
IVIS: Highly customizable framework for
visualization and processing of IoT data

Lubomír Bulej, Tomáš Bureš, Petr Hnětynka, Václav Čamra, Petr Siegl, Michal Töpfer
Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic

Email: {bulej, bures, hnetynka}@d3s.mff.cuni.cz

Abstract—This tool paper presents the IVIS platform
for processing and visualizing IoT and CPS data. The
platform provides a web-based interface that allows
both definition of complex visualizations and data pro-
cessing jobs as well as exploring the data. Compared
to the existing open-source and commercial offerings,
IVIS follows a different model and focuses on flexibil-
ity. Instead of providing a complex administrative UI
for creating visualizations by dragging and dropping
components onto a dashboard, IVIS provides a set
of JavaScript-based visualization components that are
glued together using simple JavaScript code. Similarly,
the data processing jobs can be defined using code
in scripting languages, such as Python, which allows
exploiting the wealth of existing libraries for numerical
processing. This not only makes the definition of visu-
alizations and data processing jobs much more expres-
sive, but it also turns out to be significantly easier to
use when building complex parametric visualizations—
especially when they need to deal with many sensors.
This proved to be crucial in deploying IVIS in a
number of international research projects, because it
enabled us to rapidly setup complex visualizations and
data-processing tasks, catering to project- and partner-
specific requirements.

Index Terms—Visualization; data processing; cus-
tomization; IoT.

I. Introduction
Data processing and visualization have become an

increasingly important part of Internet-of-Things (IoT)
and Cyber-Physical Systems (CPS) because the insights
gained from the data can enable a better understanding
of the process being observed and allow taking the right
actions. Furthermore, as these systems gradually become
self-adaptive, self-optimizing, and self-learning, there is
a huge amount of data on the internal working of such
systems which is critical for assessing whether they work
correctly, and for finding ways for further improvements.
However, even in this case, the first step in making sense
of a huge amount of data is to visualize it.

Data visualization and processing are not new in the IoT
and CPS domains—there are several existing and mature
frameworks backed by industry, and we provide an overview
of the most important ones in Section II. However, we argue
that there is still room for a framework that puts flexibility
and a developer-oriented approach at the forefront to help
with the high degree of customization required in IoT
and CPS use cases. This allows developing and sharing

common core functionality across different projects and yet
allow customizing the framework for each respective project
(including various project-specific visualization components,
data connectors to import data from project partners,
integration to other project partners’ tools, etc.).

We also argue that project-level collaborations present
a use-case that is somewhat alien to existing data-
visualization frameworks, which focus on making it easy for
an end-user to create visualizations by dragging/dropping
common components onto a dashboard. In collaborative
projects, partners typically do not set up visualizations on
their own and instead cooperate with a partner responsible
for the visualization framework. In such a context, there
is little need for sophisticated and, from the development
perspective, very costly graphical UI. Instead, it is more
important that the partner responsible for visualization
can rapidly set up rather complex and very customized
dashboards (typically combining and aggregating data
from several datasets). It is also necessary to allow these
dashboards to be easily cloned and modified because the
functionality required by different partners will be similar
in its core, but very different on the surface.

In this paper, we describe an open-source data visu-
alization and processing framework (called IVIS), which
we have been developing and employing as the core for
visualizations in various projects. In particular, we share our
experience with employing IVIS in three different projects—
focusing on (i) smart air quality, (ii) smart farming, and
(iii) edge-cloud video processing.

II. Related work
Data visualization is not new, as is evident from the

number of available production-level offerings. Grafana [1]
is among the most popular ones. It is an open-source
visualization and monitoring framework that can be con-
nected with a multitude of data sources and provide
attractive visualizations. A similar project, Kibana [2], is a
visualization dashboard for ElasticSearch [3], a distributed,
RESTful search and analytics engine suitable for large
amounts of data. Chronograf [4] is yet another solution for
visualization and monitoring, designed to visualize data
from InfluxDB [5], a database designed for time-series data.
The database is typically populated using Telegraf [6], a
plugin-based system agent, which can collect data from a
large number of different sources, including other databases.

This is the authors’ version of the paper: L. Bulej, T. Bureš, P. Hnětynka, V. Čamra, P. Siegl, M. Töpfer. IVIS: Highly
customizable framework for visualization and processing of IoT data. Proceedings of EUROMICRO SEAA 2020, Portorož,
Slovenia, 2020.
The final published version can be found at https://doi.org/10.1109/SEAA51224.2020.00095

https://doi.org/10.1109/SEAA51224.2020.00095


There are also many smaller projects (such as FreeBoard,
ThingsBoard, etc.) which provide similar functionality
(custom data processing and visualization) in their scope,
however, we do not aim to provide an exhaustive list and
detailed comparison in this short paper. We aim to point
out that in general, these projects allow users to quickly
design monitoring dashboards using different kinds of
standardized visualization widgets and charts (histograms,
line graphs, pie charts, etc.). The focus of these projects
is to provide users with a user-friendly GUI that enables
interactive placement and configuration of visualization
widgets on the dashboard.

While this is very useful for layman users and common
visualizations, such as system monitoring dashboards, our
experience from several projects was that when aiming at
highly customized expert-grade visualizations, the inter-
active design soon becomes a limiting factor. Suddenly,
it becomes very difficult to create charts that dynam-
ically compute limits, conditionally display data based
on summary statistics, or show min-max bands around
a signal to give information about its fluctuations when
displaying data aggregated over long periods. It turns out
that there is a need for visualization frameworks that may
be less forthcoming to layman users, but provide much
more flexibility and enable rapid development of highly
customized visualizations. The IVIS framework presented
in this paper is one such framework.

III. Main features

A. IVIS architecture

An overview of the IVIS architecture is shown in Fig. 1.
The system consists of a backend running on a server in the
cloud (the top part of the figure) and a frontend running
in a client’s web browser (the bottom part of the figure).

The backend is responsible for managing the data and
provides an API for the frontend as well as an interface for
tasks (plugins) that execute (primarily analytics) jobs over
the data. The data server receives master data from various
sources (sensors) and stores them in a relational database.
This data is then indexed by an ElasticSearch engine to
enable fast searches and on-the-fly aggregations required
by the front end. The frontend is primarily responsible
for providing a view of the data through customized
dashboards. Users can access the visualizations either
directly, via the integrated web portal, or through a 3rd-
party user interface, which embeds the visualizations from
IVIS exported as an HTML iframe.

Technically, IVIS is developed in JavaScript (ES6) [7].
On the server, it runs within Node.js [8], and the frontend
running in a web browser is built using the React.js frame-
work [9]. The visualization components rely on the D3 [10]
framework for creating charts and visualizations in SVG.
The analytic plugins can be developed in any programming
language (currently, Python is directly supported).

IV
IS

 d
a
ta

 
se

rv
e
r

High-level visualization API
server side

SQL database
E

Elasticsearch

Analytics plugins

High-level visualization API
client side

High-level visualization API
client side

React D3
Analytics 
settings

IVIS Web
portal

3rd party UI

IVIS based
visualization

in IFRAME

End User

D
a
ta

 s
o
u
rc

e
s

Administrator End User

Fig. 1. IVIS architecture

B. Rapid development of visualizations
One of the key features of IVIS is that it allows rapid

development of visualizations using simple code snippets.
To this end, IVIS provides the concepts of visualization
templates, panels, and workspaces. The template is the
most important element of the visualization framework
because it defines how to display data with a particular
structure and does the actual rendering. In contrast,
workspaces and panels are just containers.

Templates can be parameterized so that they can be
reused with different data sources and in a different context.
For example, a template can define a page with a date/time
selector on top, a legend below, and a fixed set of line-
charts displaying sensor data, e.g., temperature, humidity,
and CO2 level. However, the particular data set to be
displayed is not fixed and can be provided through template
parameters—in our example, the template only captures
the assumed structure of the data that will be passed to
it, i.e., that the data to be visualized will contain separate
sensor data with temperature, humidity, and CO2 level.

Template parameters can be arbitrary (not just a
selection of sensor data) and can be arbitrarily nested,
which means that it is possible to group related parameters
and provide templates with tree-like object structures.
For instance, in some of our visualizations, a template
is parameterized by a two-dimensional selection of data
sources along with a selection of color, ranges, etc. This
makes the template a very flexible and powerful concept.

The values of template parameters (e.g., sensor data to be
visualized) need to be set when an instance of a template is
embedded in a panel, which stores the template’s parameter
settings. A panel is then accessible directly via an URL,
or via a menu structure—here the panels are organized in
workspaces, which simplifies navigation and allows grouping
related panels.

Technically, a template consists of four parts: (1) Tem-
plate code (JSX). Each template is a JavaScript module
that exports a React.Component1 responsible for rendering.
The template code mainly deals with the composition
and configuration of other React components in response
to template parameters, producing a root component
representing the visualization. (2) Template style sheet
(SCSS). To customize the look-and-feel, the visual style

1https://reactjs.org/docs/react-component.html

This is the authors’ version of the paper: L. Bulej, T. Bureš, P. Hnětynka, V. Čamra, P. Siegl, M. Töpfer. IVIS: Highly
customizable framework for visualization and processing of IoT data. Proceedings of EUROMICRO SEAA 2020, Portorož,
Slovenia, 2020.
The final published version can be found at https://doi.org/10.1109/SEAA51224.2020.00095

https://doi.org/10.1109/SEAA51224.2020.00095


of a template can be defined using Sassy CSS [11], a
style sheet language that is compiled into CSS. The
style sheet is loaded along with the template and allows
defining not only the template-specific styles but also
completely customizing the default styles provided by IVIS.
(3) Template parameter specification comes in the form
of a JSON object capturing the type and cardinality of
parameter values, as well as the structure of the parameter
object passed to a template. When instantiating a template,
IVIS interprets the parameter specification and provides
the user with a simple editor for each template parameter.
(4) Template assets are images and other files required for
the visualization.

To simplify the template code to the greatest extent
possible (without sacrificing expressiveness), IVIS provides
a predefined set of reusable React components which pro-
vide support for common types of charts (line/bar/pie/XY,
histogram, scatter plot, heatmap, animated SVG) and basic
interaction elements (date/time selector, chart legend).
All these components have been specifically developed to
seamlessly interact with the IVIS server, and their behavior
can be customized via properties. This allows, for instance,
to partially or fully override the rendering of the legend
or the tooltip in a line chart, add fixed or dynamically
computed reference lines to a chart, or dynamically change
text and colors in an SVG-based image.

The use of JavaScript for template definition (instead
of a visual UI) allows to easily create visualizations that
work with many inputs or modify data on the fly (e.g., by
completing missing values, shifting, rescaling, computing
bounds)—all because iteration and conditional execution
can be easily expressed in JavaScript. Also, which is not to
be underestimated, visualizations can be easily cloned and
customized (or stitched together from other visualizations)
by simply copy-pasting fragments of the JavaScript code.

All this makes the development of complex visualiza-
tions substantially easier for anyone with a rudimen-
tary knowledge of JavaScript, compared to building a
complex parametric visualization using a visual editor.
Our experience from several projects is that complex
visualizations always require someone with at least some
level of technical knowledge and that the requirement
of basic understanding of JavaScript and the ability to
assemble pieces of JavaScript (from examples of other
visualizations) is typically not an obstacle.

A special feature of IVIS is that these templates are
defined using an integrated web-based editor. Introducing a
new template, therefore, does not require any modification
to IVIS codebase and does not require the traditional
development-test-deployment cycle (which can take hours
even in a continuous integration/delivery pipeline, but
invariably more). This enables very rapid development and
deployment of visualizations.

Technically, to ensure sufficient performance, security,
and to minimize the traffic between the server and the
client, the templates are compiled on the server, bundled

with the style sheet and (any) file assets, and served
on-demand as a minified JavaScript to the client, i.e.,
only when the client wants to display a panel with the
particular template. This also allows a user to ensure that
the template is syntactically correct when developing it
using the web-based editor provided by IVIS.

C. Rapid development of data processing tasks
In addition to receiving and storing master data from

sensors, IVIS allows computing synthetic data derived from
the master data. This enables a variety of data manipula-
tion operations ranging from simple data conditioning (e.g.,
completing missing values, shifting, scaling) to complex
filtering (e.g., smoothing data with low-pass or band-pass
filter, accentuating fluctuations with high-pass filters), data
aggregation, or forecasting and anomaly detection.

The synthetic data can be computed either offline or
on-the-fly. On-the-fly computations are typically intended
for lightweight tasks that do not require significant com-
puting resources, i.e., simple aggregations and simple data
conditioning. To this end, IVIS leverages the ElasticSearch
backend which can perform on-the-fly computations very
efficiently and in a very scalable manner. In particular,
IVIS allows defining synthetic data fields via its UI, with
the value of the field expressed as a code snippet written
in the Painless scripting language [12]. IVIS passes these
snippets to ElasticSearch when initiating a query on behalf
of a particular visualization and lets ElasticSearch compute
the synthetic data fields during the query.

Complex data processing tasks need to be performed
offline. They can be defined in Python (with the help of
various Python data processing libraries such as Numpy
and Scipy) using a web-based UI provided by IVIS, similarly
to how visualization templates are defined. This again
enables very rapid development and deployment of data
processing tasks. Offline data processing tasks are executed
incrementally, only processing new data records since the
previous computation. The results of the computation are
stored in ElasticSearch, making the computed data readily
available for use in visualizations.

IV. Main applications
We have successfully applied IVIS in several international

projects. Each project was targeting a different domain and
required different kinds of visualizations. Here we briefly
review the use of IVIS in each of the projects.
ESTABLISH — The ESTABLISH [13] project has been
successfully finished and defended at the end of year
2019. Research in the project focused on the use of
environmental sensors (air quality, noise, heat, temperature)
for improving the quality of life with respect to health. IVIS
served as one of the core components through which the
results of the project were demonstrated. In particular,
IVIS was used to visualize readings from various sensors
developed and utilized within the project. One of the
most interesting visualizations is shown in Fig. 2, where

This is the authors’ version of the paper: L. Bulej, T. Bureš, P. Hnětynka, V. Čamra, P. Siegl, M. Töpfer. IVIS: Highly
customizable framework for visualization and processing of IoT data. Proceedings of EUROMICRO SEAA 2020, Portorož,
Slovenia, 2020.
The final published version can be found at https://doi.org/10.1109/SEAA51224.2020.00095

https://doi.org/10.1109/SEAA51224.2020.00095


data from several sensors are combined with user feedback
regarding satisfaction with perceived levels of different
quantities (temperature, humidity, noise).

Fig. 2. IVIS in ESTABLISH

AFarCloud — The AFarCloud [14] project focuses on
integration of cyber-physical and cloud-based systems in
farming to improve efficiency, productivity, animal health,
and food quality while reducing farm labor costs. In the
project, we are (among other topics) working on models
and methods for coordination of autonomous entities such
as swarms of drones [15]. To enable rapid experimentation
with different coordination strategies, we used IVIS to
visualize the output of swarm simulations (shown in Fig. 3),
providing immediate feedback on swarm behavior when
following a particular strategy. In this particular case, we
needed to develop a completely new style of visualization
with support for continuous updating.

Fig. 3. IVIS in AFarCloud

FitOptiVis — The FitOptiVis [16] project focuses on
development of a reference architecture for low latency
image processing, along with methods and tools to sup-
port design-time optimization and runtime adaptation.
In addition to using IVIS for storage and visualization
of monitoring data from different systems, we used IVIS
to visualize the image processing pipelines (an example
shown in Fig. 4). The architecture visualizations are fully
interactive, i.e., the layout of the components can be freely
rearranged, and can be used to explore the architecture and
navigate to visualizations of monitoring data associated
with individual components. Both the components and
their interconnections are described using a domain-specific

language (developed within the scope of the project). To
enable rapid turn-around when developing architectural
descriptions, IVIS provides a web-based editor with syntax
highlighting which allows users to create, visualize, and
store architecture descriptions directly on the server.

Fig. 4. IVIS in FitOptiVis

V. Conclusion
In this paper, we have presented IVIS, a highly cus-

tomizable framework for visualization and processing IoT
data, which focuses on flexibility to enable the development
of customized visualization solutions. We have described
the successful usage of IVIS in several research projects
with diverse visualization requirements. The core of the
IVIS framework is freely available at https://github.com/
smartarch/ivis-core under the MIT license.

Acknowledgment
The research leading to these results has received funding

from the ECSEL Joint Undertaking (JU) under grants
agreement No 783162 and No 783221, and has been par-
tially supported by project no. LTE117003 (ESTABLISH)
from the INTER-EUREKA LTE117 programme by the
Ministry of Education, Youth and Sports of the Czech Rep.

References
[1] “Grafana,” https://grafana.com/.
[2] “Kibana,” https://www.elastic.co/kibana.
[3] C. Gormley and Z. Tong, Elasticsearch: the definitive guide.

O’Reilly, 2015.
[4] “Chronograf,” https://github.com/influxdata/chronograf.
[5] “InfluxDB,” https://www.influxdata.com/.
[6] “Telegraf,” https://github.com/influxdata/telegraf.
[7] “ECMA-262 6th Edition, The ECMAScript 2015 Language

Specification,” https://www.ecma-international.org/ecma-262/
6.0/index.html.

[8] “Node.js,” https://nodejs.org.
[9] “React.js,” https://reactjs.org/.

[10] “D3,” https://d3js.org/.
[11] “SASS,” https://sass-lang.com/.
[12] “Painless scripting language,” https://www.elastic.co/guide/en/

elasticsearch/painless/index.html.
[13] “Environmental Sensing To Act for a Better quality of Life:

Smart Health,” https://itea3.org/project/establish.html.
[14] “Aggregate FARming in the Cloud,” http://www.afarcloud.eu/.
[15] P. Hnetynka, T. Bures, I. Gerostathopoulos, and J. Pacovsky,

“Using Component Ensembles for Modeling Autonomic Compo-
nent Collaboration in Smart Farming,” in Proceedings of SEAMS
2020 (Accepted), Seoul, Korea, 2020.

[16] “From the cloud to the edge – smart IntegraTion and OPtimisa-
tion Technologies for highly efficient Image and VIdeo processing
Systems,” https://fitoptivis.eu/.

This is the authors’ version of the paper: L. Bulej, T. Bureš, P. Hnětynka, V. Čamra, P. Siegl, M. Töpfer. IVIS: Highly
customizable framework for visualization and processing of IoT data. Proceedings of EUROMICRO SEAA 2020, Portorož,
Slovenia, 2020.
The final published version can be found at https://doi.org/10.1109/SEAA51224.2020.00095

https://doi.org/10.1109/SEAA51224.2020.00095

