
Self-adaptive K8S Cloud Controller for Time-sensitive
Applications

Lubomír Bulej, Tomáš Bureš, Petr Hnětynka, Danylo Khalyeyev
Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic

Email: {bulej, bures, hnetynka, khalyeyev}@d3s.mff.cuni.cz

Abstract—The paper presents a self-adaptive Ku-
bernetes cloud controller for scheduling time-sensitive
applications. The controller allows services to specify
timing requirements (response time or throughput)
and schedules services on shared cloud resources so
as to meet the requirements. The controller builds and
continuously updates an internal performance model
of each service and uses it to determine the kind of
resources needed by a service, as well as predict potential
contention on shared resources, and (re-)deploys ser-
vices accordingly. The controller is integrated with our
highly-customizable data processing and visualization
platform IVIS, which provides a web-based front-end
for service deployment and visualization of results. The
controller implementation is open-source and is intended
to provide an easy-to-use testbed for experiments
focusing on various aspects of adaptive scheduling and
deployment in the cloud.

Index Terms—Self-adaptation; cloud; QoS; Kuber-
netes; visualizations

I. Introduction
A system performing smart scheduling of workloads in

a cloud environment is a classic example of a self-adaptive
system. Even though frameworks such as OpenStack and
Kubernetes (K8S) provide a basis for implementing such
systems, the options for adaptive cloud scheduling remain
limited. Despite all the advances in cloud technology (be
it IaaS, CaaS, or PaaS), the options mainly include the
ability to setup triggers for creating new service instances
if utilization (or some other factor) exceeds a certain
threshold. More elaborate scenarios, in which the system
would observe and learn how a service performs over time
and how it competes over shared resources with other
services, still remain in the realm of research. One of the
reasons is that such systems do not come in the form of
turn-key solutions that could be easily used to carry out
experimental evaluation, or to demonstrate the value of
self-adaptation techniques going beyond event-action rules
to practitioners. We argue that this seriously impairs the
perceived utility of such self-adaptive systems (and related
research), as well as the ability of researchers to evaluate
advanced self-adaptation algorithms for the cloud.

In this paper, we aim to address this issue through a
framework providing a Kubernetes-based cloud controller
for time-sensitive services (with probabilistic requirements
on response time or throughput over a given time period).
The purpose of the controller is to manage service execution

so as to meet their timing requirements while ensuring
efficient utilization of cloud resources.

In contrast to other approaches, our cloud controller
does not require an a priori service performance model—it
builds such a model automatically. When a service is first
deployed, the controller evaluates service performance in
different deployment settings to make an initial guess on
how CPU-, memory-, and I/O-intensive the service is. After
deployment, the controller keeps updating the performance
model using data collected at runtime, when the service
competes for resources. The performance models are then
used by the cloud controller to allocate resources and to
deploy (and re-deploy) services in the K8S cluster.

We provide our framework in form of a pre-configured
and ready-to-use K8S cluster (with the controller and
a sample service), which is further integrated with our
IVIS data-processing and visualization framework [1]. IVIS
provides the management UI for service definition (along
with timing requirements) and service deployment, and
allows viewing the results of service execution (including
statistics documenting how successful the controller was
in satisfying the timing requirements). This provides a
system which allows experimenting with different aspects
of self-adaptation while enabling an end-to-end evaluation
of the effects. We have deployed and successfully used a
similar system in several international projects (within the
EU ECSEL and EUREKA frameworks).

II. Motivation
In our research projects, we often need to run services

in the (edge-)cloud. The services typically have some
real-time requirements, but the end devices are often
resource-constrained and therefore unsuitable for extensive
computations (which may require access to a huge dataset),
within the given time constraints. However, we also realized
that an important aspect is that some devices simply do
not provide a convenient programming platform (e.g., they
cannot run a full-fledged Linux), which hinders the service
development.

Naturally, we cannot guarantee hard real-time response
when the cloud is involved. However, we realized that a
system that coordinates multiple devices typically performs
adaptation using a hierarchy of (two or more) control loops.

The first-level (innermost) loop corresponds to a well-
known hard real-time control loop executing on an embed-

This is the authors’ version of the paper: L. Bulej, T. Bureš, P. Hnětynka, D. Khalyeyev. Self-adaptive K8S Cloud Controller
for Time-sensitive Applications, in Proceedings of SEAA 2021, Palermo, Italy, pp. 166-169, 2021.
The final authenticated publication is available online at https://doi.org/10.1109/SEAA53835.2021.00029

https://doi.org/10.1109/SEAA53835.2021.00029


ded device [2]. The higher-level (outer) loops are relatively
new and deal with strategic decisions and device coordi-
nation, providing the “smartness“. Examples include early
data analysis to adjust a drone’s or a tractor’s trajectory
when operating on a field, coordination of a group of drones
when mapping a field, architectural changes in distributed
video pipelines to maintain a tradeoff between accuracy
and energy consumption in ambient assisted living, etc.

While still subject to real-time constraints, these con-
trol loops typically operate on more relaxed time scales
(hundreds of milliseconds, seconds, or longer) and can
tolerate infrequent transient deadline misses. This allows
implementing such control loops as time-sensitive services
with probabilistic real-time requirements, which could be
offloaded to the cloud—if the timing requirements can
be met on a platform specifically designed to achieve
high throughput and resource utilization (through sharing)
instead of guaranteed response time.

Interestingly, time-sensitive services are also useful for
longer time frames—we have encountered many scenarios
involving lengthy computations (minutes or hours) with
upper real-time bounds on completion. For example, pro-
cessing aerial images to detect high concentrations of weed
needs to finish before the farmer sets off to apply a herbicide
the next morning. In such cases, we need to provide services
with the necessary resources and ensure that they meet
the deadlines.

While this can be achieved through some trial and
error by pre-allocating or reserving resources, it is im-
practical and inefficient. For example, the K8S cluster
allows imposing limits on CPU and memory on individual
containers. However, reserving resources for a particular
container actually requires imposing resource limits on all
the other containers, which at best results in the reserved
resources being wasted most of the time. More importantly
though, the limits imposed on the other containers may
cause performance degradation due to momentary lack of
resources, because service resource requirements change
over time depending on service demand.

The situation is further complicated by the fact that
service performance is influenced by contention on shared
resources such as CPU caches and memory bandwidth
which cannot be easily partitioned, and the impact depends
on the character of (a priori unknown) collocated services
sharing those resources. We therefore argue that decisions
on resource allocation and service placement with the
goal of satisfying particular timing requirements are best
left with a cloud scheduler that is aware of the timing
requirements and can reason about service performance.

To provide a realistic example of a time-sensitive service,
we present a simplified scenario from one of the use-cases
in the AFarCloud [3] project. In the scenario, a drone
equipped with a multi-spectral imaging sensor captures
images while flying over terrain and submits them to a
cloud service performing feature detection analysis. The
service is the first stage in an image processing pipeline

that reconstructs 3D models from the captured images1,
and produces files with feature descriptors.

This is a computationally intensive task that may take
hours or days for large datasets—here the dataset is a
continuous stream of images coming from the drones. To
process the stream in a timely fashion, the stakeholders may
require a certain level of throughput, e.g., 1000 images per
hour, which the system must maintain. When there is no
need for a higher throughput (e.g., the images may not be
available), the stakeholders require the computation to be
energy efficient. This requires the system to avoid aggressive
horizontal scaling and instead focus on minimizing energy
consumption (e.g., by collocating tasks on the same node)
while maintaining the required throughput.

Finally, while not required in the above scenario, the
stakeholders may require the system to guarantee a partic-
ular service response time or end-to-end latency.

III. Framework Overview
The framework presented here implements the approach

described in our previous paper [6], which relies on devel-
opers for providing the specification of timing requirements
for services submitted to the K8S controller for deployment.

To this end, we extend the K8S service deployment
descriptor with the concept of probes. A probe is defined as
a command that can be executed in the service’s container,
and is meant to perform work that is characteristic to
the service—to provide the cloud controller with a well-
defined test point on which to measure service performance.
Consequently, a probe is not supposed to change the state
of the service to allow establishing statistical confidence
over the measured performance through repeated execution
(even in production). The descriptor in Listing 1 shows the
definition of a service with a single probe, but a service may
have multiple probes corresponding to different operating
profiles or endpoints with different functionality.
application: featuredetection
complete: false
components:
- name: detector

statefulness: none # Component is stateless
cardinality: single # Component is not auto-scalable
template: # K8S container template:

name: container
image: d3srepo/featuredetector

probes:
- name: detect # probe: command and standard input

codefile: ./detect.py
inputfile: ./input.json

Listing 1. Service descriptor def ining a probe

Service timing requirements are then expressed over
service probes. The example in Listing 2 states that it
should be possible to execute the probe (sequentially)
at least 5 times per minute. Note that this is a weaker
statement than saying that each invocation should take
less than 12 seconds, because it allows for larger variance
in response time.

1More details on the whole process can be found on the OpenSfM [4]
and OpenDroneMap [5] project websites.

This is the authors’ version of the paper: L. Bulej, T. Bureš, P. Hnětynka, D. Khalyeyev. Self-adaptive K8S Cloud Controller
for Time-sensitive Applications, in Proceedings of SEAA 2021, Palermo, Italy, pp. 166-169, 2021.
The final authenticated publication is available online at https://doi.org/10.1109/SEAA53835.2021.00029

https://doi.org/10.1109/SEAA53835.2021.00029


application: featuredetection
components:
- name: detector

QoSrequirements:
- type: throughput

probe: detect
requests: 5
per: minute # At least 5 requests per minute

Listing 2. Specif ication of timing requirements

The controller interprets these statements probabilis-
tically and attempts to schedule the service so that its
predicted performance satisfies the requirements. In this
case, the requirement concerns throughput, and the service
is scheduled so that its predicted mean throughput is
above the given threshold. If response time (latency) is
the concern, the timing requirement needs to specify a
percentile (e.g., 90%) and a time period, and the service is
scheduled so that the predicted percentile of its response
time is below the given threshold.

The use of probes and the expression of timing require-
ments over probes instead of service endpoints makes the
performance contract easy to comprehend for a developer,
because it defines the desired outcome instead of the
amount of resources to be provided (such as CPU cores
and IOPS). From the cloud perspective, it absolves the
controller from having to understand the service endpoints
(or how requests on the endpoints change the service state)
and provides a way to directly observe the impact of
resource allocation and deployment decisions on service
performance. It is, however, up to the developer to ensure
that the probe workload characterizes a particular service
endpoint as closely as possible. This can be achieved by
having the probe internally call the service’s endpoint with
a suitable input, which is the approach we follow in our
framework.

Once a service has been submitted to the cloud controller,
it enters the assessment phase in which the controller builds
an initial performance profile of the service. This is done
by deploying the service in an assessment cluster (along
with characteristic workloads) and measuring the service
performance while varying the deployment configuration (in
terms of available resources and collocated services). The
profile is then used for prediction of the service performance
in configurations that were not measured directly, using
the performance prediction methodology described in [6].
This approach allows the controller to treat an incoming
service as a black-box, instead of relying on an a priori
service performance model (such as a queuing network, or
a Palladio model [7]).

If the assessment phase determines that the specified
timing requirements can be satisfied, the cloud controller
admits the service to the production cluster. In production,
the controller uses performance prediction to check whether
the timing requirements of each service in different combi-
nations are expected to be satisfied in order to determine
a combination of services to be deployed on each node.

After deployment to production, the controller periodi-
cally executes service probes to monitor its performance.

The data is used to improve the service performance profile
and allows the controller to detect (and react to) failures
to satisfy the timing requirements.

Assessment cluster

IVIS

Performance
Data

Aggregator
Deployment

Tool

Assessment 
Controller

Client
Controller

Client

Kubernetes 
API server

Cloud 
instance

Middleware
 agent

Cloud 
instance

Middleware
 agent

Client

Produc�on cluster

Cloud 
Controller

Kubernetes 
API server

Cloud 
instance

Middleware
 agent

Cloud 
instance

Middleware
 agent

Fig. 1. High-level overview of the framework architecture.

The architecture of the framework is shown in Fig. 1. The
framework spans two K8S clusters—one for the assessment
phase and the other for production deployment. A web-
based fronted integrated into IVIS [1] allows submitting
services to the cloud and viewing statistical information
about service execution.

IV. Framework Usage

As the architecture overview in Fig. 1 suggests, the
framework is heavily distributed and requires launching
several virtual machines. To aid users in getting started,
the project repository provides detailed installation and
usage instructions2 as well as configuration files for Vagrant
(a tool for automated setup of local VMs). Here we will
just briefly review the basic usage of the framework.

To enable quick startup (to avoid assessment of the
included sample service prior to deployment), the full-
fledged performance predictor has been replaced with a
simpler version that uses pre-trained performance model
of the sample service. When deploying other services, the
full-fledged predictor can be re-enabled.

Thanks to its modular architecture, the framework
allows experimenting with different performance predictors,
deployment schedulers, and cloud controllers. All yellow
components of the architecture shown in Fig. 1, as well
as their subcomponents, represent framework extension
points and can be replaced with custom implementations.

From the user perspective, the framework can be used
either via (i) a command line interface or, (ii) a web-based
frontend integrated into IVIS. In the first case, the user
needs to prepare the service descriptors (c.f. Listings 1
and 2) and submit them to the cloud controller using a
command-line tool, which also allows viewing and managing
the service state. When using the web-based frontend, the

2See README.md at https://github.com/smartarch/qoscloud.

This is the authors’ version of the paper: L. Bulej, T. Bureš, P. Hnětynka, D. Khalyeyev. Self-adaptive K8S Cloud Controller
for Time-sensitive Applications, in Proceedings of SEAA 2021, Palermo, Italy, pp. 166-169, 2021.
The final authenticated publication is available online at https://doi.org/10.1109/SEAA53835.2021.00029

https://doi.org/10.1109/SEAA53835.2021.00029


user only needs to enter the service timing requirements—
the UI handles the rest.

The framework can obviously deploy other services
besides the pre-configured sample service implementing
feature detection (c.f. Sect. II). Such a service can be
provided either as a piece of code (executed within the
default Docker image), or as a custom Docker image
configured in a way that enables integration with the cloud
controller. This can be done in two ways (the framework
documentation provides a detailed description of both).

One way is to use a dedicated script provided by the
framework as the entry point of the service container. The
script launches the service part of the Middleware Agent
(c.f. Fig. 1) which allows the framework to control service
initialization and to manage service instances.

Alternatively, if a more fine-grained control over service
instances is required, the service part of the Middleware
Agent (provided as a class) needs to be instantiated within
the service code. A service client (running outside the
framework) needs to launch the Client Agent (i.e., the client
side of the Middleware Agent) through which the client
registers itself and communicates with the framework.

V. Related work
In this section we briefly review several related frame-

works, i.e., frameworks that aim at providing certain
quality-of-service (QoS) guarantees in cloud environment.

The CloudPick [8] targets QoS-aware service deployment
in a multi-cloud environment. It manages QoS by choosing
a cloud provider for every application service. However, it
only consider services belonging to a single user, and does
not take into account the impact that different applications
running in the same cloud have on each other.

Cloudroid [9] is a framework that supports QoS-aware
cloud application deployment for robotic systems and
mainly targets timeliness. It offloads computational tasks
from robots to cloud and reserves the resources required by
those tasks. Our approach differs in that it manages Qos
by controlling the deployment of instance combinations on
nodes instead of relying on resource allocation.

DDS [10] proposes an approach to a deadline-aware
deployment of time critical workloads in cloud. It uses the
Earliest Deadline First algorithm to manage the priority
of the workloads based on the explicitly stated deadlines.
Similarly to CloudPick (and unlike our framework), it does
not take into account the performance interference caused
by collocated workloads.

Pythia [11] is similar to our approach by relying on pre-
assessment of workloads. It measures the contention for
system resources between different processes during pre-
assessment, and uses the data to predict the contention
for the collocated process combinations that were not
measured directly. Our framework differs in that instead of
measuring low-level resource contention, it measures end-to-
end service performance on developer-defined probes, and
provides guarantees on the individual measured operations.

In general, many related frameworks focus on low-
level resource allocation and deal with the impact of
resource availability on performance of cloud workloads.
Our approach provides an easier-to-grasp alternative which
avoids micromanagement of resources and instead uses
performance measurement and performance prediction
methods to control deployment of service instances to
satisfy service timing requirements.

VI. Conclusion
We have presented an open-source framework for de-

ploying and scheduling time-sensitive applications. The
framework is modular and allows its parts to be easily
replaced. This makes it an ideal test-bed for experiment-
ing with different control and scheduling techniques for
deployment of time-sensitive applications in the cloud, and
for experimenting with self-adaptive systems in general.
By taking care of complex issues such as orchestration of
benchmarking, interaction with K8S cluster, user interface,
etc., the framework allows researchers to focus on the
development and experimental evaluation of novel self-
adaptation algorithms. The framework is available at
https://github.com/smartarch/qoscloud.

Acknowledgment
The research leading to these results has received funding

from the ECSEL Joint Undertaking (JU) under grants
agreement No 783162 and No 783221.

References
[1] L. Bulej, T. Bureš, P. Hnětynka, V. Čamra, P. Siegl, and

M. Töpfer, “IVIS: Highly customizable framework for visual-
ization and processing of IoT data,” in Proc. SEAA. IEEE,
2020.

[2] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Pre-
hofer, J. Wuttke, J. Andersson, H. Giese, and K. M. Göschka,
“On Patterns for Decentralized Control in Self-Adaptive Systems,”
in Software Engineering for Self-Adaptive Systems II, ser. LNCS,
2013, vol. 7475.

[3] “Aggregate FARming in the Cloud,” http://www.afarcloud.eu/.
[4] “OpenSfM project website,” https://www.opensfm.org/.
[5] “Drone mapping software | opendronemap,” https://www.

opendronemap.org/.
[6] L. Bulej, T. Bureš, A. Filandr, P. Hnětynka, I. Hnětynková,

J. Pacovský, G. Sandor, and I. Gerostathopoulos, “Managing
latency in edge–cloud environment,” Journal of Systems and
Software, vol. 172, 2021.

[7] R. H. Reussner, S. Becker, J. Happe, R. Heinrich, A. Koziolek,
H. Koziolek, M. Kramer, and K. Krogmann, Modeling and
Simulating Software Architectures – The Palladio Approach.
MIT Press, Oct. 2016.

[8] A. V. Dastjerdi, S. K. Garg, O. F. Rana, and R. Buyya, “Cloud-
Pick: a framework for QoS-aware and ontology-based service
deployment across clouds,” Software: Practice and Experience,
vol. 45, no. 2, pp. 197–231, 2015.

[9] B. Hu, H. Wang, P. Zhang, B. Ding, and H. Che, “Cloudroid: A
cloud framework for transparent and qos-aware robotic compu-
tation outsourcing,” in Proc. CLOUD, 2017.

[10] Y. Hu, J. Wang, H. Zhou, P. Martin, A. Taal, C. de Laat,
and Z. Zhao, “Deadline-aware deployment for time critical
applications in clouds,” in Proc. Euro-Par, 2017.

[11] R. Xu, S. Mitra, J. Rahman, P. Bai, B. Zhou, G. Bronevetsky,
and S. Bagchi, “Pythia: Improving datacenter utilization via
precise contention prediction for multiple co-located workloads,”
in Proc. Middleware, 2018.

This is the authors’ version of the paper: L. Bulej, T. Bureš, P. Hnětynka, D. Khalyeyev. Self-adaptive K8S Cloud Controller
for Time-sensitive Applications, in Proceedings of SEAA 2021, Palermo, Italy, pp. 166-169, 2021.
The final authenticated publication is available online at https://doi.org/10.1109/SEAA53835.2021.00029

https://doi.org/10.1109/SEAA53835.2021.00029

