectors, ECHO is incomplete and can report false positives due to the limitations of static analysis,
despite optimizations designed by its authors in order to improve precision.

Following upon ECHO, Liu and Huang [19] developed D4, a framework that detects concurrency
bugs very fast (interactively) and provides immediate feedback to developers editing the program
source code. The main technical contribution includes two novel parallel differential algorithms for
static pointer and happens-before analysis of multithreaded programs. After each change of the pro-
gram sources, both algorithms recompute the analysis results only for affected code. Parallelization of
static analyses is achieved by decomposition into multiple graph traversal tasks. Results of experimen-
tal evaluation show that D4 can find bugs in large real-word applications really very quickly, under
one second in most cases. The main limitations of D4 include restriction to simple concurrency bugs
(deadlocks, races) and possible false warnings (due to approximation) — nevertheless, authors of D4
claim that their incremental static analyses achieve the same precision as static whole-program analy-
sis. In comparison, our approach can verify complex high-level properties over programs with multiple
threads.

The last technique in this group that we want to highlight is the work of McPeak et al. [20]. It has
similar goals as our project, specifically fast incremental analysis of program code for the purpose of
detecting bugs and timely reporting while the developer has fresh knowledge of the code. However,
authors target running times of several hours (requiring that the analysis must finish in one night build
cycle). The key features are modularity, parallelization and usage of summaries — each procedure is
analyzed separately and multiple tasks are executed in parallel to achieve better scalability.
Precise identification of affected execution traces. Another group of closely related work includes
techniques for automated precise identification of execution traces and thread schedules affected by
a source code modification. In the context of regression testing of concurrent programs, Jagannath et
al. [14] designed a technique that determines the set of all affected program code locations and then pri-
oritizes exploration of thread schedules involving the affected locations. Person et al. [26] developed an
incremental program verification technique that identifies (1) affected statements using static analysis
and (2) other effects of program code changes through symbolic execution.
Model checking algorithms for concurrent programs. Finally, we have to mention that numerous
(advanced) algorithms for efficient model checking of multithreaded programs have been developed,
including techniques based on modular reasoning with abstraction of threads (see, e.g., [8]) and bound-
ing the number of thread preemptions on each state space path (e.g., [27]). Such algorithms can be
applied within the backend verification procedure that checks the program behavior under all possible
interleavings for a given pair of threads, and in that respect they are complementary to the incremen-
tal verification algorithm presented in this paper. However, in this context, an obvious drawback of
bounded model checking is that it may not find error states at greater depths in the reachable state
space, while our pairwise algorithm explores the whole state space, even though it is done gradually
over multiple runs of the incremental verification procedure.

6 Concluding Remarks

Although our prototype implementation of the pairwise approach to incremental verification targets
only Java and experimental evaluation considers only Java programs, it should be rather straightfor-
ward to create alternative implementations for other programming languages, such as C, provided
there exist tools for state space traversal and static analysis that satisfy all the requirements defined in
Section 3.3.

Our approach based on checking all interleavings just for specific pairs of threads is complementary
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with techniques that prioritize certain thread interleavings during state space exploration, and can be
easily combined with them. This includes heuristics for efficient discovery of concurrency bugs [12]
and various techniques based on bounded search of some kind [21, 27, 31].
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