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Abstract: This thesis studies, develops, and investigates the optimization of data-
intensive scientific algorithms using Graphics Processing Units (GPUs) to en-
hance performance and scalability. The first part of the thesis focuses on the
design and implementation of optimized kernels for four key algorithms: hierar-
chical clustering with Mahalanobis linkage, neighborhood-based dimensionality
reduction through EmbedSOM, optimization of cross-correlation algorithms for
many small inputs, and stochastic simulation of Boolean networks. In the second
part, the thesis builds upon the findings of the first part to propose aNoarr library,
which enables the efficient development of high-performance computing (HPC)
applications. It emphasizes the critical role of memory optimization in achiev-
ing significant performance improvements in HPC and aims to streamline the
implementation of these optimizations by providing a novel memory layout and
traversal optimization framework. The main contributions of this thesis com-
prise the implementation of novel GPU optimization techniques, performance
improvements of scientific tools of up to three orders of magnitude speedup, ad-
vancing data analysis and visualization in bioinformatics and material physics,
and the design of new tools for efficient expression of data structure layout and
traversal in HPC code. The results of this thesis may be used to enhance the
development process of maintainable and efficient HPC applications and guide
future research in the field of data-intensive scientific computing.
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Introduction

General-purpose GPU programming (GPGPU programming) has established a
strong position in the domain of high-performance computing (HPC). GPU pro-
gramming enables the parallel execution of many threads on a single device, ex-
ploiting the massive computational power of modern GPUs. These devices are
no longer used exclusively for graphics rendering, and since the advent of the
CUDA framework (and other frameworks alike), they have become a viable al-
ternative to CPUs for high-performance computing [1]. Nowadays, the top data
centers in the world are equipped with thousands of GPUs [2], being used for
a wide range of tasks, including machine learning, data analytics, and scientific
computing [3–5].

Naturally, GPUs are not a silver bullet as they are not suitable for any task.
GPU programming poses many challenges, including complex hardware archi-
tectures, heterogeneous programming models, memory management, perfor-
mance tuning, and portability. The ever-growing list of new CUDA features,
such as dynamic parallelism [6], asynchronous data copy [7], independent mem-
ory pools [8], kernel launch buffering [9], distributed shared memory [10], ten-
sor cores [11], and many more, is a double-edged sword; it aids programmers
in achieving peak GPU performance in their applications but at the cost of in-
creased programming complexity and an expert architecture knowledge require-
ment. Generally, GPGPU programming is an iterative process of developing a
solution, profiling it, and optimizing the bottlenecks. Apart from that, there is
generally no single optimal solution to the problem. The programmers must de-
velop multiple variants that must be empirically tested to find the most suitable
optimization for a specific set of input parameters [12].

This thesis contributes to addressing the challenges of GPGPU programming
in two interconnected topics: Firstly, the thesis couples a set of data-intensive
scientific algorithms and their GPU optimizations; each contains a detailed dis-
cussion of their concurrency opportunities, memory operation analyses, and the
choice of the most suitable optimization variant. Each work employs a slightly
different tool in the GPU programming toolbox. In the second part of the the-
sis, we introduce the Noarr library, which builds upon the findings and expertise
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gained from the results of the previous part. We identified that the primary fac-
tor of many optimizations is the order of accessing data in the memory, generally
referred to as memory optimizations. Noarr adds memory layouting primitives
and provides a way to compose and traverse them in a customizable manner.
The main goal of the library is to aid in writing more expressive, maintainable,
and modular HPC code.

Structure of the thesis The thesis is separated into three chapters. Chap-
ter 1 provides an introduction to GPU programming and highlights the most
significant performance-related pitfalls. In Chapter 2, we focus on the GPU op-
timizations of four scientific algorithms. Section 2.1 describes the first scientific
algorithm, the Hierarchical Clustering algorithm with Mahalanobis-based dis-
tance, and details the ways of overcoming problems of imbalanced workloads.
In Section 2.2, EmbedSOM, a dimensionality reduction algorithm, is discussed
from the perspective of caching and utilization of multiple memory hierarchies.
Further, we detail the importance of keeping high arithmetic intensity when im-
plementing a cross-correlation algorithm in Section 2.3. We conclude the chapter
with Section 2.4, which describes MaBoSS, a Monte Carlo simulator of biological
systems, and the runtime compilation capabilities of GPUs. Chapter 3 introduces
the Noarr library. The chapter is logically divided into two subparts: the tech-
niques of expressing memory layouts as first-class citizens (Section 3.1) and the
ways of traversing them in a customizable manner (Section 3.2). Appendix A
contains the peer-reviewed publications which support the contributions of this
work.
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Chapter 1

Introduction to GPU
programming

Graphics Processing Units (GPUs) have evolved from specialized hardware de-
signed solely for rendering graphics to powerful, general-purpose processors ca-
pable of handling complex computations. In the early years, 3D acceleration
carts, as they used to be called, were devoted to offloading the rendering tasks,
such as drawing pixels, filling polygons with textures, or computing geometry,
from the CPU [13]. And because processing pixels is inherently parallel, GPU
architectures were being developed with different paradigms compared to or-
dinary CPUs. GPU chip semantics is oriented on high performance achieved
by immense parallelism, with a design that promotes further scalability. Its die
surface is largely occupied by compute cores with very little space dedicated to
cache and control, which contradicts the CPU design (the graphical reference
depicted in Figure 1). Thus, GPUs can be much more powerful than CPUs if the
solution is carefully designed for it [14].

The shift from specialized graphics processing to general-purpose comput-
ing was marked by the introduction of programming frameworks such as CUDA
(Compute Unified Device Architecture) by NVIDIA and OpenCL (Open Com-
puting Language) by Khronos group. As extensions to C/C++, these frameworks
simplified the process of writing code for GPU and streamlined the adoption of
GPU for general-purpose programming [15]. CUDA, in particular, has become
the de facto standard for GPU programming due to its ease of use, performance,
and wide adoption in the scientific community.

In this chapter, we provide an overview of the GPU hardware architecture
and the CUDA programmingmodel. We also discuss the main optimization tech-
niques used in GPU programming, which are essential for achieving high perfor-
mance on GPUs. The knowledge presented in this chapter serves as a foundation
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for the subsequent chapters, where we detail the GPU optimizations of scientific
algorithms and describe the parallelization use-cases of the Noarr library.

1.1 GPU Hardware Architecture and Program-
ming Model

Generally, a programming model serves as a high-level abstraction of the hard-
ware architecture, allowing programmers to write code that can run and scale
well without prior knowledge of the underlying hardware specifics. The termi-
nology within the model varies depending on the programming framework or
GPU vendor, but the core concepts remain the same. To maintain conciseness,
we continue with the description in CUDA terms.

Let us start with the hardware. The main building block of a GPU is the
Streaming Multiprocessor (SM). The diagram in Figure 2 displays its composition:
SM couples hundreds of compute cores, a register file, L1 cache also called shared
memory, and schedulers responsible for independent scheduling of groups of
threads. There are multiple SMs in a GPU, their number highly correlating with
a GPU cost — the more high-end the GPU, the more SMs it holds. All SMs are
connected via a high-speed interconnect to the GPU RAM, the global memory.

Figure 1 Comparison of CPU and GPU chip
design [16].

Figure 2 Diagram of a streaming multiproces-
sor [14].

The abstraction of this highly parallel architecture is based on organizing
threads into hierarchical levels. The basic units of execution are threads. These
are organized into blocks, groups of threads executed on the same SM, sharing a
register file and the shared memory. Lastly, a group of blocks that is executed
independently on multiple SMs is called a grid. Thus, the grid, as depicted in
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(a) GPU grid of 8 blocks organized in 2 × 4 fashion, each
block consisting of 8 threads.

(b) The assignment of blocks in a grid to SMs on GPUs with
various SM counts.

Figure 3 A diagram of a grid ands its SMs assignment [16].

Figure 3a, defines the amount (and dimensionality) of concurrentwork to be done
on a GPU. Figure 3b shows how the hierarchy of threads maps to GPU hardware,
abstracting away the details of the hardware architecture in the process.

Conceptually, this programmingmodel is based on Single Instruction, Multiple
Data (SIMD) architecture, which is a type of parallel processing where a single
instruction is executed onmultiple data streams. In practice, SM issues threads in
groups of 32, called warps, which execute in lockstep — all performing the same
instruction at once. A more accurate description of this type of processing is
Single Instruction, Multiple Threads (SIMT), which is nowadays used to describe
the GPU programming model.

As a consequence of SIMT architecture and lockstep execution, GPUs favor
data-parallel problems. These are problems such that their solution requires ap-
plying the same function to its whole domain (e.g., an 𝑛-dimensional array). The
data-parallel problems are well-suited for GPUs, as they allow all threads to ex-
ecute the same instruction but on different data [14].

1.2 Optimizing for GPU performance

Contemporary GPU devices are becoming increasingly sophisticated and are
equipped with a variety of control-flow mechanisms, interthread communica-
tion, atomic instruction, and others, which allow for a broader range of problems
to be solved on GPUs. However, applying these features correctly is not trivial,
as it requires a deep understanding of the architecture and programming model.
Thus, achieving optimal performance on a GPU requires careful consideration
of various aspects. Let us detail the most important ones to watch for when
optimizing GPU code [13].
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Figure 4 The example of a roofline diagram [18]. The x axis denotes arithmetic intensity (also
called operational intensity) and y axis shows attainable performance.

1.2.1 Arithmetic intensity

The peak performance of contemporary high-end GPUs is nowadays measured
in TFLOPS (trillions of floating-point operations per second). In order to deter-
mine an actual achievable performance of a program, memory bandwidth needs
to be considered virtually always. Comparing peak performance and memory
bandwidth of current GPUs, we quickly conclude that the cores can not be fed
data at the same rate as they can compute.

Therefore, one of the most important constants in GPU programming is ops-
per-byte ratio. It is computed as the ratio of math and memory bandwidth, and it
simply determines how many math operations per transferred byte must be ex-
ecuted to achieve the theoretical maximum performance. For example, NVIDIA
V100 GPU achieves 14 TFLOPS peak single-precision performance with a mem-
ory bandwidth of 900 GB/s. This results 14

0.9 ≈ 15 ops-per-byte ratio. As a sim-
ple rule of thumb, a program that performs less than 60 single-precision floating
point operations per single 4-byte load/store will be memory-bound and a pro-
gram that performs more operations will be compute-bound. Such a property of
a program is called arithmetic intensity and is a key factor in determining the
performance of a GPU kernel.

To get more detail in hardware utilization than just comparing ops-per-byte
ratio with arithmetic intensity, modern profilers include the roofline model [17].
It is a graphical representation of a hardware attainable performance, given the
algorithm arithmetic intensity. Figure 4 shows an example of a roofline dia-
gram, where the x and y axes represent the arithmetic intensity and the perfor-
mance, respectively. The horizontal lines represent the achievable performance
of single- and double-precision floating-point operations and the diagonal line
represents the memory bandwidth. The roofline model can be used to determine
the performance bottlenecks of a program and to guide optimization efforts.
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Strictly speaking, there are two ways how to decrease the gap between arith-
metic intensity and ops-per-byte ratio: If a program allows, its operation may be
reordered such that fetching the same data multiple times is avoided, promoting
data reuse, which in turn increases the arithmetic intensity. Another way is to
decrease the ops-per-byte ratio by utilizing the GPU memory hierarchy, which
we discuss in the following paragraphs.

1.2.2 Memory hierarchy

A GPU thread hierarchy is accompanied by memory hierarchy. As alluded in
the previous paragraph, global off-chip memory has the highest latency and the
lowest bandwidth. To avoid thread stalls measured in hundreds of cycles due to
fetching data from global memory, other levels of memory hierarchies should be
utilized. This process is generally called caching but can be also interpreted as
data sharing, as the data is shared among threads in the same thread hierarchy.

Depending on the desired level of data sharing within the thread hierarchy,
programmers can use various types of memory (as depicted in Figure 5). On a
block level, on-chip shared memory can be accessed with a magnitude lower la-
tency and higher bandwidth than global memory. In extreme data sharing cases,
threads in the same warp can use the register file as a cache with close-to-zero
zero latency. However, the higher the proximity of the specific memory type to
the compute cores, the lower capacity it carries. Contemporary GPUs encom-
pass 64k of 32B registers, 100 − 200 kB of shared memory, and 8 − 16 GB of
global memory for consumer-grade GPUs and up to 80 GB for the highest-end
datacenter-grade GPUs.

To sum up, the key to achieving high performance on a GPU is to minimize
global memory accesses by smartly dividing the work in a thread hierarchy such
that faster memory levels are utilized. Moreover, since the ops-per-byte ratio is
inversely proportional to the memory bandwidth, a program using shared mem-
ory or registers as caches does not carry such significant requirements on arith-
metic intensity to achieve maximum performance.

1.2.3 Memory coalescing

Fetching data from global memory is serviced in up to 128B wide transactions. If
threads in a warp request a single byte, the GPU will fetch the whole transaction
chunk, wasting the memory bandwidth on data that will never be used and neg-
atively impacting the ops-per-byte ratio. To utilize the memory bandwidth fully,
the aggregated memory accesses in a lockstep should coalesce into continuous
memory locations. Figure 6 illustrates this concept.
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Figure 5 A thread hierarchy of GPU (left) and its correspondingmemory hierarchy (right) [16].

In practice, whether memory is transferred in an optimal number of trans-
actions is directly influenced by the layout of the data structures in use. One
example may include using a column-major layout for the right-hand side ma-
trix in matrix multiplication or avoiding the usage of linked lists.

1.2.4 CPU–GPU data transfers

Transferring data between CPU and GPU memory spaces can pose a significant
bottleneck when developing GPU programs. Usually, the interconnect which is
used to transfer data between the CPU and the GPU has a much lower bandwidth
even than the GPU global memory. Therefore, it is essential to avoid redundant
data transfers between the host and the device.

In true data-parallel algorithms, this is generally not a big issue because these
data transfers can be overlapped with computation. Such overlapping is possible
by GPU task queues, which allow the execution of multiple programs as well
as CPU–GPU memory transfers in parallel. This hardware feature is exposed
by the software abstraction called streams. Figure 7 show the ideal scenario,
where one would use multiple streams to overlap three main operations always

Figure 6 Warp accesses coalesced into 4 mem-
ory transactions [16]. Figure 7 Time diagram of non-overlapped

(top) and overlapped (bottom) transfer and com-
putation [19].

8



Figure 8 An example of diverging code with a diagram of how warp threads would be sched-
uled [20].

present when programming on GPUs: transferring input fromCPU to GPU, GPU
computation, and transferring output back from GPU to CPU.

1.2.5 Thread divergence
The downside of the highly parallel SIMT architecture is handling diverging ex-
ecution paths in the code. If threads in a warp take different if or their iteration
count over a while loop does not match, the execution of these diverging paths
will be serialized, as depicted in Figure 8.

Intra-warp branching should be avoided to keep the number of active threads
high for the longest amount of time. Divergence can be mitigated by lifting the
branching to the inter-warp level, replacing branches with arithmetic operations
if possible, or unrolling warp-wise loops.

1.2.6 Thread occupancy
TheGPU is designed to run thousands of threads in parallel and tens of thousands
of threads concurrently. Increasing the number of concurrent threads above the
limit of compute cores is crucial for GPU utilization as it allows hiding memory
latencies by switching between active threads. A single SM can accommodate
thousands of concurrent threads, although the number of accommodable cores
is a magnitude lower. The SM takes advantage of this high discrepancy to ag-
gressively context switch between different warps when the currently scheduled
ones are waiting for a latency. Since all the thread contexts reside on-chip, the
context switch has negligible overhead, and, provided there are enough available
concurrent threads, it can effectively hide the memory latencies.

The number of concurrent threads per SM is called the thread occupancy. It
denotes the ratio of active threads to the maximum number of threads that can
be executed concurrently on an SM. This metric is influenced by the resource re-
quirements of a program: Increasing the shared memory usage per block or reg-
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ister usage per thread decreases the thread occupancy, which in turn decreases
the parallel capacity of the GPU device.

However, a GPU code that achieves high thread occupancy uses less on-chip
resources, so it is required to use slower global memory more often, which in
turn decreases the computational efficiency of a thread. Thus, thread occupancy
and thread efficiency compete with each other, and their optimal ratio for a given
hardware should be finely tuned to achieve the best performance.

1.3 Summary
These are a few of the most dominant optimization techniques used in GPU pro-
gramming. For the past few years, GPU hardware has evolved extraordinarily
rapidly to satisfy the demand for hardware that can train artificial intelligence
models with billions of parameters. This has broughtmany new features, making
the device more versatile and powerful. Let it be more advanced SMs, indepen-
dent thread scheduling, block cluster, which brings a new element in the thread
and memory hierarchy, specialized matrix multiplication-optimized tensor cores,
which increase ops-per-byte ratio ten-fold, or tensor memory access, which allow
asynchronous copying of non-sequential data efficiently, …

In summary, the field of GPU programming is vast, and optimization tech-
niques are often intertwined and compete with each other. The optimal solution
is usually a compromise between the techniques, which is highly dependent on
the specific properties of the problem. In the following chapter, we will describe
our work of porting scientific algorithms to GPUs using the terminology and
knowledge established in this section as guidelines to detail the main optimiza-
tion challenges for each of them.
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Chapter 2

Employing GPUs in scientific
algorithms

The information age has brought a massive increase in the amount of data that
is being collected and processed. The data explosion can be observed in virtually
every field of computer science. In the scientific domain, this phenomenon is
multiplied by increasingly powerful data acquisition devices such as cytometers
in bioinformatics, seismometers in geology, and others [21, 22]. The amount of
data is too large to be processed in the required quantum of time, and in order
to alleviate this apparent pressure, the corresponding algorithm (which typically
has super-linear time complexity) must be ported to massively parallel architec-
tures, such as GPUs. The provided advantage can result in the ability to assess
massive amounts of data, use more detailed processing methods, or analyze the
data in real time [13, 14].

This chapter summarizes the process of porting scientific algorithms to GPUs
and highlights the challenges of optimizing for GPU architectures.

2.1 Hierarchical clusteringwith theMahalanobis
linkage

In the field of bioinformatics, hierarchical clustering is a popular method for an-
alyzing various types of data. In general, hierarchical clustering is an unsuper-
vised machine learning method that aims to group the data points into clusters
according to some linkage criterion. Clustering is an iterative method that be-
gins with each data point interpreted as a single cluster and, in each iteration,
the two most similar clusters are merged with respect to a linkage criterion until
a single cluster remains. There are many cluster linkage criteria used in the field,
eachwith advantages and disadvantages. Perhaps themost common linkagemay
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be the centroid linkage, which defines cluster similarity as the distance between
their centroids (the mean points). In the domain of bioinformatics, hierarchical
clustering with the Mahalanobis linkage is used, which is a more sophisticated
method suitable for analyzing multidimensional single-cell cytometry datasets.

2.1.1 Background
Mahalanobis hierarchical clustering was proposed by Fišer et al. [23] as a valu-
able tool for the analysis of flow cytometry datasets. Due to the ever-increasing
rate of data acquisition, the size of flow cytometry datasets is constantly growing.
Modern flow cytometers are able to process samples with millions of cells and
measure tens of parameters (point dimensions) simultaneously. More traditional
methods, such as manual gating, are not suitable for such high-dimensional data
and are heavily observer-dependent. Automated hierarchical clustering meth-
ods offer a viable solution but often fail to reflect the elliptical shapes of flow
cytometric populations.

For this purpose, the authors proposed the Mahalanobis linkage. This allows
for a very natural formation of clusters in biological data. However, the benefits
come at a cost of high time and space complexity. The authors claim the upper
usable bound of dataset size to be 104 using the original C application. They
state that the quadratic space complexity makes for the most significant limit-
ing factor, leaving it unfeasible to analyze bigger datasets on current desktop
computers.

The authors tried to alleviate this limitation by implementing the approxima-
tion of apriori clusters, where the data was pre-clustered using a naïve Euclidean-
based linkage, reducing the overall size of the dataset. This increased the usabil-
ity of the original code to datasets of around 106 data points within an interactive
environment [24]. Still, the proposed optimization could not keep up with the
contemporary data acquisition methods, generating datasets of millions of mul-
tidimensional data points.

2.1.2 Algorithm complexity
Mahalanobis linkage uses Mahalanobis distance [25] to measure the similarity
between clusters:

Definition 1 (Mahalanobis distance). Suppose a probability distribution 𝐶 on ℝ𝑑

with mean ̄𝐶 ∈ ℝ𝑑 and a covariance matrix cov(𝐶). If the matrix cov(𝐶) is
regular, we define the Mahalanobis distance between 𝑢 ∈ ℝ𝑑 and 𝐶 as

𝑑Maha(𝑢, 𝐶) = √(𝑢 − ̄𝐶)𝑇 cov(𝐶)−1(𝑢 − ̄𝐶). (2.1)

12



If we generalize a centroid of a cluster to a probability distribution, Defini-
tion 1 can be used to define the Mahalanobis distance between a point and a
cluster. To extend the definition to a distance between two clusters, we use the
following equation [23]:

𝛿Maha(𝑃 , 𝑄) = 𝑑Maha( ̄𝑃 , 𝑄) + 𝑑Maha(�̄�, 𝑃 )
2

(2.2)

To illustrate the measure of the Mahalanobis distance, let us suppose we have
two elliptic clusters. In the means of proximity, the measure favors such clusters
that their ellipses are alongside rather than in a prolongation of one another [26].
Only when the objects of a cluster form a spherical shape, this dissimilarity mea-
sure is proportional to the Euclidean distance with a corresponding linkage (as
depicted in Figure 9).

A

B

A

B

Figure 9 The comparison of theMahalanobis (left) and Euclidean (right) distance in the context
of elliptic clusters. The contour lines represent the space of the equal distance from the cluster
centroid.

Finally, Algorithm 1 summarizes the Hierarchical Clustering (HC) with Ma-
halanobis linkage. Line 2 initiates 𝑛−1 iterations, each one starting with one less
cluster to merge. Denoting 𝑑 as the dimension of the data, the time complexity
of the Mahalanobis distance computation is 𝒪(𝑑2), according to the Equation 1
and the fact that the size of a covariance matrix is 𝑑 × 𝑑. The time complexity of
the covariance matrix computation is 𝒪(𝑑2 ⋅ 𝑐), where 𝑐 is the size of a cluster,
and its inverse is computed in 𝒪(𝑑3).

The standard HC, which utilizes a dissimilarity matrix, has a time complexity
of 𝒪(𝑛3) and space complexity of 𝒪(𝑛2). There are other variants of HC which
influence the closest cluster pair retrieval and the amount of distances to recom-
pute after each iteration. Other variants include HC with the nearest neighbor
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Algorithm 1 Mahalanobis Hierarchical Clustering Analysis

1: procedure MHCA(Set of clusters 𝐶 = {𝑐1, … , 𝑐𝑛}, dimension 𝑑 ∈ ℕ)
2: while |𝐶| > 1 do
3: for all cluster pairs (𝑐𝑖, 𝑐𝑗) do
4: Compute 𝛿Maha(𝑐𝑖, 𝑐𝑗) ▷ Time: 𝒪(𝑑2)
5: end for
6: Find the closest pair of clusters (𝑎, 𝑏)
7: Update 𝐶 by merging 𝑎 and 𝑏 into 𝑐
8: Compute cov−1(𝑐) ▷ Time: 𝒪(𝑑2 ⋅ |𝑐| + 𝑑3)
9: end while
10: end procedure

array, which trades the linear memory complexity for a worse time complexity
on average, or the HC with priority queues, which reduces the time complexity
to 𝒪(𝑛2 log𝑛) for the sake of bigger memory requirements [27].

2.1.3 Implementation
From the perspective of GPU programming, Mahalanobis HC is a challenging
problem. Algorithms with high memory requirements are generally unfavor-
able for GPUs due to their relatively limited size of global memory (refers to
Memory hierarchy in Section 1.2). There has been a lot of work on overcoming
this limitation, both from NVIDIA and the scientific community [28–30]. CUDA
has introduced unified memory [16], which allowed GPUs to work on data that
exceeds GPU memory capacity by seamlessly copying data from CPU to GPU
on page fault. This optimization can help only to a certain extent, as it can only
scale to the size of CPU RAM and the data are usually sent through high-latency
small-throughput interconnect (refers to CPU–GPU data transfers in Section 1.2).
Therefore, in our work, we experimented with other well-known HC variants
that trade higher time complexity for a linear memory complexity — HC with the
nearest neighbor array [27].

The other obstacle of Mahalanobis HC is the greatly imbalancedworkload. In
the first iterations, the runtime is dominated by the complex Mahalanobis link-
age computation over many pairs of 𝑛 clusters. But as the number of clusters
decreases, the hot spot becomes the computation of the covariance matrix of a
merged cluster (Algorithm 2, Line 8). As a result, for the most time during the
computation the GPU is not fully utilized either due to small amount of paral-
lelism in covariance matrix computation or in the similarity computation. For
that case, we designed a workload using CUDA streams (refers to CPU–GPU data
transfers in Section 1.2), which enabled running these tasks in parallel. Conse-
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quently, this allowed us to keep the utilization of more GPU cores during the
whole runtime of the algorithm.

2.1.4 Results

The optimized Mahalanobis HC achieves a speedup of over 1400× compared to
the original serial CPU implementation. We benchmarked the application on the
real-world single-cytometry datasets. The biggest dataset which we obtained,
the Samusik-All [31] (841 thousand 39D points), was able to finish in the order
of minutes compared to the order of days. Furthermore, the application has been
distributed as a R package gmhc to fit workflows carried out by a bioinformatics
community. To the best of our knowledge, the package enabled the scientists
to analyze big datasets as a whole without the apriori clustering approximation,
increasing the accuracy of the analyzed data and decreasing the turnaround time
of the analysis.

2.2 Neighborhood-based dimensionality reduc-
tion

Complementary to hierarchical clustering, a different approach to displaying cy-
tometry datasets is dimensionality reduction (also called embedding), in which
multidimensional cells are projected into a 2-dimensional plane, a picture, which
shows cells arranged in groups with common properties. This methodology al-
lows for a fast and reliable way to analyze cell populations, their relative size, and
the presence of various features. The currently used dimensionality reduction
tools are typically based on the principle of optimizing a low-dimensional em-
bedding while preserving high-dimensional properties of interest. However, the
most popular tools following this methodology, such as t-SNE [32], UMAP [33]
or TriMAP [34], can suffer poor performance on large data due to the need to
examine a nontrivial subset of (𝑛

2) relations (such as the pairwise distances) be-
tween 𝑛 data points [35].

A lot of effort has been dedicated to optimizing the performance of these al-
gorithms. Solely for t-SNE, we can find multiple works related to this topic [36–
39]. Regardless of these developments, the processing time of these algorithms
scales super-linearly with the number of data points, which inevitably leads to
the need of data downsampling. EmbedSOM algorithm, introduced by Kratochvíl
et al. [35], is designed to overcome this limitation. The costly parts of the previ-
ous methods can be omitted by creating a smaller model of the data obtained (not
exclusively) by self-organizingmaps. EmbedSOMuses the information of such an
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Algorithm 2 EmbedSOM

1: procedure EmbedSOM(𝑋 ∈ ℝ𝑛×𝑑, 𝐿 ∈ ℝ𝑔×𝑑, 𝑙 ∈ ℝ𝑔×2, 𝑘 ∈ ℕ)
2: for 𝑖 ∈ {1 … 𝑛} do ▷ For each high-dimensional point
3: Find 𝑘 nearest landmarks from 𝐿
4: Score the 𝑘 nearest landmarks according to the distance to 𝑋𝑖 with

𝑠1, … , 𝑠𝑘
5: for (𝑢, 𝑣) ∈ {1, … , 𝑘}2 do ▷ For each pair of nearest landmarks
6: Compute 𝐷𝑢𝑣(𝑋𝑖) by projecting 𝑋𝑖 orthogonally onto a line be-

tween 𝐿𝑢 and 𝐿𝑣; We define 𝑑𝑢𝑣(𝑥) similarly for 𝑙𝑢 and 𝑙𝑣
7: end for
8: Find 𝑥𝑖, such that ∑𝑢,𝑣 𝑠𝑢 ⋅ 𝑠𝑣 ⋅ (𝐷𝑢𝑣(𝑋𝑖) − 𝑑𝑢𝑣(𝑥𝑖)) is minimized
9: end for
10: end procedure

approximated manifold to compute the final embedding, retaining a competitive
quality of the visualization.

Algorithm 2 shows the overview of EmbedSOM. It assumes a set of 𝑛 high-
dimensional points 𝑋 ∈ ℝ𝑛×𝑑 and the smaller data model: a set of 𝑔 << 𝑛 high-
dimensional landmarks 𝐿 ∈ ℝ𝑔×𝑑, and a set of 𝑔 low-dimensional landmarks
𝑙 ∈ ℝ𝑔×2. For each input point, 𝑘 < 𝑔 nearest landmarks from 𝐿 are found and
assigned scores according to their distance. Finally, we compute the embedding
such that the difference between distances from 𝑙 landmarks and the embedded
point and 𝐿 landmarks and the original point is minimized. The minimization
problem is reducible to a linear system of equations with two variables.

With such a description of the algorithm, we can deduce the time complexity
for a single data point processing: The first line of the for loop is the well-known
𝑘-NN problem, with the optimal time complexity of 𝒪(𝑑 ⋅ 𝑔 ⋅ log 𝑘). The remain-
der, which we may call the embedding step, has a time complexity of 𝒪(𝑑 ⋅ 𝑘2).
Since it holds that 𝑘 < 𝑔 << 𝑛, EmbedSOM achieves sufficient scaling; the em-
bedding of 24 million cells with 36 markers can finish under an hour on common
hardware, compared to around 2 days using UMAP [40]. Figure 10 visualizes the
EmbedSOM process for a single data point 𝑥.

2.2.1 Interactive opportunities of GPU implementation

Although the EmbedSOM CPU implementation already provided good perfor-
mance, it still had an untapped parallelization potential and a potential for en-
ablement as an interactive method in cytometry data analysis. Therefore, we
followed up on it in our work.
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Figure 10 The visualization of the EmbedSOM algorithm, with 𝑘-NN and embedding steps
highlighted.

Themain challenge of EmbedSOM is low arithmetic intensity (refers to Arith-
metic intensity in Section 1.2). Note that although the arithmetic intensity is pri-
marily determined by the algorithm, it can be influenced by its implementation in
a major way. For GPUs, there are many ways to fight the arithmetic intensity of
an algorithm, such as kernel fusion [41], leveraging the memory hierarchy [42]
or by reordering data accesses [43] and optimizing data transactions [44]. Gener-
ally, these approaches can be distilled into two groups: Data sharing and latency
hiding (refers to Memory hierarchy and Thread occupancy in Section 1.2).

We experimented with both approaches in our EmbedSOM implementation.
Although L2 caches can partially handle data sharing, GPUs typically hardly
benefit from them due to their low cache-to-core ratio [16]. Therefore, as one
variant of 𝑘-NN part, we used sharedmemory, a programmable cache, to store the
data and landmarks. These were then used to compute all the possible pairwise
distances before loading the next batch to maximize the arithmetic intensity. The
second variant of the 𝑘-NN part used a modified bitonic sort to find the top-𝑘
landmarks. This approach has the hidden benefit of low per-thread resource
requirements, resulting in higher maximum GPU occupancy and, consequently,
better latency hiding (refers to Thread occupancy in Section 1.2).

The embedding part of EmbedSOM does not offer such caching opportuni-
ties, as each point has a different set of nearest landmarks. The only reuse can
happen on the landmarks themselves. And since their count can be limited in
some parameter configurations, we experimented with techniques that increase
the memory bandwidth, such as vector load instructions.

2.2.2 Results
After the thorough benchmarking process, we selected themost performing vari-
ants of both steps and combined them into a complete implementation of the
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Figure 11 Mammoth skeleton dataset visualized in BlosSOM.

EmbedSOM algorithm. We increased the performance by 200 − 1000× over the
serial CPU version and 3 − 10× over a naïve GPU implementation. Further-
more, the achieved speedup enabled the interactive data visualization and was
integrated into the graphical application BlosSOM [45] (a screenshot included in
Figure 11). Thanks to the added performance, the application can project datasets
of up to amillion points with amaintained frame rate above 30 frames per second
on consumer hardware. This contribution pushes the boundary of EmbedSOM
into a semi-supervised dimensionality reduction domain, allowing users to ef-
fectively and intuitively visualize data with real-time feedback.

2.3 Cross-correlation optimized for small inputs

Leaving the realm of cytometry data analysis, we will focus on a highly data-
bound problem: cross-correlation. This algorithm is a cornerstone of many sci-
entific fields, such as image processing, seismology, material physics, and, with
the advent of convolutional neural networks, machine learning. As one inter-
pretation, it computes a similarity of two data series obtained by sliding one
over the other and computing the dot product of the overlapping parts. The out-
put is typically post-processed to get richer information, such as Earth’s under-
ground structure in seismology [22], road lane detection in computer vision [46],
or acoustic location in signal processing [47].

The problem of cross-correlation performance was initially introduced to us
by the physicists from the Department of Physics of Material at Charles Uni-
versity in Prague. They used the algorithm to analyze the diffraction pattern of
metallic alloys from electron backscatter diffraction (EBSD) cameras to obtain
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the material deformation. That can be used to study the material characteristics,
such as elastic strain or lattice rotation.

A typical input consists of a reference 2D grayscale image of the analyzed
material and multiple images of the deformed material (as depicted in Figure 12).
In the 1 ∶ 𝑁 relation, the reference image is cross-correlated with each deformed
image to find the most similar shift, which suggests the direction of deformation.
However, different parts of the image may be deformed differently. Therefore,
images are typically divided into smaller parts, and the cross-correlation is com-
puted for each part separately, requiring multiple 1 ∶ 𝑁 cross-correlations. Con-
sidering such input configuration, the computation can quickly get expensive,
and the analysis becomes performance-constrained.

The reference Python script provides the physicists with the computational
throughput of tens of patterns per second. However, modern EBSD cameras
produce data at a magnitude higher rate [48]. Nevertheless, thanks to the parallel
nature of the problem, this is a perfect candidate for GPU acceleration.

(a) Reference pattern (b) Deformed pattern (c) Deformation visualization

Figure 12 A visualization of FeAl alloy deformation computed using cross-correlation

2.3.1 Implementation challenges
The cross-correlation of functions 𝑓, 𝑔 ∶ ℂ → ℝ is defined as

(𝑓 ⋆ 𝑔)(𝜏) =
∞

∑
𝑖=−∞

𝑓(𝑖)𝑔(𝑖 + 𝜏). (2.3)

Figure 13 depicts the visual representation of the equation applied on a discrete
case of two 2 × 2 matrices. The matrices are shifted to produce all the possible
overlaps (Figure 13, right). For a single shift, only overlapping elements con-
tribute to the computation: overlapped pairs aremultiplied and summed together
into a single output matrix element (Figure 13, left). From the implementation
perspective, a trivial solution can be developed rather quickly by defining four
nested loops, two for the shift and two for the overlap computation as shown in
Listing 1.
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Figure 13 Visual representation of the cross-correlation. Yellow and purple matrices corre-
spond to the input matrices, and the blue matrix depicts the cross-correlation output. The coor-
dinates on the blue matrix correspond to the shift of the yellow matrix, which is depicted on the
right. Only the overlapping parts (in pink) contribute to the computation for each output matrix
element.

Listing 1 A trivial implementation of cross-correlation.

for (int i = -(n - 1); i <= n - 1; i++)
for (int j = -(n - 1); j <= n - 1; j++)

for (int y = 0; y < n - abs(i); y++)
for (int x = 0; x < n - abs(j); x++)

result[j][i] += a[max(0, -i) + y][max(0, -j) + x] *
b[max(0, i) + y][max(0, j) + x];

For general 𝑤 × ℎ matrices, the cross-correlation has a time complexity of
𝒪(𝑤2 ⋅ℎ2). Alternatively, the input can bemodified and passed to the Fast Fourier
Transform (FFT) with a more pleasing time complexity of 𝒪(𝑤 ⋅ ℎ ⋅ log(𝑤 ⋅ ℎ)).
However, the hidden multiplicative factor, which materializes as an overhead in
the implementations of FFT, favors the original, definition-based approach for
small problem sizes.

To assess the optimality of the trivial implementation, let us compute the
arithmetic intensity of a single overlap computation. For 𝑛 overlapped element
pairs, we need to perform 𝑛 fused multiply-add operations. Considering the
elements are represented as 4B single-precision floating points, the arithmetic
intensity equals to 𝑛

2𝑛∗4 = 1
8 . In Section 1.2.1, we detail that the ops-per-byte

ratio of the modern NVIDIA V100 GPU is around 15 for single-precision floats.
Since 1

8 < 15, the implementation of such an algorithm will be highly memory-
bound.

2.3.2 Optimization techniques

With this in mind, we experimented with extreme data reuse techniques. There
are many opportunities where the same data is read multiple times:

20



• When computing neighboring overlaps, most data from left and right ma-
trices are read multiple times.

• In the 1 ∶ 𝑁 scenario, when cross-correlating one left matrix with many
right matrices, the data from the left matrix is read multiple times when
computing the same overlap between multiple right matrices.

• In the 𝑁 ∶ 𝑀 scenario, multiple left and right matrices can be read once to
compute overlaps between all of them.

With such techniques, the arithmetic intensity is theoretically unbounded,
provided an infinitely big input. However, the physical resources limit the prac-
tical values of the reuse factor. The most important resource is the register file.
In order to reuse data, threads need to have them stored in the registers. The
number of registers is limited, and the compiler can spill the data into slower
memory if the limit is reached. Also, if the amount of resources per thread is
high, the occupancy of the GPU can drop, and the achievable performance can
decrease.

The other big issue is the parallelism. Naturally, if one worker performs mul-
tiple operations for the sake of sharing, the parallelism decreases. Therefore, the
most effective implementation maintains the optimal balance between data shar-
ing and parallelism.

Lastly, in Section 1.2.2 we described that the memory hierarchy can aid a low
arithmetic intensity: the memory bandwidth is inversely proportional to the ops
per byte ratio. For NVIDIA V100, the ops per byte ratio is 3.5× less when using
L2 cache and 13× less when using shared memory, compared to the off-chip
memory [49]. As a result, if the caches are utilized correctly, less data sharing is
required to utilize the hardware capabilities fully.

In our implementation, we took GPU-specific advantage of even faster mem-
ory than shared memory, register file itself, to cache the data. The GPU register
file is rather big, having 65536 32B registers. However, the caching possibilities
on thread registers are very limited. They are only allowed on a warp level and
allow only a specific access pattern. Still, they provide a higher throughput than
the closest cache, the shared memory.

2.3.3 Results

The final implementation of the cross-correlation algorithm achieved a speedup
of 5 − 10× over a naïve GPU code. The benchmark also uncovered the bound-
aries, above which a more expensive time complexity of the definition-based
algorithm overcomes the overhead of the FFT approach. In summary, achieved
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speedup can enable physicists to analyze the data at a similar rate as EBSD cam-
eras produce.

2.4 Stochastic simulation of Boolean networks
In Systems biology, the analysis of large and complex biological systems is a chal-
lenging task. Boolean models [50] have gained popularity due to their simplicity,
scalability, and ability to describe complex signaling networks. A Boolean model
consists of 𝑛 nodes with binary values — active or inactive. A node represents an
event in the system, such as a gene being expressed or a protein being activated.
The complete state of the system is, therefore, defined by a Boolean word com-
posed of 𝑛 bits. The states can transition within each other based on 𝑛 Boolean
formulae, one for each node. Given an initial state, the task of the model is to
predict the probability distribution of system outcomes after a specified amount
of time.

Numerical methods, such as ExaStoLog [51], have been developed and used
to solve Boolean models; however, they are limited to relatively small models
(tens of nodes) due to the exponential memory requirements. For larger models,
it has proved to be much more efficient to approximate the results by simulation.
A C++ software, MaBoSS [52], simulates these systems by applying the kinetic
Monte-Carlo algorithm [53] on the Boolean network. In summary, the MaBoSS
tool simulates millions of random walks (also called the trajectories) on the state
space of the Boolean network (a directed weighted graph). Algorithm 3 provides
a high-level view of how a trajectory is sampled. The trajectories are then ag-
gregated in a histogram-like fashion to compute various statistics, such as the
probability distribution of the states over time, as is shown in Figure 14.

Algorithm 3 A single iteration of the MaBoSS simulation of a trajectory, given the trajectory
state 𝑆 at time 𝑡.
1: procedure TrajectorySimulationStep(S, t)
2: Compute transition probabilities 𝑝1, … , 𝑝𝑛 by evaluating the Boolean

formulae ℬ1, … , ℬ𝑛 on 𝑆
3: Sample the next state 𝑆′ and transition time Δ𝑡 according to the proba-

bilities 𝑝1, … , 𝑝𝑛
4: return 𝑆′, 𝑡 + Δ𝑡
5: end procedure

Due to the stochastic nature, this approach can overcome the limitations of
numerical methods and has enabled the analysis of bigger models, running in-
stances with a few hundred nodes in a reasonable amount of time. On the other
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Figure 14 The MaBoSS projection of simulated trajectories averaged over a specific time win-
dow.

hand, allowing even bigger inputs would require billions of simulated trajecto-
ries in order to obtain a reliable result, which puts significant pressure on the
tool and its ability to scale well. A parallel CPU MaBoSS simulation of a rela-
tively small Sizek model [54] (𝑛 = 93) with 106 trajectories takes the order of
minutes on a high-end computer. Simulating models with thousands of nodes
and billions of trajectories would require an order of days in runtime, hindering
further analysis of the models.

Another performance challenge is the so-called mutant analysis. In an exist-
ingmodel, a node ismutated to a static value, losing the ability to change its state.
This technique is used to predict the effect of a gene knockout or overexpression
(a node value immutably set to 0 or 1, respectively). During the analysis, the
same model is run 2𝑛 times to gain the predictions for all single mutations (both
suppressed and expressed). Naturally, this approach can be extended to research
the effect of multiple mutants — running the model with multiple nodes mutated
at once. However, just single mutants analysis has been considered computa-
tionally expensive, subjecting double or triple mutants to a supercomputer-level
task.

2.4.1 GPU acceleration challenges

Although the parallelization of MaBoSS may seem straightforward, it includes
challenges that can significantly affect the overall performance. The main issue
is the traversal of the binary expression tree to evaluate the Boolean formulae
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(Algorithm 3, Line 2). Generally, traversing irregular data structures causes con-
ditional branching and creates an irregular data access pattern (refers to Thread
divergence and Memory coalescing in Section 1.2). A combination of these is-
sues may leave GPU heavily underutilized, gaining very little to no performance
improvement over a well-parallelized CPU code.

Thread divergence can be mitigated by cleverly distributing formulae eval-
uations among the threads. The most straightforward approach is to assign all
𝑛 formulae computations to a single thread such that the threads execute the
same formula in each step. The divergence within the evaluation of the same
formula can be solved by turning off short-circuiting optimization and enforc-
ing the threads to evaluate the whole expression uniformly. The other possible
approach would be to assign one formula to a thread. Naturally, this enables
more parallelism but requires a more complex data structure to prevent thread
divergence. The formulae need to be represented in the code so that each of their
execution is issued as the same sequence of instructions. A way to achieve this
is to convert formulas to CNF or DNF form and store them in the memory as a
vector of bitmasks with a unified length.

In our work, we partly followed the first approach. But instead of designing
an ideal memory layout for the formulae, we used the CUDA NVRTC [55] run-
time compilation library to compile the formulas on the fly. It has the benefit
of encoding the formulas into a native binary code, removing the necessity to
fetch the data from the memory each time the formula is evaluated. Apart from
that, the compiler can run a set of optimizations on the code, further improving
the performance. Consequently, the runtime compilation comes at the cost of an
additional runtime. Thankfully, our benchmarking showed that the compilation
time amortizes well for simulations with reasonably big inputs.

2.4.2 Results
The final implementation of the MaBoSS simulation achieved a speedup of 100−
300× on real-world datasets over the parallel CPU version. Moreover, we cre-
ated a synthetic test suite to stress the scalability of the implementation, which
showed that the GPU implementation can simulate models with thousands of
nodes and billions of trajectories in minutes. These results suggest that the con-
sumer laptop equipped with a GPU can simulate models that were previously re-
stricted to high-end computers. Furthermore, the double and triple mutant anal-
ysis no longer belongs just to the domain of supercomputers but could become
feasible on data center-grade GPUs. Overall, we believe that the GPU accelera-
tion of the MaBoSS simulation can significantly improve the analysis of Boolean
networks and enable researchers to explore complex models while conveniently
using their personal computers.
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2.5 Summary
We have presented the work of implementing four scientific algorithms in the
HPC domain. Overall, the results have shown that employing GPUs to solve
scientific problems can help researchers push the boundaries of the size, scale,
and complexity of analyzed data while leveraging the computational power of
their GPU-equipped personal computers or laptops.

Further summarizing the optimization used, it comes as no surprise that the
most important aspect to consider when designing an optimized implementation
is memory. Memory complexity, memory access patterns, memory hierarchies,
and data caching repeatedly occurred in our implementation designs and have
contributed the most to performance improvements. This is yet supported by the
fact that the gap between computational power and memory bandwidth tends
to widen [56], causing more algorithms to be memory-bound, making memory
optimizations even more crucial in the future.

Therefore, we dedicate the second chapter of this thesis to the methods for
streamlining memory-related optimizations, which we collected during our op-
timization efforts and found them to be effective in aiding HPC programmers in
writing optimized CPU or GPU code from scratch.
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Chapter 3

Streamlining the development of
parallel algorithms using Noarr

Commonly, the core computation of scientific algorithms is centered around a
master data structure. The examples include a matrix composed of cell features
in an agent-based simulator [57], a grid of substrates in a diffusion solver [58],
a transition rates graph for Markov processes [51], etc. In the vast majority of
these algorithms, the location of the most performance-critical parts lies in a
nested loop over these data structures.

Possibly due to the lack of hardware expertise, usually there is no special
attention paid to the memory performance when such loops are written by the
domain experts [59]. As a result, the programs show poor data locality, spending
most of the CPU cycles waiting for the memory pipeline to deliver the data.

A plethora of research works confirm that changing the way how data is laid
in memory or modifying the nested loops can result in a significant performance
improvement [60–62]. Such optimizations may include decreasing the number
of cache misses by grouping the operation on the same data together, employing
prefetching by streamlining the memory access pattern, or utilizing the vector
instructions by aligning the data in memory.

Arguably, given a nested loop to optimize, the expert in the performance op-
timization domain can pinpoint the biggest bottlenecks w.r.t. memory and pro-
pose close to optimal modifications with great probability. The most common
modifications would include reordering the loops for the most possible serial
access pattern and dividing the loops into tiles or strides to employ cache hier-
archies [63]. The problematic activity here, which takes the most programmers
time, is putting these modifications into code. For example, let us have a nested
loop of depth 3 with control variables i, j, k and bounds I, J, K. A simple
tiling modification of the loop adds complexity in loop depth, variable count, and
index computation:
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1 for (i1 = 0; i1 < I / tile_I; i1++)
2 for (j1 = 0; j1 < J / tile_J; j1++)
3 for (k1 = 0; k1 < K / tile_K; k1++)
4 for (i2 = 0; i2 < tile_I; i2++)
5 for (j2 = 0; j2 < tile_J; i2++)
6 for (k2 = 0; k2 < tile_K; k2++)
7 // i=i1*tile_I+i2; j=j1*tile_J+j2; k=k1*tile_K+k2;

Omitting corner cases, the code is already verbose and rather error-prone (a care-
ful eye may spot a mistake, a usual copy-paste bug on Line 5). Naturally, the
complexity of the code grows with the complexity of the optimization.

Thankfully, many tools have been developed to alleviate this issue. Some
provide automatic optimizations built within a compiler [64, 65], some extend a
compiler with pragma-like annotations to guide the optimization process [66–
69] and others include ad-hoc solutions for a specific family of algorithms [70,
71]. However, very little attention has been paid to aiding HPC programmers
in writing the optimized code from scratch by providing them with a clean and
maintainable way to express complex loop traversal and memory layout fit for
their specific problem.

To alleviate and streamline the mundane programming tasks repeatedly en-
countered during our work on optimizing scientific algorithms, we focused our
work on developing a C++ library Noarr. The main benefit of the library is that
it allows to expressively and extensively define memory layouts of regular 𝑛-
dimensional arrays and provides loop transformation primitives for their opti-
mal traversal. It empowers HPC experts to swiftly develop their optimizations
as a clean, maintainable code open to autotuning and parallelism while staying
within the borders of the C++ standard without adding any dependency on the
final software product (which is an advantage for the deployment in a scientific
community).

3.1 Memory Layouts

Generally, the way how data is laid in memory, a memory layout, can be por-
trayed as a projection of its index space to a linear memory space. If we limit
ourselves to a general (non-ragged) 𝑛-dimensional array, we can define memory
layout mathematically as follows:

Definition 2 (Memory Layout).   Suppose a regular 𝑛-dimensional array 𝐴 with
dimension lengths 𝑑1, … , 𝑑𝑛 and an index space ℐ = {0, … , 𝑑1 − 1} × ⋯ ×
{0, … , 𝑑𝑛 − 1}. We define a memory layout 𝕃 of 𝐴 as a bijection 𝕃 ∶ ℐ →
{0, … , ∏𝑖 𝑑𝑖 − 1}.
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Perhaps themost commonmemory layouts are row-major and column-major
of a matrix (Figures 15a and 15b). Their respective bijections can be generated
by indexing functions 𝐿row(𝑖, 𝑗) = 𝑖 ⋅ 𝑑2 + 𝑗 and 𝐿col(𝑖, 𝑗) = 𝑗 ⋅ 𝑑1 + 𝑖 and these
functions would be carried to source code with slight modifications.

As alluded to in the motivation, common layouts used to optimize memory
accesses require a complex code. A tiled matrix layout (Figure 15c), the layout
paramount for some algorithms to optimally use cache hierarchies, already re-
quires a verbose indexing function. Helping ourselves with adding two intra-tile
dimensions, the indexing function would look as follows:

𝐿tiled(𝑖, 𝑗, 𝑘, 𝑙) = (((𝑖 ⋅ 𝑑2 + 𝑗) ⋅ 𝑑3) + 𝑘) ⋅ 𝑑4 + 𝑙

Arguably, adding another tile dimension (to utilize multiple levels of cache),
swapping intra-tile layout to column-major form, or implementing layouts as
space-filling curves (Figures 15d and 15e, especially useful when dealing with
cache-oblivious algorithms [72]) becomes less and less trivial. Moreover, consid-
ering the indexing functions are written ad-hoc, the layouts are tough subjects
to change since a layout change requires a thoughtful and error-prone rewrite
of all index function occurrences. On top of that, a complex indexing function
is far from self-describing, making it hard, even close to impossible, to guess the
layout intentions.

(a) row-major (b) col-major (c) tiled (d) z-curve (e) Hilbert curve

Figure 15 Instances of various matrix layouts.

3.1.1 Background
The importance of these issues has been recognized by the HPC community,
especially by the authors of HPC programming frameworks. Perhaps the oldest
example is Kokkos [73], a platform-agnostic programming model that defined a
memory layout as a first-class object. The layout is defined as a vector of dynamic
dimension lengths; the dimensions are laid out in memory from left to right (the
leftmost dimension being laid in the memory continuously with a stride of 1, also
called Fortran-style), from right to left (perhaps the most used one, C-style) or
generally by a custom vector of strides. Such a simple approach covers a wide
range of HPC use cases and has been adopted by other frameworks, such as
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GridTools [71]. An example of defining a layout with 3 dimensions of lengths 3,
3 and 4 and their respective strides 1, 5 and 20 in Kokkos is as follows:

1 // Some storage
2 int* ptr = new int[80];
3 // A layout object with pairs of size and stride
4 Kokkos::LayoutStride layout(3, 1, 3, 5, 4, 20);
5 // A view from the pointer and the layout
6 Kokkos::View<int***> w(ptr, layout);
7 int elem = w(0, 0, 0);

Line 6 highlights another useful feature of the framework: The ability to de-
couple the layout from the underlying memory. The layout is a separate object
from the memory pointer, which allows for easy reuse of the layout in differ-
ent parts of the code. Connecting a layout to a memory is done explicitly by
wrapping a layout and a memory pointer into a View object.

Recently, much bigger communities have started to invest time in designing
an extensible way of defining layouts. C++ has standardizedmdspan in C++23. It
takes a finer approach, allowing to define layout dimensions using a more com-
plex extent structure. Such a structure enables defining some dimension lengths
as static (known at compile time) and mixing them with some dynamic (known
at runtime). With such information during compile-time, a compiler can employ
optimizations such as constant folding, loop unrolling, or automatized vectoriza-
tion. Similarly, as with a vector of strides in Kokkos, it defines a LayoutPolicy,
responsible for converting dimensions to underlying 1D memory, and mdspan
class as a View alternative:

1 // Some storage
2 int* ptr = new int[80];
3 // An extent structure, the first two dims are static
4 std::extents<3, 3, std::dynamic_extent> ext(4);
5 // mdspan object with a pointer, extents and Fortran-style layout policy
6 std::mdspan<int, decltype(ext), std::layout_left> s(ptr, ext);
7 int elem = s[0, 0, 0];

Nvidia has recently introduced CuTe, a collection of C++ CUDA template ab-
stractions for defining and operating on hierarchically multidimensional layouts
of threads and data [74]. It follows similar principles as with the C++ standard:
it defines shape, stride, and tensor as alternatives to Extents, LayoutPolicy, and
mdspan. The same example as above written using CuTe lists as follows:

1 // Some storage
2 int* ptr = new int[80];
3 // A layout as a pair of shape and stride
4 Layout l = make_layout(
5 make_shape(Int<3>(), Int<3>(), 4),
6 make_stride(Int<1>(), Int<3>(), Int<9>())
7 );
8 // A tensor object with a pointer and a layout
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9 Tensor t = make_tensor(ptr, l);
10 int elem = t(0, 0, 0);

Shapes and strides can be nested, creating a hierarchy of coordinates. Also,
every layout (even a nested one) can be indexed with 1D coordinates, iterating
the index space in a colexicografic order. This allows for a natural indexation
of complicated layouts; e.g., a tiled matrix 4D layout can be indexed using stan-
dard 2D coordinates, hiding the complexity of the layout. Apart from that, CuTe
also takes a formal approach, creating a layout algebra. It defines a set of opera-
tions over layouts, such as concatenation, composition, tiling, and others. These
operations are used to build more complex layouts from simpler ones.

3.1.2 Noarr Layouts
Noarr aims to enhance the expressiveness, extendibility, and maintainability of
the code. The main points which distinguish Noarr from other libraries are:

• Named dimensions — the dimensions are not defined just by an order of
shape or stride vectors, but they are named. This allows to query a dimen-
sion regardless of its global index.

• Proto-structures — a set of building blocks is provided to allow to easily
define complex layouts by their various composition.

Let us give an example of a row-major matrix memory layout using Noarr.
Considering 'i' as a row dimension and 'j' as a column dimension, the layout
can be defined as follows:

1 // Some storage
2 int* ptr = new int[80];
3 // A row-major matrix layout
4 auto row_l = scalar<int>() ^ vector<'j', 'i'>(lit<3>, 4);
5 // A bag object with a pointer and a layout
6 bag b = make_bag(row_l, ptr);
7 int elem = b.at<'i', 'j'>(0, 0);

Although Noarr predates mdspan and CuTe, it shares many similarities: the
separation of layout and underlying memory (using bag on Line 6) and the abil-
ity to define static and dynamic-sized dimensions (using lit on Line 4). Perhaps
the biggest difference is the absence of a stride vector. In Noarr, the strides are
computed automatically according to the order of the named dimensions. The
matrix layout above can be changed to column-major by a simple named dimen-
sions swap:
auto col_l = scalar<int>() ^ vector<'i', 'j'>(4, lit<3>);
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The order in which the dimensions are defined signals the way how they are
laid in memory, which is in the left-to-right fashion. The meaning of the dimen-
sion names is important here, as it determines the logical order. The order in
the definition then defines the physical order. For example, let us have a cube
layout, denoting its height, width and depth as 'i', 'j' and 'k' respectively. A
C-style cube layout could be defined using vector<'k', 'j', 'i'>() proto-
structure. A custom layout (neither Fortran- nor C-style) can be simply written
as vector<'j', 'k', 'i'>(). Using this logical–physical distinction, all of
the vastly used stride vectors can be simulated by permuting the dimensions
order.

The other aspect of Noarr is the way how the layout is defined — as a com-
position of building blocks, the protostructures. We already mentioned row_l,
which is a composition of scalar<int> and vector<'j', 'i'>, which, when
composed, represents a vector ('i') of vectors ('j') of integer scalars (int) — an
integer matrix. The left-to-right reading of the layout definition allows for easy
extension of the existing layout. Let us enumerate examples of more complex
layouts in the following listing.

1 // A layout for a batch of row-major matrices
2 // and offset to the 1st row of the 2nd matrix
3 auto batched_l = row_l ^ vector<'b'>(10);
4 size_t o1 = batched_l | offset<'i', 'j', 'b'>(1, 0, 2);
5 // Two tiled matrix layouts (both row-major and col-major,
6 // where 'k' and 'l' denote tile rows and columns)
7 auto tiled_rr_l = row_l ^ vector<'l', 'k'>(5, 10);
8 auto tiled_rc_l = row_l ^ vector<'k', 'l'>(10, 5);
9 // A sublayout composed of the 3rd row tiles
10 auto tiled_3rd_l = tiled_rc_l ^ fix<'k'>(3);
11 // A tiled matrix layout indexable using 2 coordinates
12 auto tiled_2d_l = tiled_rr_l ^ merge_blocks<'i', 'k', 'I'>() ^

merge_blocks<'j', 'l', 'J'>();↪

The protostructures allow for expressing complex layouts in a readable and
verifiable way. Furthermore, their extensibility in composition and separation
from the underlying memory also allows for plug-in layouts, which can be easily
reused in different parts of the code:

Let us have a complex layout of a multi-layered 3D grid gradient, which oc-
curs on various code places and provides layouts for multiple memory pointers.
In that case, a layout can be declared once with sufficient scope and reused in
places where needed:

1 // A globally accessible layout
2 auto gradient_layout = scalar<float>()
3 ^ vector<'s', 'x', 'y', 'z', 'g'>(
4 substrates, grid_dims[0], grid_dims[1], grid_dims[2], lit<3>
5 );
6
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7 void func1_cpu(float* grad_ptr) {
8 bag b = make_bag(gradient_layout, grad_ptr);
9 // use the layout on cpu memory
10 }
11

12 void func2_gpu(float* global_mem_ptr) {
13 bag glb_b = make_bag(gradient_layout, global_mem_ptr);
14 bag shm_b = make_bag(gradient_layout, shared_mem_ptr);
15 // use the layout on gpu global and shared memory
16 }

The other benefit of having a layout as a reusable first-class object is the abil-
ity to have a localized change when deciding to modify the layout code during
the implementation. Extending our previous example, if we decide to reorder
the gradient dimension 'g' to be the innermost one, we only change the defi-
nition of the object on Line 2 — all the data structures using the layout will be
transparently updated without any further code changes.

3.2 Traversing Layouts
Having specified how a data structure is laid in memory, the other possible point
of optimization lies in the order how the data structure is iterated, its traversal.
In general, a traversal is usually written as a sequence of nested loops, which in
turn generates a sequence of data structure accesses. Using such interpretation,
we define the traversal of a layout as follows:

Definition 3 (Layout Traversal). Suppose a sequence of 𝑛 nested loops with the
loop boundaries 𝑑1, … , 𝑑𝑛 and a memory layout of a data structure with an index
space ℐ. We define a layout traversal 𝕋 as a bijection 𝕋 ∶ {0, … , ∏𝑖 𝑑𝑖 − 1} → ℐ.

In conjunction with the memory layout from Definition 2, a natural obser-
vation arises: 𝕃 and 𝕋 are composable, and their composition 𝕃 ∘ 𝕋 is a function
from integers to integers — it generates the memory access pattern. As a corollary,
the same sequence of accesses can be generated by either changing the layout
(𝕃) or its traversal (𝕋). Therefore, as with a layout, modifying a traversal can im-
prove data locality, both in time and space. Although modifying traversal can be
constrained by data dependencies, loop transformation is still a well-researched
topic and complements the memory layout optimization [59].

Writing complex traversals complements the issues discussed above when
detailing the layouts. So, a tool that simplifies this process can share the same
benefits: expressivity, maintainability, and reusability. Moreover, since travers-
ing over some master data structures is the common place where parallelism is
introduced in the code, the abstraction of loop transformation can further extend
to parallel processing.
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3.2.1 Background
Quantitatively, loop transformation is perhaps a more researched topic than lay-
out transformation. Neither library mentioned above provides ways to trans-
form a traversal, but many other tools do. Contemporary compilers employ so-
phisticated loop optimizers based on the polyhedral model, such as Graphite in
GCC [64] or Polly in LLVM [65]. However, these optimizers are limited by the
lack of information specified by the user in the code.

For more user-guided approaches, there are annotation-based tools, such as
Poet [67], Chill [68] or Loopy [69]. These tools allow to specify the traversal
transformations by adding special comments or pragmas to the code. The trans-
formations are then applied by a precompiler, which generates the optimized
code. Perhaps the best representative of annotation-based frameworks is done
by Kruse et al. [75]. The authors have presented pragma-based user-directed
loop transformations for the Clang compiler, which has been partly adopted by
the OpenMP standard. The transformations include loop tiling:

1 // original code
2 #pragma clang loop(i,j) tile sizes(4,8)
3 for (int i = 0; i < n; i+=1)
4 for (int j = 0; j < m; j+=1)
5 // transformed code
6 for (int i1 = 0; i1 < n; i1+=4)
7 for (int j1 = 0; j1 < m; j1+=8)
8 for (int i2 = i1; i2 < n && i2 < i1+4; i2+=1)
9 for (int j2 = j2; j2 < m && j2 < j1+8; j2+=1)

or loop reordering:
1 // original code
2 #pragma clang loop(i,j) interchange permutation(j,i)
3 for (int i = 0; i < n; i+=1)
4 for (int j = 0; j < m; j+=1)
5 // transformed code
6 for (int j = 0; j < m; j+=1)
7 for (int i = 0; i < n; i+=1)

but also loop fusion, fission, reversal, and others [76].
These tools are straightforward to use, and their ability to combine them

to form complex loop transformations makes them very expressive. A minor
downside is that they are typically closed to extensions, and for most of them, a
precompiler with an extra preprocessing step or a custom compiler extension is
needed.

On the other hand, the target problems for annotation-based loop transfor-
mation tools are somehow limited. Naturally, the best use of them is made when
there is already a baseline implementation, and the optimization is achieved just
by adding a few lines on the top of the loop with the hottest performance spots.
However, when developing an optimized solution from scratch and when the
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scale of the program passes a certain complexity threshold, optimizing just by
annotations may become cumbersome.

A good evidence of this fact is case studies that compared the effort of pro-
gramming a parallel algorithm using OpenMP, also a pragma-based library, with
pure C++ libraries, such as TBB. The studies generally confirm that ease of ex-
pressing parallelism in OpenMP is traded for a lower abstraction level and flex-
ibility. Language-based approaches, such as TBB, can utilize object-oriented de-
sign for more control, fostering of good programming style and higher abstrac-
tion level for newly developed parallel programs [77–79].

3.2.2 Noarr Traversers
The similarities in memory layout and its traversal led to the development of
Noarr Traversers. It is based on the idea that every single loop, in some sequence
of nested loops, can be interpreted as one (named) dimension in an index space
domain. Assuming perfectly nested loops, such traversal can be interpreted as a
Noarr layout and be subjected to the same transformations as a memory layout.
To sum up, the key points of Noarr Traversers are as follows:

• Named dimensions — a traverser comprises named dimensions, each rep-
resenting a loop in a sequence of nested loops.

• Proto-structures — exactly as with layouts, a traverser is subject to an ex-
tension using the same set of proto-structures.

• Index space extraction— the traverser extracts dimensions from the passed-
in layouts and yields an index space corresponding to the cartesian product
of the extracted dimensions.

Let us highlight the main idea of Noarr Traverser on an example of matrix
multiplication, where a plain C++ implementation would look like this:

1 for (int i = 0; i < m; i++)
2 for (int j = 0; j < n; j++)
3 for (int k = 0; k < p; k++)
4 C[i][j] += A[i][k] * B[k][j];

The nested loops follow the order of 3 present dimensions: 𝑖, 𝑗, and 𝑘 denoting
rows of 𝐶 and 𝐴, columns of 𝐶 and 𝐵, and rows of 𝐴 and columns of 𝐵, respec-
tively. Smartly selecting the named dimensions of the layouts, the traversal can
be rewritten using Noarr as follows:

1 auto A = make_bag(ptr_a, scalar<int> ^ vector<'k', 'i'>(K, I));
2 auto B = make_bag(ptr_b, scalar<int> ^ vector<'j', 'k'>(J, K));
3 auto C = make_bag(ptr_c, scalar<int> ^ vector<'j', 'i'>(J, I));
4

35



5 traverser(A, B, C) | [=](auto state) {
6 C[state] += A[state] * B[state];
7 };

The traverser accepts the layouts (or bags) it shall iterate over. It extracts 3
unique dimensions 'i', 'j' and 'k' and iterates over the index space composed
of these dimensions as if they were written as a sequence of nested loops (which
is equivalent to the cartesian product of these dimensions). The lambda function
on Line 6 is then executed for each point in the index space, passing the tuple of
indices as the state argument to the lambda.

Due to the same concept of named dimensions, traverser and layout objects
are isomorphic. Consequently, changing the traversal order is done the same way
as modifying the layout — by applying the proto-structures to the traverser. E.g.,
to reorder the loops to a more cache-friendly 'i', 'k', 'j' order, the traversal
can be rewritten as follows:

1 traverser(A, B, C) ^ reorder<'i', 'k', 'j'>() | [=](auto state) {
2 C[state] += A[state] * B[state];
3 };

Furthermore, a side product of the isomorphism is that a proto-structure can be
applied either to the layout or to the traverser, granting the same effect.

Let us conclude the benefits of tracking loops by names with a more com-
plex example: Some transformations change the nesting level of the underlying
loops, e.g., during a strip-mine transformation, where a loop is split into two
nested loops by a blocking factor [76]. Following the Noarr paradigm of named
dimensions, a strip-mine is well defined by a proto-structure into_blocks, which
accepts the first dimension as the input, which should be present in the layout,
and two output dimension, which will be newly added to the composed layout.
Since all loops are tracked by their names, the user has full control over the out-
put of a transformation and can safely chain multiple transformations together.
Tiled matrix multiplication can be expressed as follows:

1 // breaking dimension 'i' into two new dimensions 'I' and 'x'
2 auto tiles = into_blocks<'i', 'I', 'x'>(noarr::lit<16>)
3 ^ into_blocks<'j', 'J', 'y'>(noarr::lit<16>)
4 ^ into_blocks<'k', 'K', 'z'>(noarr::lit<16>)
5 // using the new dimensions
6 ^ reorder<'I', 'J', 'K', 'x', 'y', 'z'>();
7

8 traverser(A, B, C) ^ tiles | [=](auto state) {
9 C[state] += A[state] * B[state];
10 };
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3.2.3 Reusability
Similarly as with layouts, a specific traversal order can be defined as an object,
such as tiles on Line 2 in the previous code sample, and provide the same
benefits: locality of change and reusal.

But this feature further extends to a perhaps more powerful concept, which
we call layout agnosticism and traversal agnosticism. As a case of the separation
of concerns, a memory layout and traversal can be extracted from a function to
the level of function arguments. These arguments may then serve as interfaces
for the concrete traversal or layout objects:

1 template <class A_t, class B_t, class C_t, class Order_t>
2 void matmul(A_t& A, B_t& B, C_t& C, Order_t my_order)
3 {
4 traverser(A, B, C) ^ my_order | [=](auto state) {
5 C[state] += A[state] * B[state];
6 };
7 }

The function matmul becomes agnostic to the layout or traversal specified, and,
regardless of the passed-in objects, it will run the same operations, just in a dif-
ferent order.

The modular template-based design of Noarr allows us to mimic the auto-
tuning systems, which search the vast space of transformation, trying to find
the most performant one for a specific computational function. In our approach,
we may be able to express precisely that with the traversal-agnostic and layout-
agnostic functions.

3.2.4 Parallelism
Since Noarr is general enough to allow the division of traversals into indepen-
dent sub-traversals, the user can also guide the parallelism of a program. Proto-
structures such as fix, slice or step provide expressive ways to split a work
over a data structure into custom sections. The user can then assign each section
to a separate thread, which will iterate over the section independently.

But if the user wants to offload this task to a well-known field-tested parallel
library, Noarr is also open to this extension. Our modular design allows us to
plug in various parallel executors. So far, we experimented with OpenMP, TBB,
and CUDA, extending the library with parallel-for, parallel-reduce, and others.
The parallel for-each using Noarr and OpenMP can be written as follows:

1 // parallelising over dimension x
2 #pragma omp parallel for
3 for (auto t_inner : a_traverser ^ hoist<'x'>()) {
4 t_inner | [=](auto state) { /* ... */}; // some independent work
5 }
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The code sample further strengthens the benefit of named dimensions: The
user can directly specify the dimension to parallelize over. This is even more
visible when targeting parallel accelerators (such as GPUs) in which a program-
mer can select multiple dimensions to utilize thread hierarchies (as described in
Section 1.1):

1 auto A = make_bag(ptr_a, scalar<int>() ^ vector<'x', 'y'>(32, 1000));
2 // spawns a cuda block for each element of the 'y' dimension
3 // with as many threads as the size of 'x' dimension
4 auto ct = noarr::cuda_threads<'y', 'x'>(traverser(A));
5 a_kernel<<<ct.grid_dim(), ct.block_dim()>>>(ct.inner(), A);
6

7 __global__ void a_kernel(auto traverser, auto A) {
8 // A is accessed according to the block index
9 // and the thread index of the currently executing thread
10 auto var = A[traverser.state()];
11 }

3.3 Summary
With the arsenal of proto-structures, Noarr provides options to specify many
complex layouts and traversals. The object-oriented design of the library al-
lows writing complex memory optimizations in an extensible, reusable, and even
layout-agnostic way, with very little space for errors. The library has already
been incorporated into our ongoing work of implementing a high-performance
version of BioFVM [58], a diffusion solver for 3D biological simulations, aid-
ing in various loop transformations, vectorization, dividing the data into sub-
domains for parallelization, and other optimizations, all realized in a clean and
self-documenting way1.

We believe that our solution will add a new expressive tool to a high-
performance programming toolset, simplifying the research focusing on tuning
of prewritten computational kernels and building complex optimized parallel
algorithms from scratch.

1The code can be reviewed in the GitHub repository https://github.com/asmelko/paraBioFVM
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Conclusion

This thesis summarizes several efforts to improve the performance of complex
algorithms with inefficient implementations from contemporary scientific do-
mains, improving their practical usability by applying high-performance com-
puting principles. In the two chapters, it outlines the motivations and results of
six research contributions, presented in Appendix A.

The first four contributions detail the parallelization and optimization chal-
lenges of the scientific algorithmswhichwe haveworked on during our research.
The results include GPU applications that use novel data structures, promote
high scalability, and utilize complicated GPU optimization techniques. The pre-
sented implementations provide orders of magnitude speedups over the prior
state-of-the-art, enabling domain scientists to finish their analyses in minutes in-
stead of days, process more data with greater accuracy, interactively visualize the
results, and explore previously unattainable problem variations. The method-
ology of the works can serve as a helpful support for other researchers in the
domain of GPGPU computing.

The remaining contributions present the use cases of the novel HPC library
Noarr, specializing in expressing the layout and traversal of 𝑛-dimensional ar-
rays, which are the most commonly used data structures in scientific comput-
ing. The novel approach of assigning names to the dimensions of the arrays
and expressing the layout and traversal in a declarative way allows users to de-
ploy memory-related optimizations in a more readable and maintainable manner
while the library takes care of the complex indexing and loop transformations.

As mentioned throughout the thesis, the use of GPUs for general comput-
ing is becoming increasingly popular. Consequently, these devices improve in
versatility with each addition of new core types, specialized high-throughput in-
structions, and new thread hierarchies. This creates unique opportunities for
interesting future research: The implementation of Mahalanobis Hierarchical
Clustering can be directly extended with the use of tensor cores, which may pro-
vide an additional order of magnitude performance improvement thanks to their
high compute bandwidth. Further, we plan to continue on 𝑘-NN development,
which we have already started during the work on EmbedSOM; we believe that
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increasing the caching capabilities by employing the new feature of distributed
shared memory may improve the data throughput of such a highly memory-
bound algorithm. Regarding the following research on Noarr library, we would
like to continue extending the tool in the auto-tuning direction, ultimately pro-
viding a machine learning-guided tuning of the array layouts and traversals. We
also plan to finish our work on biological simulations, especially BioFVM and
PhysiCell, which has already served as a valuable case study for Noarr and has
partly guided its development thanks to the presence of multiple complex high-
dimensional arrays, which accelerated its usability.

Finally we hope that the contributions of this thesis will help to address the
challenges posed by the increasing complexity of GPUs and the widening gap be-
tween compute and memory bandwidth. We believe that the presented method-
ologies and contributions provide valuable insights and can serve as a foundation
for further research in the field of GPGPU computing and HPC.
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Abstract. Hierarchical clustering is a common tool for simplifica-
tion, exploration, and analysis of datasets in many areas of research.
For data originating in flow cytometry, a specific variant of agglom-
erative clustering based Mahalanobis-average linkage has been shown
to produce results better than the common linkages. However, the
high complexity of computing the distance limits the applicability of
the algorithm to datasets obtained from current equipment. We pro-
pose an optimized, GPU-accelerated open-source implementation of the
Mahalanobis-average hierarchical clustering that improves the algorithm
performance by over two orders of magnitude, thus allowing it to scale
to the large datasets. We provide a detailed analysis of the optimiza-
tions and collected experimental results that are also portable to other
hierarchical clustering algorithms; and demonstrate the use on realistic
high-dimensional datasets.

Keywords: Clustering · High-dimensional · Mahalanobis distance ·
Parallel · GPU · CUDA

1 Introduction

Clustering algorithms are used as common components of many computation
pipelines in data analysis and knowledge mining, enabling simplification and
classification of huge numbers of observations into separate groups of similar
data. Atop of that, a hierarchical clustering analysis (HCA) captures individual
relations between clusters of data in a tree-like structure of dataset subsets (a
dendrogram), where each subtree layer corresponds to a finer level of detail.
The tree structure is suitable for many scenarios where the definition of clusters
is unclear, such as in interactive analysis of noisy data where the assumptions
of non-hierarchical algorithms (such as the requirement for apriori knowledge
of cluster number of k-means) are not available. Remarkably, the dendrogram
c© Springer Nature Switzerland AG 2021
L. Sousa et al. (Eds.): Euro-Par 2021, LNCS 12820, pp. 580–595, 2021.
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Fig. 1. Mahalanobis-based clustering (MHCA, right) captures the prolonged ellipsoid
clusters better than commonly used hierarchical clustering (HCA, left)

output form of HCA provides an ad-hoc dataset ontology which has proven more
intuitive for data inspection than the outputs of many other common clustering
methods that yield unstructured results.

Here, we focus on hierarchical clustering applications on datasets that origi-
nate in flow cytometry, a data acquisition method that allows to quickly measure
many biochemical properties of millions of single cells from living organisms. Its
widespread use has reached many diverse areas of science including immunol-
ogy, clinical oncology, marine biology, and developmental biology. The size of the
obtained datasets is constantly growing, which naturally drives the demand for
fast data processing and advanced analysis methods [11]. From the plethora of
developed algorithms, clustering approaches allow easy separation of the mea-
sured single cell data into groups that usually correspond to the naturally occur-
ring cell populations and types. Hierarchical clustering improves the result by
capturing and revealing more detailed relations between different types of cells.

A dataset from flow cytometry is usually represented as a point cloud in a
multidimensional vector space, where each point represents a single measured
cell and each dimension represents one measured ‘property’, typically a presence
of some selected surface proteins. Recent hardware development has allowed
simple, cheap acquisition of high-quality datasets of several million cells and
several dozen of dimensions.

One of the issues in the analysis of this vector space is that the relations
between individual dimensions are rather complex, and utilization of simple
Euclidean metrics for describing data point similarity is rarely optimal. Fǐser
et al. [6] have demonstrated the viability of specialized hierarchical clustering
analysis method that uses Mahalanobis distance (MHCA) that captures cell clus-
ters of ellipsoid shapes, which are common in cell populations (demonstrated in
Fig. 1). Although this approach has proven to detect various elusive dataset phe-
nomena, its scalability remained a concern. In particular, the high computational
cost of Mahalanobis distance makes the straightforward implementation on com-
mon hardware practically useful only for datasets of up to approximately 104

cells.

1.1 Contributions and Outline

In the domain of clustering, algorithm performance has often been successfully
improved by proper reimplementation for GPU hardware accelerators [4,8,10].
However, the computation of the MHCA is relatively irregular and rather com-
plex, making the usual acceleration approaches ineffective.
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As the main contribution of this paper, we describe our adaptation of MHCA
for contemporary GPUs. In particular, we describe a data structure that can be
used to accelerate HCA algorithms on GPUs in general, and provide additional
insight about efficiency of the specific parts of MHCA algorithm. We subjected
the implementation to comprehensive experimental evaluation and compared it
with the existing implementation of MHCA to measure the achieved speedup.
Finally, we made the implementation available as open-source1, making it use-
ful for both biological research and further experiments with parallelization of
HCAs.

The mathematical and algorithmic overview of MHCA clustering is presented
in Sect. 2, Sect. 3 describes our proposed GPU implementation. We summarize
the experimental evaluation in Sect. 4. Section 5 puts the our research in proper
context with prior work and Sect. 6 concludes the paper.

2 Hierarchical Clustering with Mahalanobis Distance

In this section, we review the necessary formalism and show the Mahalanobis
average-linked hierarchical clustering algorithm. The input dataset is a set of
points in d-dimensional vector space, here assumed in R

d, which is a common
representation for cytometry data [13]. The algorithm produces a binary tree of
clusters where each resulting cluster is a subset of the input dataset of highly
similar (‘close’ by some metric in the vector space) points.

Mahalanobis distance [12] is defined between a point x and a non-singleton
set of compact points P as

δM (x, P ) =
√

(x − P̄ )T (covP )−1(x − P̄ ),

where P̄ is the centroid (mean) of the set P , and the entries of the covariance
matrix are computed as

(covP )ij = (|P | − 1)−1 ·
∑
p∈P

(pi − P̄i) · (pj − P̄j).

One can intuitively view Mahalanobis distance as an Euclidean distance from
the cluster centroid that also reflects the shape and the size of the cluster. In
particular, in a space that has been linearly transformed so that the covari-
ance matrix of the cluster is a unit matrix, Euclidean and Mahalanobis distance
coincide, as shown in Fig. 2.

The MHCA algorithm can be described in steps as follows:

1. Initialization: Construct an ‘active set’ of numbered clusters P1,2,...,n, each
comprising one input element (data point) as Pi = {ei} for each i ∈ {1 . . . n}
where {e1, . . . , en} denotes the input dataset.

2. Iteration: Until the active set contains only a single item, repeat the following:

1 https://github.com/asmelko/gmhc.



GPU-Accelerated Mahalanobis Clustering 583

Fig. 2. Mahalanobis distance (left) can be perceived as Euclidean distance (right) in a
linearly transformed space where the cluster is perfectly ‘round’.

(a) Compute pairwise dissimilarities of all clusters in A, select the pair
(Pr, Ps) with lowest dissimilarity. Output pair (r, s).

(b) Update the active set by removing Pr, Ps and adding Pn+i = Pr ∪ Ps,
where i > 0 is an iteration number.

3. Result : the binary tree is specified by the trace of n − 1 pairs (r, s).

Properties of the output depend mainly on the exact definition of the dissimi-
larity function used in step 2.a. The common choices include the common ‘single’
linkage (minimum pairwise distance between the 2 points in different clusters),
‘complete’ linkage (maximum distance), ‘average’ linkage (mean distance across
clusters), ‘centroid’ linkage (distance of cluster centroids), and others. The used
distance is usually a metric in the vector space, such as Euclidean. The choice
of the dissimilarity calculation methods is critical for obtaining results suitable
for given analysis; the available methods have been therefore been subjected to
much optimization [14].

2.1 Mahalanobis Dissimilarity

Fǐser et al. [6] proposed the full Mahalanobis distance as a dissimilarity func-
tion for HCA as an average of all Mahalanobis distances across clusters, as
FMD(Pi, Pj) = (|Pi| + |Pj |)−1 (

∑
k δM ((Pi)k, Pj) +

∑
k δM ((Pj)k, Pi)). While

this construction is intuitively correct and allows the clustering to precisely cap-
ture various dataset phenomena that are common in cytometry, the definition
opens many inefficiencies and border cases that need to be resolved:

• Mahalanobis distance may be undefined for small clusters because the covari-
ance matrix is singular or nearly-singular. This can be resolved by a complete
or partial fallback to robust distance measures, as detailed in Sect. 2.2.

• Because the Mahalanobis distance of a fixed point to a cluster decreases when
the cluster size increases (e.g., as a result of being merged with another clus-
ter), the minimal dissimilarity selected in the step 3 of the algorithm may
sometimes be smaller than the previously selected one. A correction is thus
needed to keep the dissimilarity sequence properly monotonic, giving unclut-
tered, interpretable dendrogram display [5].

• The amount of required computation is significantly higher than with the
other linkages (dissimilarity functions), requiring additional operations for
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Cluster
1
2

Fig. 3. An example of two clusters for which the CMD fails to satisfactorily approxi-
mate the FMD (centroids are plotted in black).

computing the inverted covariance matrix and covariance-scaled Euclidean
distances. We mitigate this problem by massive parallelization with GPU
accelerators, as detailed in Sect. 3.

The computation of the ‘full’ average Manalanobis distance is unavoidably
demanding, requiring many matrix-vector multiplications to compute distances
between all points of one cluster and the opposite cluster. Following the varia-
tions of Euclidean dissimilarity measures for HCA, a centroid-based Mahalanobis
distance may be specified to use only the average of the distance to the centroids
of the other cluster, as CMD(Pi, Pj) = 1

2

(
δM (P̄i, Pj) + δM (P̄j , Pi)

)
. The result

may be viewed as a fast approximate substitute for the full variant because the
simplification removes a significant portion of the computational overhead and
still produces sound results in many cases. The difference between CMD and
FMD is highly pronounced only when the centroids of the clusters are near,
but their respective covariances differ, as visualized in Fig. 3. Fortunately, such
situations are quite rare in clustering of realistic datasets.

2.2 Singularity of Cluster Covariance Matrix

In early iterations of MHCA, the clusters consist of only a few points. Covari-
ance matrix of a small cluster is likely singular, which means it is impossible to
compute its inverse required by the Mahalanobis distance measure. Furthermore,
even for more points the covariance matrix may be nearly singular, and using
its ill-conditioned inverse will yield inaccurate results and numeric floating-point
anomalies (such as negative distances or infinities).

To solve this problem, Fǐser et al. [6] proposed the following approach: If
the number of elements in a cluster relative to whole dataset size is lower
than a threshold, the covariance matrix of such cluster is transformed so it
can be inverted, and handled in a numerically safe manner. We will denote the
used threshold as the Mahalanobis threshold, and categorize the clusters as sub-
threshold and super-threshold cluster, depending on their size being below and
above the Mahalanobis threshold respectively.

We later explore the following subthreshold handling methods for managing
the problematic covariance matrix values:
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• Mahal smoothly pushes the vectors of the covariance matrices of the sub-
threshold clusters towards a unit sphere, so that the space around the clusters
is not excessively distorted (or projected).

• EuclidMahal enforces unit (spherical) covariance vectors of the sub-thres-
hold clusters (thus enforcing Euclidean distances). Despite the simplicity and
effectiveness, the hard thresholding may lead to a non-intuitive behavior; for
example, the merging of a pair of large elliptical clusters that are just above
the threshold may be prioritized over a pair of more similar but sub-threshold
clusters.

• Euclid enforces unit covariances of all clusters only until the last sub-
threshold cluster is merged. This option usually leads to a viable formation
of compact clusters, but completely ignores the possible intrinsic structure of
several super-threshold clusters.

2.3 Complexity and Parallelization Opportunities of MHCA

A straightforward serial implementation of MHCA (such as the implementation
in mhca R package2) works with iterative updates of the dissimilarity matrix.
Let us examine in detail the time complexity of the individual algorithm steps
on a dataset that contains n points of d dimensions:

First, the algorithm constructs a dissimilarity matrix in O(d · n2), and iden-
tifies the most similar cluster pair in O(n2). Then a total of n − 1 iterations is
performed as such:

• a covariance matrix of the merged cluster is computed (O(d2 ·n)) and inverted
(O(d3)),

• the dissimilarity matrix is updated (O(d2 · n)), and
• the new most similar cluster pair is identified (O(n2)).

The total complexity is thus O(d · n2 + (n − 1) · (d2 · n + d3 + n2)). Assuming
d � n, the asymptotic complexity can be simplified to O(n3). Since we cache
the unchanged dissimilarity matrix entries, the memory complexity is O(n2).

In an idealized parallel execution environment (PRAM model with concur-
rent reads and infinite parallelism), we could improve the algorithm to perform
faster as follows: All cluster dissimilarity computations (including the later dis-
similarity matrix update) can be performed in parallel in O(d3 · log n), using
parallel reduction algorithm for computing the covariance sums. The most sim-
ilar cluster pair can be selected using a parallel reduction over the dissimi-
larity matrix in O(log2 n). The total required time would thus be reduced to
O(d3n log2 n) (again assuming d � n), using O(n2) memory.

While this suggests two main ways of performance improvement for the mas-
sively parallel GPU implementation, the specifics of the current GPUs pose
problems for such naive parallelization approach:

2 https://rdrr.io/github/tsieger/mhca.
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• Parallelization of any single covariance matrix computation will improve per-
formance only if the covariance matrix is sufficiently large, otherwise the
performance may be reduced by scheduling overhead and limited parallelism.

• Scanning of the large dissimilarity matrix is parallelizable, but is hindered by
relatively small amount of available GPU memory and insufficient memory
throughput.

In the following section, we address these problems with optimizations that
make the computation viable on the modern accelerators. In particular, we show
that the computation of a covariance matrix can be divided into many indepen-
dent parts, thus exposing sufficient parallelization opportunities, and we demon-
strate a technique for efficient caching of intermediate contents of the dissimi-
larity matrix to reduce the memory footprint and throughput requirements of
the algorithm.

3 GPU Implementation

Memory handling optimizations form the essential part of our GPU implemen-
tation of MHCA, here called GMHC for brevity. Most importantly, we address
the tremendous memory requirement of storing the dissimilarity matrix (O(n2))
for large n. We replace this matrix with a special nearest-neighbor array, which
provides similar caching benefits, but requires only O(n) memory. This saving
in memory volume is redeemed by a slightly higher computational complexity;
however, the measured improvement in scalability warrants this trade-off.

Definition 1 (Nearest neighbor array). For clusters P1, . . . , Pn and a sym-
metric dissimilarity function d, the nearest neighbor array N contains n − 1
elements defined as

Ni = argminj>id(Pi, Pj).

Maintaining a nearest neighbor array in the HCA computation allows us
to reduce the amount of distance computations performed after each update.
In particular, when a cluster pair (Pi, Pj) is merged into new cluster Pm, only
elements with values i and j have to be recomputed, along with the new value
for Nm

This is enabled by the symmetry of d, which allowed us to ensure that the
contents of the nearest neighbor arrays at some index only depend on clusters
with higher indices. If we set the new index m to be smaller than all existing
indices in the array (i.e., m = 1, shifting the rest of the array), the newly
appearing cluster can not invalidate the cached indices for the original array, and
only the entries that refer to the disappearing clusters i, j need to be recomputed.
In consequence, if an already present cluster Pk was to form the most similar
pair with the new cluster Pm, this information would be present the argmink>m

computation, and stored in Nm instead of Nk.
In an optimistic scenario, the above optimization can be used to limit the

number of elements that need to be updated in each iteration by a constant
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number, which leads to a major increase in overall performance. This constant
limit is supported by empirical observations on realistic datasets with around
1 million of objects, where the number of triggered updates was rarely over
50. Further, we reduce the need for recomputation by caching several ‘nearest’
neighbors for each entry of N :

Definition 2 (Neighbor buffer). A sorted list of L nearest neighbor indices
(respectively to the argminj>i in Definition 1) stored for each item in N is called
a neighbor buffer.

To ensure the efficiency of the process, we split the update of neighbor buffers
to two parts: First, when (Pi, Pj) is merged into Pm, all buffers are filtered and
values i and j are removed (i.e., replaced with dummy values). On recomputa-
tion, all empty buffers (including newly formed Nm) are filled with indices of
nearest L neighbors, while the partially filled buffers are left intact. This allows
us to reuse the intermediate results of the computation of an N array entry for
as much as L recomputations that involve the cluster.

The complexity of updating the nearest neighbor array element i for the
neighbor buffer of size L on m clusters, using a pair dissimilarity computation of
complexity O(δ), is O((m − i) · (δ + L)). The reduced amount of index updates
thus trades off for index update complexity, depending on L. The optimal choice
of L is discussed later in Sect. 4.2.

3.1 Algorithm Overview

The hierarchical clustering of n initial clusters is a series of n − 1 iterations,
such that in each iteration two clusters are merged into one. Before the first
iteration, the nearest neighbor array N must be initialized. Each subsequent
iteration comprises the following compact steps:

1. Scan the neighbor array and fetch the most similar cluster pair
2. Create a new cluster by merging the cluster pair

– Compute its corresponding centroid and covariance matrix
– Transform and invert the covariance matrix

3. Update the neighbor array (only required if n ≥ 3)

The individual parts of the algorithm may be scheduled and executed dynam-
ically, ordered only the data dependencies as displayed in Fig. 4. Mainly, this
allows us to split the update of the neighbor array into update of the neighbors
of old clusters (i, j) and the update of the newly created cluster. Naturally, the
individual steps are internally implemented as data-parallel operations as well.

In GMHC, we control the iteration loop from the host code, while the work
of each update step is implemented within a CUDA kernel. Our code employs
CUDA streams [1] to efficiently implement the execution overlaps, creating some
high-level task parallelism in the process. In the rest of this section, we detail
the implementations of the individual CUDA kernels.
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Fig. 4. The original graph of dependencies and the proposed split dependency graph,
where blue and yellow boxes can be executed concurrently. (Color figure online)

3.2 Cluster Merging and Covariance Computation

Covariance matrix covP of cluster P (and its inversion) is computed only when
a cluster is formed; in our case when two clusters are merged. In GMHC, we
iterate over all data points x ∈ P and each item (covP )ij is computed as a sum
of centered products of xi and xj (following the definition from Sect. 2). As the
most pressing issue, the performance of this process depends on fast finding of
data points x that belong to the cluster in the array of all data points.

A possible straightforward solution, storing an array of assigned points for
each data cluster so that the assigned points can be accessed in a fast and
compact way, would require dynamic memory allocation or manual apriori over-
allocation, and many data moving operations. We settled for a more compact
solution with an assignment array that stores a cluster indices for each data
point. Although that does not require data copying, both the cluster merge and
the retrieval of one cluster points will take O(n) time. Fortunately, the two
operations can be performed by a single parallel scan of the assignment array in
this case.

Covariance Kernel Implementation. The covariance kernel takes advantage
of the symmetry of a covariance matrix and computes only its upper triangle.
Additionally, extra parallelism can be obtained by slicing the computation of
the covariance matrix from Sect. 2 over individual data point contributions Sx,
as covP = (|P | − 1)−1

∑
x∈P Sx, where Sx

ij = (xi − x̄i) · (xj − x̄j).
The kernel is implemented as a loop over all data points. A whole CUDA

warp is assigned one data point and computes the intermediate Sx. These are
then added together in a two-step reduction—all intermediate states within a
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CUDA block are reduced using shared memory, which is then followed by a
global reduction performed by a separate kernel launch that outputs the totals
in a single covariance matrix.

Notably, the covariance matrices of single-point clusters are not computed;
rather, they are assigned a default unit matrix.

3.3 Inverse Covariance Storage Optimization

The Mahalanobis distance requires inversion of the covariance matrix, which
needs to be computed from the results of the previous step. We use cuSolver
library3 for implementing the matrix inversion, namely the routines potrf and
potri.

The inverted matrix is subsequently transformed to better suit the Maha-
lanobis distance formula, and to eliminate redundant computations later in the
process. In particular, we rewrite the Mahalanobis formula for inverse covariance
matrix M as a quadratic form

xTMx =
d∑

i=1

d∑
j=1

mijxixj =
d∑

i=1

miix
2
i +

d∑
i=1

d∑
j>i

2mijxixj ,

allowing us to store only the upper-triangular part of the matrix, pre-multiplied
by 2.

3.4 Maintenance of Nearest Neighbor Array

GMHC implements 2 similar processes for the neighbor array initialization and
update, differing mainly in the granularity of the task size. We thus only focus
on the update implementation.

First, specific simplified version of kernel for computing the distances is used
for cases when the covariance matrix is unit, falling back to efficient implemen-
tation of Euclidean distance. The decision which kernel to execute is done in
the host code, depending solely on the selected subthreshold handling method
(explained in Sect. 2.2) and the size of the two involved clusters. The decision is
formalized in Table 1.

Table 1. The host-side selection of the neighbor-distance kernel

Subthreshold handling method Sub/sub Sub/super Super/super

Euclid euclid euclid maha

EuclidMahal euclid maha maha

Mahal maha maha maha

3 https://docs.nvidia.com/cuda/cusolver/index.html.



590 A. Šmelko et al.

The Neighbor Array Update Kernel. The update operation of nearest
neighbor buffer array entry Ni is defined as finding L nearest clusters with index
greater than i, and storing their ordered indices into Ni neighbor buffer. We split
this operation in two parts, each handled by a separate kernel:

1. Compute distances between all relevant cluster pairs concurrently.
2. Reduce the results into a single nearest neighbor buffer entry.

The execution of the first step differs between the Euclidean and the Maha-
lanobis neighbor computation. While the former parallelizes trivially with one
thread computing one distance value, the complex computation of Mahalanobis
distance executes faster if the whole warp cooperates in one distance computa-
tion.

The precise operation needed to compute the Mahalanobis distance is a
vector-matrix-vector multiplication. To evaluate the formula from Sect. 3.3, we
utilize the fuse-multiply-add intrinsic instructions to accumulate the results of
the assigned work into their privatized buffers, which are subsequently reduced
using fast warp-shuffle instructions.

In the second step, which selects the nearest L indices, is the same for both
distance measures. We use a three-level implementation: At the first level, the
threads accumulate local minima of small array slices into their registers. At the
second level, each thread block utilizes the shared memory to efficiently exchange
data and compute block-wise minima. The third level collects the resulting min-
ima and performs the same final reduction on a single thread block (thus effi-
ciently utilizing intra-block synchronization). The second and the third level
could be fused together if the atomic instructions were used to synchronize data
updates explicitly; however, we observed the improvement was negligible and
preferred to reduce the design complexity instead.

This whole neighbor buffer ‘refill’ operation is performed concurrently for
every index in the nearest neighbor array that needs to be updated. Our imple-
mentation executes a separate CUDA grid for each update, which reduces imple-
mentation complexity but still allows the grids to run concurrently and utilize
the entire GPU.

4 Experimental Results

We have subjected our implementation of GMHC to extensive experimental
evaluation, measuring the effect of main design choices in the algorithm. In
this section, we present the most important results and we put them in proper
context, particularly with respect to parameter selection and scaling.

4.1 Benchmarking Methodology and Datasets

The experiments were performed on two systems—a high-end server equipped
with NVIDIA Tesla V100 SXM2 (32 GB) and a mainstream PC with NVIDIA
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GeForce GTX 980 (4 GB). Both systems used Linux CentOS 8 with CUDA
Toolkit (11.2).

We used the original MHCA clustering implementation by Fǐser et al. [6]
as a baseline, which is, to our best knowledge, the only other publicly available
MHCA implementation. The baseline algorithm is written in C as strictly sequen-
tial without explicit utilization of SIMD instructions; but it properly utilizes the
highly-optimized Blas library for most heavy computation. It was benchmarked
on a high-end server with Intel Xeon Gold 5218 CPU, clocked at 2.3 GHz (with
64 logical cores) and 384 GB RAM (the same as the high-end server used for
benchmarking GMHC). We stress that the comparison between CPU and GPU
implementation is not entirely objective, and the test results should be perceived
more as a measure of overall data capacity improvement than of the implemen-
tation quality. We did not test MHCA on the mainstream PC platform, because
of the enormous O(n2) memory requirements totaled to hundreds of gigabytes
in our benchmarks.

As testing data, we used several high-dimensional datasets originating in
mass cytometry [15], namely the Nilsson rare (44K data points, 14 dimen-
sions), Levine 32dim (265K data points, 32 dimensions) and Mosmann rare
(400k data points, 15 dimensions). For brevity, we report only a subset of the
measured results, but these should generalize well to other data. In particular,
we did not observe any significant data-dependent performance differences.

In all experiments, we measured the wall time of the total algorithm execu-
tion. The experiments were performed multiple times to prevent random devia-
tions in measurement; we display mean values of the measurements. Because the
experimental evaluations on both mentioned GPUs behaved consistently with no
surprising differences on any particular hardware, we present mainly the results
from Tesla V100 SXM2 GPU unless stated otherwise.

4.2 Experiment Results

First, we evaluated the scalability of the GMHC implementation depending on
the size of the dataset. The inputs of different sizes were achieved by randomly
sub-sampling the Mosmann dataset. Figure 5 shows the wall time for each sub-
threshold method, revealing that the performance scales sub-quadratically with
data size. Notably, the optimized implementations of Euclid and EuclidMa-
hal scale about 10× better than full Mahal for this dimensionality.

The tradeoff between Euclidean and Mahalanobis computation in the first
two methods can be further controlled by setting the threshold value t, con-
trolling whether a cluster is considered small or large, and in turn, deciding
the dissimilarity metric to use. Figure 6 summarizes the performance gains for
various setting of this threshold.

In the figure, t = 0 forces all methods perform dissimilarity measurements
using the Mahalanobis distance. When we increase t only very slightly to 0.01,
the Euclid method time decreases dramatically and stays almost the same in
the remainder of t range. This is often caused by small sub-threshold clusters that
are propagated to the very end of the clustering, which postpones the switch to
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Fig. 6. Clustering time of subthreshold methods with varying Mahalanobis threshold
value on two different datasets.

the Mahalanobis distance. On the other hand, the EuclidMahal method shifts
its wall time smoothly towards the Euclid method as t increases, which is a
consequence of the first super-threshold cluster appearing later in the process.

To determine the optimal value of the nearest neighbor buffer size, we bench-
marked the clustering of datasets with a range of parameters L (Fig. 7).

Curiously, the observed results show that while L = 1 is optimal for Euclid
and EuclidMahal, it performs worst for Mahal method. This is a consequence
of the used distance function in dissimilarity measurements—for the Euclid
and EuclidMahal method, where the Euclidean distance function dominates,
the time difference for performing smaller number of neighbor updates did not
balance the increased time complexity of a single update. The Mahal method
works optimally with L = 2; as the L increases further, the performance starts
to decrease again.

Similarly, the optimal value of L increases for higher-dimensional datasets,
which we tested on Levine 32dim data (detailed results not shown). In particular,
for Mahalanobis distance, we measured the same optimal value L = 2 with
much greater performance gain (over 30%) against L = 1 than on the Mosmann
dataset. We expect that the optimal value of L will continue to increase with
the dimensionality of the dataset in case of the Mahal method. On the other
hand, the Euclidean-based methods kept their optimum at L = 1.

Finally, we compared the performance of GPU implementation of MHCA to
the CPU baseline, to estimate the outcome for practical data analysis scalability.
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Fig. 8. GMHC and MHCA comparison on Nilsson dataset with default t = 0.5.

Figure 8 indicates an overall performance increase by up to 1400× in case of the
Mahal method and by up to 8000× in case of mixed-Euclidean methods. When
comparing performance on the older ‘gaming’ GTX 980 GPU, the speedups were
around 400× and 4000×, respectively. In summary, modern GPUs have been able
to accelerate the MHCA task by more than three orders of magnitude, which
is consistent with the effects of parallelization applied to many other clustering
algorithms.

5 Related Work

The original version of MHCA clustering for flow cytometry by Fǐser et al. [6]
used a MATLAB implementation to analyze datasets of around 104 multi-
dimensional data points. Due to the limited scalability and interoperability with
modern data analysis environments, a C version of the algorithm has been imple-
mented within R package mhca and enhanced with the possibility of assuming
apriori clusters for approximation, to reduce the unfavorable O(n3) time com-
plexity for large datasets. That allowed the authors to process datasets of around
106 data points within an interactive environments [9].

Despite of the performance advancement, the approximation in the method
did not retain the sensitivity required to detect various small clusters of interest
(i.e., small cell populations), such as the ‘minimum residual disease’ cells crucial
for diagnosis of acute myeloid leukemia [6]. Similar approximations are used
in many other clustering methods to gain performance at the cost of precision
justifiable in a specific domain; including the 2-level meta-clustering approach
of FlowSOM [7], and advanced approximate neighborhood graph structure of
FastPG [2].
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Acceleration of HCAs on GPUs has been explored by several authors: Chang
et al. [3] discuss hierarchical clustering of gene mRNA levels assayable by DNA
microarray technology. Their GPU code computes matrix of pairwise distances
between genes using Pearson correlation coefficient as one of the present met-
rics, and utilized a special property of data to effectively perform single-linkage
over the present matrix. Zhang et al. [16] used similar clustering methodology,
but employed GPU texture elements for the data representation of gene expres-
sion profile HCA. Both acceleration methods resulted in performance increase
between 5× to 30× on datasets of 104 data points.

6 Conclusions

We have presented an implementation approach for Mahalanobis-average linkage
hierarchical clustering algorithm, which utilizes modern parallel GPU accelera-
tors to increase its performance. In the benchmarks, our GPU implementation
GMHC has achieved over 103× speedup on practical datasets over the current
CPU implementations, which enabled scaling of the MHCA algorithm to large
datasets produced by current data acquisition methods.

Together with the open-source implementation, we have provided a new high-
performance building block for dataset analyses which should support the grow-
ing demand for fast data analysis methods not only in cytometry, but also in
other areas of data analysis dealing with irregularly shaped Gaussian clusters.

The implementation structure detailed in the paper has allowed us to stream-
line the utilization of parallel hardware for accelerating general hierarchical clus-
tering algorithms. We expect that the proposed data structures will be ported
to support acceleration of dissimilarity measures in other hierarchical clustering
methods, providing a solid building block for future acceleration of data mining
and knowledge discovery.
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ABSTRACT

Dimensionality reduction methods have found vast applications as

visualization tools in diverse areas of science. Although many differ-

ent methods exist, their performance is often insufficient for provid-

ing quick insight intomany contemporary datasets. In this paper, we

propose a highly optimized GPU implementation of EmbedSOM, a

dimensionality reduction algorithm based on self-organizing maps.

We detail the optimizations of 𝑘-NN search and 2D projection ker-

nels which comprise the core of the algorithm. To tackle the thread

divergence and low arithmetic intensity, we use a modified bitonic

sort for 𝑘-NN search and a projection kernel that utilizes vector

loads and register caches. The evaluated performance benchmarks

indicate that the optimized EmbedSOM implementation is capable

of projecting over 30 million individual data points per second.
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1 INTRODUCTION

Dimensionality reduction algorithms emerged as indispensable

utilities that enable various forms of intuitive data visualization,
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development has benefited especially the life sciences, where algo-

rithms like t-SNE [16] reshaped the accepted ways of interpreting

many kinds of measurements, such as genes, single-cell phenotypes

and development pathways, and behavioral patterns [2, 15].

The performance of the non-linear dimensionality reduction

algorithms becomes a concern if the analysis pipeline is required

to scale or when the results are required in a limited amount of

time such as in clinical settings. To tackle the limitations of poor

scalability, Kratochvíl et al. developed EmbedSOM [7], a dimension-

ality reduction and visualization algorithm based on self-organizing

maps (SOMs) [5]. EmbedSOM provided a 10× speedup on datasets

typical for single-cell cytometry data visualization while retain-

ing the competitive quality of the results. Still, the parallelization

potential of EmbedSOM remained mostly untapped as of yet.

This paper describes an efficient, highly parallel GPU imple-

mentation of EmbedSOM designed to provide real-time results on

large datasets. The implementation is accompanied by performance

benchmarks of individual optimizations to evaluate the optimal

variants for different dataset sizes. Both the implementation and

the data are available in our GitHub repository
1
. Furthermore, the

repository also contains the figures that were omitted due to space

constraints.

In the paper, we first describe the EmbedSOM algorithm in Sec-

tion 2. We specifically detail the CUDA-based GPU implementa-

tion of the algorithm in Section 3 and evaluate its performance

in Section 4. Related work is discussed in Section 5 and Section 6

concludes the paper.

2 LANDMARK-DIRECTED REDUCTION

EmbedSOM is a visualization-oriented method of non-linear di-

mensionality reduction that works by describing high-dimensional

points by their locations relative to landmarks equipped with a

topology and reproducing the point in a low-dimensional space

using an explicit low-dimensional projection of the landmarks with

the same topology [7].

Formally, the EmbedSOM algorithm works as follows. Let 𝑑 be

the dimension of the high-dimensional space and assume R2 is

the low-dimensional space for brevity. EmbedSOM processes 𝑛

𝑑-dimensional points in a matrix 𝑋 of size 𝑛 × 𝑑 , and outputs 𝑛

2-dimensional points in a matrix 𝑥 of size 𝑛 × 2. The high- and low-

dimensional landmarks similarly form matrices 𝐿 of size 𝑔 × 𝑑 and

1
https://github.com/asmelko/gpgpu24-artifact
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𝑙 of size 𝑔 × 2, where usually 𝑔 ≪ 𝑛. Each point 𝑋𝑖 is transformed

to a point 𝑥𝑖 as:

(1) 𝑘 nearest landmarks are found for point 𝑋𝑖 (𝑘 is a constant

parameter satisfying 3 ≤ 𝑘 ≤ 𝑔)

(2) the landmarks are ordered and scored by a smooth distance

function that assigns the highest score to the closest land-

mark and 0 to the 𝑘-th landmark (ensuring the smoothness

of projection in cases 𝑘 < 𝑔 [7])

(3) for each pair (𝑢, 𝑣) of the closest 𝑘 − 1 landmarks (the ones

with non-zero score), a projection of the point𝑋𝑖 is found on

the 1-dimensional affine space with coordinate 0 at 𝐿𝑢 and

1 at 𝐿𝑣 ; the 1-dimensional coordinate of the projection in

this affine space is taken as 𝐷𝑢𝑣 (𝑋𝑖 ) and the same projected

coordinates are defined in the low-dimensional space as

𝑑𝑢𝑣 (𝑥𝑖 )
(4) point 𝑥𝑖 is fitted to the low-dimensional space so that the

squared error in the coordinates weighed by nearest land-

mark scores (𝑠𝑢 , 𝑠𝑣 ) is minimized:

𝑥𝑖 = argmin

𝑝∈R2

∑︁
𝑢,𝑣

𝑠𝑢 · 𝑠𝑣 · (𝐷𝑢𝑣 (𝑋𝑖 ) − 𝑑𝑢𝑣 (𝑝))2

Because 𝑑𝑢𝑣 (𝑝) is designed as a linear operator, the error mini-

mization problem (step 4) collapses to a trivial solution of 2 linear

equations with 2 variables. A complete algorithm may be found in

the original publication [7, Algorithm 1].

3 GPU IMPLEMENTATION OF EMBEDSOM

While EmbedSOM is relatively straightforward to parallelize for

mainstream CPU architectures, several challenges appear when

optimizing for contemporary GPUs. This section outlines the key

optimizations that made the high-performance EmbedSOM imple-

mentation possible and overviews the relative performance gains

achieved by individual choices made. The algorithm consists of two

main parts to address which we describe in the remainder of the

section:

• 𝑘-NN step The search of 𝑘-nearest landmarks in 𝐿 for each

data point from 𝑋 requires a highly irregular selection of

indices of 𝑘 lowest values from columns of the dynamically

computed distance matrix 𝐿𝑇 · 𝑋 .

• Projection step Computation of the small linear system

that is used to find the projection of a point, namely of pro-

jections 𝐷𝑢𝑣 and the derivatives
𝛿𝑑𝑢𝑣
𝛿𝑥𝑖

, is difficult to optimize

due to irregular memory access patterns of collecting the

data for the computation.

3.1 𝑘-NN selection step

The task of the first part of the algorithm is to find 𝑘 nearest land-

marks (from 𝐿) for every data point in 𝑋 . This comprises two sub-

steps: computing Euclidean distances for every pair from 𝐿 and 𝑋

and performing point-wise reduction that selects a set of 𝑘 near-

est landmarks for each of the 𝑛 points, based on the computed

distances.

While the Euclidean distance computation is mathematically

simple and embarrassingly parallel, achieving optimal throughput

on GPUs is quite challenging [10]. In particular, the ratio between

the data transfers and the arithmetic operations performed by each

GPU core is heavily biased towards data transfers. The overhead of

data transfers is best prevented by finding a good caching pattern

for the input data that is able to optimally utilize all hardware

caches (L1 and L2), shared memory, and core registers.

The parallel implementation of the 𝑘-NN search is even more

challenging. The 𝑘-NN problem is computed individually for each

data point, which provides the space for possible parallelization.

However, concurrently processed instances of a naïve 𝑘-NN im-

plementation exhibit severe code divergence because the selection

process is purely data-driven, and requires a high amount of mem-

ory allocated per core. Optimally, the 𝑘-NN selection is realized

by customized versions of parallel sorting algorithms, which are

well-researched and possess existing GPU implementations [13].

Our implementation chooses to optimize both sub-steps since

the ratio of the amount of required computations can be easily

biased by the configuration of parameters 𝑑 and 𝑘 . In particular, pro-

cessing high-dimensional datasets with a low 𝑘 parameter spends

significantly more time in the distance computation, but lower-

dimensional datasets with higher 𝑘 require more time in the nearest

neighbor selection.

Concerning the perspective of software design, the implementa-

tion may use separate kernels for both sub-tasks or a single fused

kernel. Kernel separation provides better code modularity and more

flexibility in work-to-thread division and data caching strategy, at

the cost of having to materialize all the computed distances in

the GPU global memory, thus significantly increasing the total

amount of data transfers. In contrast to that, a fused kernel may

immediately utilize the computed distances in 𝑘-NN computation

without transferring the data to global memory and interleaving

the distance computations with 𝑘-NN may help to improve the

ratio between computations and data transfers. Since our initial ob-

servations showed that the overhead of the data transfers required

for kernel communication is relatively high, we decided to imple-

ment only the fused variant for the sake of simplicity. The usage of

separate kernels might be interesting in the future, especially for

extreme values of 𝑑 that diminish the relative cost of the distance

data transfer.

3.1.1 Available algorithms for 𝑘-NN. There are many approaches

to 𝑘-NN selection, varying in complexity and parameter-dependent

performance. We implemented several of the possibilities (as de-

scribed in this section) to substantiate our choice of the algorithm

for GPU EmbedSOM.

As a baseline (labeled Base), we used the most straightforward

approach to GPU parallelization which simply invokes original

sequential code for every data point concurrently. The Base kernel

is spawned in 𝑛 threads (one for each data point), and each thread

computes the distance between its data point and all landmarks

while maintaining an ordered array of 𝑘 nearest neighbors. The

array is updated by an insert-sort step performed for every new

computed distance — i.e., by starting at the end of the array and

moving the new distance-index pair towards smaller values until it

reaches the correct position.

Shared algorithm is a modified version of the baseline algo-

rithm that utilizes shared memory as a cache, following the rec-

ommended optimization practice of improving performance by

caching data that are reused multiple times [12]. In this case, we
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Figure 1: Bitonic algorithm for 𝑘-NN selection (𝑘 = 4). Each

horizontal line represents a data item in the shared memory.

Red lines represent comparators ensuring, that the interme-

diate 𝑘 ‘best’ neighbors and in the top buffer.

cache the landmark coordinates, which are sufficiently small to fit

in the shared memory for all tested parametrizations.

In GridInsert algorithm, we utilize the shared memory to

cache both landmarks and points. However, the limited size of

shared memory imposes limitations of the amount of cached data.

Hence, the algorithm was parametrized by the block height ℎ (num-

ber of cached points from 𝑋 ) and the block width 𝑤 (number of

cached landmarks from 𝐿). The algorithm runs in epochs, each of

which first caches ℎ points and𝑤 landmarks, and then computes

ℎ ·𝑤 distance values using only data in shared memory. While the

distances are computed concurrently by the whole thread block,

we chose to avoid explicit synchronization in the 𝑘-NN step, using

only ℎ threads to incorporate the newly computed distances into

ℎ separate 𝑘-NN results using the insert-sort steps. The GridIn-

sert should achieve better throughput in the distance computation

thanks to the caching, at the cost of slightly sub-optimal 𝑘-NN

reduction; thus, giving the best performance on high-dimensional

datasets and low values of 𝑘 .

Finally, improvising on our previous work [8], we implemented

Bitonic 𝑘-NN selection algorithm, which utilizes routines from

the highly parallelizable bitonic sorting algorithm. Bitonic sorting is

very suitable for parallel lockstep execution [10], and the capability

to merge sorted sequences has allowed us to keep only 2𝑘 distances

(instead of 𝑔) in the shared memory. This method benchmarked the

best on the average, so it is selected as default for EmbedSOM and

we describe it more thoroughly in the following.

3.1.2 Bitonic approach to 𝑘-NN. The Bitonic approach can be

seen as a combination of the benefits of the other algorithms: It

does not require materializing all distances in the memory to do a

full sort and even though it does not use an elaborate input caching

strategy like GridInsert, it still gives interesting results because

the data loading operations can be partially overlapped with bitonic

sorting operations if enough warps are allocated to one streaming

multiprocessor.

The bitonic comparator network provides a building block that,

given two buffers of size 𝑘 of neighbor distances sorted by bitonic

sort, selects the closest 𝑘 of the neighbors in a single (parallel)

operation, allowing us to quickly discard neighbors that do not

belong into the 𝑘-neighborhood. Applying this operation iteratively

on 𝑘-sized blocks of distances sorted by the bitonic sort (as shown in

Figure 1), we obtain a highly performing scheme that requires only

2𝑘 items present in the shared memory. In particular, the shared

memory always contains a 𝑘-block of distances (and corresponding

indexes) that holds 𝑘 so-far-nearest neighbors, and one block of 𝑘

distances that are computed from 𝐿; in each iteration, both blocks

are sorted by the bitonic sorter in parallel and merged by the bitonic

comparator to move the distances of new nearest 𝑘 neighbors into

the intermediate block. The other block is then re-filled by a new

set of 𝑘 distances from 𝐿.

Technically, each step of the sorting net requires
𝑘
2
comparators,

thus optimally
𝑘
2
threads that work concurrently on the ℎ-sized

block. Hence, we allocate 𝑘 threads for each data point, which

alternate their work between computing a block of 𝑘 distances and

performing two bitonic sorts on two 𝑘-sized blocks in parallel. For

simplicity, our implementation assumes that 𝑘 is always a power

of 2, and excessive output of the sorter is discarded.

3.2 Projection step

The second part of the dimensionality reduction method is the

actual projection into the low-dimensional space. The computation

of the low-dimensional point position 𝑥𝑖 by EmbedSOM involves:

(1) Conversion of the distances collected in the 𝑘-NN to scores;

(2) Orthogonal projection of 𝑋𝑖 to
(𝑘
2

)
lines generated by the 𝑘

neighbors to create contributions to the final approximation matrix;

(3) Solution of the resulting small linear system using Cramer’s

rule.

Since the first and the last steps are embarrassingly parallel

problems with straightforward optimal implementation and since

the second step is the most time demanding (performing O(𝑘2)
operations on vectors of size 𝑑), we focus mainly on the orthogonal

projections. Its computation is complicated by a highly irregular

pattern of repeated accesses to an arbitrary 𝑘-size subset of 𝐿. We

designed several algorithms that successively optimize the access

patterns, detailed below.

The baseline algorithm Base uses the most straightforward par-

allel approach (similar to Base 𝑘-NN), where each thread computes

the projection of one single point sequentially so the concurrency

is achieved only by processing multiple points simultaneously. All

data are stored in the global memory, and no explicit cache control

is performed.

The irregular repeated access to the elements of 𝐿 hinders the

performance of the baseline algorithm. In the Shared algorithm,

we chose to reorganize the workload so that each projection is

computed by a whole block of threads that cooperatively iterate

over the landmark pairs. As a result, the input data of the orthogonal

projection (i.e., the 𝑘 nearest neighbors from 𝐿 together with the

distances, scores, and 2D versions of the landmarks) can be cached

in shared memory. The intermediate sub-results represented by

2 × 3 matrices are successively added into privatized copies of each

thread to avoid explicit synchronization and aggregated at the end

using a standard parallel reduction, enhanced with warp-shuffle

instructions (a similar scheme is used in optimal CUDA k-means

implementation [9]).

Because the data transfers comprise a considerable portion of

the Shared algorithm execution time, we have optimized the trans-

fers using alignment and data packing techniques, yielding the

Aligned algorithm. The implementation is based on using vector

data types (e.g. float4 in CUDA) to enable utilization of 128-bit

load/store instructions, which improves overall data throughput.
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Figure 2: Detail of the caching of landmark data inRegisters

projection kernel. Multiple landmark pairs (small boxes)

are processed by each thread (large boxes). Caching of the

landmark data in registers allows the reuse of loaded data

(color lines), thus reducing the amount of memory accesses.

The vectorization comes only at a relatively small cost of aligning

and padding the vectors to 16-byte blocks.

To further improve the data caching, we implemented algorithm

Registers, where each thread computes more than one landmark

pair in a single iteration so that the coordinates loaded into its

registers can be shared as inputs among multiple landmark-pairs

computations. The data sharing scheme is detailed in Figure 2. We

found that it is optimal to group the threads into small blocks of

2×2 computation items, saving half of the data loads. Larger groups

are theoretically possible, but even 3 × 3 caused excessive registry

pressure and impaired performance on contemporary GPUs. The

innermost loop of the algorithm iterates over 𝑑 so that only a single

float4 value per each landmark is kept in registers.

4 EXPERIMENTAL RESULTS

Themain objective of the benchmarkingwas tomeasure the speedups

achieved by different applied optimizations and to determine the

optimal algorithms and their parameter setting for the sub-tasks of

EmbedSOM computation.

The timing results, presented in the following sections, were

collected as kernel execution times measured by a standard system

high-precision clock. Each test was repeated 10× and the mean

values are presented in the subsequent figures. The relative standard

deviations of themeasurements were less than 5% sowe chose not to

include them. Complete measurements are available in our GitHub

repository
2
.

Results were collected on NVIDIA Tesla A100 PCIe 80 GB run-

ning CUDA 12.2. All benchmarking datasets were synthetic, con-

taining exactly 1Mi points (𝑛 = 2
20
, reflecting the common sizing

of real-world datasets [1]) with all coordinates sampled randomly

from the same uniform distribution. The performance of the bench-

marked algorithms is not data-dependent, except for the case of

caching performance in the projection step, where the completely

random dataset is the worst-case scenario.

2
https://github.com/asmelko/gpgpu24-artifact
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Figure 3: Amortized performance of 𝑘-NN step for a single

input point using parameters usual in flow cytometry

4.1 Performance of k-NN selection

Here we give an overview of performance and viable parameter

settings observed for the 𝑘-NN selection algorithms.

Notably, all algorithms for 𝑘-NN are affected by CUDA thread

block sizing which affects warp scheduling and data reuse possibili-

ties of the shared-memory cache. We observed that the total thread

block size of 256 threads was either optimal or near to optimal

for almost all tested configurations, except for GridInsert that

performed the best with 64 threads for lower values of 𝑑 and 𝑔

parameters.

Parameters𝑤 and ℎ of the GridInsert algorithm determine the

ratio between data transfers and computations, but may also affect

the pressure on the shared memory
3
. Empirical evaluation indicates

that the algorithm performs the best when each parallel insertion

sort is performed in a separate warp, so the code divergence in

SIMT execution is prevented (i.e.,𝑤 is a multiple of 32) The optimal

performance was observed for𝑤 equal to 96 or 128; However, the

speedup over𝑤 = 32 is relatively low.

A comparison of the best parametrizations of each algorithm on

various configurations common in our target use cases is shown

in Figure 3. The Bitonic algorithm significantly outperformed

the other algorithms. The speedup of Bitonic over Base was be-

tween 3× to 20× and usually more than 2× over the second-ranking

method.

The benchmarking also confirmed a rather huge scaling differ-

ence between algorithms based on divergent insertion sort and

algorithms based on sub-quadratic parallelizable sorting schemes.

We conclude that despite the simplicity that might enable GPU

speedups in certain situations, the insertion sort is too slow for

larger values of 𝑘 in this case.

As an interesting result, we observed that despite following the

general recommendations, the straightforward use of shared mem-

ory (in the Shared algorithm) did not improve overall performance

over the Base. Quite conversely, the overhead of explicit caching

even caused a slight decrease in the overall performance.

We additionally report the performance measurements for two

selected corner cases with extreme values of 𝑔 and 𝑑 (figure omitted

3
Technically, parameter ℎ is determined by the thread block size divided by 𝑤, we

thus optimize only 𝑤.
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Figure 4: Amortized performance of a single projection op-

eration in the algorithms that compute the projection step

(showing the most important problem parametrizations)

due to the page limit). Mainly, the total volume of the computation

required to prepare the Euclidean distances scales with 𝑔 · 𝑑 , which
becomes dominant when both are maximized. At that point, we

observed that GridInsert provides comparable or mildly better

performance than Bitonic, especially in cases where 𝑘 is small and

the overhead of insertion sorting is not as pronounced.

Naturally, we should ask whether it could be feasible to combine

the benchmarked benefits of GridInsert and Bitonic algorithms

in order to get the best of both approaches (optimal inputs caching

and fast 𝑘-NN filtering). While an investigation of this possibility

could be intriguing, we observed that a fused algorithm would re-

quire very complicated management of the shared memory (which

both algorithms utilize heavily), and the estimated improvement of

performance was not sufficient to substantiate this overhead; we

thus left the question open for future research.

4.2 Performance of projection step

The projection algorithms described in the previous section have

only two execution parameters: The size of the CUDA thread block

and the number of data points assigned to a thread block (threads

are divided among the points evenly). We observed that selecting

more than one point per thread block is beneficial only in the case of

relatively small problem instances (low 𝑘 and 𝑑) because it prevents

underutilization of the cores.

The optimal size of the CUDA thread blocks depends mainly

on the parameters 𝑘 and 𝑑 . In case of Shared algorithm, optimal

values ranged from 32 (for 𝑘 = 8, 𝑑 = 4) to 64 (𝑘 = 𝑑 = 64). With

the caching optimizations in Aligned and Registers, the optimal

thread block size was slightly higher, reaching 128 for the most

complex problem instances. We assume this is a direct consequence

of the improved memory access efficiency which gives space for

parallel execution of additional arithmetic operations.

Figure 4 shows the performance of the best algorithm configura-

tions for the representative parametrizations. All three algorithms

perform almost equally for small 𝑘 , giving around 3× speedup

over Base. The importance of optimizations in Aligned and Reg-

isters grows steadily when parameter 𝑘 increases, up to around

10× speedup at 𝑘 = 64. In conclusion, the optimal algorithm for the

EmbedSOM projection is determined by the dimensionality of the
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Figure 5: The relative time spent by the 𝑘-NN computation

usually dominates the execution of GPU EmbedSOM, com-

posed of Bitonic+Registers algorithms. Projection compu-

tation time becomes dominant only for relatively impractical

parametrizations of low 𝑔 and high 𝑘 .

dataset — Registers performs better at higher dimensions (𝑑 ≥ 32)

while Aligned was slightly better for lower dimensions.

4.3 Complete algorithm

A complete GPU implementation of the EmbedSOM algorithm is

the combination of the best implementations of 𝑘-NN and projec-

tion steps. The selected algorithms Bitonic and Registers are

simply executed sequentially on large blocks of 𝑋 , sharing only a

single data exchange buffer for transferring the 𝑘-NN data. Notably,

since the data exchange between the algorithm parts is minimal,

comprising only distances and neighbor indexes from the 𝑘-NN

selection, we claim that no specific optimizations of the interface

are required. Our implementation can provide a speedup between

200× and 1000× over a serial CPU implementation, and between

3× and 10× over a straightforward GPU implementation that we

used as a baseline (figure omitted due to the page limit).

Finally, we highlight the relative computation complexity of both

steps (Figure 5), which changes dynamically with 𝑘 and might be

viable as a guide for further optimization. We observed that for

common parametrizations (𝑘 ≃ 20, 𝑔 ≃ 500), most of the com-

putation time is spent in 𝑘-NN step, and projection performance

becomes problematic only in cases of almost impractically high

𝑘 . The results align with the asymptotic time complexities of the

algorithms, roughly following O(𝑛 · 𝑑 · 𝑔 · log
2
𝑘) for the 𝑘-NN and

O(𝑛 · 𝑑 · 𝑘2) for the projection.

5 RELATEDWORK

The essential component of our success is GPU acceleration of

the projection computation which needs to be fast enough to re-

calculate the embedding in real-time. In the following, we address

the most relevant works that influenced or inspired our solution.

Being one of themost profound visualizationmethods, t-SNEwas
studied to explore the possibilities of having a fast GPU-enabled im-

plementation. One of the initial implementations was t-SNE-CUDA

library [3]. The most complicated step (computing the attractive

forces of the N-body simulation) is handled as a multiplication of
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a sparse matrix and a vector by the CUSparse library. This work

was slightly improved a year later [4] when the authors replaced

the CUSparse library with their implementation of multiplication,

which takes advantage of atomic operations to perform the reduc-

tion in scalar sums.

Perhaps the most popular contemporary method for data vi-

sualization is the Uniform Manifold Approximation and Projection
algorithm (UMAP), which often produces better results than t-SNE

at the cost of higher computational demands. There are two GPU

implementations worth mentioning which were both made part of

RAPIDS cuML library [11, 14]. They both use a similar approach,

implementing a 𝑘-NN approximation based on gradient descent

methods. The first implementation [14] relies more on existing

solutions and libraries, and the second one [11] is slightly more

low-level as they implement the embedding using custom kernels.

Even though the presented methods (especially t-SNE) exceeded

the speedup of two orders of magnitude, they are still quite far

from real-time processing when the number of points reaches the

order of millions. The proposed EmbedSOM projection is based on

SOMs and linear projection based on 𝑘-NN search [6, 7], which is

technically closest to the work of Yeh et al. [17]. For the SOM part,

we have adapted the state-of-the-art implementation of 𝑘-means

algorithm [9] since SOM shares many of its steps. The crucial part

of the projection is the 𝑘-NN search, which is also repeated in the

aforementioned papers; however, we have found that the solution

based on bitonic-sorting [8] performs the best in our case.

6 CONCLUSION

We have presented a GPU implementation for the semi-supervised

dimensionality reduction algorithm EmbedSOM where we opti-

mized independently two kernels: A general 𝑘NN search and a 2D

projection which may be used independently. The 𝑘-NN was solved

by adapted bitonic sorting, which eliminates thread divergence.

The projection kernel was optimized to fetch and use data most

efficiently by utilizing vector loads and data reuse on the register

level. Thorough benchmarking indicated that both kernels achieved

a significant speedup over the baseline GPU implementation.

The proposed implementation should enable subsequent re-

search in interactive dimensionality reduction tools where the user

changes SOM parameters or landmarks and the projections are

re-computed and visualized in real-time. The results show that the

optimized EmbedSOM version can project more than 1 million in-

dividual data points each frame, while maintaining a frame rate

above 30fps.
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Abstract

Cross-correlation is a data analysis method widely employed in various signal
processing and similarity-search applications. Our objective is to design a highly
optimized GPU-accelerated implementation that would speed up the applica-
tions and also improve energy efficiency since GPUs could be more efficient than
regular CPUs. There are two rudimentary ways to compute cross-correlation
— a definition-based algorithm that tries all possible overlaps and an algorithm
based on the Fourier transform, which is much more complex but has better
asymptotical time complexity. We have focused mainly on the definition-based
approach which is better suited for smaller input data and we have implemented
multiple CUDA-enabled algorithms with multiple optimization options. The al-
gorithms were evaluated on various scenarios, including the most typical types of
multi-signal correlations, and we provide empirically verified optimal solutions
for each of the studied scenarios.

Keywords: cross-correlation, GPU, CUDA, parallel, algorithm, caching,
optimizations

1. Introduction

Signal processing and analysis are essential in a plethora of applications
ranging from computer vision [1], acoustic localization [2], or processing sen-
sory inputs in various domains in astronomy [3], geology [4], biology [5], or
medicine [6]. Cross-correlation is one of the basic methods employed in signal
processing since it provides a metric that compares two signals and allows us to
detect the best overlap including the relative shift between two signals.

In this work, we focus solely on the efficiency of the cross-correlation algo-
rithm implementation and we aim to design optimizations that should speed up
the computation. We tackle the problem with parallel computing, namely em-
ploying contemporary GPU accelerators which are particularly suited for data-
parallel tasks. Although the task seems simple at first glance, achieving optimal
efficiency is quite challenging due to the unique lock-step execution model of the
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Šmelko), krulis@d3s.mff.cuni.cz (Martin Krulǐs)
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GPUs which is placed in contrast with the workload imbalance that arises from
a straightforward parallel implementation of cross-correlation. Furthermore, the
GPUs often suffer from data-throughput issues which are raised by the fact the
GPU memory needs to feed tens of thousands of computing cores; hence, we
need to design an algorithm that promotes sharing loaded inputs among the
cores by cleverly caching data in shared memory or registers. Having a highly
optimized, GPU-accelerated implementation of cross-correlation can be benefi-
cial for many applications, especially when the inputs are large or when they
need to be processed in real-time. Furthermore, the GPU can achieve a better
watt-to-performance ratio than the CPU when used efficiently, so our effort can
contribute to power consumption savings in the long run.

Each application of cross-correlation has slightly different parameters, de-
pending on the size of the correlated signals or the number of instances be-
ing computed simultaneously. For instance, computing one instance of cross-
correlation of two large signals would use a different optimization algorithm
than computing a correlation between one small signal and a long sequence of
medium-sized signals (i.e., searching for a pattern in a video sequence). Thus,
our second aim is to compare and analyze the most typical applications of cross-
correlation and find the best algorithm for each type.

There are basically two approaches to computing a cross-correlation. A näıve
(or definition-based) implementation that directly follows the mathematical def-
inition (with time complexity of O(N2), where N is the size of both input sig-
nals) and an implementation that uses a Fourier Transform (FT) which has
better asymptotical complexity (O(N logN)), but also higher computational
overhead. We are focusing solely on the definition-based implementations where
the actual code optimizations can be explored and which is more suitable for
computing multiple instances of smaller signals. The FT-based algorithm can be
implemented using highly optimized libraries like cuFFT, which is currently not
interesting from the perspective of basic research in parallel computing and opti-
mizations. However, we have implemented a cuFFT version of cross-correlation
as well so we can compare and evaluate both approaches empirically.

1.1. Motivational application

Our research was motivated by material analysis — detecting material de-
fects by electron microscope. The method uses the microscope to scan the
surface of a material in a raster pattern. It projects an electron beam towards
individual points in the raster and collects a backscatter diffraction pattern for
each point. In computer science terms, the method collects a grey-scale image
for each point in an input grid. For the selected material, there is a reference
diffraction pattern that would be expected for a material without any defects.
The collected images are compared with the reference image to detect possible
distortions (e.g., translations, rotations, or warps) and these distortions can be
interpreted as defects.

The comparison of measured and expected diffraction patterns is performed
by dividing the images into multiple corresponding areas (i.e., areas with the
same sizes and coordinates in both images) and cross-correlation is used to
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determine a relative shift of these two areas in the images. Thus we need to
compute a cross-correlation of N samples from one signal with N samples from
M signals. The N · M easily reaches an order of millions, but the size of the
areas is relatively small. Therefore, there is a lot of potential for parallelization,
but it also means that the FT-based approach is likely to be slower than the
definition-based approach.

Although the collection of the inputs from the microscope takes some time,
the subsequent data processing can take even longer time when sequential im-
plementation is used. Furthermore, in many cases, the results need to be re-
computed multiple times with different input areas or different image normal-
ization preprocessing. Therefore, a GPU-accelerated implementation would sig-
nificantly improve the user experience when interpreting the data.

1.2. Contributions and outline

We have implemented, measured, and analyzed a wide range of optimizations
of four of the most typical cross-correlation applications. The main contribu-
tions can be summarized into three points:

• We provide a CUDA-based algorithm (including an implementation) that
is empirically evaluated as the best for each of the studied applications.

• Extensive evaluation and performance analysis of the individual optimiza-
tion steps provide additional insight into GPU programming and code
optimizations.

• We have determined the size thresholds of the input signals when the FT-
based implementation (with better asymptotical complexity) takes over
the definition-based implementation (which has lower overhead).

The source codes of the proposed algorithms, related scripts, and all the
measured data as well as plotted graphs are available in a replication package
in a GitHub repository [7].

The paper is organized as follows. The definition of cross-correlation in-
cluding the formalization of the studied instances is presented in Section 2.
Section 3 presents our analysis of parallelization possibilities and data re-use
(inputs caching). The proposed algorithms and their implementation details
are described in Section 4 and empirically evaluated in Section 5. Related work
is overviewed in Section 6 and Section 7 concludes the paper.

2. Cross-correlation

First, we would like to review the mathematical definition of the cross-
correlation (which is the basis for the definition-based implementation). Subse-
quently, we have selected and presented four of the most typical cross-correlation
application types. Finally, we describe how the cross-correlation can be com-
puted using Fourier transform.
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2.1. Definition

Cross-correlation, also known as sliding dot product or sliding inner product,
is a function describing the similarity of two series or two functions based on
their relative displacement Cross-correlation of functions f, g : C → R, denoted
as f ⋆ g, is defined by the following formula:

(f ⋆ g)(τ) =

∫ ∞

−∞
f(t)g(t+ τ) dt,

where f(t) denotes the complex conjugate of f(t) and τ is the displacement
of the two functions f and g. In simpler words, the value (f ⋆ g)(τ) tells us
how similar the function f is to g when g is shifted by τ , with a higher value
representing higher similarity.

For two discrete functions, as will be used in our case, cross-correlation of
functions f, g : Z → R is defined by the following formula:

(f ⋆ g)[m] =
∞∑

i=−∞
f [i]g[i+m],

This definition of cross-correlation can be extended for use in two dimensions,
as is required, for example, in image processing. For two discrete functions
f, g : Z2 → R, cross-correlation is defined as:

(f ⋆ g)[m,n] =

∞∑
i=−∞

∞∑
j=−∞

f [i, j]g[i+m, j + n],

Even though cross-correlation is defined on the whole Z for one dimension
and Z2 for two dimensions, most use cases of cross-correlation work only on finite
inputs, such as image processing working on finite images. The only values we
are interested in are those where the two images overlap, which restricts the
computation to (w1 +w2 − 1) · (h1 + h2 − 1) resulting values, where wi denotes
the width and hi denotes the height of the image i.

This limits the part of the output we are interested in and leads us to the
time complexity of the näıve definition-based algorithm. For each of the (w1 +
w2 − 1) · (h1 + h2 − 1) output values, we need to multiply the overlapping
pixel values and sum up all the multiplication results. There will be at most
min(w1, w2)·min(h1, h2) overlapping pixels. For simplicity, let us work with two
images of the same size w · h. Then the time complexity of the definition-based
algorithm is (2w− 1) · (2h− 1) · O(w · h), which gives us asymptotic complexity
of O(w2 · h2).

2.2. Forms of cross-correlation

In cross-correlation applications, several forms of computation can be found.
Each enables different types of optimizations, such as data caching and data
reuse, batching, or precomputing. These forms differ in the number of inputs
and in the way cross-correlation is computed between the inputs. The four basic
forms are depicted in Figure 1:
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(a) one-to-one

(b) one-to-many

n = 2
m = 3

m ∗ n = 6

(c) n-to-mn

n = 2
m = 3

(d) n-to-m

Figure 1: Basic forms of cross-correlation

1. one left input with one right input, in the rest of the paper referred to as
one-to-one and depicted in Figure 1a;

2. one left input with many right inputs, referred to as one-to-many and
depicted in Figure 1b;

3. n left inputs, each one cross-correlated with m different right inputs
(multiple instances of one-to-many), referred to as n-to-mn and depicted
in Figure 1c;

4. n left inputs, all cross-correlated with all m right inputs (full bipartite
graph), referred to as n-to-m and depicted in Figure 1d.

The one-to-many form is typical for applications where one sample (a query)
is located in a database or a time series of signal samples (like a video sequence).
Similarly, n-to-m is merely an extension of this scenario where multiple queries
are located in a database simultaneously [3]. Perhaps the most unusual pattern
is n-to-mn. It has been inspired by the motivational application described in
Section 1.1. It is an extension of one-to-many, where both the query and the
database samples are divided into corresponding subsamples (e.g., areas with
corresponding coordinates both correlated signals [6, 8]). We have observed
even more complex forms in the applications; however, they did not present any
more opportunities for parallel processing or caching optimizations.

While each pair of input matrices can always be computed independently,
the one-to-many, n-to-mn and n-to-m types allow for the reuse of the left input
matrix with multiple right input matrices, and the n-to-m makes it possible to
reuse the right matrix for computation with multiple left input matrices.
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For the same size of input data (x left and y right input matrices) the n-to-m
requires the computation of x·y pairs of matrices, compared to the n-to-mn type
which results in only y pairs. The increased level of parallelism and arithmetic
intensity allows for additional optimizations of the n-to-m computation type
compared to the n-to-mn. The one-to-one and one-to-many types are described
separately, as compared to the general n-to-mn or n-to-m implementation, their
implementations can more aggressively cache and reuse the left input matrix.

Implementations of the simpler types one-to-one and one-to-many can be
extended to n-to-m or n-to-mn by running the simpler type of cross-correlation
multiple times, possibly in parallel. Inversely, any implementation of either n-
to-m or n-to-mn can be used to implement the two simpler types (with n = 1).
Another type that we could consider is the computation of a large number of
independent pairs, which can be implemented by n-to-mn (withm = 1). A large
number of correlated pairs is a type not discussed further as it does not provide
any additional opportunity for optimization compared to running the one-to-one
several times in parallel.

In theory, more elaborate patterns of left-right matrix associations may be
created. However, they can either be covered by a combination or iteration of
the patterns described above and they provide no additional opportunities for
data re-use that could be exploited by GPU hardware.

2.3. Computation using Fourier transform

There is an alternate algorithm for computing cross-correlation based on the
discrete Fourier transform (DFT). The asymptotic complexity of this algorithm
(in two dimensions) is O(w · h · log2(w · h)), where w is the width of each series
and h the height of each series. This improves on the asymptotic complexity
O(w2·h2) of the definition-based algorithm described in the previous section, but
the actual complexity constants are higher (thus, the FT-based implementation
is better only for inputs larger than a certain threshold).

The Discrete Fourier transform can only be used to compute a special type
of cross-correlation, the so-called circular cross-correlation. For a finite series
N ∈ N{x}n = x0, x1, ..., xN−1, {yn} = y0, y1, ..., yN−1, circular cross-correlation
is defined as:

(x ⋆N y)m =

N−1∑
i=0

xmy(m+i) mod N ,

where xm denotes the complex conjugate of xm.
Based on the Cross-Correlation Theorem [9], the circular cross-correlation

(x ⋆N y)m can be computed using discrete Fourier transform (DFT) according
to the following formula:

(x ⋆N y)m = F−1(F(x) ∗ F(y))

where F(x) and F(y) denote DFT of series x and y respectively, F(x) denotes
the complex conjugate of the DFT, ∗ denotes element-wise multiplication of two
series and F−1 denotes inverse DFT.
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To compute the non-circular (linear) cross-correlation of non-periodic series
of size N, we pad both series with N zeros to the size 2N, as indicated in Figure
2. The results of circular cross-correlation are then the results of linear cross-
correlation, only circularly shifted by N−1 places to the left with one additional
0 value at index N .

2 3 4 5

6 7 8 9

30 59 86 110 74 43 18

2 3 4 5

6 7 8 9

30 59 86110 74 43 18

0 0 0 0

0 0 0 0

0

a

b

a ⋆ b x ⋆ y

x

y

Figure 2: Comparison of linear and circular cross-correlation

This process can be expanded into two dimensions, where the matrices are
padded with N rows and N columns of zeros before being passed through a 2D
discrete Fourier transform. Here the circular shift of the results can be inverted
by swapping the quadrants of the results while discarding row N and column
N, which will be filled with zeros, as illustrated by Figure 3.

N

N

N - 1

N - 1 2N - 1

2N - 1

Figure 3: The result quadrant swap

Based on this description, we can deduce the time complexity of the algo-
rithm. For two matrices a, b ∈ Rh×w, the steps of the algorithm are:

1. Padding ap, bp ∈ R2w×2h of a and b with w columns and h rows of zeros
in O(w · h);

2. The Discrete Fourier Transform (DFT) A,B ∈ C2w×2h of ap and bp in
O(w · h · log2(w · h));

3. Element-wise multiplication, also known as the Hadamard product, C ∈
C2w×2h : C = A ◦ B, where A the denotes complex conjugate of A, in
O(w · h);

4. Inverse DFT c ∈ R2w×2h of C in O(w · h · log2(w · h));
5. Quadrant swap in O(w · h)
In total, the steps described above give us an algorithm with asymptotic

time complexity of O(w · h · log2(w · h)).
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The FT-based algorithm will be used for comparison with the definition-
based implementation. We have no ambition to optimize this algorithm further
since the Fourier transform takes the most significant part and highly optimized
libraries such as cuFFT1 already exist.

3. Problem Analysis

The design and implementation of an optimal solution are affected by several
aspects of the problem. Furthermore, different scenarios of computing multiple
signals being cross-correlated simultaneously benefit from different approaches.
In this section, we provide an overview of the most important optimizations
which are essential in our proposed algorithms.

For the sake of simplicity, we will focus solely on 2D cross-correlation since
1D correlation is significantly less interesting and all the proposed optimizations
can be extended into higher dimensions easily. The input signals are discrete,
so we will refer to the materialized inputs as matrices to take advantage of the
most familiar terminology available.

3.1. Workload parallelization

A single cross-correlation (one-to-one) produces one output matrix, where
each element corresponds to one possible relative shift between the input ma-
trices. An example with two 4× 4 matrices is depicted in Figure 4. The value
of the output element is computed as a sum of an element-wise multiplication
performed on the overlapping area of the two input matrices.

[-3,-3][-2,-3][-1,-3][0,-3] [1,-3] [2,-3 [3,-3]

[-3,-2][-2,-2][-1,-2][0,-2] [1,-2] [2,-2] [3,-2]

[-3,-1][-2,-1][-1,-1][0,-1] [1,-1] [2,-1] [3,-1]

[-3,0] [-2,0] [-1,0] [0,0] [1,0] [2,0] [3,0]

[-3,1] [-2,1] [-1,1] [0,1] [1,1] [2,1] [3,1]

[-3,2] [-2,2] [-1,2] [0,2] [1,2] [2,2] [3,2]

[-3,3] [-2,3] [-1,3] [0,3] [1,3] [2,3] [3,3]

Left input matrix

Right input matrix

Overlap

Output matrix

Figure 4: The output matrix with corresponding relative shifts of input matrices

1https://docs.nvidia.com/cuda/cufft/
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The individual operations can be decomposed in a tree as indicated in Fig-
ure 5. The top-level node (green) represents the computation of a single output
matrix. The second level (orange) represents computations of individual ele-
ments in the output matrix (different input overlaps). The third level (yellow)
corresponds to the elementary multiplications performed on the overlapping
area.

[-3,-3] [-2,-3] [-1,-3] [0,-2]

Output matrix

Output matrix elements

Overlapping input elements

Input matrices

Figure 5: A work decomposition of one-to-one cross-correlation

Both the first and the second levels comprise independent operations — i.e.,
operations that can be performed without explicit data synchronization. The
operations on the third level (multiplications) need to be reduced into the result
at the second level (using a sum as the reduction operation). In case of more
elaborate scenarios (one-to-many, n-to-m, and n-to-mn), the tree in Figure 5
is merely extended into a forest of independent trees, thus enabling another
level of parallelism. Although this decomposition may indicate the problem
is embarrassingly parallelizable, there are two major concerns for any GPU-
accelerated implementation:

• The workload at the second level is highly irregular. Corner elements
are computed by a single multiplication whilst the elements in the center
of the output matrix require a full element-wise multiplication and sum-
reduction of the input matrices. This imbalance may cause serious code
divergence (i.e., suboptimal performance) in the warps and thread blocks.

• The problem is highly data-bound as each loaded element is used in a
simple elementary operation (multiplication and addition). This might
create a significant underutilization of the GPU cores if each core spends
most of the time waiting for the data.

Therefore, our objective is to design algorithms that will heavily reuse loaded
input data whilst attempting to provide a better workload balance, especially
at the warp level.
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3.1.1. Workload distribution

One of the key aspects that affect the efficiency of GPU-based parallel pro-
grams is workload decomposition and distribution among the allocated threads.
It defines the level of parallelism (since the threads are executed concurrently),
synchronization (when one thread needs to wait for the results of another
thread), and native parallel cooperation (via shared memory or warp-level in-
structions). It also affects registry allocation and, transitively, data reuse (since
the input data needs to be moved from global memory to registers).

To simplify the description of the subsequent optimizations and algorithms
(especially their approach to data reuse), we adopt the task abstraction for the
workload division and the work assignment to computing elements, where task
is usually an element of work performed by one CUDA thread.

Task comprises a well-defined group of nodes from the work decomposition
schema introduced in Figure 5. The most straightforward implementation would
map one overlap (orange element at the second level) to one task and we denote
this the overlap-wise (or simply the overlap) strategy. More elaborate task
definitions, that would allow better input data reuse, will be outlined later using
the overlap-wise strategy as the reference point.

In special cases, it is possible to assign each task to a group of threads (a warp
or a block). This may provide a simpler approach to algorithms where more fine-
grained division of tasks is impractical, but when each task may be processed
in a cooperative or even SIMD-like manner. In the follow-up descriptions, we
always assume that a task is assigned to one thread; unless we explicitly state
otherwise.

3.2. One-to-one data reuse

The problem of the data-bound nature of the cross-correlation definition-
based algorithm can be mitigated by smart caching of the input values which
we generally refer to as data reuse. In other words, every input value loaded
into the registers or shared memory should be reused in multiple computations
(multiplications) to improve the ratio between load and arithmetic instructions.
In the following, we will introduce several task-forming strategies (i.e., how the
cross-correlation individual operations are assigned to CUDA threads) that are
designed to enable data reuse.

The most straightforward strategy (overlap-wise) assigns one relative input
overlap (one sum of overlapping products) to a CUDA thread. Analyzing the
input data access patterns, we have made an observation, that adjacent overlaps
share significant portions of input data (as illustrated in Figure 6).

The overlap-wise strategy can be implemented with data-reuse optimizations
if the threads processing adjacent overlaps can share or exchange the input data
efficiently (using shared memory or warp-shuffles). Another possibility is to
create larger tasks that would aggregate multiple adjacent overlaps in a task
so that a thread does not have to share the inputs with neighbors for data
reuse as the reuse happens on loaded data internally. We have denoted this
strategy grouped-overlap. For the sake of simplicity, we have selected only one

10



Overlap [0,1] Overlap [0,2]

Left input matrix

Right input matrix

Overlapping inputs

Output matrix

Shared overlapping inputs

Showcased overlaps

Figure 6: Input data shared between neighboring overlaps

dimension (which is depicted in Figure 6) where the task aggregates the overlaps
with the same relative column displacement and adjacent row displacements.
We have considered more complex aggregations as well as a col-wise approach,
but using a row-wise approach to grouping is much simpler to implement and
it promotes coalesced data loading2 as we demonstrate later in Section 4.2.2.

3.3. Fine grained parallelism

In most cases (especially when multiple cross-correlations are computed si-
multaneously), the overlap-wise strategy gives us a sufficient amount of tasks
to easily saturate the GPU. In fact, most of the data reuse strategies exploit
some form of grouping — i.e., one task groups computations of multiple over-
laps together. In the case of smaller instances (especially in one-to-one cross-
correlation), the total number of tasks may decrease so that the GPU is no
longer entirely saturated. In such cases, we can choose a more fine-grained
workload division. Each overlap computation is basically an element-wise sum
of a Hadamard product of the overlapping part of the input matrices (as in-
dicated by Figure 5). The sum itself is associative, so we can compute the
Hadamard product by multiple threads (concurrently) and then use a parallel
sum reduction to get the result.

There are many ways to divide the Hadamard product (i.e., the matrix
representing individual multiplications), perhaps the most straightforward is
to divide the matrix of products into stripes of adjacent rows (of a constant
height, except for the last stripe which may have fewer rows). This strategy is
denoted split-row and the height of the row stripes can be selected as a tuning
parameter of the algorithm. Analogically, we define split-col strategy, which
uses the same approach but creates stripes of columns instead of rows. The
selection of row or column orientation for striping depends mainly on the data
layout, in traditional row-major layout, the split-row is better. In general, we
refer to the principle of striping columns of rows as split-overlap (in case the
distinction of orientation is not necessary or layout-dependent).

2Assuming the input matrices are stored in traditional row-wise layout.
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Technically, the split-overlap principle can be combined with the previously
mentioned data reuse grouped-overlap; however, this often turns out to be coun-
terproductive. The split-overlap is used in case the GPU is not saturated and
in such cases, creating enough work for the threads is far more important than
data reuse (i.e., the subsequent grouping of the overlap stripes does not improve
the performance).

An alternative approach to split-overlap is to use basic overlap-wise task
definition but assign a whole warp of threads per task. The warp divides the
individual task elements (i.e., the products) among the threads evenly, while
each thread accumulates its partial sum in its register. Finally, the threads
employ warp instructions for the final reduction. This approach is used in a
specialized warp-per-overlap algorithm (Section 4.4).

3.4. Processing multiple inputs simultaneously
When multiple cross-correlations are being computed simultaneously (i.e.,

in one-to-many, n-to-m, and n-to-mn scenarios), another level of data reuse
becomes available. We can create tasks that aggregate computations using the
same overlaps (relative dislocations) but on different input matrices. The main
advantage is that the sizes of the overlapping inputs are exactly the same so
this strategy does not negatively affect load balancing. Based on the application
scenario, we have decided to explore two possible strategies:

Output matricesInput matrices

overlap-wise
grouped-overlap

multi-matrix-right
multi-matrix-right
+ grouped-overlap

(a) Grouping in one-to-many configura-
tion

multi-matrix-both
multi-matrix-both+grouped-overlap

Input matrices Output matrices

(b) Grouping in n-to-m configuration

Figure 7: Multi-matrix approach and its combination with overlap grouping

• multi-matrix-right uses multiple right matrices for each overlap (i.e.,
each value loaded from the left matrix is used in multiple correlations
with right matrices). This approach will work in all three multi-matrix
scenarios (one-to-many, n-to-m, and n-to-mn).

• multi-matrix-both uses multiple left and right matrices so that each
value from the left is used with all right matrices and vice versa. This
approach is designed solely for the n-to-m scenario.
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Figure 7 shows the multi-matrix strategies and compares them with the
grouped-overlap. Furthermore, the multi-matrix strategies can be combined
with the grouped-overlap strategy as well as the split-overlap strategy.

4. Proposed Solutions

We have experimented with various approaches to the problem and we
present the best solution for each scenario. Most of the proposed solutions
are based on a warp-shuffle algorithm which was designed to embrace smart
data caching in registers and their exchange among neighboring threads using
warp-shuffle instructions. The algorithm can be improved by several data reuse
and work distribution optimizations described in the previous section. The
warp-shuffle algorithm is not very suitable for very small inputs, so we also
present a warp-per-overlap algorithm that prioritizes better workload distribu-
tion over data reuse which is critical when the GPU is not saturated by the
warp-shuffle algorithm. The complete source codes with additional technical
details are available in our replication package [7].

4.1. Warp-shuffle algorithm

The key principle of the warp-shuffle algorithm is that the threads within a
warp3 reuse data loaded from global memory into registers and employ warp-
shuffle instructions to distribute the actual values. The same idea is behind
the grouped-overlap reuse (depicted in Figure 6), but in this case, the data
reuse is col-wise rather than row-wise and it takes place in the registers of the
entire warp (not the registers of a single thread) which need to be updated by
warp-wise instructions (warp-shuffles).

First, we demonstrate the main principle using an overlap-wise strategy
where the jobs are distributed among the treads so that each warp processes
consecutive overlaps on the same row in the output matrix. In other words, the
threads of a warp will process overlaps [x, y], [x+ 1, y], . . . , [x+ 31, y] (where x
is divisible by 32). Figure 8 illustrates which data (from the left and the right
matrix) are used by two adjacent threads from a warp if the overlapped area is
traversed in row-major order.

A quick analysis reveals, that the data from both matrices can be shared
among the threads. In the case of the left matrix, the value used by thread 1 is
required by thread 0 in the subsequent iteration. In general, thread i can load
the value for the next iteration from thread i + 1, so technically, the data are
being shifted to the left among the threads. In the case of the right matrix,
each thread requires the same value in the same iteration, except for the corner
cases where a thread gets out of the bound of its overlapping area.

3A group of 32 consecutive threads executed in lock-step.
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Figure 8: Input data shared between neighboring overlaps

4.1.1. Warp-wise buffers

Data from both input matrices are cached in warp-wise buffers. A warp-wise
buffer is distributed among the registers of the individual threads in a round-
robin manner and managed by warp-shuffle instructions. Each thread holds
N/32 values, and value i is kept in the (i mod 32)-th thread of the warp.

The left matrix is buffered in a 64-item wide warp-wise buffer (2 registers
per thread). Each thread t finds its current value on the index t, which is
coincidentally also stored in the register of thread t. After each step, the buffer
is shifted to the left by one item using (two) warp-shuffle instructions. The
reason for using the 64-item wide buffer is to promote coalesced loading from
the main memory (the data can be loaded in 32-item wide transactions instead
of one by one). With 64 items, the buffer can be rotated 32× without accessing
main memory and after that, the second half of the buffer can be replenished
with a single coalesced load.

The right matrix is buffered in a warp-wise buffer of 32 items (one register
per thread). This buffer does not require rotations, but the value required for
each step needs to be loaded from the corresponding thread. This operation is
also handled by a warp-shuffle instruction which can broadcast one value from
the selected thread (i.e., its register) to all threads in a warp.

Figure 9 depicts data movements in 32 consecutive steps. Note that each step
comprises one arithmetic (FMA4) operation and three warp-shuffle instructions.
At the end of the 32-step block, both the gray part of the left buffer and the
entire right buffer are filled with new data from the global memory in two
coalesced transactions (when the entire warp loads a compact block of memory).

4.1.2. Technical details

There are several technical issues worth mentioning, albeit they are not
essential for understanding the algorithm. The first one is how to handle corner

4Fused Multiply-Add — i.e., an instruction computing x ∗ y + z expression.
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Figure 9: Buffering and data movements in warp-shuffle algorithm

cases, since the processed matrices are rarely aligned to the warp size and even
if they are, the individual overlaps have different sizes. The loading of the
inputs is handled in a way that values outside the input matrices are replaced
with zeroes in the warp-wise buffers. Zeroes will not affect the cross-correlation
results when used as inputs, so the only conditional code is in the loading step.

In the algorithm description, we have made a requirement, that consecutive
items of the output matrix (on a row) are processed by a warp. In more detail,
the thread block allocation is made so that the x-dimension has always size 32
(represents threads within a warp), and the number of warps (the y-dimension)
in a block is a tunable parameter of the algorithm (allowing us to find the best
occupancy of the multiprocessors). Subsequent warps in a block operate on
subsequent rows, which slightly improves the hit rate in hardware caches and
also becomes beneficial in the follow-up optimizations. Furthermore, aligning
the workload to the warp size also ensures that the edge case (when part of the
warp is outside the output matrix) does not create any additional problems in
the input buffering mechanism.

Finally, we made some special steps to ensure that the most internal loop of
the algorithm (which performs exactly 32 steps) is unrolled, so it can be highly
optimized by the compiler (e.g., by resolving constant expressions in indices).
The required hacks can be found in our source code.

4.2. One-to-one optimizations

The warp-shuffle algorithm can be improved by data reuse techniques de-
scribed in Section 3. We shall start with optimizations that do not require
multiple inputs (i.e., addressing one-to-one configuration).
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4.2.1. Split-overlap

The split-overlap (specifically the split-row) optimization is designed for sit-
uations where the number of tasks is not sufficient to saturate the GPU and
we need to decompose the workload further to enable another level of paral-
lelism. The warp-shuffle algorithm is designed to be fully compatible with this
optimization. The only difference is that multiple warps are allocated for tasks,
that would be processed by a single warp in a regular overlap-wise strategy. The
Hadamard product of each result is then computed by multiple threads, each of
them being assigned the same amount of rows of the overlapping area (except
for the last thread which may receive less). The product is both associative and
commutative, so we can compute its part concurrently. Given the number of
individual fragments is intended to be relatively low, aggregation by atomicAdd

operation is quite adequate in this case.
We have experimented further with better and more complex work distri-

bution patterns that could reduce the time when individual threads are idle
due to code divergence caused by the irregularity of the workload. However,
the overall improvement was barely measurable, possibly due to the fact the
improvements were partially outweighed by increased overhead computations
(calculating indices). Thus, we have concluded more elaborate solutions are not
worth pursuing further, especially given the increase in their coding complexity.

4.2.2. Grouped-overlap

If the inputs are sufficiently large, we can take an opposite path to opti-
mizations that decrease the number of tasks due to grouping but promote data
reusability further. The warp-shuffle approach already reduces global memory
loads whilst making them more coalesced, but the data still needs to be shuf-
fled among the threads. The profiling of basic overlap-wise implementation of
the warp-shuffle algorithm confirms what is also apparent from Figure 9 — each
FMA instruction (that performs the actual computation) requires 3 warp-shuffle
instructions (that just ensure the data are in the right registers). We can im-
prove this ratio by grouping overlaps (each task comprises multiple overlaps) as
suggested in Section 3.2. It enables caching multiple rows from both left and
right matrices and subsequently using each value loaded in registers in multiple
FMA operations.

Figure 10 depicts a situation, where each task computes three overlaps dis-
placed by one in the vertical direction ([x, y], [x, y + 1], and [x, y + 2]). The
number of rows cached from the left matrix was also set to 3 (although we may
choose a different number of rows than the number of grouped overlaps, the
best performance is usually achieved when they are the same). The number
of the right rows needs to be set as the number of grouped overlaps and the
number of left rows minus one (3 + 3 − 1 = 5). This setup was selected so all
rows cached on the left are loaded exactly once (rows on the right are loaded
multiple times).

In this particular case, a thread performs 9 FMA instructions in each step
while the registers are managed by 5 broadcasts and 6 shifts. In other words,
the FMA to warp-shuffle instructions ratio was improved from 1 : 3 to 9 : 11.
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Figure 10: Data reuse in grouped-overlapped optimization (3 grouped overlaps)

By increasing the grouping (and caching) factor, we can achieve better ratios of
FMA to shuffle instructions. On the other hand, grouping reduces the number of
tasks and increases the required amount of registers per thread, which may lead
to low occupation of GPU cores. The best factor was determined empirically as
4 overlaps per task.

Finally, there is one important implementation detail. Overlaps grouped
together usually do not have the same size. As we iterate over the rows in
the left matrix, the beginning or the end of the iteration needs to handle some
corner cases. To reduce code divergence, we have divided the row-loop into three
phases — the init phase, when the common overlapping part is growing, the
main phase, which was described above, and the final phase, when the common
overlapping part is diminishing. We have selected to implement the init and
the final phases separately, to eliminate unnecessary conditions from the main
phase code (which is usually the dominant part of the calculation).

4.3. Multiple cross-correlations

Another level of parallelism and data reuse is opened when multiple cross-
correlations are computed simultaneously. The warp-shuffle principle remains
intact, but each task aggregates the same work from multiple cross-correlations
(duplicating the necessary input buffers and the output values). The great-
est advantage is that the computations are truly independent and they have
identical shapes, so no additional corner cases have to be handled. The only
requirement is that the matrices being correlated simultaneously have the same
dimensions.

4.3.1. Multi-matrix-right (one-to-many, n-to-mn)

The first type assumes that one left matrix is correlated with multiple right
matrices. This holds for one-to-many and n-to-mn scenarios. Technically, this
assumption holds also for n-to-m case, but we can do better optimizations with
it as we demonstrate later.

Similarly to the grouped-overlap optimization, the objective is to improve
the ratio between FMA instructions and warp-shuffle instructions. Increasing

17



...
...

...
... ...

...
...

...

from different
matrices

same left values are
used multiple times

left buffer (64 items) right buffers (32 items)
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the number of right matrices by one adds one FMA instruction and one shuffle
instruction as well, thus improving the ratio. In general, having r right matri-
ces cached simultaneously, the ratio of the instructions will be r : r + 2 (i.e.,
approaching 1 : 1 for large r values).

4.3.2. Multi-matrix-both (n-to-m)

In the case of n-to-m scenario, we correlate multiple left matrices with mul-
tiple right matrices, so we can employ caching and data reuse on both sides.
Unlike the case of the grouped-overlaps optimization, all registers from the left
buffer are multiplied with the broadcasted data from the right buffers which
leads to l · r FMA operations per step (assuming l and r represents the amount
of left and right cached matrices respectively). The details are depicted in Fig-
ure 12.

...
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...

FMAs per thread

left buffers (64 items) right buffers (32 items)
... ...
... ...
... ...

Figure 12: Data reuse when multiple matrices are used both on the left and the right

With this configuration, we can easily achieve a better ratio of FMA to
shuffle instructions than 1 : 1. For instance, in the case of 4 left and 4 right
matrices being correlated in a joined effort, each thread will compute 4×4 = 16
FMA instructions for every 4 × 2 + 4 = 12 shuffle instructions. On the other
hand, each intermediate result requires a separate register where the products
are accumulated, which can easily create register pressure if higher values of l
and r are selected.

4.3.3. Combining optimizations

One of the greatest advantages of multi-matrix extensions is that they are
orthogonal to split-row and grouped-overlap optimizations — in other words,
we can combine these two techniques to improve performance further. The
combination with the split-row is completely straightforward and requires no
special modifications. The combination with grouped-overlap is slightly more
difficult to imagine, so we include a visual aid.
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Figure 13: Combining multi-matrix-both with grouped-overlap

Figure 13 depicts the computation of a single thread when the two optimiza-
tions are combined. The input buffers are merely replicated in two dimensions
— i.e., multiple rows from multiple matrices are being cached. The most dif-
ficult part is to find the right balance of the parameters to achieve optimal
performance.

4.4. Warp-per-overlap algorithm

In the final part, we would like to revisit the problem of GPU underutilization
when the matrices are very small. There is an alternate approach to the warp-
shuffle algorithm with split-row optimization (described in Section 4.2.1), which
may provide even better performance since it aims specifically to better core
occupation and minimization of code-divergence.

One of the greatest benefits and limitations of the warp-shuffle algorithm
is the requirement that all threads in a warp must process adjacent overlaps
within one row. Although it enables coalesced load and data shuffles, it also
becomes a source of great thread divergence when the matrices are rather small,
especially when the overlapping area width is comparable with the warp size,
but not exactly matching. For instance, when correlating two 17 × 17 matri-
ces, the overlapping area is 33 × 33, Hence, the second warp on each row will
compute only one result value. This limitation is not mitigated by the split-row
optimization.

An alternate approach is to allocate an entire warp to process each task
— a warp-per-overlap algorithm. Using the basic overlap-wise task division,
a task work is to iteratively process all compute elements of the Hadamard
product of the overlapping area. The iteration can be divided in a vectorization
manner and the threads will be assigned the FMA operations using the round-
robin principle (Figure 14). This way, the workload is more evenly distributed
among the threads of a warp which minimizes code divergence and maximizes
the effective core occupancy. On the other hand, this task allocation does not
provide any means for data reuse and the non-regular data access pattern will
require much more global memory transactions.

We have experimented with several memory optimizations that will make
the data loads more coalesced as well as manual caching of the input data in
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Figure 14: The warp-per-overlap principle demonstrated on warps of size 4

the shared memory. Although these improvements may be theoretically in-
triguing, they are not practical. The reason is that additional modifications
of this algorithm increase the coding complexity quite a bit whilst improving
the performance only when the input matrices are quite large. However, for
larger input matrices the previously presented warp-shuffle algorithm exhibits
better performance. Therefore, we propose the warp-per-overlap algorithm as
an alternative to the split-row algorithm only for very small input matrices.

5. Experimental Results

To evaluate the performance of the proposed algorithms and optimizations,
we performed extensive benchmarks covering the vast configuration space of
optimization combinations, input sizes, and individual attuning parameters.
In this section, we summarize the results of the described optimizations and
compare them with each other to find the optimal one for each input size and
problem configuration. We also compare our methods with the asymptotically
better FFT-based algorithm to find the limits of definition-based algorithms.

5.1. Experimental setup

We carried out the experiments on three different NVIDIA GPUs represent-
ing three different architectures: Tesla V100 SXM2 32 GB (Volta arch.), Tesla
A100 PCIe 80 GB (Ampere arch.), and Tesla L40 PCIe 48 GB (Ada Lovelace
arch.). The systems were using CUDA 12.2 with driver version 535.104.05.
Each single benchmark was repeated 10 times, each time running for at least
0.1 seconds. This setup was necessary to ensure proper measurement of short-
running kernels. After removing the outliers using the IQR method5, we have
performed basic statistics computing the arithmetic mean and the standard de-
viation (SD) for each experiment individually. The means are presented as the
results, the average ratio of mean and SD over the experiments is 0.43%, which
indicates good stability of the measurements so we decided not to include SD
values in graphs. All benchmarking datasets were synthetic, with data sam-
pled randomly from the same uniform distribution. The performance of the
benchmarked algorithms is not data-dependent.

The relative results (speedups of individual optimizations) do not differ sig-
nificantly among the three GPU architectures. The figures further presented in

5Considering IQR being the range between Q1 and Q3 quantiles (IQR = Q3−Q1), outliers
are points below Q1 − 1.5 · IQR and above Q3 + 1.5 · IQR.

20



the paper cover only the results of the Tesla A100 GPU. The complete result
set is available in our replication package [7].

5.1.1. FFT-based algorithm

In the following discussion, we also compare our proposed algorithms with
the FFT-based approach. As described in Section 2.3, the FFT-based algorithm
runs in 5 steps: Input padding, Discrete Fourier Transform (DFT), Hadamard
product, Inverse DFT and quadrant swap. We used highly optimized cuFFT
routines for DFT and Inverse DFT. The Hadamard product was implemented
in a custom kernel since it is an embarrassingly parallelizable algorithm. We
chose to omit the quadrant swap from the measurements since this step is not
generally required for all cross-correlation use cases (e.g. when the correlation
result is processed further and the swap can be amortized in a subsequent step).

The DFT routines operate on a cuFFT plan — an opaque data structure,
which needs to be initialized beforehand. Although we can only speculate what
operations the plan initialization exactly performs, cuFFT documentation states
that it also allocates GPU memory. The allocation is quite time-consuming
in comparison to the kernel execution, so we decided to plot it separately to
provide a more accurate picture of the relative performance. We plotted the
FFT-based algorithm performance in two variants — fft aggregates the runtime
of DFT, Hadamard product, and Inverse DFT; the fft+plan also includes the
time required for the plan creation. The fft+plan presents a time that would be
closer to a realistic application. The fft shows the theoretical limits of the FFT-
based approach that may be relevant if the initialization phase can be amortized
or the cuFFT plan data structure can be reused for many computations.

5.2. One-to-one benchmarks

The one-to-one configuration can be solved using either the warp-shuffle
algorithm (possibly with the grouped-overlap or split-row optimization) or the
warp-per-overlap algorithm. First, we evaluate grouped-overlap and split-row
optimizations separately to determine optimal tuning parameters. Afterward,
we present the overall comparison of all methods including the näıve overlap-
wise algorithm (baseline) and the FFT-based algorithm.

5.2.1. Grouped-overlap

In this micro-benchmark, we present normalized times per single FMA op-
eration (with amortized data transfers). To ensure reasonably interpretable
values, we needed to saturate the GPU cores completely (i.e., generate enough
workload even if the inputs are small). This prevents a misleading observa-
tion when an increase in the grouping factor (which improves efficiency) could
be perceived as a decrease in the apparent FMA throughput just because the
GPU gets undersaturated. We manually modified the kernel of the algorithm
to run 4000 copies of the input problem in a single grid. This allows us to
correctly measure the actual FMA throughput, but the results are not directly
comparable with other methods, especially in the case of very small inputs.
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The results are shown in Figure 15. By increasing the number of grouped
overlaps (and hence increasing the caching and data reuse factor), the opti-
mization performs better for all matrix sizes. We can also observe that the
algorithm performs significantly better for larger inputs, which is caused by
the inherent limitation of the warp-shuffle principle. Very small matrices (like
16×16) struggle with GPU underutilization and code divergence as the threads
in a warp become idle for a considerable amount of time. More specifically, for
the 16 × 16 matrix, cumulative idle thread time (i.e., the amount of cycles a
thread does not contribute to the computation) is on average 50% for all warps.
With the larger inputs, the thread utilization becomes better and once exceed-
ing 64× 64, the warp-shuffle algorithm can fully utilize the warp-wise buffer for
the left matrix (as described in Section 4.1). The idle thread time per warp
averages to 16% for 128 × 128 matrix, asymptotically nearing 0% as the size
increases.

For the sake of brevity, we do not show the plot measuring the influence
of the block size on the performance of the algorithm (it is available in our
replication package). The results conclusively show that as soon as the block
size reaches a sufficient level to fully utilize a GPU streaming multiprocessor, the
performance of the algorithm is not affected by increasing it further. Therefore,
we used the block size of 4 warps (4× 32) for all the experiments.
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5.2.2. Fine-grained parallelism

When problem size is not sufficient to saturate the GPU, a fine-grained par-
allelism is required. One possibility is to employ the split-row optimization for
the warp-shuffle algorithm, which splits each Hadamard product into multiple
independently processed stripes. Figure 16 shows the performance for different
job granularity levels ranging from the finest job of 1 row per thread to n (all)
per thread (no splitting takes place — i.e., referring to basic warp-shuffle imple-
mentation). As expected, the finest granularity helps the most for the smallest
matrices and the speedup over n (baseline) variant progressively diminishes as
the input size increases (and thus saturates the GPU without splitting).
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The alternate approach (warp-per-overlap algorithm) has no tuning param-
eters, so we do not provide a separate micro-benchmark for it. The comparison
of both algorithms is evaluated in the following.

5.2.3. Comparison of all one-to-one solutions

Figure 17 (left) summarizes the performance of the discussed one-to-one
algorithms. The baseline algorithm denotes the näıve overlap-wise implementa-
tion (one thread per one overlap with no data reuse) which we use as a baseline.
Algorithms, which have tuning parameters, use their optimal values for given
input sizes (as determined in the previous micro-benchmarks).
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Figure 17: Comparison of one-to-one algorithms

The grouped-overlap optimization is the most beneficial for larger matrices
while for smaller matrices it suffers the low GPU occupancy due to the insuffi-
cient amount of tasks. The split-row and warp-per-overlap algorithms perform
better on smaller matrices as they resolve the occupancy issue. The warp-per-
overlap performs better on very small inputs as it was designed specifically to
prefer core occupancy over data caching. The split-row optimization of the warp-
shuffle algorithm performs slightly worse for matrices smaller than 64× 64; for
larger matrices, the data reuse and coalesced loads become more important, so
it outperforms warp-per-overlap. Overall, the proposed optimizations perform
better than the baseline overlap-wise algorithm, being 5.3× faster for 16 × 16
input and 3.1× faster for 256× 256 input.

The right part of Figure 17 reveals that the cuFFT plan creation is the most
costly part of the algorithm, dominating the runtime in each measured data
point. When the initialization is taken into account, the definition-based ap-
proach appears much better in terms of performance. The turning point, where
the fft+plan surpasses our optimizations, seems to be around 384× 384 matrix.
When considering fft alone, only the warp-per-overlap algorithm outperforms
it (having 4.5× speedup on 16 × 16 inputs) and the turning point is around
48× 48.
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5.3. One-to-many benchmarks

The one-to-many and n-to-mn scenarios enable utilization of the multi-
matrix-right optimization of the warp shuffle algorithm. This optimization can
be combined with grouped-overlap or split-row, so we present their respective
performance evaluation in detail.

We did not include the warp-per-overlap evaluation in this section, because it
does not provide any additional improvement in terms of performance. The ad-
ditional workload of multiple cross-correlations mitigates the need for extremely
fine-grained parallelism, so the split-row optimization is more than sufficient
even for the smallest matrices.

5.3.1. Multi-matrix-right with grouped-overlap

In this configuration, we are benchmarking the one-to-many scenario with
4000 right matrices, which completely saturates the GPU. The left subplot
of Figure 18 shows the grouped-overlap results without the multi-matrix-right
optimization. In the middle and the right subplot, the number of right matrices
per thread is 2 and 4 respectively (i.e., enabling the multi-matrix caching). The
results indicate that increasing the number of right matrices per thread does
not collide with the data reuse made by the grouped-overlap optimization and
both optimizations can work in synergy.

Right matrices per thread: 1 Right matrices per thread: 2 Right matrices per thread: 4

16x16
32x32

64x64
128x128

256x256
16x16

32x32
64x64

128x128
256x256

16x16
32x32

64x64
128x128

256x256

300 fs

500 fs

1 ps

Matrices size (log−scale)

T
im

e 
pe

r 
F

M
A

 (
lo

g−
sc

al
e)

Grouped overlaps per thread 1 2 4

Figure 18: Multi-matrix-right+grouped-overlap results (one-to-many, 4000 right matrices)

Considering a sufficient total number of the right matrices, we can increase
the factor of right matrices per thread significantly more and still expect the
performance to improve. The primary limitation is the maximum number of
registers per thread a GPU allows to allocate. The required number of registers
increases linearly with the product of right matrices per thread used by multi-
matrix-right and warp-wise buffers used by the grouped-overlap (which is about
3·42 registers per thread for the variant that reuses the data the most intensively
in Figure 18). When the maximum is exceeded, the GPU resorts to register
spilling (offloading to local memory), which harms the performance significantly.
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We have observed that the parameter values presented in Figure 18 are in
a reasonable range. Increasing the grouping factor or number of right matrices
further does not help much with performance on current GPU architectures, but
it creates additional issues with the compilation (especially bloating the size of
our artifact). Hence, we have excluded higher values from the presented results
for practical reasons.

5.3.2. Multi-matrix-right with split-row

This micro-benchmark was designed to determine how the combination of
multi-matrix data reuse and fine-grained parallelism can improve performance.
In theory, applying multi-matrix-right on small inputs may decrease the per-
formance because it groups tasks, thus limiting the parallelism. Combining
multi-matrix optimization with split-row may provide enough parallel GPU
work whilst improving the data reuse.
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Figure 19: Multi-matrix-right+split-row benchmark results (please note that the 8 × 1 and
8 × n parametrizations are in fact 2 × 1 and 2 × n in the 1-to-2 scenario since we can cache
only up to the total number of right matrices)

Figure 19 demonstrates how the split-row improves performance for small
problem sizes. The 1 × n and 8 × n denote the versions that do not take
advantage of split-row (the size of row-stripes is n, which stands for the size
of the overlapping area). The 1 × 1 and 8 × 1 stand for the most fine-grained
versions of split-row (one task takes only one row). The data indicate that in
the extreme, the speedup caused by splitting the rows could reach an order of
magnitude (16 × 16 with a low number of right matrices). Furthermore, the
8 × 1 parametrization (i.e., the most fine-grained division that caches 8 right
matrices) exhibits the best performance over the examined domain.

5.3.3. Comparison of one-to-many optimizations

The overall comparison is presented in Figure 20. Similarly, as for one-to-one
optimizations, the split-row dominates the small matrices and grouped-overlap
dominates the larger matrices. Employing multi-matrix-right (especially when
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combined with split-row) shifts the turning point where higher data reuse wins
over more granular jobs. Using 32 right matrices, we achieve 11.8× speedup
over näıve overlap-wise (baseline) algorithm for 16× 16 input and 6× speedup
for 256× 256 input.

When we compare the best definition-based algorithm with cuFFT, the split-
row still outperforms fft for extra small matrices. The turning point for fft+plan
is slightly beyond the size of 256× 256 for 2 input matrices, and 128× 128 for
32 input matrices.
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Figure 20: Comparison of one-to-many algorithms

5.3.4. Extending one-to-many into n-to-mn

The n-to-mn problem is in fact n instances of one-to-many problem. There
are two ways of extending the one-to-many implementation — we could either
simply run the original kernel n times simultaneously or create a new kernel
that takes an additional index. After a careful analysis, we found no additional
benefits of implementing a separate kernel. When running one-to-many kernel
n times, the only issue worth mentioning is that the runtime must utilize a
sufficient amount of CUDA streams, so the execution of the kernels may overlap
in case the individual invocations cannot saturate the GPU.

The overhead of the simultaneous kernel execution is negligible, so we have
omitted figures with the performance results from the paper for the sake of
brevity. The data and the plots may be found in the attached replication pack-
age.

5.4. n-to-m benchmarks

This scenario allows the most elaborate data reuse pattern called the multi-
matrix-both optimization. Similarly to multi-matrix-right, it can be combined
with grouped-overlap or split-row.
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5.4.1. Multi-matrix-both with grouped-overlap

In Figure 21, we present the results of grouped-overlap alone (left subfigure),
combined withmulti-matrix-right (center subfigure), and withmulti-matrix-both
(right subfigure). Regardless of the number of grouped overlaps, the multi-
matrix optimization alone improves the speedup, and the combination of both
optimizations exhibits the best performance. In the case of the highest overlap
grouping, the speedup of both variant over right variant is about 1.75× on all
input sizes.
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Figure 21: Multi-matrix-both+grouped-overlap benchmark results (128-to-128 matrices)

5.4.2. Multi-matrix-both with split-row

Similarly to multi-matrix-right combination, we aim at verifying that split-
row optimization enables the data reuse on smaller matrices without any per-
formance downgrade. We tested this on two different matrix counts: 2-to-2 and
8-to-8 matrices (top and bottom pair of subfigures in Figure 22 respectively).
The results indeed show that for small matrices, the multi-matrix alone (the left
pair of subfigures) is slower than the multi-matrix combined with split-row (the
right pair of subfigures). The speedup of finer parallelism for 16×16 matrix and
the highest — about 5×. As expected, the speedup gets negligible for larger
matrices.

5.4.3. Comparison of n-to-m optimizations

The overall comparison is presented in Figure 23. Similarly to one-to-many
optimizations, the split-row dominates smaller inputs while grouped-overlap
dominates larger inputs. However, when the multi-matrix factor gets higher
(32-to-32 matrices), the grouped-overlap gets more efficient than split-row as
the GPU is already saturated and data reuse becomes more important.

Another observation is that cuFFT gets better even for slightly smaller ma-
trices when the number of cross-correlations is growing. That is a natural con-
clusion of the fact that the cuFFT plan initialization takes constant time, so it
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Figure 22: Multi-matrix-both+split-row benchmark results

gets more amortized into the overall computation. For 32-to-32 matrices, the
turning point gets as low as 64× 64 matrices.
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Figure 23: Comparison of n-to-m algorithms on various inputs

5.5. Summary and outcomes

To summarize the empirical results, we provide basic guidelines for selecting
the optimal algorithm and its optimization. Table 1 presents the algorithm of
choice for given scenarios (rows) and matrix sizes (columns). The one-to-many
instances implicitly assume utilization of multi-matrix-right optimization and
the n-to-m always employ multi-matrix-both optimization.

As indicated in the previous benchmarks, the smallest configurations benefit
from split-row optimization (or the warp-per-overlap algorithm, in case of one-
to-one scenario). The middle-sized problems can benefit from the grouped-
overlap optimization and the largest problems should switch to the FFT-based
approach which is asymptotically better.
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162 322 642 1282 1922 2562 3842 ∞
1-to-1 warp-overlap split grouped fft+p

1-to-2 split grouped fft+p

1-to-8 split grouped fft+p

1-to-32 split grouped fft+p

2-to-2 split grouped fft+p

8-to-8 split grouped fft+p

32-to-32 grouped fft+p

Table 1: The best algorithms (and optimizations) for individual scenarios and input sizes

Please note that the turning points for each configuration are not exact and
they may differ slightly across the GPU architectures.

5.6. Application on real-world data

To verify the synthetic datasets are sufficient for performance measurements,
an additional experiment on a real-world dataset was performed. We used
a problem of material deformation from electron microscopy (described in Sec-
tion 1.1). Figure 24 shows a use case of finding a deformation pattern in a FeAl
alloy. The reference pattern (Figure 24a) is cross-correlated with the deformed
pattern (Figure 24b), and the output is post-processed to be visualized as a
displacement in various regions (Figure 24c). Our testing input consisted of a
single reference pattern and 50 deformed patterns, each divided into 86 subre-
gions of size 96× 96 (i.e., a n-to-mn configuration where 86 tiles are correlated
with 50× 86 tiles).

(a) Reference pattern (b) Deformed pattern (c) Deformation visualization

Figure 24: A visualization of FeAl alloy deformation computed using cross-correlation

The runtime of the computation took about 79 milliseconds on A100 using
multi-matrix-right and grouped-overlaps optimizations, which matched the ob-
servation when synthetic data was used in the same input configuration. Also,
we measured the error of our approach using single-precision arithmetic com-
pared to the original Python script used to compute material deformation (which
uses double-precision). The mean relative difference between the elements of
cross-correlation output was 2.39× 10−6 with the maximum point difference of
3.8% and the variance of 8.49×10−6. This shows that the GPU implementation
is accurate enough for practical use cases and the performance measurements
made on synthetic datasets are representative.
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6. Related Work

Cross-correlation relates to the problem of signal processing in many different
fields and we have collected several examples where the GPU processing creates
an edge. In the domain of radio astronomy, all signals from radio antennas need
to be usually correlated with each other, which puts this problem in the HPC
domain. Various cross-correlation optimizations have been proposed: Clark et
al. [3] developed a GPU kernel, which promotes tiling and optimized memory
transfer. By utilizing both FPGAs and GPUs, Ord et al. [10] propose a hybrid
approach to achieve sufficient performance. Ragoomundun et al. [11] utilize
batched matrix multiply routines of the cuBLAS GPU library to implement
their optimized correlator to enable real-time processing for telescopes.

Seismic interferometry is another use case, where cross-correlation plays a
major role. An increasing amount of seismometers allows the production of
more detailed seismic information of the Earth but it is typically limited by the
processing runtime. Zhou et al. [4] optimize noise cross-correlation functions
used to obtain Earth’s underground structures. Ventosa et al. [12] implement a
GPU version of phase cross-correlation, which is used in Interstation correlation.
Beaucé et al. [13] discuss optimizations of Fast Matched Filter, which is an
important tool in the detection of seismic events.

Applications of cross-correlation can be also found in computer vision. Fan et
al. discuss autonomous vehicle applications in the context of disparity maps [1]
(used for stereo vision) or lane detection [14]. Typically, mobile platforms such
as autonomous cars and robots have strict limits to their power intake, so Syed
et al. [15] and Chang et al [16] described ways to further optimize stereo vision
algorithms on embedded hardware, such as Nvidia Jetson GPU, to achieve the
required speed of processing while maintaining low power consumption.

Similar examples can be found in other signal-processing domains. For in-
stance, Belloch et al. proposed a multi-GPU implementation for acoustic lo-
calization where signals from an array of microphones need to be processed [2].
The analysis employs a traditional FFT approach (using cuFFT for the trans-
formation) and it was accompanied by custom CUDA kernels for the remaining
operations. The interesting part is that multiple signals need to be processed
simultaneously.

It has been established that fast cross-correlation is useful in various practical
domains. However, most of the papers mentioned in the previous put little
effort into the optimizations of the algorithm and provide only straightforward
GPU implementations. We would like to introduce also several works which
have influenced our proposed solution. Perhaps the most fundamental is the
well-known BLAS library called Magma [17]. It is one of the first libraries
that effectively utilized two-level tile caching (shared memory and registers) in
matrix multiplication.

Similar caching can be employed when image tiles are being compared many
times. An example of an algorithm that relies heavily on comparing image tiles is
Block-matching and 3D denoising, which has a very efficient CUDA implementa-
tion by Honzátko et al. [18]. Similarly to cross-correlation, the BM3D algorithm
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searches for similarity between image parts, so it compares different overlapping
tiles. In the CUDA implementation, the authors made an observation that the
overlapping work can be computed only once and re-used. They also employed
an efficient work distribution pattern where an entire warp cooperates on a
comparison of a single patch. Closer to our research, a CUDA-accelerated im-
plementation of 3D stereo vision [19] employs cross-correlation computed on
neighborhoods of all pixels to determine relative shifts between images taken
from stereo cameras. The implementation of the 3D vision was quite efficient
thanks to effective caching in shared memory, albeit it was implemented for a
rather specific Nvidia Jetson TX2 device.

We found no elaborate optimizations directly for the cross-correlation, but
more thorough research was done in the domain of convolution, especially in
methods related to training neural networks. Yan et al. [20] presented an opti-
mized GPU implementation for batchedWinograd convolutions. Similarly to us,
they have observed the low arithmetic density of their solution and attempted
to mitigate the problem by cleverly caching the data in the registers. The solu-
tion presented by Lu et al. [21] introduces even more complex optimizations. In
particular, they employ warp-wise buffers managed by warp-shuffle instructions
and data reuse patterns similar (but simpler) to our grouped-overlap optimiza-
tion. However, the convolution algorithms optimize for larger input on one side
and rather small filters on the other side, so it is not directly applicable for
general cross-correlation.

The work that inspired our design probably the most was the CUDA imple-
mentation of Levenshtein’s edit distance [22]. It uses circular warp-wise buffers
and clever utilization of warp-shuffle instructions that lead to a very efficient
algorithm that is quite fast despite the unavoidable data dependencies inherent
to the Levenshtein. It also uses double buffering to promote coalesced loads,
similar to our left-matrix buffers.

Finally, there is one aspect of modern GPUs that we have not focused on
in our work. Contemporary NVIDIA architectures since Volta incorporate Ten-
sor units in the GPU streaming multiprocessors. These units are specifically
designed to perform fused multiply-add instructions (FMA), which are essen-
tial in many computations including cross-correlation. The tricky part is to
use them efficiently since they are designed only for particular combinations
of FMAs that are used in neural networks. Kikuchi et al. [23] presented an
implementation specifically tailored for the use of CUDA tensor cores. They
employ Warp Matrix Multiply-Accumulate API to compute multiple waveform
pairs with multiple shifts (overlaps) simultaneously. The solution is claimed to
achieve better performance than cuBLAS, but it is applicable only for 1D cross-
correlation. A similar idea was proposed by Yamaguchi et al. [24] earlier, but
they have focused on half-precision (FP16) computations. The FMA optimiza-
tions were omitted from our paper for the sake of brevity, but they definitely
present another possibility to achieve even better performance.
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7. Conclusions

We have proposed a novel approach to definition-based implementation of
cross-correlation for contemporary GPUs. The proposed algorithm takes ad-
vantage of the data reuse principle — i.e., the operations are rearranged so that
every value loaded into a register is used multiple times. This way, the load
operations from global memory are reduced significantly, which leads to overall
performance improvement. To extend this idea further, we designed a data-
exchange schema where the values in registers are shuffled among neighboring
threads using warp-shuffle instructions, which are much faster than loads from
global memory and measurably faster than shared memory. We have also ex-
perimented with different scenarios when multiple (shared) input matrices are
cross-correlated simultaneously, which enables another level of parallelism and
data reuse. The optimizations presented in this paper can lead to a speedup
that exceeds an order of magnitude with respect to näıve (baseline) CUDA
implementation.

We have also compared our algorithms with a traditional FFT approach.
As expected, in the case of small matrices, the definition-based approach sig-
nificantly outperforms the cuFFT implementation due to the costly initializa-
tion and preprocessing phase of the FFT transform. In the case of one-to-one
correlation, the warp-shuffle algorithm is better even for 256 × 256 matrices.
When multiple matrices are correlated (the n-to-m scenario), the turning point
is roughly at the size of 64 × 64. The proposed algorithms are also available
(along with many other implementations we experimented with) as source codes
provided in the attached replication package, so our conclusions may be indepen-
dently verified and the code may be easily adapted for immediate application.
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Abstract 

Background: Computational models in systems biology are becoming more impor‑
tant with the advancement of experimental techniques to query the mechanistic 
details responsible for leading to phenotypes of interest. In particular, Boolean mod‑
els are well fit to describe the complexity of signaling networks while being simple 
enough to scale to a very large number of components. With the advance of Boolean 
model inference techniques, the field is transforming from an artisanal way of build‑
ing models of moderate size to a more automatized one, leading to very large models. 
In this context, adapting the simulation software for such increases in complexity 
is crucial.

Results: We present two new developments in the continuous time Boolean simula‑
tors: MaBoSS.MPI, a parallel implementation of MaBoSS which can exploit the com‑
putational power of very large CPU clusters, and MaBoSS.GPU, which can use GPU 
accelerators to perform these simulations.

Conclusion: These implementations enable simulation and exploration of the behav‑
ior of very large models, thus becoming a valuable analysis tool for the systems biology 
community.

Keywords: Computational biology, High performance computing, Boolean models

Introduction
Biological systems are large and complex, and understanding their internal behavior 
remains critical for designing new therapies for complex diseases such as cancer. A cru-
cial approach in this endeavor is building computational models from existing knowl-
edge and analyzing them to find intervention points and to predict the efficacy of new 
treatments [1, 2]. Many different frameworks have been used to describe biological sys-
tems, from quantitative systems of differential equations to more qualitative approaches 
such as Boolean models [3]. While the former seems more adapted to represent complex 
behavior, such as non-linear dependencies, the latter is being increasingly used because 
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of its capability to analyze very large systems. Many Boolean models have been built to 
describe biological systems to tackle a variety of problems: from understanding funda-
mental properties of cell cycle [4, 5] to advanced properties of cancer [6–8].

Historically, the task of building Boolean models involved reading an extensive 
amount of literature and summarizing it in a list of essential components and their inter-
actions. More recently, database listings of such interactions [9, 10] and experimental 
information retrieval techniques on a bigger number of components were subjected to 
many advancements. Combined with the design of automatic methods for Boolean for-
mulae inference from the constraints encoded in the knowledge and the experimental 
data [11–14], these new developments allows the construction of large Boolean models. 
While this effort faces many challenges, we believe it is a promising way to study the 
large-scale complexity of biological systems. However, in order to analyze the dynamic 
properties of such large Boolean models, we need to develop efficiently scalable simula-
tion tools.

Here, we present adaptations of MaBoSS [15, 16]—a stochastic Boolean simulator that 
performs estimations of state probability trajectories based on Gillespie stochastic simu-
lation algorithm [17]—to modern HPC computing architectures, which provide signif-
icant speedups of the computation, thus allowing scrutinization and analysis of much 
larger Boolean models. In particular, the problem of properly quantifying low abundant 
phenotypes [18] can now be tackled by making more realistic the large number of simu-
lation needed to cover the space of possible trajectories. The main contributions com-
prise two new implementations of MaBoSS:

• MaBoSS.GPU, a GPU-accelerated implementation of MaBoSS, which is designed to 
exploit the computational power of massively parallel GPU hardware.

• MaBoSS.MPI, a parallel implementation of MaBoSS which can scale to multinode 
environments, such as large CPU clusters.

The source code of the proposed implementations is publicly available at their respective 
GitHub repositories.1 We also provide the scripts, presented plots, data and instructions 
to reproduce the benchmarks in the replication package.2

To showcase the utility of the new implementations, we performed benchmarking on 
both existing models and large-scale synthetic models. As the main results, MaBoSS.
GPU provided over 200× speedup over the current version of MaBoSS on a wide range 
of models using contemporary GPU accelerators, and MaBoSS.MPI is capable of almost 
linear performance scaling with added HPC resources, allowing similar speedups by uti-
lizing the current HPC infrastructures.

Background
Boolean signaling models

A Boolean signaling model consists of n nodes, which can represent a gene, protein 
or an event in a cell. Nodes are either active or inactive, gaining binary values 1 or 0 

1 https:// github. com/ sysbio- curie/ MaBoSS. GPU, https:// github. com/ sysbio- curie/ MaBoSS.
2 https:// github. com/ sysbio- curie/ hpcma boss- artif act.
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respectively. The state of the whole model is represented by a vector S of n binary values 
where Si represents the value of the i-th node. We denote the set of all possible states as 
S = {0, 1}n ; thus |S| = 2n.

Interactions in the model are described as transitions between two states. A single 
state can have multiple transitions to other states with assigned transition probabili-
ties. In turn, a Boolean network is represented as a directed weighted graph G = (S , ρ) , 
where ρ : S × S → [0,∞) is a transition function generating transition rates. These 
rates define edge weights of G, which are used to compute the probability of a transition 
from state S to S′ in the following way:

For convenience, it holds that

MaBoSS: Markovian Boolean stochastic simulator

MaBoSS simulates the asynchronous update strategy, where only a single node changes 
its value in each transition (as opposed to the synchronous update strategy, for which all 
nodes that can be updated are updated [15]). Therefore, there is a transition from S to S′ 
only if it holds that

Consequently, S can have at most n possible transitions. In programming terms, S′ is 
obtained by flipping the j-th bit of S.

To determine the possible transition rates, each node follows the Boolean logic 
Bi : S → [0,∞) , which determines the expected Poisson-process rate of transitioning to 
the other value. If Bi(S) = 0 , then the transition at node i is not allowed in state S. Given 
this formalization, the simulation can be also viewed as a continuous-time Markov 
process.

The main computational part of the Boolean logic is its binary function f : S → {0, 1} , 
which consists of logical operators (such as and, or, xor, not) with nodes as operands. For 
example,

is the binary function for node i, having nodes 2, 3 and 4 as its operands. The binary 
function of a node determines the value to which the node can transition. Thus, S can 
transition at node i at rate r only if fi(S)  = Si . Concisely, Bi is defined as3

(1)P(S → S′) =
ρ(S, S′)

S′′∈S ρ(S, S′′)
.

(2)ρ(S, S′) = 0 ⇐⇒ there is no transition from S to S′.

(3)
Sj  = S′j for a given j

Si = S′i for i  = j.

(4)fi(S) = (S2 ∧ S3) ∨ S4

3 Generally, Bi can be defined using a pair of binary formulas [15]: one used when a node is active and one when it is 
inactive. This results in a slightly more branched definition, which we omitted for brevity.
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MaBoSS algorithm simulates the above process to produce stochastic trajectories: 
sequences of states S0, S1, . . . , Sk and time points t0 < t1 < · · · < tk where t0 = 0 and 
S0 is the initial state, and for each i ∈ {0, . . . , k − 1} , Si transitions to Si+1 at time ti+1 . 
The simulation ends either by a timeout when reaching the maximal allowed time, or by 
reaching a fixed point state with no outgoing transitions. The algorithm for a single itera-
tion of the trajectory simulation is given explicitly in Algorithm 1, which is the direct 
application of the Gillespie stochastic simulation algorithm on the Boolean state space.

Algorithm 1 A single iteration of the MaBoSS simulation of a trajectory, given the state S and time t.

Multiple trajectories are generated and aggregated in compound trajectory statistics. 
Commonly obtained statistics include:

• Network state probabilities on a time window—Trajectory states are divided by their 
transition times into time windows based on the time intervals specified by a win-
dow size. For each window, the probability of each state is computed as the duration 
spent in the state divided by the window size. The probabilities of the corresponding 
windows are then averaged across all subtrajectories.

• Final states—The last sampled states from the trajectories are used to compute a final 
state distribution.

• Fixed states—All reached fixed points are used to compute a fixed state distribution.

To maintain the brevity in the statistics, MaBoSS additionally allows marking some 
nodes internal. This is useful because nodes that are not “interesting” from the point of 
final result view occur quite frequently in Boolean models, and removing them from sta-
tistics computation often saves a significant amount of resources.

Computational complexity of parallel MaBoSS algorithm

Simulation complexity

We estimate the time required to simulate c trajectories as follows: For simplification, 
we assume that a typical Boolean logic formula in a model of n nodes can be evaluated 
in O(n) (this is a very optimistic but empirically valid estimate). With that, the compu-
tation of all possible transition rates (Algorithm 1, line 2) can be finished in O(n2) . The 

(5)Bi(S) =

{

0 if Si = fi(S)
r otherwise
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selection of the flipping bit (Algorithm 1, line 4) can be finished in O(n) , and all other 
parts of the iteration can finish in O(1) . In total, the time complexity of one iteration is 
O(n2) . If we simulate c trajectories with an upper bound of trajectory length u, the simu-
lation time is in O(c · u · n2).

In an idealized PRAM (parallel random access machine [19]) model with infinite par-
allelism, we can optimize the algorithm in the following ways:

• Given c processors, all trajectory simulations can be performed in parallel, reducing 
the time complexity to O(u · n2) . (Note that this does not include the results aggre-
gation. See Statistics aggregation section for further description.)

• With n processors, the computation of transition rates in the simulation can be done 
O(n) time, and the selection of the flipping bit can be done in O(log n) time using a 
parallel prefix sum, giving O(n) time for a single iteration.

Thus, using a perfect parallel machine with c · n processors, the computation time can be 
reduced to O(u · n) . Notably, the O(u) simulation steps that must be performed serially 
remain a major factor in the whole computation time.

Statistics aggregation

The aggregation of the statistics from the simulations is typically done by updating a 
shared associative structure indexed by model states, differing only in update frequency 
between the three kinds of collected statistics.

If the associative structure is implemented as a hashmap, the updates can be done in 
O(1) for a single process. With multiple processors, the algorithm may hold partial ver-
sions of the hashmap for each processor, and aggregate all of them at the end of the com-
putation, which can be done in O(log c ·m) using c processors, assuming the maximal 
size of statistic to be m.

As an interesting detail, the hash structures pose a surprising constant-factor over-
head. In networks where most nodes are internal, the hash map may be replaced by a 
fixed-size multidimensional array that holds an element for all possible combinations of 
external node values (basically forming a multidimensional histogram). We discuss the 
impact of this optimization in Implementation section.

MaBoSS CPU implementation

MaBoSS was initially developed as a single-core application, but swiftly, it was extended 
with a basic parallelism to exploit the multi-core nature of modern CPUs. In this par-
allel implementation, the simulation of trajectories and the statistics aggregation were 
distributed among multiple cores using POSIX threads. In the following sections of the 
papers, this implementation will serve as a baseline, and we will refer to it simply as the 
CPU version.

Each statistics data held by a thread is represented by a hash map with the keys as 
the states of the model and the values as a numerical value. Therefore, their aggregation 
from multiple trajectories of multiple threads is carried out by a well-researched parallel 
sum reduction. To better understand how a researcher can use MaBoSS output, in the 
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following section, we discuss the differences between the statistics in greater detail and 
show the standard ways of their visualization.

Statistics output and visualization

Each of the three kinds of statistics is in its nature a sample from a probabilistic distri-
bution of Boolean states. This sample is represented in code as a hash map in the CPU 
version, varying in the (key, value) pairs according to the specific statistic. For the final 
states, the keys of the hash map are the model states, and the values are the number of 
times the state was sampled as the last in a trajectory. Such output can be visualized as a 
pie chart (see Fig. 1). The fixed states are represented similarly, but only the fixed points 
are stored in the hash map as keys.

The final and fixed state statistics characterize the behavior of the model at one point 
in time—at the end of the simulation. The network state probabilities on a time win-
dow highlight more dynamic characteristics of the model, showing how the average 
trajectory evolves over the simulation time. Programmatically, it is an extension of the 
final state statistics—instead of one hash map, there is a hash map for each time win-
dow. The hash map values are the state durations in the specific time window aggregated 
over all simulated trajectories. Further, these statistics can be visualized in various ways 
using a line chart. Figure 2 shows which non-internal nodes are active throughout the 
simulation.

As mentioned at the beginning of the section, if the trajectory does not reach a fixed 
point, the simulation is stopped after the maximal allowed time. This is a common sce-
nario, especially when some trajectories form cycles, i.e., when a model has cyclic attrac-
tor, also known as limit cycles. A limit cycle is usually not directly visible from the state 
probability line charts; Stoll et al. [15] proposed methods to detect them (such as plot-
ting the state and transition entropies), but we do not discuss the methods further in this 
paper for the sake of brevity.

Fig. 1 The final states pie chart shows the distribution of the last trajectory states. Labels denote which 
active non‑internal nodes compose the state. nil label represents the state where all non‑internal nodes are 
inactive
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Implementation
MaBoSS.GPU

Simulation

In the CPU version of MaBoSS, the simulation part is the most computationally 
demanding part, with up to 80% of MaBoSS runtime spent by just evaluating the 
Boolean formulae (the exact number depends on the model). The original formula 
evaluation algorithm in MaBoSS used a recursive traversal of the expression tree, 
which (apart from other issues) causes memory usage patterns unsuitable for GPUs: 
the memory required per each core is not achievable in current GPUs, and there are 
typically too many cache misses [20].

There are multiple ways to optimize the expression trees for GPUs: One may use a 
linked data structure that is more cache-friendly such as the van Emde Boas tree lay-
out [21], or perhaps represent the Boolean formulae as a compact continuous array, 
or convert it to CNF or DNF (conjunctive or disjunctive normal form) bitmasks that 
can be easily evaluated by vector instructions. We decided to leave the exact rep-
resentation choice on the compiler, by encoding the expressions as direct code and 
using the runtime compilation of GPU code [22]. In such an approach, the application 
reads the model files, writes the formulae as functions in CUDA C++ language, com-
piles them using the NVIDIA runtime compiler, and finally runs the simulation on 
GPU—all without user intervention.

Fig. 2 The line chart of trajectory state probabilities over time windows. Each line represents the ratio of an 
active non‑internal node in the time window over all trajectories (e.g., at the beginning of the simulation, 
the Apoptosis node is inactive in all simulated trajectories and as the time reaches the value of 10, Apoptosis 
is active in around 40% of trajectories). The x‑axis represents the discrete simulation time with the window 
width of 0.1
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Using this technique, the Boolean formulae are compiled as functions into a native 
binary code, which is directly executed by the GPU. As the main advantage, the for-
mulae are encoded in the instructions, preventing unnecessary fetches of the encoded 
formulae from other memory. At the same time, the compiler may apply a vast spec-
trum of optimizations on the Boolean formulae, including case analysis and shortcut-
ting, again resulting in faster evaluation.

A possible drawback of the runtime compilation stems from the relative slowness of 
the compiler—for small models, the total execution time of MaBoSS.GPU may be easily 
dominated by the compilation.

The work distribution was chosen to be one trajectory simulation per GPU thread. 
Due to the involved implementation complexity, we avoided optimization of the com-
putation of individual trajectories by splitting the Boolean function evaluation into mul-
tiple threads (thus missing the factor of n threads from the asymptotic analysis). While 
such optimization might alleviate some cache pressure and thus provide significant per-
formance improvements, we leave its exploration to future work.

Statistics aggregation

For optimizing the statistics aggregation, MaBoSS.GPU heavily relies on the fact that the 
typical number of non-internal nodes in a real-world MaBoSS model rarely exceeds 10 
nodes, regardless of the size of the model. This relatively low number of states generated 
by non-internal nodes allows us to materialize the whole statistics structure (called “his-
togram”) as a fixed-size array (rarely exceeding 210 elements).

This approach allows us to avoid storing the states as the keys and gives a simple 
approach that can map the state to the histogram index using simple bit masking and 
shifting instructions. Further, we use several well-known GPU histogram update optimi-
zations to improve the performance, including shared memory privatization and atomic 
operations.

MaBoSS.MPI

MaBoSS.MPI is a straightforward extension of the original MaBoSS CPU code to the 
MPI programming interface. Briefly, each MPI node is assigned to simulate the same 
number of trajectories (up to a remainder). These are further uniformly distributed 
among the CPU cores of the node, each thread progressively collecting the results into a 
privatized hashmap-based statistics aggregation structure.

Once all trajectory simulations are finished and the statistics are computed for each 
thread, the intermediate data are reduced into the final result using MPI collective 
operations.

Results
To evaluate the impact of the implemented optimizations, we present the results of per-
formance benchmarks for MaBoSS.GPU and MaBoSS.MPI by comparing their runt-
imes against the original CPU implementation. To obtain a comprehensive overview of 
achievable results, we used both real-world models and synthetic models with varying 
sizes.
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Benchmarking methodology

For the benchmarks, we used 3 real-world models of 10, 87 and 133 nodes (cellcycle 
[4], sizek [5] and Montagud [8]). In order to test the scalability of the GPU and MPI 
implementation, we also created several synthetic models with up to 1000 nodes. Syn-
thetic models were designed in a way such that the length of each simulated trajectory is 
predictable, and the models have no stable states. The average length was arbitrarily set 
to 100, which creates reasonably-sized serial tasks to saturate the tested hardware well. 
Also, the number of non-internal nodes was kept low (5 nodes) to enable the usage of 
the histogram optimization. The synthetic models together with their Python genera-
tor are available in the replication package. Table 1 summarizes the main features of the 
benchmarked models.

The GPU implementation benchmarks were run on a datacenter-grade NVIDIA Tesla 
A100 GPU and a consumer-grade NVIDIA RTX 3070 Laptop GPU. The CPU imple-
mentation benchmarks were run on a 32-core Intel Xeon Gold 6130 CPU with multi-
threading. The CPU implementation was compiled with GCC 13.2.0, and the GPU 
implementation was compiled with CUDA 12.2. Each measurement was repeated 10 
times, and the average runtime was used as the final result.

Table 1 The main features of the synthetic and real‑world models used in the benchmarks. 

It includes the size of models in terms of nodes and non-internal nodes, the number of simulated trajectories, the average 
formula size measured as the arithmetic mean of operands count in each formula, and the average length of all simulated 
trajectories. Note that not all combinations of features for the synthetic model were used in the benchmarks, see the 
following figures for more details

Model # Nodes (non-inter.) # Traj. Avg. formula size Avg. 
traj. 
length

cellcycle 10 (4) 1M 4 26

sizek 87 (4) 1M 22 525

Montagud 133 (3) 1M 4 197

Synthetic 10–1000 (5) 1–100M 10–100 100
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Fig. 3 Wall time comparison of MaBoSS and MaBoSS.GPU on real‑world models. Each model is simulated 
with 1 million trajectories
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The MPI implementation benchmarks were run on the MareNostrum 4 
supercomputer.4

Performance of MaBoSS.GPU

In Fig. 3, we compare the wall time of the CPU and GPU implementations on real-world 
datasets. The GPU implementation is faster than the CPU implementation on all mod-
els, and the speedup shows to be more significant on the models with more nodes and 
longer trajectories. On the Montagud model with 133 nodes, but a relatively short 
average trajectory, we achieve 145× speedup. On a slightly smaller sizek model with a 
longer average trajectory, the speedup is up to 326×.

It is worth noting that the datacenter GPU performs worse than the laptop GPU. Both 
devices are bottlenecked by the runtime compilation of the Boolean formulae, how-
ever, NVIDIA A100 spends on average around 300ms more on the compilation step. 
Subtracting the compilation time, A100 is faster for all models. We did not spend time 
finding the root cause of this discrepancy since the value is negligible and the follow-
ing benchmarks show that the runtime compilation overhead quickly disappears with 
increasing model size.

Figure 4 shows much finer performance progression on synthetic models. We observed 
that the CPU variant starts to progress steeper at around the 100 nodes boundary. We 
assume that the implementation hits the cache size limit, and the overhead of fetching 
the required data from the memory becomes dominant. The same can be observed in 
the GPU variant later at around 200 nodes. Expectably, the cache-spilling performance 
penalty is much more significant on GPUs. Overall, the results suggest that the optimi-
zation of dividing transition rate computations among multiple threads, as mentioned in 
Implementation section, may provide a better speedup for bigger models, as it alleviates 
the register and cache pressure.

Additionally, Fig. 4 shows the total runtime of the GPU implementation including the 
runtime compilation step. Comparing the panels, we observe that the relative runtime 
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Fig. 4 Wall time comparison of MaBoSS and MaBoSS.GPU on synthetic models with sizes ranging from 10 
to 1000 nodes (x‑axis) and the formula size of 10. Each model is simulated with 1 million trajectories. The two 
panels differ by the inclusion of the runtime compilation of the model logic, showing its impact on total run 
time

4 https:// www. bsc. es/ maren ostrum/ maren ostrum
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compilation overhead quickly disappears with increasing model size. Figure 5 shows the 
results of more detailed benchmarks for this scenario, as run on the NVIDIA Tesla A100 
GPU. We observed that the compilation time is linearly dependent on the number of 
nodes and formula lengths, which can be simply explained by the fact that these model 
properties extend source files that need to be compiled by a linear factor. Notably, as 
soon as the simulation becomes more computationally complex (e.g., by increasing the 
number of nodes, the number of simulated trajectories or their average length), the com-
pilation time becomes relatively negligible even for models with unrealistically long for-
mulae. This suggests that the runtime compilation is a viable optimization methodology 
also for much larger models.

Performance of MaBoSS.MPI

Figure 6 shows the efficiency of the MaBoSS.MPI implementation on the sizek model. 
We ran multiple suites, ranging from a single MPI node up to 192 nodes, each running 
20 cores. We can observe a close-to-linear speedup of up to 64 MPI nodes (1280 cores), 
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Fig. 5 The ratio of time spent in the runtime compilation of the Boolean formulae in relation to the total 
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and a plateau for larger suites (Fig. 6, green). This can be explained by hitting an expecta-
ble bottleneck in parallelization overhead and MPI communication cost when the prob-
lem is divided into too many small parts.

To stress the scalability of the implementation, we also used the synthetic model with 
1000 nodes running 100 million trajectories. We simulated this model on 32 cores per 
MPI node, on 1 to 192 nodes (32 to 6144 cores). The obtained speedups are summa-
rized in Fig. 7. Using this configuration, the simulation time decreases from 20 h on 1 
MPI node to 430 s on 192 nodes. As expected, the plateau in the speedup was observed 
only for much bigger suites. More specifically, we can see a pronounced decrease in the 
speedup at 192 nodes, hitting the aforementioned bottleneck during the utilization of 
more than 4096 cores.

Conclusions
In this work, we presented two new implementations of MaBoSS tool, a continuous time 
Boolean model simulator, both of which are designed to enable utilization of the HPC 
computing resources: MaBoSS.GPU is designed to exploit the computational power of 
massively parallel GPU hardware, and MaBoSS.MPI enables MaBoSS to scale to many 
nodes of HPC clusters via the MPI framework. We evaluated the performance of these 
implementations on real-world and synthetic models and demonstrated that both vari-
ants are capable of providing significant speedups over the original CPU code. The GPU 
implementation shows 145–326× speedup on real-world models, and the MPI imple-
mentation delivers a close-to-linear strong scaling on big models.

Overall, we believe that the new MaBoSS implementations enable simulation and 
exploration of the behavior of very large, automatically generated models, thus becom-
ing a valuable analysis tool for the systems biology community.

Future work

During the development, we identified several optimization directions that could be 
taken by researchers to further scale up the MaBoSS simulation approach.
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trajectories and the formula size of 10, running on up to 192 MPI nodes with 32 cores per MPI node, 
summing up to 6144 cores
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Mainly, the parallelization scheme used in MaBoSS.GPU could be enhanced to also 
parallelize over the evaluation of Boolean formulae. To avoid GPU thread divergence, 
this would however require a specialized Boolean formula representation, entirely 
different from the current version of MaBoSS; likely even denying the relative effi-
ciency of the use of runtime compilation. On the other hand, this optimization might 
decrease the register pressure created by holding the state data, and thus increase the 
performance on models with thousands of nodes.

In the long term, easier optimization paths might lead to sufficiently good results: 
For example, backporting the GPU implementation improvements back to the 
MaBoSS CPU implementation could improve the performance even on systems where 
GPU accelerators are not available. Similarly, both MaBoSS.GPU and MaBoSS.MPI 
could be combined into a single software that executes distributed GPU-based analy-
sis over multiple MPI nodes, giving a single high-performance solution for extremely 
large problems.

Availability and requirements

• Project name: MaBoSS.GPU
• Project home page: https:// github. com/ sysbio- curie/ MaBoSS. GPU
• Operating system(s): Platform independent
• Programming language: C++, CUDA
• Other requirements: Flex, Bison, CMake >= 3.18, Cuda toolkit >= 12.0
• License: MIT
• Any restrictions to use by non-academics: None
• Project name: MaBoSS.MPI
• Project home page: https:// github. com/ sysbio- curie/ MaBoSS
• Operating system(s): Platform independent
• Programming language: C++
• Other requirements: Flex, Bison
• License: BSD3-clause
• Any restrictions to use by non-academics: None
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HPC  High performance computing
CPU  Central processing unit
GPU  Graphical processing unit
MPI  Message passing interface
PRAM  Parallel random access machine
CNF  Conjunctive normal form
DNF  Disjunctive normal form
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Adam Šmelko1, Martin Krulǐs1(B), Miroslav Kratochv́ıl2, Jǐŕı Klepl1,
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Abstract. Programmers of high-performance applications face many
challenging aspects of contemporary hardware architectures. One of the
critical aspects is the efficiency of memory operations which is affected
not only by the hardware parameters such as memory throughput or
cache latency but also by the data-access patterns, which may influ-
ence the utilization of the hardware, such as re-usability of the cached
data or coalesced data transactions. Therefore, a performance of an algo-
rithm can be highly impacted by the layout of its data structures or the
order of data processing which may translate into a more or less optimal
sequence of memory operations. These effects are even more pronounced
on highly-parallel platforms, such as GPUs, which often employ specific
execution models (lock-step) or memory models (shared memory).

In this work, we propose a modern, astute approach for managing
and implementing memory layouts with first-class structures that is very
efficient and straightforward. This approach was implemented in Noarr,
a GPU-ready portable C++ library that utilizes generic programming,
functional design, and compile-time computations to allow the program-
mer to specify and compose data structure layouts declaratively while
minimizing the indexing and coding overhead. We describe the main
principles on code examples and present a performance evaluation that
verifies our claims regarding its efficiency.

Keywords: Memory layout · Data structure · Cache · Parallel ·
Performance · Reusable

1 Introduction

This paper aims to tackle memory-related performance issues, which represent
one of the most crucial performance optimization topics. In hardware, memory
access is optimized by providing faster memories closer to the chip (like HBM2),
multi-level caches and transfer buffers, and even specialized explicit near-core
© Springer Nature Switzerland AG 2023
W. Meng et al. (Eds.): ICA3PP 2022, LNCS 13777, pp. 507–528, 2023.
https://doi.org/10.1007/978-3-031-22677-9_27
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memories (such as AVX512 registers or shared memory in Nvidia GPUs). Soft-
ware developers benefit from these features by creating specialized, cache-aware
algorithms, often tailored for a particular architecture.

The design of the way that the program data is laid out in memory is one of
the crucial steps that ensures memory access performance. Even simple design
choices like row- or column-major matrix storage impact the performance within
the complex memory cache models by simplifying address translations, improv-
ing cache hit ratio and prefetching, or ensuring the alignment required for coa-
lesced SIMD operations [7,14]. For parallel algorithms, the complexity of the
problem becomes much broader because of cache-line collisions, false-sharing,
non-uniform memory architectures, a variety of synchronization issues [3,11,18],
and other factors. Many-core platforms (GPUs in particular) only amplify this by
enforcing specific data access patterns in lockstep execution, advocating the use
of programmer-managed caches (like shared memory), and having a significantly
lower cache-to-core ratio in comparison to the CPUs [13].

The best layout is quite often elusive and needs to be discovered empiri-
cally. Furthermore, it often differs even among the utilized cache levels [10,12,17].
Consequently, the optimal implementations are often complicated, and most of
the optimization-relevant code is not portable between hardware architectures.
Enabling simple implementations of layout-flexible data structures and algorithms
would improve the code portability (and value); however, systematic approaches
are quite rare, often over-complicating the code logic and making the algorithm
implementation not maintainable or usable beyond the community of specialists.

1.1 Motivational Example

To explain the motivation, objectives, and contributions of our research, we have
selected a matrix multiplication problem widely known in computer science. For
the sake of simplicity, we use the most straightforward implementation with
O(N3) complexity (computing C = A × B of square matrices N2):

for (size_t i = 0; i < N; ++i)
for (size_t j = 0; j < N; ++j) {

C[i][j] = 0;
for (size_t k = 0; k < N; ++k)

C[i][j] += A[i][k] * B[k][j];
}

Having a fixed algorithm structure (i.e., order of the operations), the memory
layout of the matrices is the main issue affecting the performance. In this context,
the layout is defined by transforming the abstract indices (i, j) into an offset,
subsequently used to compute the actual memory address. For instance, the most
common matrix layout is row-major, which computes the offset as i∗W+j (where
W is the width of the matrix). A few examples of possible layouts are depicted
in Fig. 1.

The aforementioned code sample used traditional C notation A[i][j] which
enforces the row-major layout, which is sub-optimal for this algorithm. Having
the second matrix in a col-major layout or using a z-curve for all matrices will
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(a) row-major (b) col-major (c) row-tiles (d) z-curve (e) Hilbert curve

Fig. 1. Examples of common matrix layouts

improve cache utilization, and the algorithm would run several times to several
orders of magnitude faster, depending on the platform. Therefore, we need to
introduce layout flexibility into the code.

A typical object-oriented solution would be to create a class abstraction that
would define a uniform interface for accessing matrix elements whilst enabling
different implementations through derived classes. A slightly better and more
reusable solution would be to separate the offset computation into a policy class
that would be injected into the matrix as a template parameter:

class RowMajor {
static size_t offset(size_t i, size_t j, size_t W, size_t H) {

return i*W + j;
}

};

template<typename T = float, class Layout = RowMajor>
class Matrix {

/* ... */
T& at(size_t i, size_t j) {

return _data[Layout::offset(i, j, _W, _H)];
}

};

The policy class makes the matrix implementation flexible (in terms of select-
ing the proper layout) and efficient (since the compiler can inline the static
method). However, several drawbacks make this solution imperfect. The inter-
face between the Matrix class and its layout policy (RowMajor) is created ad-
hoc by the author of the main class, which complicates the code reusability of
the layout policies in potentially compatible situations. The interface also pre-
vents efficient constant propagation and caching of intermediate values. Further-
more, the strong encapsulation may prevent low-level optimizations, portability
to other architectures (e.g., GPUs), and complicate data structure composition
(e.g., when matrices in an array need to be interleaved).

We aim to design a more straightforward, more programmer-friendly solution
to implementing layout-agnostic algorithms, focusing on enabling performance
optimizations and parallel processing.

1.2 Objectives and Contributions

Our main objective was to create a library that allows the users to quickly
adapt their algorithms and data structures for different memory layouts, with
a particular focus on the following targets:
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• Once an algorithm is adapted, it becomes layout-agnostic—i.e., no subsequent
internal code modifications should be required to change the layout of the
underlying data structures.

• The layout representation should not be coupled with memory allocation so
that it could be used in different scenarios and different memory spaces (i.e.,
directly applicable with memory-mapped files or GPU unified memory).

• The interface should define an easily comprehensible abstraction for indexing
(offset computation) that would hide its (possibly complex) nuances.

• The indexing mechanism should enable the compiler to evaluate constant
expressions at compile time (e.g., fold constant dimensions of a structure into
the generated code).

• The code overhead should be minimal, preferably smaller than with well-
established practices, such as providing template policy classes to govern lay-
out or allocation.

We have implemented Noarr header-only library1 for C++ as a prototype
that achieves the outlined objectives. C++ was chosen as a widely-used main-
stream language that provides complete control over memory layout and allo-
cation and is widely used for programming performance-critical applications,
including parallel HPC systems and GPGPU computing. Its fundamental fea-
tures, like the templating system and operator overloading, open possibilities for
generic programming, compile-time optimizations, and the design of a functional-
like interface, which simplifies the use of the library. Furthermore, the separation
of indexing from (CPU-specific) memory management allowed us to directly uti-
lize the library with Nvidia CUDA code, easily porting the layout-agnostic code
on contemporary GPUs.

We believe that Noarr will make a significant contribution to simplifying the
coding process and increasing performance in many scenarios, especially:

• Empirical exploration of possible layouts—i.e., finding the optimal combina-
tion of layouts for given data structures and algorithms by measuring the
performance of all possible implementations.

• Implementing applications and libraries in which the optimal layout of data
structures needs to be selected at runtime (e.g., based on the size of the
problem or the best available architecture).

• Allowing simple yet efficient (semi)automatic layout transformations in case
the input or output layouts differ from the optimal layouts for the computa-
tion.

Although the issues mentioned above can be identified in a large variety of
data structures and algorithms, we are focusing mainly on regular data struc-
tures such as nested multi-dimensional arrays and structures (in the C/C++
sense). However, despite this narrow scope, we have identified that this prob-
lem is quite challenging, especially regarding optimizations for massively parallel
environments like GPUs.
1 Noarr is available as open-source on GitHub under MIT license: https://github.com/

ParaCoToUl/noarr-structures.
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The paper is organized as follows. Section 2 explains the key principles and
benefits of the layout-agnostic algorithm design. The performance aspects of
offset computation overhead are summarized in Sect. 3. In Sect. 4, we provide
insights into the current implementation of the Noarr library. Related work and
main conclusions are summarized in Sects. 5 and 6.

2 Extensible Memory Layout Structures

One of the most significant challenges of the outlined problem is to create an
indexing abstraction that would follow the fundamental code design principles
(especially in object-oriented programming, which is one of the most widely
adopted paradigms), thus allowing the programmer to write neat and maintain-
able code, whilst minimizing performance overhead and making heavy use of the
compile-time optimizations.

In this work, we propose using first-class indexing structures which can be
detached entirely from the allocated memory and the data structures them-
selves. The indexing structure has a specific type (templated class) composed
of predefined base types and a corresponding instance (object). This way, the
information being passed to the layout-agnostic algorithm is divided into two
parts:

• the data type passed via (inferred) template parameter, which bears the struc-
ture and constant parameters,

• and the object, which bears all dynamic parameters (such as sizes of non-
constant dimensions of the data structure).

Before we focus on the benefits, let us emphasize the C++ cornerstones of
Noarr that are pretty important for understanding the main principles (details
are provided in Sect. 4).

• The indexing structure type composition is straightforward as the user merely
combines predefined Noarr templated classes. Furthermore, thanks to the
templating system, it is easy to create partially-defined structures, thus pro-
moting code reusability. The construction of derived or augmented types (like
binding the constant dimensions) is implemented in a functional manner,
which is quite comprehensive and easy to write. Finally, modern C++ con-
structs like auto or template type inference make these type modifications
easier to handle since only the instance object is passed down.

• The dimensions of the data structure are denoted using chars (typically let-
ters), which are much more mnemonic than numbers or the order of definition.
Furthermore, they can be used to define additional abstraction so that struc-
tures with the same set of named dimensions can be treated as compatible,
regardless of the order of their definition or their actual layout representation.

• Finally, the implementation makes heavy use of constexpr functions which
allow the compiler to be inlined, resolve, and even precompute many pieces
of the layout-related code, thus making it more efficient. For instance, the
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1 template <char I, char J, class struct_lhs_t, class struct_rhs_t, class struct_out_t>
2 __global__ float matmul_tile(const float* lhs_in, const float* rhs_in, float* out, const

struct_lhs_t lhs_s, const struct_rhs_t rhs_s, struct_out_t out_s) {↪→
3 constexpr size_t tile_w = 16;
4 constexpr auto tile_s = noarr::array<I, tile_w, noarr::array<J, tile_w,

noarr::scalar<float>>>();↪→
5 __shared__ float l_tile[tile_w * tile_w];
6 __shared__ float r_tile[tile_w * tile_w];
7 const uint32_t x = blockIdx.x * tile_size + threadIdx.x;
8 const uint32_t y = blockIdx.y * tile_size + threadIdx.y;
9

10 float acc = 0.f;
11 for (uint32_t i = 0; i < lhs_s.get_length<J>(); i += tile_w) {
12 tile_s.get_at<I, J>(l_tile, threadIdx.y, threadIdx.x) =
13 lhs_s.get_at<I, J>(lhs_data, y, threadIdx.x + i);
14 tile_s.get_at<I, J>(r_tile, threadIdx.y, threadIdx.x) =
15 rhs_s.get_at<I, J>(rhs_data, threadIdx.y + i, x);
16 __syncthreads();
17

18 for (uint32_t j = 0; j < tile_w; j++)
19 acc += tile_s.get_at<I, J>(l_tile, threadIdx.y, j)
20 * tile_s.get_at<J, I>(r_tile, threadIdx.x, j);
21 __syncthreads();
22 }
23 out_s.get_at<I, J>(output_data, y, x) = acc;
24 }

Listing 1: CUDA matrix multiplication kernel based on Noarr library

constant dimensions can be translated into the expressions where the actual
memory offsets are being computed, which may allow optimizations like pre-
computing constant subexpressions.

Utilizing memory layouts as first-class objects can introduce some flexibility
into the code. In this section, we demonstrate the two main ideas of the proposed
approach: The ability to easily decouple memory allocation from its interpreted
layout and the possibility of writing memory-layout-agnostic functions. Listing 1
presents an example that employs both these ideas using Noarr library.

2.1 Decoupling the Memory Management

In C++, memory is usually acquired following one of two scenarios—either it is
allocated internally by a wrapping data structure (the ‘owning’ semantics), or it
is provided by the caller (the ‘borrowing’ semantics). When the indexing struc-
ture is decoupled from the memory allocation and combined with the borrowing
semantics, it can cover many elaborate memory management scenarios, such
as file memory-mapping or sharing memory among threads (this also includes
CUDA unified memory or shared memory).

In Noarr, the layout objects are entirely independent of memory manage-
ment. To simplify the situation for programmers, it also provides a wrapper
structure bag, which binds the layout structure with any pointer, acting as a
smart pointer with borrowing semantics. The layout can be used alone to com-
pute linearized offsets from input indices, which is also applicable in hypothetical
scenarios beyond pointer-based memory addressing.
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We present an example of a matrix multiplication kernel implemented in
CUDA (Listing 1) to demonstrate the possibilities opened by proper decoupling.
In the code, a GPU kernel performs the multiplication in tiles where each 16×16
tile of the output matrix is computed by one thread block, and each element is
handled by one thread. A thread block cooperatively fetches a pair of tiles from
the input matrices (one pair at a time) into the shared memory; all threads of
the block then use the cached tiles to update their intermediate scalar products
(which are kept in their registers) before iteratively loading successive pairs of
tiles. Once all tiles are processed, each thread writes its aggregated result into
the output matrix.

The example focuses on a typical pattern in GPU programming—a man-
ual caching of data in the shared memory. Unlike global memory (accessible by
all threads), the shared memory is an integral component of a streaming mul-
tiprocessor; thus, it is dedicated to the threads within the same thread block.
Unsurprisingly, the two types of memory are allocated and managed in slightly
different ways, albeit both use pointer-based addressing. The global memory is
usually allocated before the execution of a kernel (i.e., by the host) and passed
to a kernel as an argument (lhs in, rhs in, and out on line 2 of Listing 1).
The shared memory is acquired inside the kernel by defining a C array with
shared prefix (l tile and r tile on lines 5–6).

Considering also the host memory (where a copy of matrices also needs to
reside), the programmer must manage three (partial) copies in three different
memory spaces. A uniform abstraction (that supports owning and borrowing
semantics) streamlines the code significantly. Furthermore, in this particular
instance, we could also take advantage of having a different layout for different
matrices—e.g., the optimum is reached if the left-side matrix is in the row-major
while the right-side matrix is in the column-major format.

Listing 1 demonstrates, how the problem is solved using Noarr. The tiles
are loaded into the shared memory on lines 12–15. The variables lhs s and
rhs s represent the layout objects, which are bound with global memory point-
ers (lhs in and rhs in respectively) to read data from input matrices (lines 13
and 15). Another layout object tile s is used for two shared memory pointers
representing the cached tiles (lines 12 and 14). With these layout objects, differ-
ent types of memory could be accessed using the same interface. Additionally,
the code is ready for future layouts modifications and promotes the reusability
of the existing layout structures.

2.2 Layout-Agnostic Functions

Formally, we may define the layout-agnostic property as a unique form of poly-
morphism. Layout-agnostic functions are implemented in a way that does not
require altering their code when the layout of the used data structures needs
to be changed. As hinted in the introduction, the layout selection may signifi-
cantly affect performance. In extreme cases, the relative performance improve-
ment achieved by optimal layout selection can reach orders of magnitude.
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To demonstrate this effect, we show how the layout choice changes the perfor-
mance of the matrix multiplication kernel from Listing 1, which is already written
as layout-agnostic. Running the kernel with different layout configurations for
each matrix is implemented by simply passing different function arguments (and
corresponding template parameters, which the compiler can automatically infer
in typical cases). We utilize this flexibility to find a layout combination that
exhibits the best performance quickly.

For the sake of this example, we coded the following matrix layouts:

• Row-major layout (labeled R, which we use as a baseline)
• Column-major (C, a transposition of row-major layout)
• R tiles in C order (RC), which divides the matrix logically into 16 × 16

sub-matrices (tiles); data in each sub-matrix is stored with row-major layout,
while the sub-matrices are organized in column-major layout

• C tiles in R order (CR) is analogical to RC layout, but the tiles use column-
major layout internally, and are ordered in row-major fashion

• CC and RR are defined analogically

The layout of all inputs and outputs of the matrix multiplication is thus
expressed as a triplet of individual matrix layouts. For example, R × C = R
denotes a multiplication where the left and the output matrices are in row-
major, and the right-side input matrix is in the column-major layout. Since the
kernel 1 already caches tiles explicitly in the shared memory, we expect the tiled
layouts to perform better. Likely, the RR × RC = R should exhibit the best
performance (given the properties of the algorithm).

We have created a benchmark that tested the performance of the presented
algorithm using all layout combinations possible. In each test, the input matrices
were loaded to the GPU global memory already transformed into the selected
matrix layouts, the kernel was executed, and its execution time was measured
and recorded. A relevant selection of the experimental results is shown in Fig. 2.
The graphs present the normalized times (in picoseconds and femtoseconds)—
i.e., kernel execution times divided by the asymptotical amount of work (N3 in
this case). Details regarding our experimental setup can be found in Appendix A,
and the complete set of results can be found in our replication package2.

The result verified that RC is superior to the baseline row-major layout in
both input positions. Furthermore, the R × C = R configuration (often praised
on sequential architectures) exhibits worse than the baseline on massively paral-
lel hardware. While this was expected, the primary outcome of this benchmark
is methodological: A selection of input and output layouts can be tested system-
atically without reimplementation effort, while the larger exploration size of the
selection (enabled by low coding overhead) provides a solid guarantee that the
best-identified solution is indeed a good choice for a high-performance software.

2 https://github.com/asmelko/ica3pp22-artifact.
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Fig. 2. Speedups of selected layout combinations relative to (row-major) baseline

1 template <char X, char Y, typename bag_in_t, typename bag_out_t>
2 static void transform(const bag_in_t& input_bag, bag_out_t& output_bag) {
3 for (size_t i = 0; i < input_bag.get_length<X>(); i++)
4 for (size_t j = 0; j < input_bag.get_length<Y>(); j++)
5 output_bag.at<X, Y>(i, j) = input_bag.at<X, Y>(i, j);
6 }

Listing 2: Key part of transformation routine for 2-index (2D) arrays

2.3 Transformations

The layout-agnostic algorithms can benefit from performance gains achieved by
choosing the best layout for a given problem configuration and architecture.
However, in real-world scenarios, the layout of the input and output data struc-
tures is often prescribed as an inherent part of the algorithm interface or selected
by the caller (in the case of generic interfaces).

If the algorithm is complex enough and the performance gap between the
prescribed layouts and optimal layouts is high, the data structures may be copied
and transformed into their optimally organized counterparts to speed up the
algorithm. With Noarr, the transformation can be handled in a generic way.
Following our examples with matrices, Listing 2 presents the central part of a
generic transformer for 2D structures.

In fact, we are currently extending Noarr to handle the transformations in
a generic way for any-dimensional structures, and we are exploring techniques
how to select the best way of iterating the structures (e.g., selecting the best
ordering of nested loops) in order to optimize memory transfers and caching.
However, this research is well beyond the scope of this paper.

Transformation Overhead Assessment. Employing transformations may be
beneficial only under specific circumstances. Simply put, the algorithm must save
more execution time than how long it takes to transform all the necessary data.
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We want to demonstrate the overhead assessment on the previously introduced
matrix multiplication example.

We have analyzed the layout transformation overhead for various matrix sizes
and layouts. The key results are summarized in Fig. 3. We have observed that
in the case of larger matrices (N > 10, 000), the overhead is negligible, primar-
ily because of the asymptotic complexity difference between the transformation
algorithm (O(N2)) and the multiplication (O(N3)). For smaller matrices (with
N around 1000), the relative ratio of the transformation to computation time
expectably increased, and the transformation overhead caused the baseline to
perform the best.
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Fig. 3. Layout transformation times compared to actual matrix multiplication times

As demonstrated, deciding whether or when a layout transformation can be
beneficial may be complicated; however, with Noarr, both the experiments and
the actual decision to apply or not to the transformation can be implemented
very quickly.

3 Performance Impact of Constant Expressions

One of the essential features of Noarr is that the first-class structures propagate
along with their templated types, allowing us to embed statically defined prop-
erties (most importantly, the constant dimensions of the structure) into the type
itself. Therefore, the compiler can employ optimizations like compile-time eval-
uation of constant expressions or exact-sized loop unrolling, which might lead
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to more efficient execution or even automated vectorization. These optimiza-
tions rarely produce a game-changing improvement in performance; thus, the
programmers often overlook them. However, utilization of Noarr structure will
introduce them naturally so the result code could run faster without any addi-
tional effort whilst maintaining other benefits like memory allocation decoupling
or coding in a layout-agnostic manner.

To present the main idea, let us have an array A of N vectors in R
D where N

is a variable, and D is a constant3. We want to compute the Euclidean distance
between every vector in the array and given vector q (e.g., to find k nearest
vectors, which is quite a typical task in many data-processing problems):

for (size_t i = 0; i < N; ++i) {
float dist = 0.0f;
for (size_t d = 0; d < D; ++d) {

float diff = A[i*D + d] - q[d];
dist += diff * diff;

}
dist = std::sqrtf(dist); // ...

}

When D is a constant, the compiler could unroll the loop entirely without
additional branches. It might even attempt to unroll the outer loop if D is
sufficiently small. The speedup achieved by having constant D may easily reach
factor 3× for very small values of D (e.g., D = 2)4.

3.1 Indexing Performance

To demonstrate the impact of Noarr structures, we have selected a 3D stencil
problem as an example. Stencil is a simple function computed iteratively for
every element of a regular grid. We have used an averaging stencil executed on
a 3D grid which could be used as an approximative simulation of gas diffusion,
for instance. Our objective is to emphasize the difference between situations
when the grid dimensions are constant (at compile time) and when they are
determined at runtime.

The main code of the stencil is in Listing 3. Run-time variables size x,
size y, and size z denote the dimensions of the cube. The first part of this
experiment aims at exposing only the compile-time optimizations of index com-
putations, so we ensure that no optimizations related to constant dimensions
are performed. Please note that the loops do not visit points residing on the
faces of the grid so that we can ignore the border cases of the stencil function;
thus, there are no branches in the code which leads to simpler and more stable
measurement.

A näıve C-like implementation of the internal stencil function is presented
in Listing 4. It uses the same variables in the loop to index the data pointers,

3 If the code needs to handle several different dimensionalities D, it will be compiled
for each D independently thanks to the power of C++ templates.

4 If we measure only the Euclidean distance computation.
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1 template <typename... Args> void run_stencil_grid(Args&&... args) {
2 for (size_t x = 1; x < size_x - 1; x++)
3 for (size_t y = 1; y < size_y - 1; y++)
4 for (size_t z = 1; z < size_z - 1; z++)
5 stencil(std::forward<Args>(args)..., x, y, z);
6 }

Listing 3: Main stencil for-loop

preventing the compiler from doing more elaborate compile-time optimizations.
This code is used as a baseline for the performance comparison.

1 inline void stencil(const float* in, float* out, size_t x, size_t y, size_t z) {
2 float sum = in[x * size_y * size_z + y * size_z + z];
3 sum += in[(x + 1) * size_y * size_z + y * size_z + z];
4 sum += in[(x - 1) * size_y * size_z + y * size_z + z];
5 sum += in[x * size_y * size_z + (y + 1) * size_z + z];
6 sum += in[x * size_y * size_z + (y - 1) * size_z + z];
7 sum += in[x * size_y * size_z + y * size_z + z + 1];
8 sum += in[x * size_y * size_z + y * size_z + z - 1];
9 out[x * size_y * size_z + y * size_z + z] = sum / 7;

10 }

Listing 4: Näıve implementation of stencil function

Making the dimensions constant may help the compiler to generate more
optimal code. In C++, this can be achieved simply by defining the size * vari-
ables as constexpr; however, such constants need to be declared at the global
level, which significantly undermines any encapsulation or reusability of the code.
Better way is to use fix-sized containers like std::array and make the stencil
code templated so it can be used with any compatible containers (including
std::vector).

1 using cube = noarr::array<'x', 1048576, noarr::array<'y', 32, noarr::array<'z', 32,
noarr::scalar<float>>>>;↪→

2 using bag = noarr:bag<cube, noarr::helpers::bag_policy<std::unique_ptr>>;
3

4 inline void stencil(const bag& in, bag& out, size_t x, size_t y, size_t z) {
5 float sum = in.at<'x', 'y', 'z'>(x, y, z);
6 sum += in.at<'x', 'y', 'z'>(x + 1, y, z);
7 sum += in.at<'x', 'y', 'z'>(x - 1, y, z);
8 sum += in.at<'x', 'y', 'z'>(x, y + 1, z);
9 sum += in.at<'x', 'y', 'z'>(x, y - 1, z);

10 sum += in.at<'x', 'y', 'z'>(x, y, z + 1);
11 sum += in.at<'x', 'y', 'z'>(x, y, z - 1);
12 out.at<'x', 'y', 'z'>(x, y, z) = sum / 7;
13 }

Listing 5: Noarr implementation of stencil with constant-sized array
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Noarr provides a fixed layout structure array, which fulfills a similar role,
but it can be easily integrated into more complex nested structures (even with
custom layouts). Listing 5 presents the internal stencil rewritten for Noarr. The
dimensions of the grid are no longer passed as variables, but they are embedded
in the type of the bag structure as constants. Line 1 shows the assembling of the
layout structure using a predefined array template.

To evaluate the performance, we have selected a grid of a specific size (220 ×
32 × 32) which confines the meaning of the diffuse simulation for a specific
environment (e.g., gas in a pipe). The main reason is that the performance
improvement caused by the compile-time optimizations is difficult to measure on
regular structures since it takes only a small portion of overall time (especially
when the computation causes many cache misses). This shape requires more
index computations relative to other operations, making the difference more
pronounced in the measurements.
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Fig. 4. Wall times of 100 stencil iterations (plotted lines represent the local regression
of the measured times)

Figure 4 shows the comparison results of the two presented stencil imple-
mentations on three platforms using two compilers. The benefits of compile-time
optimizations are visible on every platform and with both tested compilers, albeit
there is only a small difference in some configurations. The details regarding the
experimental methodology are summarized in Appendix A.
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3.2 Constant-Loops Optimizations

The second part of this experiment extends the compile-time optimizations to
the nested stencil grid loops. It requires replacing size * variables in the main
loops (Listing 3) with constants (i.e., constexpr or template arguments) so the
compiler has enough information to perform exact loop-unrolling and better
vectorization-related optimizations.

1 template <typename bag_t> constexpr void run_stencil_grid(bag_t in, bag_t out) {
2 for (size_t x = 1; x < in.get_legth<'x'>() - 1; x++)
3 for (size_t y = 1; y < in.get_legth<'y'>() - 1; y++)
4 for (size_t z = 1; z < in.get_legth<'z'>() - 1; z++)
5 stencil(in, out, x, y, z);
6 }

Listing 6: Updated stencil for-loop with bag structure

However, converting these variables to constants may be quite tedious, espe-
cially if we want the code to be generic for both constant and non-constant
scenarios. This particular issue can be easily overcome by utilization of Noarr
bag structures. Having the layout information encoded both in the structure
type and the object, method get length can query dimension sizes and returns
a constant or variable based on the layout specification, all this being decided
at compile time. The grid loop function from Listing 3 needs to be rewritten as
demonstrated in Listing 6.
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Fig. 5. Stencil execution times of two optimizations—compile-time indexing and the
addition of constant-induced loop unrolling (indexing+looping)

Figure 5 presents the performance improvements of exposing constant vari-
ables to the grid iteration loop. We have included only measurements of programs
compiled by gcc since clang was not able to take advantage of the constant val-
ues when they are passed through the bag structure interface.
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4 Implementation and Technical Insights

The Noarr library5 is logically divided into three levels, each building on top of
the previous one: structures, functions, and object wrappers. The first two layers
provide a rather low-level functional approach, while the last one encapsulates
the first two into a more traditional C++ object-oriented design.

4.1 Structures

A structure is an object that stores information about a data layout. It exposes
the information via a simple interface, providing its size in bytes (size()), the
range of indices it supports (length()) and a current offset from the beginning
of the structure in bytes (offset()).

The most trivial structure is scalar (Listing 7), which wraps the ‘base’ values
to be used in more complex layouts. Scalar often wraps simple types like float,
but it can also wrap any fixed-size C++ type (such as struct or std::tuple).
The methods length() and offset() of scalar always return 0 because scalar
represents only a single element.

1 template<class T>
2 struct scalar : contain<> {
3 static constexpr size_t size() noexcept { return sizeof(T); }
4 static constexpr size_t offset() noexcept { return 0; }
5 static constexpr size_t length() noexcept { return 0; }
6 };

Listing 7: A core part of the scalar structure used for wrapping simple values

The array structure (Listing 8) is more complicated: Like std::array, it rep-
resents a fixed-size array with a named dimension and statically defined number
of elements of a given substructure type. Unlike scalar which wraps a trivial
type, array is contains a Noarr structural type.

An important aspect of the structures is their ability to be combined and
nested to create a structure tree. For instance, the composition of scalar and
array is quite straightforward:

• array<'a', 10, scalar<float>> defines an array of 10 floats,
• array<'i', 4, array<'j', 8, scalar<int>>> represents a 4 × 8 row-major integer

matrix layout,
• array<'j', 8, array<'i', 4, scalar<int>>> represents the same matrix in a column-

major layout.

5 https://github.com/ParaCoToUl/noarr-structures.
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1 template<char Dim, size_t L, class T>
2 struct array : contain<T> {
3 constexpr size_t size() const noexcept {
4 return contain<T>::template get<0>().size() * L;
5 }
6 constexpr size_t offset(size_t i) const noexcept {
7 return contain<T>::template get<0>().size() * i;
8 }
9 static constexpr size_t length() noexcept { return L; }

10 };

Listing 8: Noarr array structure (some methods are omitted for brevity)

All structures inherit from class contain, which has several purposes: It
serves as recursive storage for the wrapped structure, holds some useful meta-
information about the nested substructures, and stores possible additional data
for the structure, such as dynamic dimension length or the current offset index.
Querying for various properties, which is its main purpose, is demonstrated in
Listing 8. The array implements the size() function using the information
(size) from its immediate substructure (line 4). In the example, queries work
recursively on subsequent immediate substructures until the recursion is halted
in scalar::size(). Using this mechanism, contain allows us to create the
nested hierarchy of the structure tree easily.

There are several other built-in structures in Noarr library, such as vector
and tuple (analogical to std::vector and std::tuple), which provide suffi-
cient arsenal for composing memory layouts of many regular-shaped data struc-
tures. Moreover, the library design makes it open for extensions, and program-
mers may implement additional custom layout structures.

4.2 Functions

Noarr functions are C++ constexpr functions that serve as an expressive tool
for obtaining complex information from the structure trees. They are used to
compute offsets for memory pointers to provide indexation, transform structures,
and query dimension lengths using a single, extensible functional interface.

Calling function f on a structure s is achieved using the (overloaded) ‘pipe’
operator |. Expression s | f denotes that f is applied on s (note this may
sometimes differ from f(s) as detailed later in this section).

For example, the function get length() traverses structure tree and calls
length() on a substructure with the given dimension name:

size_t i_len = a_structure | get_lenght<'i'>();

The function set length() proceeds similarly, but when a matching sub-
structure is found, the whole structure is reconstructed to carry the new length.
The following example shows that functions can be additionally chained one
after another. Notably, all structures are immutable, which allowed us to ensure
that unsized s does not carry any unnecessary data:
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auto unsized_s = vector<'i', vector<'j', scalar<float>>>();
auto sized_s = unsized_s | set_length<'i'>(4) | set_length<'j'>(8);

A function application on a structure may fail, such as when querying a length
of a non-existing dimension. We say the function is not applicable on a structure.
Taking the aforementioned two functions into account and the fact that every
structure forms a structure tree, it is possible that a function is not directly
applicable on the topmost structure but is applicable on some structures in the
structure tree. For this reason, we distinguish three piping mechanisms that
govern different means of the function-structure application:

• Top application (or direct application). This is the simplest form of piping,
where s | f is equivalent to f(s). In other words, the function is applied
directly to the topmost structure.

• Get application. Given the piping s | f, if f(s) is not applicable the pip-
ing mechanism attempts to apply f to the substructures of s recursively. It
fails if f does not apply to any of the substructures or if it applies to more
substructures. The trivial representative being get length(), because there
should be exactly one node in a structure tree with a specified dimension.

• Transform application. s | f either results in top application when f(s) is
applicable or f is transformatively applied on all direct substructures of s. If
the latter, the structure is reconstructed with these changes to the substruc-
tures.

The piping mechanism is implemented using C++ constexpr functions and
metaprogramming. Together with the static nature of substructure hierarchies
that encompasses the structure layer, the implementation is very efficient since
it provides the necessary space for compiler optimizations. We can demonstrate
this by precisely describing the operations executed when a function with the
get application is applied to a structure. Let us have the following structure and
function:

auto v4 = vector<'a', vector<'b', vector<'c', vector<'d', scalar<int>>>>>();
auto f = get_length<'d'>();

Expression v4 | f must perform a traversal of the structure tree to find the
matching dimension. Fortunately, the way the structures and functions are imple-
mented ensures that there is no run-time loop in the implementation. Because
all substructures are known in compile-time, the traversal loop is unrolled using
metaprogramming techniques. Furthermore, because the values are also known
at compile-time, the result can be partially evaluated and, in turn, no run-time
code is generated. In summary, applying v4 | f produces four unrolled func-
tion applications, three of which produce no operation at all (and usually get
discarded by a compiler), and only one results in calling length() on a sub-
structure that can be evaluated by the compiler.
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4.3 Object Wrappers

Object wrappers provide object-oriented management of structures, functions,
and the actual data. Noarr library offers two kinds of such objects—structure
wrappers and bags.

A wrapper simplifies the work with structures by bundling the applications
of the most common Noarr functions into member methods. That way, with a
wrapper w of a structure s we can directly write w.get_length<'d'>() instead
of s | get_length<'d'>().

A bag provides the same interface as a wrapper but also contains a pointer to
the underlying memory. To work with the data, it implements a member method
at<Dims...>(idxs...) that is used to index the data pointer with respect to the
enveloping structure layout. This method is a wrapper for the library function
get at. Without using a bag, the indexing might look like this:

auto s = array<'j', 8, array<'i', 4, scalar<float>>>();
float* ptr = allocate_memory_bytes(s.size());
float x = s | get_at<'i', 'j'>(ptr, 2, 3);

The bag binds the layout together with data, systematizing the computation on
the last line as follows:

auto b = bag(s, ptr);
float x = b.at<'i', 'j'>(2, 3);

Furthermore, to manage an explicitly bound external pointer, bag can also
allocate the underlying memory automatically if no pointer is given (i.e., it also
carries the semantics of a smart pointer). Technically, bag can belong to either
one of two semantic groups according to the way it acquires data:

• Owning semantics. The bag is constructed only with a structure to envelop.
The data pointer of exact length is automatically allocated using standard
memory management (e.g., by unique ptr), and the length is determined by
calling size() on the wrapped structure.

• Borrowing semantics. The bag is constructed with both structure and data
pointer. In this case, the deallocation, as well as ensuring the proper data-
block length, has to be enforced by the caller.

5 Related Work

A significant group of works that touch the problem of memory layouts are
parallel programming languages such as X10 [5], Chapel [4] or Legion [2]. Apart
from providing syntax for simple parallel code expression, these languages allow
for data decomposition into regions that can be mapped within the same memory
space or more complex non-uniform memory spaces. Hence, the memory layout
expression addressed by these works is only researched to the point of high-level
data distribution among processing elements.

Application-specific library generators, or active libraries, also utilize mem-
ory layouts. The most known representatives are ATLAS [19], SPIRAL [15]
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and FFTW [9] specializing in linear algebra, signal processing, and Fast Fourier
Transform, respectively. They are trying to mitigate portability issues of man-
ually optimized programs by selecting the best interprocedural optimizations
for the hosting system using autotuning. Usually, these optimization strategies
include some form of memory layout selection. It is important to note that active
libraries target different stages in programming than Noarr; rather than perform-
ing the layout selection from the hardcoded set of layouts, Noarr provides means
to implement such layout selections in a more extensible and object-oriented
way.

The most related works we found are Kokkos [16], and GridTools [1]. These
libraries allow the coupling of arbitrary data structures with memory layouts
which can be either selected from a set of predefined layouts or programmatically
customized.

GridTools specialize in block-structured grid applications such as combus-
tion, seismic, and weather simulations, working with generalized stencil-like pat-
terns. The library defines a storage infrastructure component that controls the
layout, alignment, and padding of stored data fields. A layout is specified in
code at compile time by selecting one of the predefined target backends, each
well suited for a specific use case, such as vector instructions or GPU kernels. The
library can be extended with new programmer-specified backends, but the layout
can be altered only by permuting dimension order in a regular n-dimensional
array.

An interesting approach is taken in the Kokkos library, which specifies the
View class that couples the definition of data memory space, allocation, and lay-
out altogether using C++ policy classes, yielding an object of similar function-
ality as our bag. The memory resource and allocation mechanism are abstracted
and defined by the template argument. Kokkos provides multiple memory spaces
such as HostSpace, CudaSpace, CudaHostPinnedSpace, thus representing CPU
and GPU physical memory and their combinations.

In Kokkos, the memory layout is either implicitly deduced from the memory
space or explicitly specified as another template parameter. The library imple-
ments row and column-major layouts together with the layout with strides with
custom sizes. Kokkos allows user-defined memory layouts by defining a new lay-
out policy and implementing a function that defines a bijective mapping between
index space and memory addresses. However, this mapping must be defined on
a regular n-dimensional array, using a minimal API that fits the View class.

Language-wise, our approach is similar to (and inspired by) known concepts
from functional programming. Materialized, first-class composable references to
sub-structures uncoupled from data have been extensively studied as optics [8].
In particular, the internal structures that implement the selection of array slices
at certain indexes are similar to the concept of indexed lenses—kind of references
that transparently provide information about the current index in a complicated
structure, as summarized by Clarke et al. [6] In the future, it might be interesting
to examine whether more advanced optics may be modeled in C++ for array
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accesses, e.g., expressing repeated data accesses similarly to lens-based traversals
or reconstructing the user-facing indexes from known offsets using isomorphisms.

6 Conclusion

We have presented a new high-performance approach for managing the complex-
ity of offset computation in array-like data structures in modern C++. We intro-
duced first-class layout structures that can be used to describe complex array lay-
outs and run the required offset computations. The implementation is based on
C++ template metaprogramming, exposing a rich interface for manipulating the
structures with index mnemonics while enabling many compiler optimizations by
properly separating static compile-time parameters and known constants from
dynamic data.

The technique promotes complete decoupling of array indexing from mem-
ory allocation, which makes it applicable for many scenarios, including direct
processing of memory-mapped files or re-using the same data structure layout
in various memory spaces (e.g., offloading computations to GPUs). We showed
that the layout structures, combined with the C++ templating system, make it
easier to create layout-agnostic algorithms and functions, leading to a simpler
selection of optimal layouts for a given hardware platform and problem configu-
ration. Additionally, the utilization of layout structures makes it easier to create
semi-automated layout transform routines, which can improve the performance
of many algorithms.

We have implemented the proposed ideas in Noarr, a prototype library
demonstrating the viability of the approach. We demonstrated the benefits in
several examples and experiments; most importantly, we showcased the ability
to write shorter program source code that promotes easier experimentation and
compilation into faster solutions. The library is publicly available as an open-
source portable to all mainstream compilers, including CUDA nvcc, and may be
readily used in designing new libraries that consider performance a priority. We
expect that the approach will simplify the research focusing on optimizations
and automatic tuning of the performance of complex parallel algorithms.

Acknowledgements. This work was supported by Charles University institutional
funding SVV 260451.

A Experimental Methodology

The main objective of the benchmarking was to measure the speedups achieved
by different layout combinations to support the claims mentioned in the work6.
A more complex performance evaluation is beyond the scope of this paper and
is planned in future work.

6 More details and the data are in the replication package https://github.com/
asmelko/ica3pp22-artifact.
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A.1 GPU Benchmarking Setup

In the results, we present mainly the kernel execution times measured by the
high-precision system clock, which is available on all platforms. The relative
standard deviations in 20 collected measurements of each result were less than
5% of the mean value in all cases, so we report only the mean values.

Due to the page limit, the presented results were limited to matrices of sizes
(1008 × 1008) and (10, 080 × 10, 080). However, more extensive testing on other
problem instances, including a broader range of matrix sizes and non-square
matrices, exhibited similar results.

The results were collected on the following platforms:

• NVIDIA Tesla V100 SXM2 (Volta, CC 7.0, 1.3 GHz), Rocky Linux 8
• NVIDIA GeForce RTX 2060 (Turing, CC 7.6, 1.7 GHz), Windows 10
• NVIDIA GeForce RTX 3070 laptop (Ampere, CC 8.6, 1.6 GHz), Windows 11

All platforms used CUDA toolkit 11.6 with an up-to-date driver. These
devices represent three of the most recent Nvidia architectures and three typical
hardware platforms (server, desktop PC, and laptop). Hence, we claim that the
measurements sufficiently represent contemporary CUDA-enabled GPUs.

A.2 CPU Benchmarking Setup

We ran the kernel in 100 iterations for the stencil benchmark, plotted the local
regression outlining the mean value, and distinguished the outliers. The mea-
surements were conducted using the following CPUs:

• AMD Ryzen 5 5600X (hi-end desktop CPU, 3.70 GHz), Windows 10
• Intel Core i7-10870H (laptop CPU, 2.20 GHz), Windows 11
• Intel Xeon Gold 5218 (server CPU, 2.3 GHz), Rocky Linux 8.

Due to the fact that some compilers may optimize constexpr expressions
better than others, we compiled the benchmark using clang++ v12 and g++ v11
compilers with -03 flag. We also compiled the stencil benchmark using the MSVC
C++ compiler, but the results showed that it could not sufficiently optimize
Noarr code in the current version; hence, MSVC results are not included.

All benchmarking datasets were synthetic, with data sampled randomly from
the same uniform distribution. We consider synthetic validation sufficient since
the performance of the benchmarked algorithms is not data-dependent.
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Abstract
Many computational problems consider memory through-
put a performance bottleneck. The problem becomes even
more pronounced in the case of parallel platforms, where the
ratio between computing elements and memory bandwidth
shifts towards computing. Software needs to be attuned to
hardware features like cache architectures or memory banks
to reach a decent level of performance efficiency. This can
be achieved by selecting the right memory layouts for data
structures or changing the order of data structure traversal.
In this work, we present an abstraction for traversing a set of
regular data structures (e.g., multidimensional arrays) that
allows the design of traversal-agnostic algorithms. Such al-
gorithms can be adjusted for particular memory layouts of
the data structures, semi-automated parallelization, or auto-
tuning without altering their internal code. The proposed
solution was implemented as an extension of the Noarr li-
brary that simplifies a layout-agnostic design of regular data
structures. It is implemented entirely using C++ template
meta-programming without any nonstandard dependencies,
so it is fully compatible with existing compilers, including
CUDA NVCC. We evaluate the performance and expressive-
ness of our approach on the Polybench-C benchmarks.
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1 Introduction
Memory operations are a cause of bottleneck in many sit-
uations. Contemporary CPUs dedicate a significant part of
their circuits (such as multi-level caches or prefetching units)
to mitigate this problem. In parallel processing, the situa-
tion becomes even more complicated as some resources are
shared by the cores (like L3 cache, memory controllers, or
memory buses), and thememory transactions need to be kept
coherent (by MESI protocol, for instance). GPUs introduce
another level of complexity caused by the lockstep execution
model where multiple threads perform the exact instruction
in the same cycle (so the memory transactions need to be
planned across multiple cores) and by introducing special
memory types like shared memory (with concurrently ac-
cessible banks).
The performance of many programs is often heavily af-

fected by how they access data in the memory. If the data
dependencies permit, the operations accessing the memory
can be (re)arranged to take advantage of caching, prefetch-
ing, coalesced loads, parallel memory banks, or concurrent
utilization of memory controllers without affecting the se-
mantics (i.e., the results) of the algorithm. Even when the
(re)arrangement does not change the number of operations,
it may reduce the execution time if the latencies of the data
transfers decrease. Unfortunately, the optimal arrangements
are often system-specific and rather difficult to find.

This paper focuses mainly on regular data structures with
multidimensional indexing (such as matrices, tensors, or
grids). Such a data structure defines its indexing space (i.e.,
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dimensions) and a mapping from the indexing space into
the (linear) memory addressing space. The actual memory
access pattern is then affected by the layout mapping and
how its indexing space is traversed.
Let us illustrate the problem on a common matrix. It de-

fines the index space (𝑖, 𝑗), where the dimensions run from
1 to 𝐻 (height) and𝑊 (width) respectively. A matrix can be
stored in many ways (Figure 1). Perhaps the most common
is the row-major order, where linear offsets are computed as
𝑖 ·𝑊 + 𝑗 . If the matrix is traversed by two nested for-loops
(over 𝑖 and 𝑗 ), the memory will be accessed sequentially,
which often performs optimally on contemporary CPUs. If
we swap the loops ( 𝑗 will become the outer loop), the subse-
quent memory operations will be𝑊 elements apart, which
disrupts the prefetching and may increase cache misses.

(a) row-major (b) tiled (c) z-curve

Figure 1. Examples of common matrix layouts

Transforming the layout of a data structure or the order
of its traversal may have a profound effect on the perfor-
mance [8]. Although the compilers attempt to optimize these
operations (e.g., by application of polyhedral optimizer to
reorder nested loops), these automated efforts do not always
meet with success since the compilation is bound with strict
assumptions about data dependencies and alignment, the
transformation search space is vast, and it is often difficult to
predict the impact a transformation has on performance. De-
signing such transformations manually may prove difficult,
tiresome, and even error-prone, especially in the domain
of parallel applications. Therefore, it might be beneficial to
provide the programmer with code constructs that would
allow for explicit yet simple and flexible ways of expressing
the desired transformations of traversal order.
In this work, we present an abstraction that facilitates a

flexible specification of traversals of regular data structures.
Our proposed implementation is an extension of C++ library
Noarr1, which provides first-class structures for defining
memory layouts [15]. Our extension (Noarr Traversers) uses
the same design philosophy (templated first-class transfor-
mation structures) for semi-automated traversal (over the
indexing space) and provides basic transformation elements
such as loop interchange, strip-mining, tiling, or z-curve.
The proposed solution has the following benefits over con-
temporary libraries and tools that aim at the same problem:
1https://github.com/ParaCoToUl/noarr-structures

1. Standard compilers support: The abstraction is defined
in standard C++ and does not require any compiler
extensions or domain-specific language (DSL) prepro-
cessing, which is usually the case with annotation-
based and DSL-based frameworks such as Loopy [12]
or Halide [14].

2. First class transformations: A transformation is assem-
bled from prepared templated classes and instantiated
as a first-class object that is then applied in an algo-
rithm written using traversal-agnostic loop constructs.
This promotes code reusability (multiple versions of
an algorithm are produced by applying different trans-
formations), and it also allows constant parameters to
be embedded in the type, moving some of the compu-
tation into compile time.

3. Custom transformations: The user has the expressive
power of an imperative language (C++) to define cus-
tom transformations, not being limited by the syntax
of annotation-based frameworks or restricted DSLs.

4. Suitable for parallelism: The proposed framework is
designed to be easily utilized on various parallel plat-
forms and libraries, namely multicore CPUs (TBB) and
manycore GPUs (CUDA).

The aforementioned benefits should simplify coding when
dealing with manual optimizations. More importantly, we
aim to create an ecosystem where this abstraction can be
used for semi-automated optimizations using autotuning or
machine learning models. In such systems, designing the
code in a traversal-agnostic way (or the data structures in
a layout-agnostic way) simplifies the injection of the lay-
outs or traversal patterns by the external optimizer. This
continuation of the work will be accompanied by a careful
assessment of the increase in compilation time limiting the
exploration of the possible transformations.

Let us emphasize that the aforementioned benefits define
the intended group of users for our tool. Other approaches
may be better (lead to faster implementations or require less
code to write) in cases where some of the benefits are con-
sidered irrelevant. For instance, using a specific DSL may be
easier in simpler cases (Halide [14]) at the cost of universality
and the necessity for more compilation steps.

The paper is organized as follows. Section 2 explains Noarr
and introduces the running examples. The proposed abstrac-
tion is explained in Section 3, and Section 4 describes its
utilization for parallel programming (TBB and CUDA). Sec-
tion 5 presents the evaluation results. The related work is
summarized in Section 6 and Section 7 concludes the paper.

2 Background
The problem of memory layouts and traversal order of data
structures can be tackled using various approaches (besides
the automated optimizations performed by the compiler):
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• Native approach uses only native constructs of the
selected language. In C++, for instance, class policies
can be used for selecting data structure layouts and
iterators for data structure traversal.

• Annotations may be introduced into the language to
hint to the compiler how the data structures (e.g., ar-
rays) or loops may be transformed. This approach usu-
ally builds on native compiler optimizations (e.g., to
guide polyhedral optimizer [12]), but it also requires
specialized compilers or compiler plugins.

• Domain specific language (DSL) may describe either a
data structure or the computation kernel in an abstract
form. If the DSL is restricted and the target problem is
simple enough, its compiler can extract an optimal ex-
ecution plan for the kernel, not only optimizing mem-
ory operations but possibly handling the scheduling
of parallel execution as well [14].

We investigate the native approach; however, our objective
is to step beyond the traditional design patterns and software
engineering practices. We aim at exploiting the possibilities
of C++ language to its limits using templates, functional-
like assembly of data types, and static (compile-time) meta-
programming.

2.1 Noarr structures
We base our solution on the Noarr library [15], which pro-
vides an abstraction for creating data structure layouts. The
key idea is that the layout is represented by a first-class
structure. The type of a Noarr structure is assembled from
predefined templated base types like arrays, vectors, or tu-
ples. The following example shows two representations of a
matrix — row-wise (rw) and col-wise (cw). Let us emphasize
the arguments 'i' and 'j' which identify the dimensions.
auto rw = s c a l a r< f l o a t> ( ) ^ v e c t o r< ' j '> ( ) ^ v e c t o r< ' i '> ( ) ;
au to cw = s c a l a r< f l o a t> ( ) ^ v e c t o r< ' i '> ( ) ^ v e c t o r< ' j '> ( ) ;

The two structures define the abstract layout of a matrix.
The structures are immutable, and each can be used as a basis
for creating various structures with fixed sizes, for example:
s i z e _ t s i z e = . . . ;
au to m a t r i x _ s t r u c t = rw ^ noar r :: s e t _ l e n g t h< ' i ' , ' j '>( s i z e , s i z e ) ;

In this case, the matrix size is set at runtime, and so the
size is stored in the object; however, using the same syntax
can embed the sizes in the type so they are computed at
compile-time (for example, if size was noarr::lit<42>).
Another important principle of Noarr is decoupling the

layouts from memory management. The structures used in
the previous examples have no binding to memory. They rep-
resent an indexing abstraction for computing linear offsets,
which can be used in internal and external data structures
alike, or it can be used with any base pointer to dereference
memory values:
s i z e _ t o f f s e t = m a t r i x _ s t r u c t | noa r r :: o f f s e t< ' i ' , ' j '>( i , j ) ;
f l o a t &r e f = ma t r i x _ s t r u c t | noa r r :: g e t _ a t< ' i ' , ' j '>( p t r , i , j ) ;

Since most data structures reside in the main memory,
Noarr offers a wrapper called bag, which binds the Noarr
structure with a pointer. If we do not specify a memory
location for the data represented by the Noarr structure,
the bag automatically allocates the memory on the heap.
However, the user can also specify a memory location (e.g.,
a memory-mapped file or a shared memory in the CUDA
kernel), and the bag will use that instead.
auto ma t r i x = noar r ::make_bag ( m a t r i x _ s t r u c t ) ;
f l o a t &r e f = ma t r i x . t emp l a t e a t< ' i ' , ' j '> ( i , j ) ;

The current implementation of the bag does not employ
any more complex memory management operations like
host-device memory transfers or memory mapping. Such op-
erations need to be controlled by the user of Noarr. The bag
merely specifies indexing semantics on top of a pointer. How-
ever, extending this abstraction to a more complex behavior
in the future is technically possible.

2.2 Running examples
In this section, we detail two running examples that we
will use to demonstrate the syntax and the benefits of the
proposed abstraction in the later sections.

2.2.1 Matrix multiplication. It presents one of the most
profound problems with many applications. Being a well-
studied problem, we can draw on the known optimizations
and express them using our abstractions. We rely on the
naïve O(𝑁 3) algorithm, which computes elements of the
output matrix as dot products. Having square matrices A and
B (of the size 𝑁 2), the product matrix C may be computed as:
f o r ( s i z e _ t i = 0 ; i < N; ++ i ) {

f o r ( s i z e _ t j = 0 ; j < N; ++ j ) {
C[ i ] [ j ] = 0 ;
f o r ( s i z e _ t k = 0 ; k < N; ++k ) {

C[ i ] [ j ] += A[ i ] [ k ] ∗ B[ k ] [ j ] ;
} } }

The individual elements of the output matrix can be com-
puted independently (even concurrently), and the internal
dot products are both associative and commutative, allowing
more fine-grained optimizations. Typical optimizations are
based on tiling, which requires splitting the outer two loops
and may also enable efficient parallel processing [11].

2.2.2 Histogram. An approximation of the distribution
of numeric data often used in data analysis and related fields
(e.g., machine learning or similarity search). The objective
is to assign data elements into predefined bins (categories)
and count the number of elements in each bin. Having his-
togram H and a function that finds a bin for each element,
the algorithm can be coded simply as:
f o r ( s i z e _ t i = 0 ; i < N; ++ i )

H[ f i n dB i n ( da t a [ i ] ) ] += 1 ;

The histogram algorithm is particularly interesting from
the perspective of parallel computing [2]. When the input
elements are processed concurrently, the histogram updates
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must be synchronized (e.g., by atomic instructions). If the
number of bins is low and the level of concurrency high
(typically on a GPU), the histogram updates will become a
bottleneck. In such cases, sophisticated methods of priva-
tization (and subsequent merging of private copies) could
be beneficial. Another perspective is that a histogram can
be computed as a bin-wise parallel reduction (with per-bin
data filtering). These issues will help us to demonstrate the
capabilities of the proposed abstraction.

3 Proposed Abstraction
We propose an abstraction for flexible traversal of regular
data structures. This abstraction is implemented as an exten-
sion (named Noarr Traversers) of the C++ library Noarr. The
extension applies the fundamental Noarr approach of speci-
fying data layouts via a composition of elemental first-class
objects (called proto-structures in Noarr) to the transforma-
tions of traversal orders.
A traverser is a first-class object that represents an index

space and its corresponding traversal order. It is constructed
from one or multiple Noarr structures to be traversed to-
gether. The traverser constructs the base index space from
the combination (unification) of dimensions of the provided
structures. The user can then provide a callable object (usu-
ally a lambda expression) that specifies the action performed
on elements indexed by each point of the index space. For a
single structure, this corresponds to the for-each algorithm.
For two structures presenting the same set of dimensions
(but not necessarily the same layout), the traverser can be
used, for example, to copy the values from one structure to
the other, which can implement transposition — this gener-
alizes to other common algorithms such as reduction if we
transform the dimensions of the input structures accordingly.

To alter the traversal order of the index space, the traverser
can be transformed by applying a transformation structure,
producing a new traverser. The transformation structure is
assembled from elemental first-class proto-structures in a
similar way to Noarr structures. The proto-structures defined
for this purpose represent basic loop transformations such as
loop interchange, strip-mining, tiling, z-curve, or more gen-
eral transformations such as introducing new loops, binding
some iteration dimensions to specific indices, or restricting
their spans. The transformation structure can be defined
separately and reused for different traversers.

Transforming the traversers by applying a separate object
from the outside enables a simple way to design traversal-
agnostic algorithms. We can then create multiple versions of
the same computation by applying different transformations
to the same traverser.

A traverser can also be used as an argument to a parallel
executor, which then performs the traversal in parallel (we
have implemented one based on TBB and one for CUDA, as
examples). The parallelization is guided by one or multiple

dimensions of the traverser, and each started thread is pro-
vided with an inner traverser representing the traversal of its
corresponding traversal section that is usually constructed
via binding some dimensions to specific values.

3.1 Introducing syntax for traversers
A traverser is constructed and executed in three steps that
also denote the three key principles:

1. The constructor of the traverser is given one or more
Noarr structures and deduces the base index space from
them by unifying their dimensions.

2. A transformation is applied to the base index space
via the .order(transformation)method. It changes
the traversal order of the individual points of the index
space. This step is optional and possibly reoccurring
(composing the provided transformations into one).

3. The .for_each(action) method is called, where the
actual body of the traverser (usually a lambda function)
is injected. This provides a uniform interface that can
be used for sequential iteration and parallel processing.

When constructed using a single structure, the traverser
iterates through the cartesian product of the dimensions of
that structure and calls the provided lambda function (body)
with a tuple-like state object. The state object represents a
point in the index space that can be used to access the corre-
sponding element of the traversed structure. The following
example performs an element-wise initialization of structure
c (like a traditional for-each algorithm):
noar r :: t r a v e r s e r ( c ) . f o r _ e a ch ( [ = ] ( au to s t a t e ) { c [ s t a t e ] = 0 ; } ) ;

The traverser can properly combine the indexing space
from multiple Noarr structures by creating a cartesian prod-
uct of different dimensions while unifying matching dimen-
sions based on their names (template identifiers). If we name
indices of three matrices a(𝑖, 𝑘), b(𝑘, 𝑗 ), and c(𝑖, 𝑗 ) the matrix
multiplication can be written simply as:
noar r :: t r a v e r s e r ( a , b , c ) . f o r _ e a ch ( [ = ] ( au to s t a t e )

{ c [ s t a t e ] += a [ s t a t e ] ∗ b [ s t a t e ] ; } ) ;

The traverser extracts dimensions 𝑖, 𝑘, 𝑘, 𝑗, 𝑖, 𝑗 , which (after
unification) yields the indexing space to be the cartesian prod-
uct of (𝑖, 𝑘, 𝑗). In other words, the index space corresponds
to the three nested loops of the naïve matrix multiplication.

The traverser and its index space can be transformed using
the order()method, which takes a transformation structure
as an argument. In the case of matrix multiplication, the most
common transformation would be to perform tiling — i.e.,
splitting each of the indices into an index of a block (of fixed
size) and a local index within the block. An example of such
transformation is presented in the following.
auto b l o c k s = noar r :: s t r i p _m in e< ' i ' , ' I ' , ' i '>( noa r r :: l i t<16>)

^ noar r :: s t r i p _m in e< ' k ' , 'K ' , ' k '>( noa r r :: l i t<16>)
^ noar r :: s t r i p _m in e< ' j ' , ' J ' , ' j '>( noa r r :: l i t<16>) ;

noa r r :: t r a v e r s e r ( a , b , c ) . o rde r ( b l o c k s ) . f o r _ e a ch ( [ = ] ( au to s t a t e )
{ c [ s t a t e ] += a [ s t a t e ] ∗ b [ s t a t e ] ; } ) ;

45



Pure C++ Approach to Optimized Parallel Traversal of Regular Data Structures PMAM ’24, March 3, 2024, Edinburgh, United Kingdom

Note that the transformation structures can be declared
separately so they can be reused for different traversers (and
vice-versa). The strip_mine template performs tiling where
the first index denotes the dimension to be tiled, and the
second two denote the newly created dimensions (existing
dimensions are replaced). The tiling is followed by hoisting,
which moves the first of the two created dimensions into the
outermost traversal loop. The noarr::lit<16> ensures the
constant tile size is embedded into the type.
In some situations, it is beneficial to iterate over whole

sections of the index space instead of single values. A typical
example of that is accumulating a portion of the dot product
corresponding to a given block in a local variable (a regis-
ter) to reduce the number of memory operations. In such
cases, we replace for_each call with templated for_dims,
which takes a list of dimensions that represent the sections
to be traversed. It creates an instance of an inner traverser
corresponding to the current index space section. The inner
traverser offers the same traverser interface, so it can be
used for an internal traversal over the given section without
changing the body of the traversal.
noar r :: t r a v e r s e r ( a , b , c )

. o r de r ( b l o c k s )

. t emp l a t e f o r_d ims< ' I ' , ' J ' , 'K ' , ' j ' , ' i '>(
[ = ] ( au to i n n e r _ t r a v ) {

au to r e s = c [ i n n e r _ t r a v . s t a t e ( ) ] ;
i n n e r _ t r a v . f o r _ e a ch ( [ = , &r e s ] ( au to s t a t e ) {

r e s += a [ s t a t e ] ∗ b [ s t a t e ] ;
} ) ;
c [ i n n e r _ t r a v . s t a t e ( ) ] = r e s ;

} ) ;

There are many transformations already implemented in
Noarr. That includes renaming and reordering the indices,
restricting iteration spans and slicing, fixing indices in par-
ticular dimensions, and some more complex operations de-
signed for parallel processing. Details can be found in our
replication package2.

4 Parallel Execution
Besides the benefits granted by the iteration order agnos-
ticism of traversers, the abstraction can easily be extended
to parallel processing. A parallel for-each example would be
trivial, so we start with parallel reduction.
auto in = make_bag ( s c a l a r<char> ( ) ^ s i z e d _ v e c t o r< ' i '>( s i z e ) , i ) ;
au to out = make_bag ( s c a l a r<s i z e _ t> ( ) ^ a r r ay< ' v ' , 256> ( ) , o ) ;
noa r r :: t r a v e r s e r ( i n ) . f o r _ e a ch ( [ = ] ( au to s t a t e ) {

out [ noar r :: i d x< ' v '>( i n [ s t a t e ] ) ] += 1 ;
} ) ;

The demonstration is based on the histogram running
example (Section 2.2). The sequential implementation (pre-
sented above) comprises a simple for-loop. The in variable
is a bag (a wrapper that combines Noarr structure with mem-
ory pointer i) holding the input (vector of char) and out is
a bag holding the histogram (256 bins stored in o).
We have decided to design the parallel executors as ex-

ternal tools that take a traverser as an argument instead
2https://github.com/jiriklepl/PMAM2024-artifact

of extending the traverser interface. This approach is more
modular and can be easily extended by implementing new
parallel executors using various libraries (C++ standard li-
brary, TBB [13], or OpenMP [7]). As a proof of concept, we
present a TBB implementation of the parallel reduce algo-
rithm wrapper for Noarr traversers.

noar r :: t bb_ r educe_bag (
noar r :: t r a v e r s e r ( i n ) ,
[ ] ( au to ou t _ s t a t e , au to &o u t _ l e f t ) {

o u t _ l e f t [ o u t _ s t a t e ] = 0 ;
} ,
[ i n ] ( au to i n _ s t a t e , au to &o u t _ l e f t ) {

o u t _ l e f t [ noar r :: i d x< ' v '>( i n [ s t a t e ] ) ] += 1 ;
} ,
[ ] ( au to ou t _ s t a t e , au to &o u t _ l e f t , c on s t auto &ou t _ r i g h t ) {

o u t _ l e f t [ o u t _ s t a t e ] += o u t _ r i g h t [ o u t _ s t a t e ] ;
} ,
out ) ;

The tbb_reduce_bag algorithm template takes five argu-
ments. Besides the traverser and the output bag, there are
three lambdas — the first initializes the output structure to
zero, the second performs the element-wise reduction, and
the third performs the merging of privatized copies of the
output structure (histogram).

The reduction is performed automatically over the whole
space defined by the traverser, but only the first dimension is
processed concurrently. The user can explicitly changewhich
dimension is the first by applying .order to the traverser,
thus affecting the parallel decomposition.
Privatization of the output structure is performed trans-

parently to prevent data collisions. If the out structure is
parametrized by the iterated dimension, then the different
workers access different places in the memory, and no pri-
vatization is necessary. Otherwise, the algorithm creates a
local copy of the out structure for each worker thread as
needed (managed by tbb::combinable), allocating appro-
priate memory when the given copy is used for the first time.
The copies are merged at the end using the third lambda.

4.1 Extension to GPU (CUDA traverser)
One of the key advantages of the proposed abstraction is that
it aims at maximal compatibility with standard C++ compil-
ers. This simplifies and expedites its application within other
parallel environments like CUDA, which employs its custom
compiler that adds some extensions but remains compati-
ble with C++ language. We present an adaptor that allows
applying traversers for kernel execution and one particular
construct that becomes especially useful when privatizing
data structures in shared memory.

CUDA framework is based on the data-parallel paradigm
and uses thread abstraction to achieve parallelism. CUDA
threads are spawned collectively (forming a grid) executing
a single piece of code (kernel). Each thread is given index
structures (threadIdx, blockIdx), which identify a data el-
ement to be processed by the thread. Additionally, threads
are grouped into thread blocks so they can cooperate more
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closely (e.g., via shared memory or using faster synchroniza-
tion primitives). The indexing structures (for threads and
blocks) can encompass up to three dimensions, so the model
is more convenient for programmers when dealing with
multidimensional data (like matrices or 3D grids).
From the perspective of traversers, the CUDA grid is

mapped to selected loop dimensions. The original traverser
can be transformed to achieve the desired mapping — i.e.,
which parts of the traversal are executed (possibly) concur-
rently and which are handled inside a CUDA thread. The
following code represents a kernel that computes the his-
togram (stored in global memory) using atomic updates (a
typical implementation) and where each thread computes
multiple input values. The aggregation of work per thread
is one of the common optimizations. In this case, it could
produce more coalesced loads from global memory and pre-
pare grounds for more elaborate optimizations like shared
memory privatization, which we discuss further in the paper.
t emp l a t e<c l a s s InTrav , c l a s s In , c l a s s Out>
__g l o b a l _ _ vo id h i s tog ram ( InTrav i n_ t r a v , In in , Out out ) {

i n _ t r a v . f o r _ e a ch ( [ = ] ( au to s t a t e ) {
au to va lue = in [ s t a t e ] ;
atomicAdd (& out [ noar r :: i d x< ' v '>( v a l u e ) ] , 1 ) ;

} ) ;
}

in_trav is an inner traverser created from the traverser
of the input data in the kernel invocation (see below), and it
covers the data traversed by a single thread. The invocation
is handled as follows.
auto i n _ b l k _ s t r u c t = i n _ s t r u c t

^ noar r :: i n t o _ b l o c k s< ' i ' , 'B ' , ' t '>( BLOCK_SIZE )
^ noar r :: i n t o _ b l o c k s< 'B ' , ' b ' , ' x '>( ELEMS_PER_THREAD ) ;

au to in = noar r ::make_bag ( i n _ b l k _ s t r u c t , i n _ p t r ) ;
au to out = noar r ::make_bag ( o u t _ s t r u c t , o u t _ p t r ) ;

au to c t = noar r :: c uda_ th r e ad s< ' b ' , ' t '>( noa r r :: t r a v e r s e r ( i n ) ) ;
h i s tog ram<<<c t . g r id_d im ( ) , c t . b lock_d im ( )>>>( c t . i nne r ( ) , in , out ) ;

The essential part of the mechanism is hidden in the func-
tion cuda_threads that automatically associates the dimen-
sions of the traverser with the dimensions of the CUDA grid
— in this case, letting the b be the index of the block and
t the index of the thread within the block. The resulting
cuda traverser is then used to provide kernel invocation pa-
rameters by grid_dim() and block_dim() calls and infer
the inner traverser that is passed as an argument of the ker-
nel. The inner traverser binds its b and t dimensions to the
blockIdx and threadIdx structures respectively, and allows
(in-thread) iteration over the remaining dimension x.

Let us emphasize that the execution, as well as internal be-
havior (how many items are processed by a thread), are both
governed by the traverser. That permits a certain level of ag-
nosticism in the parallelization of algorithms. Furthermore,
the composable nature of traversers makes it possible to sep-
arate the blocking operations required for CUDA execution
to be prepared in a separate structure applied by order()
method. Furthermore, since the kernel invocation is a com-
mon operation, Noarr also provides amethod simple_run(),
which can be used instead as a shortcut.

4.2 Shared memory privatization
Massively parallel systems are particularly susceptible to
intensive data synchronization. In the histogram kernel
presented in the previous section, the many simultaneous
atomic updates cause a bottleneck. Even if the updates are
distributed evenly, collisions are unavoidable since the his-
togram has much fewer bins than the GPU has cores.

A typical solution to this problem is data structure priva-
tization — i.e., creating multiple copies of the histogram so
each thread (or a small group of threads) has a separate copy.
In this case, the optimal solution is to create a copy for each
warp lane (32 copies per thread block) and place it in the
shared memory. This way, threads running in lockstep have
no collisions among themselves. The result aggregation in
the shared memory significantly decreases the number of
global memory accesses. Then, the individual copies need to
be merged into the final copy in the global memory before a
thread block concludes its execution.
The shared memory has a specific hardware design — it

is divided into 32 independent memory banks (consecutive
32-bit words are placed in banks in a round-robin fashion),
so each thread in the warp can access a different bank. Con-
current operations accessing one bank are serialized (except
for special cases like data broadcast), which delays an entire
warp. Histogram stored in a contiguous block in the shared
memory would span over all banks, so concurrent updates
would still cause bank conflicts (and thread serialization)
even if the structure is privatized. The solution is to place
each histogram copy into a separate bank, which requires a
rather specific stridden layout pattern.

We introduce noarr::cuda_striped<N>, a helper struc-
ture tailored particularly for shared memory. The parameter
𝑁 denotes the number of copies distributed across the banks.
The optimum is 𝑁 = 32 (i.e., one copy per bank); however,
picking a lower 𝑁 may be necessary if 32 copies would not
fit in the memory. The kernel could be optimized using a
striped structure shm_s, as follows. (For the sake of brevity,
we omit initialization, reduction, and the necessary barriers.)
t emp l a t e<c l a s s InT , c l a s s I , c l a s s ShmS , c l a s s O>
__g l o b a l _ _ vo id h i s tog ram ( InT in_ t r a v , I in , ShmS shm_s , O out ) {

e x t e r n __shared__ char shm_ptr [ ] ;
au to shm_bag = make_bag ( shm_s , shm_ptr ) ;
/ / i n i t i a l i z e sha red memory ( z e ro the b i n s )
i n _ t r a v . f o r _ e a ch ( [ = ] ( au to s t a t e ) {

au to v a l = in [ s t a t e ] ;
atomicAdd (&shm_bag [ noar r :: i d x< ' v '>( v a l ) ] , 1 ) ;

} ) ;
/ / r educe shm cop i e s and wr i t e the h i s tog ram in g l o b a l memory

}

Note that the atomicAdd merely uses the bag allocated in
the shared memory, and the shm_s structure transparently
ensures the appropriate privatized copy is accessed (based
on the threadIdx value). The construction of shm_s struc-
ture is performed externally (as well as the shared memory
allocation) in our example, so the kernel is more generic, and
the shared memory utilization can be subjected to external
tuning; however, if required, it can be constructed internally.
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/ / ' i n ' and ' out ' match the p r e v i ou s example
auto c t = noar r :: c uda_ th r e ad s< ' b ' , ' t '>( noa r r :: t r a v e r s e r ( i n ) ) ;
au to shm_s = o u t _ s t r u c t ^ noar r :: c u d a _ s t r i p e d<NUM_COPIES> ( ) ;
h i s tog ram<<<c t . g r id_d im ( ) , c t . b lock_d im ( ) ,

shm_s | noar r :: g e t _ s i z e ( )>>>
( c t . i nne r ( ) , in , shm_s , out ) ;

The shared memory needs to be initialized when each
thread block starts — in this particular case, all histogram
copies need to have their bin counters zeroed. The most effi-
cient way is for all threads (of a block) to cooperate on initial-
ization evenly. For this purpose, we use noarr::cuda_step,
which automatically distributes the work among the avail-
able threads. The cuda_step object is constructed using the
rank of the current thread and the number of threads coop-
erating on the stripe provided by current_stripe_cg.
auto s u b s e t = noar r :: cuda_ s t ep ( shm_s . c u r r e n t _ s t r i p e _ c g ( ) ) ;
noa r r :: t r a v e r s e r ( shm_bag ) . o rde r ( s u b s e t ) . f o r _ e a ch (

[ = ] ( au to s t a t e ) { shm_bag [ s t a t e ] = 0 ; } ) ;

A different access pattern is required at the end, where
the histogram copies are merged. In this case, the threads
cooperatively iterate over the histogram, processing the bins
concurrently. Each bin is summed up across the copies and
atomically added to the global structure. The num_stripes
method returns the number of copies. The difficulty here is
that we cannot access the shared memory bag directly since
it would direct each thread to its corresponding copy, so the
actual index (state) needs to be computed as follows.
noar r :: t r a v e r s e r ( out ) . o rde r ( noa r r :: c ud a_ s t e p_b l o ck ( ) )

. f o r _ e a ch ( [ = ] ( au to s t a t e ) {
s i z e _ t sum = 0 ;
f o r ( s i z e _ t i = 0 ; i < shm_s . num_s t r i pe s ( ) ; ++ i ) {

sum +=
shm_bag [ s t a t e . t emp l a t e with<noar r :: c u d a _ s t r i p e _ i n d e x>( i ) ] ;

}
atomicAdd (& out [ s t a t e ] , sum ) ;

} ) ;

Granted, the code required to access all private copies
from each thread is rather complex. However, this type of
access is required only for the final reduction, and such an
operation can be easily wrapped in a templated algorithm,
so the regular user would not have to implement it explicitly.

5 Evaluation
The evaluation has two objectives: We would like to demon-
strate that the proposed abstraction has no additional per-
formance overhead, and we discuss its qualities from the
perspective of the programmers using simple code metrics.

The most important results are presented in the remainder
of this section. The complete set of experiments and results
is available in the replication package.

5.1 Methodology and datasets
The presented experiments were measured on Intel Xeon
Gold 6130 (CPU) and Tesla V100 PCIe 16GB (GPU) com-
piled with GCC 12.2 and NVCC 12.2. Each test comprised
one warmup run and 10× subsequent measured runs on the
EXTRALARGE dataset. The wall time of the tested kernel was

measured by a high-resolution system clock. As expected,
the variance of the measured times was very low (below 1%),
so we present only the mean values.
We used Polybench/C-4.2.13 and Polybench/GPU-1.04[9]

benchmark suites for the performance evaluation. The Poly-
bench/C suite (CPU kernels) contains a set of 30 algorithms
commonly used in scientific high-performance computing,
such as problems from linear algebra, stencils, or data mining.
The Polybench/GPU suite contains a set of 21 algorithms
mostly from the Polybench/C suite, with the addition of some
algorithms that are more specific to GPU computing (such as
2DConvolution). For Polybench/GPU, we have implemented
5 algorithms as a representative subset for the evaluation.

5.1.1 Threats to validity. The greatest concern is whether
our Noarr implementation is comparable with the original
Polybench code. To mitigate this threat to validity, we have
imposed several rules that govern the transcription of Poly-
bench kernels into their Noarr counterparts:

1. All data layouts are equivalent; each dimension of a
data structure is represented by noarr::vector.

2. The loops from the baseline implementation are di-
rectly mapped to equivalent Noarr iterative constructs
(such as methods for_each and for_dims).

3. Kernels are structurally equivalent, and their compu-
tation statements are in the same order and rewritten
into an equivalent form.

4. Accesses into data structures are at the equivalent
computation points.

5. The time measurements and device synchronizations
(for GPU) take place at equivalent program points.

Rewriting the algorithms according to these requirements
is not easily automatable and it takes an extensive program-
ming effort. However, as a sanity check, we have included
scripts that check whether the implementations produce the
same result.

5.2 Performance results
The performance results are presented as a relative speedup
of Noarr implementations over their corresponding plain
C/C++ (or CUDA) counterparts. Speedups above 1× indicate
that the Noarr implementation enabled additional compiler
optimizations, whereas speedups below 1× indicate possible
overhead or that Noarr prevented some optimizations.
Figure 2 summarizes the results of the entire Polybench

in sequential execution. Most of the algorithms indicate that
Noarr implementation has the same performance as plain C.
There are four outliers where Noarr performed better and
four where it performed worse than the baseline. Examining
the compiled code indicates that the differences are caused
by the compiler selecting a different optimization path.

3https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1
4https://github.com/sgrauerg/polybenchGpu
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Figure 2. Comparing Noarr to plain C on Polybench/C-4.2.1

Figure 3. Comparing selected algorithms Noarr vs. plain
C/C++/CUDA: tuned for performance (left), TBB paralleliza-
tion (middle), GPU parallelization (right)

Figure 3 (left) presents the speedups of a selected subset of
Polybench algorithms that were subjected to tuning (apply-
ing tiling and loop reordering). The middle graph presents
the results of selected algorithms with their outermost loop
in the critical segment parallelized using TBB. The GPU
results (using CUDA traverser) are presented in the right
graph of Figure 3. The results indicate that neither the ad-
ditional traverser transformations applied in Noarr nor the
parallelization extensions have any significant overhead over
direct implementation in C, TBB, and CUDA, respectively.
The parallel processing on a multi-socket CPU host is much
more volatile, so we present the boxplots of all ten results
instead of the mean value in the TBB graph.

5.3 Discussing code design aspects
Comparing the loop transformation approaches from the
code design perspective is very challenging for many rea-
sons. A user study might be the best way, but it is currently
beyond our capabilities as it would require the cooperation
of many users. For the basic insight, we provide a discussion
comparing three typical approaches (annotations, DSL, and

native C++ with the assistance of Noarr). Details about our
selection of the compared technologies are in Section 6. We
use the matrix multiplication running example optimized for
memory transfers by blocking.

1 f l o a t A[ I ] [K ] , B [K ] [ J ] , C[ I ] [ J ] ;
2
3 f o r ( i = 0 ; i < I ; i ++)
4 f o r ( j = 0 ; j < J ; j ++)
5 f o r ( k = 0 ; k < K ; k++)
6 Comp : C[ i ] [ j ] += A[ i ] [ k ] ∗ B[ k ] [ j ] ;
7
8 a f f i n e (Comp , { [ i , j , k ]−>[ i , k , j ] } )
9 a f f i n e (Comp , { [ i , j , k ]−>[ i1 , j 1 , k1 , i 2 , j 2 , k2 ] : i 1 =[ i / 3 2 ] and i 2 = i %32

and j 1 =[ j / 3 2 ] and j 2 = j %32 and k1 =[k / 3 2 ] and k2=k %32 } )

listing 1. Loopy (using affine compiler directives)

Listing 1 presents an implementation that relies on anno-
tations. It keeps the code quite close to the original (plain C)
implementation since the entire transformation is described
by separate affine constructs. On the other hand, these
constructs are quite complex to understand at first glance
and limited to affine transformations only.

1 Ha l i d e :: B u f f e r< f l o a t> A{ I , K } , B {K , J } , C { I , J } ;
2
3 Ha l i d e :: Func Comp { "Comp" } ;
4 Ha l i d e :: Var i { " i " } , j { " j " } ;
5 Ha l i d e ::RDom k { 0 , K } ;
6
7 Comp ( i , j ) = C ( i , j ) ; / / I n i t i a l v a l u e s
8 Comp ( i , j ) += A( i , k ) ∗ B ( k , j ) ; / / Mat r ix m u l t i p l i c a t i o n
9
10 Ha l i d e :: Var i 2 { " i _ i n n e r " } , j 2 { " j _ i n n e r " } ;
11 Ha l i d e ::RVar k1 { " k_ou t e r " } , k2 { " k_ inne r " } ;
12
13 Comp . update ( ) . r e o r d e r ( i , k , j )
14 . t i l e ( i , j , i 2 , j 2 , 3 2 , 3 2 ) . s p l i t ( k , k1 , k2 , 3 2 ) ;
15
16 Comp . r e a l i z e (C ) ;

listing 2. Halide (DSL using methods on function stages)

The Halide implementation (Listing 2) represents the DSL
approach. Halide was designed for regular operations like
matrix multiplication; thus, the realization is easy, albeit
a little more verbose than Loopy and Noarr. On the other
hand, withmore complex data dependencies or irregular data
traversals (for instance, the Gram-Schmidt algorithm from
Polybench), Halide implementation gets quite cumbersome.

1 auto A = bag ( s c a l a r< f l o a t> ( ) ^ a r r ay< ' k ' , K> ( ) ^ a r r ay< ' i ' , I> ( ) ) ;
2 au to B = bag ( s c a l a r< f l o a t> ( ) ^ a r r ay< ' j ' , J> ( ) ^ a r r ay< ' k ' , K> ( ) ) ;
3 au to C = bag ( s c a l a r< f l o a t> ( ) ^ a r r ay< ' j ' , J> ( ) ^ a r r ay< ' i ' , I> ( ) ) ;
4
5 auto my_order = i n t o _ b l o c k s< ' i ' , ' I ' , ' x '> ( 3 2 ) ^
6 i n t o _ b l o c k s< ' j ' , ' J ' , ' y '> ( 3 2 ) ^
7 i n t o _ b l o c k s< ' k ' , 'K ' , ' z '> ( 3 2 ) ^
8 r e o r d e r< ' I ' , 'K ' , ' J ' , ' x ' , ' z ' , ' y '> ( ) ;
9
10 t r a v e r s e r (A , B , C ) . o rde r ( my_order ) . f o r _ e a ch ( [ & ] ( auto s t a t e ) {
11 C[ s t a t e ] += A[ s t a t e ] ∗ B[ s t a t e ] ;
12 } ) ;

listing 3. Native C++ with Noarr traversers

Finally, Listing 3 presents our implementation in Noarr.
The complexity is comparable both with Loopy and Halide,
though the assembling of structures and traverser ordering
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may seem a little unusual for mainstream C++ programmers
since it uses functional programming patterns. The greatest
benefit is that the type constructs for structures and order-
ings can be easily reused, which simplifies the design of
similar data structures and the optimization of similar algo-
rithms. Furthermore, this code can be compiled by any C++
standard-compliant compiler without extra preprocessing.

To assess the implementation overhead of Noarr compared
to simple C code, we extracted the corresponding kernel
codes delimited by the scop pragmas and formatted them
using clang-format. We then compared them using coding
metrics. On average, a Noarr implementation contains 11.28%
more lines of code and 31.95% more individual code tokens
than the baseline implementation. When compressing each
kernel with gzip, the average Noarr implementation is 41.19%
larger than the C baseline. This figure drops to 28.67% when
comparing the gzipped tar archives containing all kernels.
These results demonstrate that direct reimplementation us-
ing the proposed abstraction increases the size of the source
code by approximately a third. However, the added code
agnosticism makes the proposed approach superior when
there is a need for at least two versions of the same algorithm
(eliminating the need for code duplication) or when frequent
modifications in the traversal order are required (handled by
updating just the transformation structure).

6 Related Work
Optimization based on loop transformations has been ad-
dressed from various perspectives in vast research materials,
namely in the fields of compilers, vectorization, autotun-
ing, code generators, and optimizations of particular scien-
tific computations. Contemporary compilers use sophisti-
cated loop optimizers based on the polyhedral model, such
as Graphite in GCC [16] or Polly in LLVM [10]. However,
these optimizers are limited by the lack of information about
the effects of the transformations on the optimized metric.
One of the first papers [6] that addressed the loop trans-

formations from the perspective of optimizing memory oper-
ations is over 20 years old. It proposed using Ehrhart polyno-
mials to compute how many times a single index reference
is computed in a loop. Since then, several models based on
static predictions have been created [10, 16]. The most recent
innovations focus on elaborate multi-objective scheduling
for loop transforms [4].
Autotuning methods have also addressed this problem

by generating various variations of the tuned program and
evaluating them either by sophisticated models or by mea-
suring execution metrics such as execution time. Modern
autotuning tools are often built on top of existing optimizers
and employ methods from the machine-learning domain —
for instance, Wu et al. [18] presented a tuning tool based on
Polly [10] that employs Bayesian optimizations.

6.1 Domain Specific Languages
Many works address the issue of separating the specifics of
memory access patterns and traversals from the algorithm
itself by defining the algorithm via some DSL with a simpli-
fied model that facilitates applying various transformations.
We have selected two representatives used in state-of-the-art
production code. Our approach can be superficially related to
theirs, with the fundamental distinction of their approach re-
lying on a custom compilation pipeline and a runtime library,
while Noarr is compiled by standard C++ compilers.

The Halide language [14] follows a decoupling approach
similar to our combination of traversers and proto-structures.
Halide primarily focuses on image processing, but their ap-
proach found use even for optimizing deep learning algo-
rithms, as shown by the work of Apache TVM [5]. In their
approach, the definition of an algorithm is followed by a
schedule that represents various traversal transformations.
The schedules roughly correspond to our idea of traversers
and their transformations via proto-structures, but they lack
any support for more complex or user-defined traversals
(such as the z-curve).

6.2 Annotations
Another approach employed by various tools and compiler
extensions uses code annotations that suggest the desired
way of handling data structure layouts or loop transforma-
tions. Loopy [12] is a system for loop transformations de-
signed as an extension to the LLVM compiler, which is per-
haps the closest to our research since it relies on programmer-
guided loop transformations. Building upon a polyhedral
compilation library, it provides custom affine transforma-
tions and testing for the legality of loop transformation.

6.3 Native tools
The projects closest to our approach can be characterized by
being built using abstractions provided by the C++ language
itself and thus allowing for more seamless interaction with
other C++ features, various intrinsics, or user-defined ab-
stractions. This also avoids the necessity for custom develop-
ment toolkits in favor of existing tools for C++ development,
greatly reducing requirements on maintenance.

The C++ Standard Library already provides an abstraction
for different traversal options via its ranges library. How-
ever, the library is not designed for parallelism and does not
support multidimensional data layouts. The most common
layouts of multidimensional arrays are expressible via the
mdspan class template, but this abstraction lacks generality
and does not provide a way of expressing traversals.

The NVIDIA Thrust library [3] provides routines for par-
allel code execution on both CPU and GPU. It is a template
library based on the C++ Standard Library. While provid-
ing plenty of freedom in defining systems-agnostic con-
current traversals via functions like thrust::for_each or
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thrust::reduce, their approach is based on an iterator de-
sign pattern restricted to 1D traversals. Furthermore, Thrust
is restrained to rather high-level use cases by not exposing
low-level CUDA API (such as thread or block index).

Similarly to Thrust, Kokkos [17] and RAJA [1] provide rou-
tines for common parallel idioms (for_each, reduce, scan)
and they serve as portability layers for many systems such
as HIP, OpenMP, CUDA or SYCL. However, they primarily
focus on platform-agnosticism and do not provide the neces-
sary abstractions for expressing traversal transformations.

7 Conclusion
We have presented a novel object-oriented approach for
user-guided loop transformations focusing on the traver-
sal of regular data structures. We base the abstraction on
the Noarr library, expanding the Noarr paradigm for layout
design to encompass loop transformations. This expansion
significantly enhances the versatility of Noarr, enabling users
to optimize memory access patterns by altering either the
data structure layout, the traversal pattern, or both — all
via a unified mechanism of applying composable first-class
transformation objects. This approach promotes code inde-
pendence (emphasizing separation of concerns) and reusabil-
ity. It also simplifies semi-automated experimentation and
performance tuning. Building the abstraction on top of Noarr
(which automatically handles correct indexing and iteration
ranges) further simplifies the transformation design process
and makes it less prone to errors.
Besides the benefits related to memory access optimiza-

tions, the traverser abstraction is particularly useful for par-
allel processing. We demonstrate its utility with two im-
plementation examples (TBB and CUDA) as proof of con-
cept. Furthermore, we introduce an extension of Noarr that
handles the management of replicated structures in CUDA
shared memory. This functionality is particularly relevant in
General-Purpose computing on Graphics Processing Units
(GPGPU) programming.
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