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Malostranské náměstı́ 25, 118 00 Prague 1, Czech Republic

{bulej|horky|tuma}@d3s.mff.cuni.cz

Petr Tůma

Abstract—Accurate performance testing may require many
measurements and therefore many machines to execute on. When
many machines are needed, the cloud offers a tempting solution,
however, measurements conducted in the cloud are generally con-
sidered unstable. In the context of comparing performance of two
workloads, we propose a measurement procedure that improves
accuracy by executing the workloads concurrently and using the
measurements to filter outside interference. Depending on the
platform used, experiments show average accuracy improvement
ranging from 114% to 683% over sequential measurements on
workloads running the ScalaBench suite with the Graal compiler.

I. INTRODUCTION

The increasing use of agile development practices brings
more emphasis on continuous software testing, especially when
relying on continuous integration and deployment (CI/CD).
Ideally, this testing should focus not only on functional
correctness, but also on performance, in particular to prevent
unintended performance degradation between commits [3].

Particular to performance testing is the inherent trade-off
between accuracy and test execution time. This is a problem
when automating performance test execution and evaluation,
which is necessary for CI/CD. While long execution time
provides better results due to averaging of noise, it is expensive
both in terms of time and computing resources, and may
easily become impractical if the speed of development exceeds
the performance testing capacity. Shorter test execution time
may produce false alarms or lose sensitivity – both highly
undesirable outcomes.

Existing strategies to alleviate this problem include testing
only subsets of software versions and bisecting when a
performance change has been detected [9], or identifying
changes that are likely to impact performance [16]. Orthogonal
to these strategies, performance testing can also be effectively
parallelized, especially if there are multiple tests to be ex-
ecuted with each version, because these can be built and
executed independently. However, neither test reduction nor test
parallelization entirely removes the problem of infrastructure
capacity limits.

In this context, an obvious question to ask is whether
performance testing can be offloaded to the cloud, just like
other CI/CD tasks. However, the answer is not clear – the cloud
is known to provide affordable computing capacity, but not

necessarily the performance stability required for performance
testing. In fact, performance measurements in the cloud are
known to be noisy, in part due to overheads associated with
virtualized execution, in part due to interference from neighbor
workloads.

Our work contributes a novel performance measurement
procedure, dubbed duet measurement, which improves mea-
surement accuracy in virtualized environment and thus makes
performance testing in the cloud more effective. We evaluate
the approach on three different instance types in three different
zones of the Amazon Elastic Cloud and on a reference bare
metal infrastructure. For the selected performance testing
workloads and depending on the platform used, the accuracy
improvement expressed as reduction in mean confidence
interval width over common sequential measurements ranges
from 114% to 683%. While the approach is general, we
demonstrate its use on specific performance tests used with
the open source Graal compiler project.

In the rest of the paper, Section II provides background on
performance testing and cloud specific challenges, Section III
provides description of the approach, and Section IV presents
and discusses results of experimental evaluation. We review
related work in Section V and conclude the paper in Section VI

II. BACKGROUND

From the many forms of performance testing, we focus on the
task of detecting performance changes between two versions of
a software project. A common approach is to use a benchmark
workload to exercise both versions of the software project, and
to measure and compare the workload execution times. To
accommodate the variability inherent to the observations, the
comparison relies on statistical hypothesis testing.

Different sources of variability can influence the observed
execution times at different granularities, and the performance
testing procedure must ensure that significant sources of
variability are sufficiently represented in the measured data.
Benchmarks therefore repeatedly execute the same task and
measure the time of each iteration. This captures variability
caused by factors such as scheduling decisions, processor
caches, or background load. In addition, benchmarks are
executed repeatedly to obtain sequences of iteration times from
multiple benchmark runs. This captures variability caused by
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factors such as memory mapping or decisions of the managed
platform (e.g. just-in-time compilations or garbage collections),
which change between runs but not within a single run.

To avoid excess measurement variability, benchmarks are
typically executed on dedicated machines configured to disable
disruptive features such as advanced power management. This
requires degree of control over the experimental platform that
is often not available in the cloud. Furthermore, cloud providers
offer abstract virtual machine types that can run on different
types of physical hosts [14], resulting in different execution
times even for the same code. Cloud virtual machines can also
suffer from performance interference of neighbor workloads,
which the virtualization technology cannot entirely eliminate.
The same holds for continuous integration solutions executing
in the cloud, such as Travis [22] or GitLab Runner [7].

In summary, measurements from different virtual machines
are incomparable, and measurements from a single virtual
machine may be heavily influenced by performance interference.
Such data is of little use to a performance testing procedure
relying on data coming from the controlled environment of a
private infrastructure, we therefore have to design a procedure
that takes the specifics of cloud into account.

III. DUET MEASUREMENTS

Current best practice for performance measurements in
the cloud uses sequential measurements with randomized
interleaving of workloads [1]. This practice is based on an
experiment model where the execution environment suffers
from external performance interference, such as neighbor
workloads. When the evaluated workloads are measured in
random order, the external performance interference impacts
each workload with equal probability. A long enough execution
should therefore avoid possible bias due to interference [1].

Our approach takes this idea further – we aim to obtain si-
multaneous measurements of execution time for both evaluated
workloads. To obtain such paired measurements, the benchmark
programs that implement the test workloads are executed in
parallel inside a virtual machine with two virtual cores, with
each of the workloads restricted to one virtual core. In addition,
the benchmark runs and the task iterations are synchronized
using a shared-memory barrier so that they always start at the
same time. We call this procedure duet measurements.

A. Synchronized Interference

Crucial difference between the randomized interleaving of
workloads and the duet measurements is the synchronized
character of interference. With the randomized interleaving
of workloads, external performance interference impacts the
measured workloads independently and individually. With a
long enough execution, the interference should eventually
impact all the measured workloads similarly, avoiding possible
bias but still increasing variance across measurements.

With duet measurements, both measured workloads execute
in parallel in one virtual machine, with synchronized benchmark
runs and task iterations. Any external performance interference
that impacts the virtual machine as a whole is therefore

encountered simultaneously in both workloads. Where the
randomized interleaving of workloads eliminates systematic
bias only across long enough execution (such that any external
performance interference has enough opportunities to hit all
workloads equally), the duet measurements prevent such bias
already with individual measurements.

Additionally, the duet measurement procedure naturally
provides paired measurements, that is, measurements collected
on the two workloads at the same time. For some types of
external performance interference – such as linear slowdown
due to resource contention – this may help separate the variance
due to the interference from the variance inherent to the
measured workloads and therefore further improve accuracy.

B. Impact Symmetry

While the duet measurement procedure makes sure any ex-
ternal performance interference is encountered simultaneously
in both workloads, this is only useful if the actual impact of
the interference on the workload performance is similar in both
workloads. This very much depends on both the nature of the
interference and the configuration of the execution environment,
which is often proprietary or outside experiment control – for
example, both the Amazon Elastic Cloud [2] and the Google
Compute Engine [8] originate from hypervisor technologies
that use weighted fair share processor scheduling by default,
but neither documents the actual scheduling strategy used in
their commercial services.

To avoid basing our case for impact symmetry on a complex
arrangement of ever changing technical details, we look instead
at the practical implications that a lack of symmetry would
have. When employed for detecting performance degradation
between commits, the duet measurement procedure executes
two similar workloads bound to two virtual cores of the same
virtual machine. If a cloud platform were to exhibit systematic
performance difference between the two virtual cores with duet
measurements, it would likely exhibit similarly unwarranted
performance difference in many common concurrent workloads.
Such behavior would be considered a bug and likely remedied.

As the flip side of the same argument, the duet measurements
are less likely to work when comparing dissimilar workloads –
for example, should one of the workloads be strongly processor
bound and the other strongly I/O bound, external processor
sharing interference would be more likely to impact the former,
and external I/O sharing interference the latter. This is less
likely to happen when comparing neighboring commits of the
same software project, as we do in our use case.

C. Mutual Workload Interference

Compared to common sequential measurements, where each
measured workload executes in isolation, the duet measurement
procedure adds the potential for the two measured workloads to
interfere with each other. This is the case especially when the
two virtual cores used by the workloads map to two hardware
threads of the same physical processor core. Such virtual cores
would compete for the shared execution units of the core subject
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to the processor scheduling policy, which generally aims to
maximize the execution unit use [11].

The use of two hardware threads of the same physical
processor core is explicitly documented for some platforms,
such as the Amazon Elastic Cloud [2]. Other platforms, such as
the Google Compute Engine [8], do not document the mapping.

Given the recently reported security issues related to microar-
chitectural data sampling, it is likely that hardware threads of
the same physical processor core will be mapped to the same
virtual machine on most cloud platforms. A configuration with
virtual cores mapped to different physical cores can be obtained
for example by renting larger virtual machine instances and
disabling some cores, but the disabled cores are included in
virtual machine cost and this solution therefore does not appear
economical.

Regardless of the actual mapping (and possible interference
through additional shared resources such as the memory
subsystem), the workload symmetry argument again suggests
any systematic difference in performance is unlikely in practice.

D. Computing Relative Performance

The duet measurements are naturally paired, we can therefore
compute ratios of the paired task execution times, producing
samples that describe relative performance of the two evaluated
workloads. We assume that any noise due to performance
interference will manifest as constant speedup or slowdown
factor in each pair of samples, the ratio of the samples then
filters out the correlated noise and reduces the total variance.

Our goal is comparing performance of two workloads for
the purpose of performance testing, we therefore use duet
measurements to derive a confidence interval for the ratio of
task execution times. We use a Monte Carlo procedure based
on standard bootstrap confidence interval computation [10],
specifically:

– For an experiment with R runs of I iterations each, we
denote xr,i and yr,i the task execution times measured in
iteration i ∈ 1 . . . I of run r ∈ 1 . . . R.

– In the duet measurement procedure, for each r and i
the values of xr,i and yr,i are paired, we can therefore
compute speedup from x to y as sr,i = xr,i/yr,i.

– We aggregate speedup across iterations in a run by
computing the geometric mean, ∀r ∈ 1 . . . R : gmsr =
I
√
sr,1 · sr,2 . . . sr,I .

– We further aggregate speedup across runs in an exper-
iment by computing another geometric mean, gms =
R
√
gms1 · gms2 . . . gmsR. The gms value represents our

estimate for the ratio of task execution times.
– We use non parametric bootstrap to estimate the percentile

confidence interval for gms, drawing with replacement
from gms• and computing gms∗ as Monte Carlo estimates
for gms.

When the confidence interval for the ratio of task execution
times straddles 1.0, we consider the observed performance of
the two workloads equal, otherwise we report a performance

difference. We note that this procedure is similar to the practice
described in [3], where a confidence interval for the difference
in means is constructed using bootstrap. Following [3] further,
we can also define a procedure that uses A/A measurements to
learn the distribution of gms in a situation with no performance
difference, and applies this knowledge to decide on performance
changes in A/B measurements with small number of samples.

IV. EXPERIMENTAL EVALUATION

To evaluate how our duet measurements impact the per-
formance evaluation accuracy, we perform a series of A/A
measurements, where the evaluated workloads are equal and
any reported difference therefore directly reflects the accuracy.
To save space, we compare the measurement procedures across
multiple workloads and instances by comparing 99% confidence
intervals for the ratios of means. The confidence intervals
for the duet measurements are computed using the procedure
in Section III, the confidence intervals for the sequential
measurements are common bootstrap confidence intervals such
as in [3].

A direct comparison of confidence intervals is hindered by
the fact that intervals for duet measurements concern ratios of
means (centered around 1.0 for A/A measurements), but inter-
vals for sequential measurements typically concern differences
of means (centered around 0.0 for A/A measurements). We
therefore convert both types of confidence intervals to a value
expressing their width relative to mean performance – for a
ratio of means interval (rlo, rhi) we report rhi− rlo, and for a
difference of means interval (dlo, dhi) we report (dhi−dlo)/µ,
where µ is the sample mean computed from all samples (in
A/A measurements all samples concern the same workload and
can therefore be averaged).

A. Detailed Configuration

We run the cloud experiments on the Amazon Elastic Cloud
platform in three different zones (us-east-1, us-east-2, us-west-
2) and on three different instance types that were the smallest
general purpose computing instances with two virtual cores
and sufficient memory – t3.medium (two virtual cores based
on Intel Xeon Platinum 8000, reported 2.5 GHz 20% burstable,
4 GB RAM), m5.large (two virtual cores based on Intel Xeon
Platinum 8000, reported 3.1 GHz, 8 GB RAM), and m5a.large
(two virtual cores based on AMD EPYC 7000, reported 2.7
GHz, 8 GB RAM). The instances were rented in spot mode
( 0.012 USD/h for t3, 0.020 USD/h to 0.034 USD/h for m5),
running Amazon Linux 2.0.20190115.

For bare metal measurements that are to represent the most
stable baseline, we have used multiple Intel Xeon E3-1230 v6
machines (four cores, 3.5 GHz, 32 GB RAM) with disabled
hardware threads and power management features, running
Fedora Linux 27 with kernel 4.15.6.

The workloads use benchmarks from ScalaBench 0.1.0 [20],
with the harness adopted to report accurate timing and support
duet execution, running with selected versions of the open
source Graal compiler and the HotSpot JVM. We use 28
workloads that were identified as workloads with potential
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performance regressions during Graal development, the work-
loads are listed in Table I.

All experiments bind each benchmark to a single randomly
chosen processor core. To minimize startup artifacts, the JVM
was run with fixed heap size (1.5 GB for Amazon t3 instances,
3.5 GB for m5 instances and bare metal) and disabled garbage
collector ergonomics. Garbage collection was forced between
iterations. Each workload was run at least 30 times (minor
differences exist due to failures and restarts), with 20 iterations
inside each run. The first 15 iterations were discarded to
avoid measurements taken before the compilation of the hottest
methods, however, it was not our ambition to guarantee steady
state measurements – the diversity of the configurations means
we would have to rely on runtime steady state detection,
which would introduce additional variability between runs. In
computations, we always consider mean performance from 30
runs with 5 warm iterations each. We employ outlier filtering
with winsorization, replacing at most one observation in a
run with its nearest neighbor when that observation is further
than 20% away from the min-max range of the remaining
observations. Our bootstrap computations use 10000 replicates.

B. A/A Testing

Our A/A measurement results are in Table I. The columns
list triplets of relative confidence interval widths – the first
number is the width computed as described in Section III,
the second number is computed in the same way except for
randomly assigning runs into pairs, and the third number
is the width from sequential measurements computed as
described in [3]. The best width of each triplet is shown in
boldface. For reference, the accuracy achieved with bare metal
measurements is listed alongside cloud measurements. For the
cloud measurements, the table shows that in 79% of the cases,
our duet measurements yield better accuracy than sequential
measurements, the opposite is true for 21% of the cases, and
the computation with random workload pairs never works best.

By comparing the first and the second number in each
column, we evaluate how the duet measurements eliminate the
correlated performance interference. By randomizing which
runs form pairs, we make it it unlikely that both workloads
experience the same interference and thus eliminate the
advantage of the method while preserving other aspects of
the experiment. For further illustration, we plot the ratio of
the second to the first number for the cloud measurements in
Figure 1. The accuracy improvement ranges mostly between
1 and 5. Any accuracy decrease is necessarily a result of an
accidental correlation and therefore rare – it can also be taken
to indicate the degree of ucertainty introduced by the limited
size of our experimental sample.

By comparing the first and the third number in each column,
we evaluate the overall difference in accuracy between the duet
measurements and the sequential measurements. The difference
in accuracy includes not only the positive contribution of
the duet measurements to filtering interference, but also the
potentially negative impact of running the workloads in pairs.
We plot the ratio of the third to the first number for the cloud
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Figure 1. Distribution of accuracy improvement relative to random pairs (ratio
of (1) to (2) in triplets from Table I). Higher is better, 1.0 for no improvement.
Note logarithmic x axis.
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Figure 2. Distribution of accuracy improvement relative to sequential
measurements (ratio of (1) to (3) in triplets from Table I). Higher is better,
1.0 for no improvement. Note logarithmic x axis.

measurements in Figure 2. The accuracy improvement is most
pronounced for the t3.medium instances, with a geometric
average of 683%. The t3.medium instances use burstable pro-
cessor scheduling and therefore introduce significant variability
into sequential measurements. The m5.large and m5a.large
instances exhibit an average improvement of 130% and 114%
respectively.

C. Discussion

Our experiments show that the duet measurements typically
yield better accuracy than sequential measurements. As a
notable exception, most measurements of the actors benchmark
have better accuracy with sequential measurements – of
the 18 cloud configurations in Table I where the sequential
measurements are more accurate than the duet measurements,
13 execute the actors benchmark. The actors benchmark differs
from the other benchmarks in that it internally uses a very
high number of threads that dispatch relatively small tasks, it
is therefore much more sensitive to scheduling anomalies,
which exhibit themselves as outliers in the measurements.
Interestingly, for some instance types such outliers exist in the
duet measurements, but not in the sequential measurements,
with obvious impact on accuracy. Because the same outliers
and the same loss of accuracy are also apparent in the bare
metal measurements, we do not consider this problem to be
specific to the duet measurements.

The improvement in measurement accuracy of duet mea-
surements over sequential measurements, shown in Figure 2,
averages at 216%. One way to interpret this improvement is
by looking at the measurements costs associated with reaching
specific accuracy – the mean confidence intervals tend to
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Table I
RELATIVE 99% CONFIDENCE INTERVAL WIDTHS IN % FOR A/A MEASUREMENTS.

Benchmark Commit Timestamp bare metal m5.large m5a.large t3.medium

actors 35cc2e8d 2016-12-13 13:17 9.5 : 9.8 : 34 4.9 : 4.5 : 3.7 15 : 15 : 9.3 3 : 7.1 : 19
actors 26c07924 2016-12-13 16:27 7.4 : 7 : 22 4.1 : 4.9 : 3.8 17 : 17 : 9 2 : 6.8 : 14
actors e1a85465 2017-02-10 09:02 7.5 : 7.5 : 2.7 3 : 3.1 : 3.2 10 : 13 : 11 2.4 : 5.9 : 14
actors 5b8cebee 2017-02-10 16:31 9.3 : 9.6 : 25 4.8 : 5.5 : 4.5 11 : 14 : 11 4 : 9.8 : 18
actors 11ec1deb 2017-04-21 15:58 6.4 : 6.5 : 22 2.1 : 2.9 : 2.5 12 : 15 : 7.7 3.8 : 6.2 : 15
actors 01a039cb 2017-04-24 19:34 5.9 : 7.6 : 4 3.2 : 2.9 : 2.6 16 : 17 : 8.1 3.1 : 8.8 : 21
actors aa0c8c38 2017-05-18 10:16 7.9 : 7.7 : 6.2 2 : 2.9 : 13 12 : 12 : 5.2 2.7 : 5.6 : 25
actors 14133843 2017-05-19 11:59 10 : 10 : 4 2.8 : 3.3 : 3 13 : 13 : 5.5 2.3 : 6.4 : 22
actors 8d598327 2017-05-22 11:11 5.2 : 4.9 : 4 3.2 : 4 : 5.5 11 : 13 : 6.4 1.9 : 5.2 : 19
actors 645c8d28 2017-05-22 15:06 10 : 10 : 6.4 4.3 : 4.3 : 2.9 13 : 14 : 10 3 : 8.4 : 15
apparat 2a72cadd 2016-09-28 13:32 9.2 : 10 : 8.5 4.9 : 7.8 : 13 5.1 : 12 : 17 4.4 : 9.3 : 17
apparat e1fdea82 2016-09-29 08:15 6.1 : 6.4 : 4.3 8.5 : 15 : 7.2 16 : 24 : 13 3.7 : 12 : 21
factorie 8479c086 2016-09-16 19:21 5.5 : 5.6 : 5.4 3.8 : 5.4 : 6.1 3.8 : 9.7 : 9.8 2.5 : 5.9 : 15
factorie 624c7823 2016-09-20 07:43 6.3 : 6.6 : 5.6 4.3 : 6.2 : 6.7 4.7 : 10 : 9.4 3.2 : 7.7 : 22
factorie 12841706 2018-03-05 19:34 3.4 : 3.6 : 3.1 2.2 : 3.8 : 3.4 2.4 : 11 : 12 1.5 : 4.5 : 19
factorie d1098293 2018-03-05 21:03 3.6 : 3.8 : 2.9 2.3 : 3.5 : 3.2 2.9 : 12 : 12 1.3 : 5.4 : 17
factorie 6b9b1e38 2018-03-19 21:56 5.9 : 5.4 : 5 3.3 : 5.2 : 4.9 4.4 : 7.7 : 8.4 1.9 : 6 : 18
factorie a188baff 2018-03-19 22:55 5.5 : 5.7 : 5.3 3.1 : 5.2 : 4.6 4.3 : 7.9 : 9 2 : 6.5 : 18
kiama 8f0b0417 2018-10-24 04:35 9 : 7.5 : 4.6 7 : 8.8 : 6.7 8.9 : 12 : 11 6.8 : 9.3 : 17
kiama e7ed8a09 2018-10-24 11:40 11 : 8.8 : 4.3 8.3 : 9.2 : 6.4 12 : 13 : 11 8.2 : 9.6 : 14
lusearch f04190bf 2017-11-22 18:09 2.1 : 1.9 : 2.3 1.5 : 3.3 : 4 1.5 : 9 : 13 1.3 : 4.1 : 16
lusearch 841ffaef 2017-11-23 12:33 2.8 : 2.7 : 3.3 1.4 : 3.6 : 4.4 1.4 : 9.3 : 12 1.3 : 4.6 : 13
pmd c9525825 2018-10-31 21:24 4.9 : 4.6 : 4.7 3.4 : 4.7 : 6.3 2.7 : 8 : 9.5 2.8 : 6.1 : 28
pmd 72255e2e 2018-11-01 12:59 8.8 : 9.2 : 7.3 6.2 : 7.8 : 7.3 7.1 : 11 : 9.3 5.3 : 9.2 : 31
scalaxb dd0bae32 2019-01-17 21:40 5.5 : 5.6 : 4.6 1.6 : 3.5 : 3.1 2.2 : 9.6 : 10 1.3 : 3.3 : 17
scalaxb 034380de 2019-01-18 20:50 4.1 : 3.8 : 4.3 1.5 : 3.5 : 3.6 3.4 : 9.9 : 11 1.4 : 2.6 : 18
tmt 4f77905b 2018-12-13 12:42 0.74 : 0.71 : 0.82 0.52 : 2 : 2.7 1.1 : 4.9 : 6.9 0.79 : 3.5 : 19
tmt a066d033 2018-12-13 14:32 0.92 : 0.81 : 0.86 0.48 : 1.9 : 2.7 0.84 : 4.6 : 7.8 0.71 : 3.6 : 14

The benchmark, commit and timestamp columns identify the workload used.
The remaining columns identify the platform used for the measurement (bare
metal or one of three cloud instance types). In those columns, each triplet
gives relative confidence interval widths obtained (1) when using the duet

method, (2) when applying the duet method computation on randomly shuffled
runs, and (3) when using standard sequential measurements. Lower is better,
the best interval is bold.

shrink with the square root of the number of samples,1 an
average improvement of around 216% can therefore roughly
correspond to an average four fold reduction in the volume of
measurements collected.

Looking at the threats to external validity, we should start
with stating that the duet measurement procedure hinges on
the assumption of performance interference impacting the pair
workloads equally. We believe this is more likely to happen with
processor bound workloads, where the scheduling disciplines
tend to emphasize fairness, rather than with I/O bound
workloads, where queueing disciplines may prefer efficient
execution over fair resource distribution. Our experimental
evaluation used mostly processor bound workloads and our
conclusions may not extend to I/O bound workloads.

Existing work points out that cloud performance character-
istics can vary significantly across provides and platforms, our
conclusions are therefore potentially restricted to the m5.large,
m5a.large and t3.medium instances of the Amazon Elastic
Cloud platform. In particular, we have seen that when the virtual
cores provided by the platform are served by two hardware
threads of the same host processor core, the synchronized

1Asymptotically, this dependency holds due to the Central Limit Theorem,
however, we are referring more to the empirical observations at small sample
counts, where our experience suggests roughly the same behavior.

performance interference that the duet measurements target is
more likely to occur than in other configurations.

The duet measurement procedure requires concurrent ex-
ecution of the pair workloads. With certain workloads, this
may be difficult to achieve. We can, for example, imagine a
workload that alternates between computing and accessing an
exclusive resource. Two such workloads might form a convoy
on the exclusive resource and therefore never execute their com-
puting phases concurrently, weakening the duet measurement
assumptions. In fact, even the processor bound workloads from
our evaluation did not always execute concurrently – we have
synchronized at the start of each iteration, for pair workloads
with different iteration times this means that the workload with
longer iterations executes alone for some time.

Finally, our confidence interval computation assumes that
performance interference has a multiplicative character, in other
words, we expect it to slow down or speed up both workloads
by the same multiplicative factor. This seems to be a reasonable
assumption for similar processor bound workloads, but is not
something that is guaranteed in general.

Threats to internal validity are related in particular to our
choice of the cloud platform, the instance types, and the
workloads. Given their mostly black box character, we cannot
rule out that some of the effects we observe are due to internal
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mechanisms we do not analyze. If suspected, this eventuality
can be remedied by broadening the experiment scope.

V. RELATED WORK

Directly relevant to our work is the paper by Laaber et
al. [13], which investigates the accuracy achievable in the
cloud with standard performance testing methods, that is,
when executing the evaluated workloads one after another
with randomization as recommended by [1]. Laaber et al.
demonstrate that when using the standard confidence interval
overlap test with 95% confidence intervals for the mean,
A/A testing needs fairly high experiment repetition counts
(20 instances, 5 runs per instance) to reduce the false alarm
rate below 5%. The authors conclude that for most of their
workloads, “small slowdowns (less than 5%) cannot reliably be
detected in the cloud, at least not with the maximum number
of instances (they) tested (20)” [13].

As much as the results can be compared across different
workloads and measurement methodologies, the findings of
Laaber et al. are in line with our observations. For A/A tests
performed on sequential measurements, our bootstrap based
99% confidence interval construction yields median confidence
interval widths of 7%, with the most accurate width as little
as 1% and the least accurate width as much as 43%. This
may be considered compatible with the best accuracy reported
in [13], which aims for confidence level of 5%. Finally, our duet
measurements further improve accuracy by removing correlated
interference.

The work of Abedi and Brecht [1] shows how the ordering
of trials can impact the experiment conclusions. Utilizing A/A
testing, the authors show that possible regularity in performance
interference can be incorrectly interpreted as actual difference
in performance between alternatives. Randomized ordering
of trials is proposed as a remedy. Our duet measurements
address the same problem from a different angle – where
the randomized ordering of trials makes sure performance
interference impacts both evaluated workloads equally in a
statistical sense, across multiple trials, duet measurements make
sure both evaluated workloads are impacted equally in each
individual trial. Given the black box nature of public cloud, we
naturally cannot rule out performance interference that would
systematically impact different processors of the same virtual
machine in different manner. To address this eventuality, we
randomize the assignment of workloads to processors, which
is our analogy to the randomized ordering of trials.

In broader sense, our work is connected to research on cloud
performance characteristics. A study by Leitner and Cito from
2016 [14] collects previously published observations on cloud
performance and tests these observations with experiments.
Especially relevant to our work are their conclusions on the
performance stability of individual instances – this is shown to
depend on the workload, with I/O bound workload performance
being sensitive to noisy neighbors, and processor bound
workload performance depending mostly on actual allocated
hardware. Short term performance stability of individual

instances is shown to be poor for some configurations with
I/O bound workloads, and good for most configurations with
processor bound workloads, except for the burstable instances,
where the performance stability is always poor.

Among studies that show significant performance variability
in the cloud, many attribute that variability mostly to hardware
heterogeneity. Cerotti et al. [4] investigate the effects of
hardware heterogeneity on instance performance, showing
that instances of the same type can be backed by different
processor types. In some of their experiments, the authors
use the DaCapo benchmarks, and report that the difference
between the slowest and the fastest processor type can impact
the benchmark performance by 20% to 30%. Farley et al. [6]
also examine the effects of hardware heterogeneity. For Amazon
public cloud, different processor types are shown to differ in
performance by as much as 280%. Differences of around 15%
are observed among different instances with the same processor
types, similar differences are observed for the same instance
across time. Ou et al. [17] report similar findings. For Amazon
public cloud and performance differences between instances
of the same type, processor performance variability ranges
between 10% and 20% and memory performance variability
reaches as much as 270%. Other studies that concern various
aspects of cloud performance variability include [19], [12],
[15], [5], [18], [21]. Often, the purpose of the studies is to
work towards efficient strategies of cloud resource allocation.

Overall, performance variability in public cloud is an
accepted fact, but the actual numbers observed in individual
studies can rarely be compared directly due to differences in
experimental settings. In our experiments, we have observed
very little processor heterogeneity, and are mostly concerned
with variability in time. If this were not the case, strategies to
reduce processor heterogeneity in allocated instances can be
utilized during testing.

VI. CONCLUSION

Our work presented a novel performance measurement pro-
cedure that improves (sometimes significantly) the achievable
measurement accuracy for CI/CD related performance testing
activities in the cloud. On a selection of mostly processor
bound workloads running Java benchmarks with a modern just-
in-time compiler, we achieve on average 216% more narrow
99% confidence intervals for the mean performance difference.
This improvement can help with more effective use of cloud
infrastructure for performance testing purposes.

Additionally, our results include computations that char-
acterize the baseline measurement accuracy that can be
achieved on a particular virtual machine instance. This can
be used to determine, for a desired level of accuracy, whether
performance testing on a particular virtual machine instance
can be performed in a cost-efficient manner.
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Undertaking (JU) under grant agreement No 783162.
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Performance Testing Interference in the Cloud, in Proc. 27th IEEE Intl. Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS), pp. 249-255, 2019.
The final published version can be found at http://doi.org/10.1109/MASCOTS.2019.00035

http://doi.org/10.1109/MASCOTS.2019.00035

