
cbea

Tracking Performance of Graal on Public Benchmarks

Lubomír Bulej Vojtěch Horký Petr Tůma

Department of Distributed and Dependable Systems
Faculty of Mathematics and Physics

Charles University

2018 – 2021



cbea

Disclaimer
Development Versions
Performance and other measurements used in this presentation are
collected using development versions of the software involved.
As such, they do not represent product performance.

Modified Benchmarks
Benchmarks used to collect the measurements were often modified
to facilitate integration into the measurement infrastructure.
None of the benchmark results are standard benchmark scores.

Platform Specific
Measurements are platform specific. Platform information was omitted
for brevity, contact us if you need more details.

… and we are only human
The data may be influenced by mistakes we are not aware of.



cbea

Performance Testing Goal ?

Make performance testing roughly the same as
standard (functional) regression testing.



cbea

Performance Testing Goal ?

Make performance testing roughly the same as
standard (functional) regression testing.



cbea

Performance Testing Goal ?

Make performance testing roughly the same as
standard (functional) regression testing.

Overall trends



cbea

Performance Testing Goal ?

Make performance testing roughly the same as
standard (functional) regression testing.

Overall trends

Individual
performance

changes



cbea

Performance Testing Goal ?

Make performance testing roughly the same as
standard (functional) regression testing.



cbea

Performance Testing Goal ?

Make performance testing roughly the same as
standard (functional) regression testing.

Specific benchmark history



cbea

Performance Testing Goal ?

Make performance testing roughly the same as
standard (functional) regression testing.

Specific benchmark history

Individual measurements



cbea

Dashboard Internals I

Platforms

GraalVM CE and EE with OpenJDK and HotSpot JDK 8 and 11

Only top level merge commits into master

… around 6000 versions last year

Benchmarks

ScalaBench (includes DaCapo) https://scalabench.org

SPECjvm2008 (modified) https://spec.org/jvm2008

Renaissance 0.10 https://renaissance.dev

Plus internal microbenchmarks

… around 130 workloads in all

Hardware

… around 40 dedicated servers

https://scalabench.org
https://spec.org/jvm2008
https://renaissance.dev


cbea

Summary Performance History



cbea

Summary Performance History

Development appears to
gradually improve

performance



cbea

Summary Performance History

Development appears to
gradually improve

performance

Note
All benchmarks have the same weight …



cbea

Detecting Changes

A time series change point detection problem with a few twists

We have more correlated time series rather than just one

We can add more data points to any version if required

Data points are in fact hierarchical sets from runs

We are more interested in changes near series end

Almost no assumptions about data distribution

We use bootstrap confidence intervals of mean differences

https://doi.org/10.1007/s10515-015-0188-0

Colors show runs

https://doi.org/10.1007/s10515-015-0188-0


cbea

Detecting Changes

A time series change point detection problem with a few twists

We have more correlated time series rather than just one

We can add more data points to any version if required

Data points are in fact hierarchical sets from runs

We are more interested in changes near series end

Almost no assumptions about data distribution

We use bootstrap confidence intervals of mean differences

https://doi.org/10.1007/s10515-015-0188-0

Colors show runs

https://doi.org/10.1007/s10515-015-0188-0


cbea

Detecting Changes

A time series change point detection problem with a few twists

We have more correlated time series rather than just one

We can add more data points to any version if required

Data points are in fact hierarchical sets from runs

We are more interested in changes near series end

Almost no assumptions about data distribution

We use bootstrap confidence intervals of mean differences

https://doi.org/10.1007/s10515-015-0188-0

Colors show runs

https://doi.org/10.1007/s10515-015-0188-0


cbea

Detecting Changes

A time series change point detection problem with a few twists

We have more correlated time series rather than just one

We can add more data points to any version if required

Data points are in fact hierarchical sets from runs

We are more interested in changes near series end

Almost no assumptions about data distribution

We use bootstrap confidence intervals of mean differences

https://doi.org/10.1007/s10515-015-0188-0

Colors show runs

https://doi.org/10.1007/s10515-015-0188-0


cbea

Detecting Changes

A time series change point detection problem with a few twists

We have more correlated time series rather than just one

We can add more data points to any version if required

Data points are in fact hierarchical sets from runs

We are more interested in changes near series end

Almost no assumptions about data distribution

We use bootstrap confidence intervals of mean differences

https://doi.org/10.1007/s10515-015-0188-0

Colors show runs

https://doi.org/10.1007/s10515-015-0188-0


cbea

Detecting Changes

A time series change point detection problem with a few twists

We have more correlated time series rather than just one

We can add more data points to any version if required

Data points are in fact hierarchical sets from runs

We are more interested in changes near series end

Almost no assumptions about data distribution

We use bootstrap confidence intervals of mean differences

https://doi.org/10.1007/s10515-015-0188-0

Colors show runs

https://doi.org/10.1007/s10515-015-0188-0


cbea

Detecting Changes

A time series change point detection problem with a few twists

We have more correlated time series rather than just one

We can add more data points to any version if required

Data points are in fact hierarchical sets from runs

We are more interested in changes near series end

Almost no assumptions about data distribution

We use bootstrap confidence intervals of mean differences

https://doi.org/10.1007/s10515-015-0188-0

Colors show runs

https://doi.org/10.1007/s10515-015-0188-0


cbea

Detecting Changes

A time series change point detection problem with a few twists

We have more correlated time series rather than just one

We can add more data points to any version if required

Data points are in fact hierarchical sets from runs

We are more interested in changes near series end

Almost no assumptions about data distribution

We use bootstrap confidence intervals of mean differences

https://doi.org/10.1007/s10515-015-0188-0

Colors show runs

https://doi.org/10.1007/s10515-015-0188-0


cbea

Detected Changes In Numbers
What share of versions have changes and how reliably are they detected ?

Renaissance 0.10 rx-scrb 4% 100% 0% scrfm-h 2% 50% 50% sci.spl 4% 100% 0% FJStr 7% 100% 0%

bench R D I sc-doku 1% 50% 50% scxb-h 2% 92% 8% serial 2% 75% 25% FltOdd 12% 50% 50%

aka-uct 1% 100% 0% sc-kmns 6% specs-l 1% 100% 0% sunflow 3% 100% 0% FndNgt 3% 62% 8%

als 5% 100% 0% sc-stmb 1% sunfl-l 2% 100% 0% xml.trn 3% 50% 50% FntNgtR 2% 50% 0%

chi-sqr 2% 100% 0% scrb 5% 100% 0% tmt-d 3% 25% 75% xml.val 2% 75% 25% FldSum 3% 100% 0%

db-shot 2% ScalaBench (with DaCapo) trdb-d 1% 100% 0% Internal Micros FldSumR 0% 0% 33%

dec-tre 2% 100% 0% bench R D I trds-l 2% 89% 11% bench R D I ForSum 1% 50% 0%

dotty 5% appar-d 3% 100% 0% xalan-l 2% 90% 10% StrDev 4% 33% 67% ForSumR 2% 12% 75%

fin-chi 1% 100% 0% avror-l 1% SPECjvm2008 (modified) SFndNeg 3% 36% 50% GrpRem 5% 85% 0%

fin-htt 3% 100% 0% batik-s 3% 67% 33% bench R D I SFldSum 3% 25% 50% MapOne 7% 76% 14%

fj-kmns 5% 100% 0% eclps-s 1% cmp.cmp 2% SForSum 3% 42% 11% NetDot 3% 57% 0%

fut-gen 0% factr-d 1% 100% 0% cmp.sun 2% SMapRed 3% 43% 21% NetEig 2% 62% 25%

gauss 1% fop-d 2% 100% 0% compr 4% 75% 25% STwoAvg 4% 60% 30% Reduce 1% 50% 50%

log-reg 6% 100% 0% h2-d 2% 100% 0% cry.aes 4% 100% 0% TSP 4% 100% 0% STMLst 2% 50% 0%

mne 5% 100% 0% jythn-l 1% 100% 0% cry.rsa 2% 100% 0% TxtSDF 2% 80% 10% STMMap 3% 100% 0%

mov-len 6% kiama-d 2% 89% 11% cry.sgn 4% 75% 25% TxtRDD 2% 100% 0% Scan 1% 43% 57%

nai-bay 2% luidx-d 1% 100% 0% derby 1% 60% 40% WrdCnt 1% 100% 0% SrtRDD 2% 70% 30%

neo-ana 4% 100% 0% lusrc-l 2% 50% 44% mpega 4% 100% 0% BufDec 6% 78% 15% StdDev 3% 25% 44%

pg-rank 1% 100% 0% pmd-l 3% 67% 33% sci.ffl 1% 67% 33% BufEnc 6% 88% 12% StrCnt 2% 50% 50%

par-mne 4% 100% 0% scc-l 1% 100% 0% sci.lul 1% 50% 0% ChrCnt 2% 100% 0% StrDem 2% 50% 0%

philos 2% scdoc-l 1% 100% 0% sci.mtc 3% 88% 12% ChrHis 3% 73% 20% StrPer 4% 93% 0%

reactr 2% 100% 0% scp-l 2% 17% 83% sci.sol 3% 100% 0% FJHis 7% 100% 0%

R - versions with changes D - manually confirmed I - invalid situations



cbea

Detected Changes In Numbers
What share of versions have changes and how reliably are they detected ?

Renaissance 0.10 rx-scrb 4% 100% 0% scrfm-h 2% 50% 50% sci.spl 4% 100% 0% FJStr 7% 100% 0%

bench R D I sc-doku 1% 50% 50% scxb-h 2% 92% 8% serial 2% 75% 25% FltOdd 12% 50% 50%

aka-uct 1% 100% 0% sc-kmns 6% specs-l 1% 100% 0% sunflow 3% 100% 0% FndNgt 3% 62% 8%

als 5% 100% 0% sc-stmb 1% sunfl-l 2% 100% 0% xml.trn 3% 50% 50% FntNgtR 2% 50% 0%

chi-sqr 2% 100% 0% scrb 5% 100% 0% tmt-d 3% 25% 75% xml.val 2% 75% 25% FldSum 3% 100% 0%

db-shot 2% ScalaBench (with DaCapo) trdb-d 1% 100% 0% Internal Micros FldSumR 0% 0% 33%

dec-tre 2% 100% 0% bench R D I trds-l 2% 89% 11% bench R D I ForSum 1% 50% 0%

dotty 5% appar-d 3% 100% 0% xalan-l 2% 90% 10% StrDev 4% 33% 67% ForSumR 2% 12% 75%

fin-chi 1% 100% 0% avror-l 1% SPECjvm2008 (modified) SFndNeg 3% 36% 50% GrpRem 5% 85% 0%

fin-htt 3% 100% 0% batik-s 3% 67% 33% bench R D I SFldSum 3% 25% 50% MapOne 7% 76% 14%

fj-kmns 5% 100% 0% eclps-s 1% cmp.cmp 2% SForSum 3% 42% 11% NetDot 3% 57% 0%

fut-gen 0% factr-d 1% 100% 0% cmp.sun 2% SMapRed 3% 43% 21% NetEig 2% 62% 25%

gauss 1% fop-d 2% 100% 0% compr 4% 75% 25% STwoAvg 4% 60% 30% Reduce 1% 50% 50%

log-reg 6% 100% 0% h2-d 2% 100% 0% cry.aes 4% 100% 0% TSP 4% 100% 0% STMLst 2% 50% 0%

mne 5% 100% 0% jythn-l 1% 100% 0% cry.rsa 2% 100% 0% TxtSDF 2% 80% 10% STMMap 3% 100% 0%

mov-len 6% kiama-d 2% 89% 11% cry.sgn 4% 75% 25% TxtRDD 2% 100% 0% Scan 1% 43% 57%

nai-bay 2% luidx-d 1% 100% 0% derby 1% 60% 40% WrdCnt 1% 100% 0% SrtRDD 2% 70% 30%

neo-ana 4% 100% 0% lusrc-l 2% 50% 44% mpega 4% 100% 0% BufDec 6% 78% 15% StdDev 3% 25% 44%

pg-rank 1% 100% 0% pmd-l 3% 67% 33% sci.ffl 1% 67% 33% BufEnc 6% 88% 12% StrCnt 2% 50% 50%

par-mne 4% 100% 0% scc-l 1% 100% 0% sci.lul 1% 50% 0% ChrCnt 2% 100% 0% StrDem 2% 50% 0%

philos 2% scdoc-l 1% 100% 0% sci.mtc 3% 88% 12% ChrHis 3% 73% 20% StrPer 4% 93% 0%

reactr 2% 100% 0% scp-l 2% 17% 83% sci.sol 3% 100% 0% FJHis 7% 100% 0%

R - versions with changes D - manually confirmed I - invalid situations

Most benchmarks
exhibit changes



cbea

Detected Changes In Numbers
What share of versions have changes and how reliably are they detected ?

Renaissance 0.10 rx-scrb 4% 100% 0% scrfm-h 2% 50% 50% sci.spl 4% 100% 0% FJStr 7% 100% 0%

bench R D I sc-doku 1% 50% 50% scxb-h 2% 92% 8% serial 2% 75% 25% FltOdd 12% 50% 50%

aka-uct 1% 100% 0% sc-kmns 6% specs-l 1% 100% 0% sunflow 3% 100% 0% FndNgt 3% 62% 8%

als 5% 100% 0% sc-stmb 1% sunfl-l 2% 100% 0% xml.trn 3% 50% 50% FntNgtR 2% 50% 0%

chi-sqr 2% 100% 0% scrb 5% 100% 0% tmt-d 3% 25% 75% xml.val 2% 75% 25% FldSum 3% 100% 0%

db-shot 2% ScalaBench (with DaCapo) trdb-d 1% 100% 0% Internal Micros FldSumR 0% 0% 33%

dec-tre 2% 100% 0% bench R D I trds-l 2% 89% 11% bench R D I ForSum 1% 50% 0%

dotty 5% appar-d 3% 100% 0% xalan-l 2% 90% 10% StrDev 4% 33% 67% ForSumR 2% 12% 75%

fin-chi 1% 100% 0% avror-l 1% SPECjvm2008 (modified) SFndNeg 3% 36% 50% GrpRem 5% 85% 0%

fin-htt 3% 100% 0% batik-s 3% 67% 33% bench R D I SFldSum 3% 25% 50% MapOne 7% 76% 14%

fj-kmns 5% 100% 0% eclps-s 1% cmp.cmp 2% SForSum 3% 42% 11% NetDot 3% 57% 0%

fut-gen 0% factr-d 1% 100% 0% cmp.sun 2% SMapRed 3% 43% 21% NetEig 2% 62% 25%

gauss 1% fop-d 2% 100% 0% compr 4% 75% 25% STwoAvg 4% 60% 30% Reduce 1% 50% 50%

log-reg 6% 100% 0% h2-d 2% 100% 0% cry.aes 4% 100% 0% TSP 4% 100% 0% STMLst 2% 50% 0%

mne 5% 100% 0% jythn-l 1% 100% 0% cry.rsa 2% 100% 0% TxtSDF 2% 80% 10% STMMap 3% 100% 0%

mov-len 6% kiama-d 2% 89% 11% cry.sgn 4% 75% 25% TxtRDD 2% 100% 0% Scan 1% 43% 57%

nai-bay 2% luidx-d 1% 100% 0% derby 1% 60% 40% WrdCnt 1% 100% 0% SrtRDD 2% 70% 30%

neo-ana 4% 100% 0% lusrc-l 2% 50% 44% mpega 4% 100% 0% BufDec 6% 78% 15% StdDev 3% 25% 44%

pg-rank 1% 100% 0% pmd-l 3% 67% 33% sci.ffl 1% 67% 33% BufEnc 6% 88% 12% StrCnt 2% 50% 50%

par-mne 4% 100% 0% scc-l 1% 100% 0% sci.lul 1% 50% 0% ChrCnt 2% 100% 0% StrDem 2% 50% 0%

philos 2% scdoc-l 1% 100% 0% sci.mtc 3% 88% 12% ChrHis 3% 73% 20% StrPer 4% 93% 0%

reactr 2% 100% 0% scp-l 2% 17% 83% sci.sol 3% 100% 0% FJHis 7% 100% 0%

R - versions with changes D - manually confirmed I - invalid situations

Most benchmarks
exhibit changes

Detection mostly
reliable enough



cbea

Detected Changes In Numbers
What share of versions have changes and how reliably are they detected ?

Renaissance 0.10 rx-scrb 4% 100% 0% scrfm-h 2% 50% 50% sci.spl 4% 100% 0% FJStr 7% 100% 0%

bench R D I sc-doku 1% 50% 50% scxb-h 2% 92% 8% serial 2% 75% 25% FltOdd 12% 50% 50%

aka-uct 1% 100% 0% sc-kmns 6% specs-l 1% 100% 0% sunflow 3% 100% 0% FndNgt 3% 62% 8%

als 5% 100% 0% sc-stmb 1% sunfl-l 2% 100% 0% xml.trn 3% 50% 50% FntNgtR 2% 50% 0%

chi-sqr 2% 100% 0% scrb 5% 100% 0% tmt-d 3% 25% 75% xml.val 2% 75% 25% FldSum 3% 100% 0%

db-shot 2% ScalaBench (with DaCapo) trdb-d 1% 100% 0% Internal Micros FldSumR 0% 0% 33%

dec-tre 2% 100% 0% bench R D I trds-l 2% 89% 11% bench R D I ForSum 1% 50% 0%

dotty 5% appar-d 3% 100% 0% xalan-l 2% 90% 10% StrDev 4% 33% 67% ForSumR 2% 12% 75%

fin-chi 1% 100% 0% avror-l 1% SPECjvm2008 (modified) SFndNeg 3% 36% 50% GrpRem 5% 85% 0%

fin-htt 3% 100% 0% batik-s 3% 67% 33% bench R D I SFldSum 3% 25% 50% MapOne 7% 76% 14%

fj-kmns 5% 100% 0% eclps-s 1% cmp.cmp 2% SForSum 3% 42% 11% NetDot 3% 57% 0%

fut-gen 0% factr-d 1% 100% 0% cmp.sun 2% SMapRed 3% 43% 21% NetEig 2% 62% 25%

gauss 1% fop-d 2% 100% 0% compr 4% 75% 25% STwoAvg 4% 60% 30% Reduce 1% 50% 50%

log-reg 6% 100% 0% h2-d 2% 100% 0% cry.aes 4% 100% 0% TSP 4% 100% 0% STMLst 2% 50% 0%

mne 5% 100% 0% jythn-l 1% 100% 0% cry.rsa 2% 100% 0% TxtSDF 2% 80% 10% STMMap 3% 100% 0%

mov-len 6% kiama-d 2% 89% 11% cry.sgn 4% 75% 25% TxtRDD 2% 100% 0% Scan 1% 43% 57%

nai-bay 2% luidx-d 1% 100% 0% derby 1% 60% 40% WrdCnt 1% 100% 0% SrtRDD 2% 70% 30%

neo-ana 4% 100% 0% lusrc-l 2% 50% 44% mpega 4% 100% 0% BufDec 6% 78% 15% StdDev 3% 25% 44%

pg-rank 1% 100% 0% pmd-l 3% 67% 33% sci.ffl 1% 67% 33% BufEnc 6% 88% 12% StrCnt 2% 50% 50%

par-mne 4% 100% 0% scc-l 1% 100% 0% sci.lul 1% 50% 0% ChrCnt 2% 100% 0% StrDem 2% 50% 0%

philos 2% scdoc-l 1% 100% 0% sci.mtc 3% 88% 12% ChrHis 3% 73% 20% StrPer 4% 93% 0%

reactr 2% 100% 0% scp-l 2% 17% 83% sci.sol 3% 100% 0% FJHis 7% 100% 0%

R - versions with changes D - manually confirmed I - invalid situations

Most benchmarks
exhibit changes

Detection mostly
reliable enough

Microbenchmarks
sometimes misbehave



cbea

Detected Changes In Numbers
What share of versions have changes and how reliably are they detected ?

Renaissance 0.10 rx-scrb 4% 100% 0% scrfm-h 2% 50% 50% sci.spl 4% 100% 0% FJStr 7% 100% 0%

bench R D I sc-doku 1% 50% 50% scxb-h 2% 92% 8% serial 2% 75% 25% FltOdd 12% 50% 50%

aka-uct 1% 100% 0% sc-kmns 6% specs-l 1% 100% 0% sunflow 3% 100% 0% FndNgt 3% 62% 8%

als 5% 100% 0% sc-stmb 1% sunfl-l 2% 100% 0% xml.trn 3% 50% 50% FntNgtR 2% 50% 0%

chi-sqr 2% 100% 0% scrb 5% 100% 0% tmt-d 3% 25% 75% xml.val 2% 75% 25% FldSum 3% 100% 0%

db-shot 2% ScalaBench (with DaCapo) trdb-d 1% 100% 0% Internal Micros FldSumR 0% 0% 33%

dec-tre 2% 100% 0% bench R D I trds-l 2% 89% 11% bench R D I ForSum 1% 50% 0%

dotty 5% appar-d 3% 100% 0% xalan-l 2% 90% 10% StrDev 4% 33% 67% ForSumR 2% 12% 75%

fin-chi 1% 100% 0% avror-l 1% SPECjvm2008 (modified) SFndNeg 3% 36% 50% GrpRem 5% 85% 0%

fin-htt 3% 100% 0% batik-s 3% 67% 33% bench R D I SFldSum 3% 25% 50% MapOne 7% 76% 14%

fj-kmns 5% 100% 0% eclps-s 1% cmp.cmp 2% SForSum 3% 42% 11% NetDot 3% 57% 0%

fut-gen 0% factr-d 1% 100% 0% cmp.sun 2% SMapRed 3% 43% 21% NetEig 2% 62% 25%

gauss 1% fop-d 2% 100% 0% compr 4% 75% 25% STwoAvg 4% 60% 30% Reduce 1% 50% 50%

log-reg 6% 100% 0% h2-d 2% 100% 0% cry.aes 4% 100% 0% TSP 4% 100% 0% STMLst 2% 50% 0%

mne 5% 100% 0% jythn-l 1% 100% 0% cry.rsa 2% 100% 0% TxtSDF 2% 80% 10% STMMap 3% 100% 0%

mov-len 6% kiama-d 2% 89% 11% cry.sgn 4% 75% 25% TxtRDD 2% 100% 0% Scan 1% 43% 57%

nai-bay 2% luidx-d 1% 100% 0% derby 1% 60% 40% WrdCnt 1% 100% 0% SrtRDD 2% 70% 30%

neo-ana 4% 100% 0% lusrc-l 2% 50% 44% mpega 4% 100% 0% BufDec 6% 78% 15% StdDev 3% 25% 44%

pg-rank 1% 100% 0% pmd-l 3% 67% 33% sci.ffl 1% 67% 33% BufEnc 6% 88% 12% StrCnt 2% 50% 50%

par-mne 4% 100% 0% scc-l 1% 100% 0% sci.lul 1% 50% 0% ChrCnt 2% 100% 0% StrDem 2% 50% 0%

philos 2% scdoc-l 1% 100% 0% sci.mtc 3% 88% 12% ChrHis 3% 73% 20% StrPer 4% 93% 0%

reactr 2% 100% 0% scp-l 2% 17% 83% sci.sol 3% 100% 0% FJHis 7% 100% 0%

R - versions with changes D - manually confirmed I - invalid situations

Most benchmarks
exhibit changes

Detection mostly
reliable enough

Microbenchmarks
sometimes misbehave

Note
Manual classification not randomized …



cbea

Do We Have Too Many Benchmarks ?



cbea

Do We Have Too Many Benchmarks ?

Majority of changes
limited to single

benchmark



cbea

Do Benchmarks Change Together ?



cbea

Do Benchmarks Change Together ?

Only few benchmarks
often change with another



cbea

Do Benchmarks Change Together ?

Only few benchmarks
often change with another

Artifact of one suite
not being around so long



cbea

Take Away So Far …

We probably do not have too many (or even enough) benchmarks

Overlap in performance changes relatively rare

Not really clear how to define coverage !

Change detection reliability per se not an issue

But requires reasonable measurement procedure

And some benchmarks may require special attention



cbea

Handling More Runs

A single benchmark run does not really tell the whole story …



cbea

Handling More Runs

A single benchmark run does not really tell the whole story …

Compact results
coming from

one run



cbea

Handling More Runs

A single benchmark run does not really tell the whole story …

Compact results
coming from

one run



cbea

Handling More Runs

A single benchmark run does not really tell the whole story …

Compact results
coming from

one run

More runs
give more
variability



cbea

How Many Runs Needed …
… to compute average performance with at most 1% error in 99% of cases ?

Renaissance 0.10 rx-scrb 49 65 26 19 scrfm-h 33 13 44 34 sci.spl 4 9 1 99+ NetDot 1 1 12 30

bench C8 C11 E8 E11 sc-doku 99+ 99+ 99+ 99+ scxb-h 99+ 99+ 99+ 99+ serial 14 23 99+ 99+ NetEig 1 1 67 19

aka-uct 15 99+ 86 99+ sc-kmns 8 5 27 19 specs-l 12 5 11 8 sunflow 9 13 7 3 Reduce 72 99+ 99+ 99+

als 6 7 99+ 99+ sc-stmb 93 68 99+ 99+ sunfl-l 6 16 99+ 18 xml.trn 10 7 9 7 STMLst 99+ 70 99+ 49

chi-sqr 99+ 99+ 99+ 99+ scrb 99+ 99+ 99+ 99+ tmt-d 8 9 19 9 xml.val 1 30 16 30 STMMap 99+ 99+ 99+ 99

db-shot 99+ 99+ 56 39 ScalaBench (with DaCapo) trdb-d 17 26 18 25 Internal Micros Scan 99+ 99+ 99+ 99+

dec-tre 99+ 55 99+ 99+ bench C8 C11 E8 E11 trds-l 7 5 3 5 bench C8 C11 E8 E11 SrtRDD 99+ 99+ 99+ 99+

dotty 13 16 21 8 appar-d 99+ 99+ 27 41 xalan-l 35 26 28 23 BufDec 1 93 40 99+ StdDev 99+ 99+ 99+ 1

fin-chi 99+ 99+ 99+ 99+ avror-l 8 7 18 7 SPECjvm2008 (modified) BufEnc 6 1 1 5 StrCnt 78 45 98 30

fin-htt 25 21 19 24 batik-s 2 1 2 1 bench C8 C11 E8 E11 ChrHis 99+ 99+ 52 91 StrDem 99+ 99+ 99+ 99+

fj-kmns 70 6 23 69 eclps-s 10 11 cmp.cmp 8 5 ChrCnt 99+ 99+ 99+ 99+ StrDev 1 1 2 2

fut-gen 99+ 99+ 99+ 99+ factr-d 99+ 99+ 99+ 99+ cmp.sun 5 16 FltOdd 2 99+ 11 1 SFndNeg 99+ 99+ 99+ 99+

gauss 99+ 99+ 99+ 99+ fop-d 17 16 10 25 compr 4 99+ 15 16 FndNgt 2 1 1 1 SFldSum 99+ 1 99+ 99+

log-reg 10 11 21 40 h2-d 24 32 33 87 cry.aes 13 21 99+ 9 FntNgtR 1 1 1 2 SForSum 1 1 35 99+

mne 99+ 99+ 99+ 99+ jythn-l 31 99+ 44 70 cry.rsa 11 9 6 7 FJHis 2 1 1 3 SMapRed 99+ 99+ 1 27

mov-len 5 8 10 4 kiama-d 39 51 46 18 cry.sgn 9 13 5 14 FJStr 17 7 91 66 StrPer 99+ 99+ 99+ 57

nai-bay 10 4 99+ 99+ luidx-d 62 50 23 27 derby 28 8 35 70 FldSum 1 99+ 99+ 99+ STwoAvg 50 99+ 99+ 99+

neo-ana 99+ 99+ 100 99+ lusrc-l 42 30 27 11 mpega 1 1 1 2 FldSumR 1 1 1 1 TxtSDF 80 21 99+ 45

pg-rank 99+ 99+ 99+ 62 pmd-l 32 61 99+ 14 sci.ffl 99+ 99+ 99+ 99+ ForSum 1 1 99+ 99+ TxtRDD 99+ 99+ 53 85

par-mne 99+ 84 99+ 38 scc-l 99+ 99+ 23 20 sci.lul 1 1 1 1 ForSumR 99+ 1 1 4 TSP 99+

philos 99+ 99+ 99+ 99+ scdoc-l 99+ 20 46 19 sci.mtc 12 6 99+ 1 GrpRem 99+ 99+ 5 35 WrdCnt 40 25 26 52

reactr 36 42 99+ 99+ scp-l 10 19 52 96 sci.sol 1 1 1 1 MapOne 99+ 99+ 99+ 99+



cbea

How Many Runs Needed …
… to compute average performance with at most 1% error in 99% of cases ?

Renaissance 0.10 rx-scrb 49 65 26 19 scrfm-h 33 13 44 34 sci.spl 4 9 1 99+ NetDot 1 1 12 30

bench C8 C11 E8 E11 sc-doku 99+ 99+ 99+ 99+ scxb-h 99+ 99+ 99+ 99+ serial 14 23 99+ 99+ NetEig 1 1 67 19

aka-uct 15 99+ 86 99+ sc-kmns 8 5 27 19 specs-l 12 5 11 8 sunflow 9 13 7 3 Reduce 72 99+ 99+ 99+

als 6 7 99+ 99+ sc-stmb 93 68 99+ 99+ sunfl-l 6 16 99+ 18 xml.trn 10 7 9 7 STMLst 99+ 70 99+ 49

chi-sqr 99+ 99+ 99+ 99+ scrb 99+ 99+ 99+ 99+ tmt-d 8 9 19 9 xml.val 1 30 16 30 STMMap 99+ 99+ 99+ 99

db-shot 99+ 99+ 56 39 ScalaBench (with DaCapo) trdb-d 17 26 18 25 Internal Micros Scan 99+ 99+ 99+ 99+

dec-tre 99+ 55 99+ 99+ bench C8 C11 E8 E11 trds-l 7 5 3 5 bench C8 C11 E8 E11 SrtRDD 99+ 99+ 99+ 99+

dotty 13 16 21 8 appar-d 99+ 99+ 27 41 xalan-l 35 26 28 23 BufDec 1 93 40 99+ StdDev 99+ 99+ 99+ 1

fin-chi 99+ 99+ 99+ 99+ avror-l 8 7 18 7 SPECjvm2008 (modified) BufEnc 6 1 1 5 StrCnt 78 45 98 30

fin-htt 25 21 19 24 batik-s 2 1 2 1 bench C8 C11 E8 E11 ChrHis 99+ 99+ 52 91 StrDem 99+ 99+ 99+ 99+

fj-kmns 70 6 23 69 eclps-s 10 11 cmp.cmp 8 5 ChrCnt 99+ 99+ 99+ 99+ StrDev 1 1 2 2

fut-gen 99+ 99+ 99+ 99+ factr-d 99+ 99+ 99+ 99+ cmp.sun 5 16 FltOdd 2 99+ 11 1 SFndNeg 99+ 99+ 99+ 99+

gauss 99+ 99+ 99+ 99+ fop-d 17 16 10 25 compr 4 99+ 15 16 FndNgt 2 1 1 1 SFldSum 99+ 1 99+ 99+

log-reg 10 11 21 40 h2-d 24 32 33 87 cry.aes 13 21 99+ 9 FntNgtR 1 1 1 2 SForSum 1 1 35 99+

mne 99+ 99+ 99+ 99+ jythn-l 31 99+ 44 70 cry.rsa 11 9 6 7 FJHis 2 1 1 3 SMapRed 99+ 99+ 1 27

mov-len 5 8 10 4 kiama-d 39 51 46 18 cry.sgn 9 13 5 14 FJStr 17 7 91 66 StrPer 99+ 99+ 99+ 57

nai-bay 10 4 99+ 99+ luidx-d 62 50 23 27 derby 28 8 35 70 FldSum 1 99+ 99+ 99+ STwoAvg 50 99+ 99+ 99+

neo-ana 99+ 99+ 100 99+ lusrc-l 42 30 27 11 mpega 1 1 1 2 FldSumR 1 1 1 1 TxtSDF 80 21 99+ 45

pg-rank 99+ 99+ 99+ 62 pmd-l 32 61 99+ 14 sci.ffl 99+ 99+ 99+ 99+ ForSum 1 1 99+ 99+ TxtRDD 99+ 99+ 53 85

par-mne 99+ 84 99+ 38 scc-l 99+ 99+ 23 20 sci.lul 1 1 1 1 ForSumR 99+ 1 1 4 TSP 99+

philos 99+ 99+ 99+ 99+ scdoc-l 99+ 20 46 19 sci.mtc 12 6 99+ 1 GrpRem 99+ 99+ 5 35 WrdCnt 40 25 26 52

reactr 36 42 99+ 99+ scp-l 10 19 52 96 sci.sol 1 1 1 1 MapOne 99+ 99+ 99+ 99+

Perhaps 1%
is asking too much ?



cbea

How Many Runs Needed …
… to compute average performance with at most 5% error in 99% of cases ?

Renaissance 0.10 rx-scrb 2 2 1 1 scrfm-h 2 1 1 1 sci.spl 1 1 1 99+ NetDot 1 1 12 30

bench C8 C11 E8 E11 sc-doku 67 18 99+ 99+ scxb-h 8 6 25 99+ serial 2 8 3 13 NetEig 1 1 2 4

aka-uct 1 4 3 4 sc-kmns 2 1 1 1 specs-l 1 1 3 1 sunflow 1 1 1 1 Reduce 14 11 8 15

als 1 2 7 14 sc-stmb 2 2 4 6 sunfl-l 1 1 2 1 xml.trn 1 1 1 1 STMLst 6 21 8 1

chi-sqr 23 22 36 26 scrb 20 10 25 42 tmt-d 1 1 2 1 xml.val 1 3 1 3 STMMap 18 99+ 24 4

db-shot 7 6 2 1 ScalaBench (with DaCapo) trdb-d 1 3 1 1 Internal Micros Scan 9 14 34 8

dec-tre 11 1 6 7 bench C8 C11 E8 E11 trds-l 3 1 1 1 bench C8 C11 E8 E11 SrtRDD 4 7 5 19

dotty 1 1 1 1 appar-d 99+ 99+ 3 2 xalan-l 1 1 4 1 BufDec 1 5 8 2 StdDev 45 99+ 99+ 1

fin-chi 5 21 26 6 avror-l 2 1 1 1 SPECjvm2008 (modified) BufEnc 1 1 1 5 StrCnt 3 9 7 1

fin-htt 1 1 1 1 batik-s 1 1 1 1 bench C8 C11 E8 E11 ChrHis 4 10 4 3 StrDem 99+ 26 99+ 51

fj-kmns 1 3 2 1 eclps-s 2 2 cmp.cmp 1 1 ChrCnt 11 7 3 5 StrDev 1 1 2 2

fut-gen 6 6 3 8 factr-d 6 7 38 59 cmp.sun 1 4 FltOdd 1 45 6 1 SFndNeg 11 9 18 12

gauss 25 13 99+ 99+ fop-d 1 3 1 1 compr 1 3 1 2 FndNgt 2 1 1 1 SFldSum 34 1 99+ 99+

log-reg 6 8 2 2 h2-d 1 2 1 2 cry.aes 1 1 11 4 FntNgtR 1 1 1 1 SForSum 1 1 21 44

mne 7 13 29 12 jythn-l 3 9 1 3 cry.rsa 1 1 1 1 FJHis 1 1 1 3 SMapRed 67 57 1 1

mov-len 1 1 1 1 kiama-d 1 6 2 1 cry.sgn 1 1 1 14 FJStr 1 5 3 2 StrPer 13 99+ 99+ 1

nai-bay 1 1 60 100 luidx-d 1 1 1 2 derby 2 1 1 2 FldSum 1 3 73 70 STwoAvg 25 40 99+ 99+

neo-ana 41 8 10 14 lusrc-l 1 1 3 1 mpega 1 1 1 1 FldSumR 1 1 1 1 TxtSDF 3 1 8 10

pg-rank 7 5 5 2 pmd-l 1 2 13 1 sci.ffl 21 14 33 7 ForSum 1 1 81 80 TxtRDD 11 10 1 8

par-mne 8 5 99+ 1 scc-l 5 11 1 1 sci.lul 1 1 1 1 ForSumR 10 1 1 4 TSP 72

philos 10 99+ 14 38 scdoc-l 4 1 1 1 sci.mtc 1 1 12 1 GrpRem 7 7 4 9 WrdCnt 1 5 2 3

reactr 2 1 23 10 scp-l 1 1 1 3 sci.sol 1 1 1 1 MapOne 14 16 99+ 99+



cbea

How Accuracy Relates To Run Count ?

Roughly follows 1/
√
n



cbea

Take Away So Far …

Running benchmarks only once may not be enough

Non deterministic compilation visible especially with microbenchmarks

But the presented tables also include simple cases of high variance

Aiming for excessive accuracy backfires quickly

Reasonable accuracy is a function of more than just the benchmark

Tooling should consider benchmarks together with platforms

Not yet sure how often relevant parameters tend to change



cbea

Runs Needed When Different Metrics Used …
… to compute average performance with at most 1% error in 99% of cases.

Renaissance 0.10 rx-scrb 49 46 25 scrfm-h 33 69 75 sci.spl 4 4 23 NetDot 1 1 1

bench time clk ins sc-doku 99+ 99+ 99+ scxb-h 99+ 99+ 39 serial 14 14 2 NetEig 1 1 1

aka-uct 15 16 21 sc-kmns 8 8 7 specs-l 12 27 14 sunflow 9 9 11 Reduce 72 99+ 60

als 6 4 4 sc-stmb 93 99+ 99+ sunfl-l 6 6 8 xml.trn 10 11 1 STMLst 99+ 99+ 99+

chi-sqr 99+ 99+ 99+ scrb 99+ 99+ 99+ tmt-d 8 14 45 xml.val 1 3 1 STMMap 99+ 99+ 99+

db-shot 99+ 99+ 99+ ScalaBench (with DaCapo) trdb-d 17 99+ 99+ Internal Micros Scan 99+ 99+ 32

dec-tre 99+ 99+ 99+ bench time clk ins trds-l 7 12 7 bench time clk ins SrtRDD 99+ 99+ 25

dotty 13 14 6 appar-d 99+ 99+ 99+ xalan-l 35 99+ 99+ BufDec 1 1 1 StdDev 99+ 99+ 99+

fin-chi 99+ 99+ 99+ avror-l 8 32 88 SPECjvm2008 (modified) BufEnc 6 6 2 StrCnt 78 99+ 63

fin-htt 25 49 15 batik-s 2 2 1 bench time clk ins ChrHis 99+ 99+ 55 StrDem 99+ 99+ 99+

fj-kmns 70 81 60 eclps-s 10 12 1 cmp.cmp 8 8 8 ChrCnt 99+ 99+ 50 StrDev 1 1 9

fut-gen 99+ 99+ 99+ factr-d 99+ 99+ 99+ cmp.sun 5 5 11 FltOdd 2 2 1 SFndNeg 99+ 99+ 99+

gauss 99+ 99+ 99+ fop-d 17 17 6 compr 4 4 1 FndNgt 2 1 1 SFldSum 99+ 99+ 99+

log-reg 10 11 2 h2-d 24 10 12 cry.aes 13 13 1 FntNgtR 1 1 1 SForSum 1 1 1

mne 99+ 99+ 99+ jythn-l 31 31 9 cry.rsa 11 11 3 FJHis 2 2 3 SMapRed 99+ 99+ 99+

mov-len 5 8 9 kiama-d 39 66 51 cry.sgn 9 9 18 FJStr 17 23 11 StrPer 99+ 99+ 34

nai-bay 10 9 99 luidx-d 62 7 5 derby 28 28 5 FldSum 1 1 1 STwoAvg 50 51 38

neo-ana 99+ 99+ 99+ lusrc-l 42 54 29 mpega 1 1 1 FldSumR 1 1 1 TxtSDF 80 99+ 29

pg-rank 99+ 99+ 99+ pmd-l 32 16 11 sci.ffl 99+ 99+ 1 ForSum 1 1 1 TxtRDD 99+ 99+ 34

par-mne 99+ 99+ 99+ scc-l 99+ 99+ 99+ sci.lul 1 1 1 ForSumR 99+ 99+ 1 WrdCnt 40 65 32

philos 99+ 99+ 50 scdoc-l 99+ 99+ 99+ sci.mtc 12 12 23 GrpRem 99+ 99+ 99+

reactr 36 85 48 scp-l 10 65 56 sci.sol 1 1 1 MapOne 99+ 99+ 99+

time - wall clock time clk - thread clock time ins - instruction count



cbea

Different Metrics Not Always In Sync



cbea

Different Metrics Not Always In Sync

Sometimes things
work quite well



cbea

Different Metrics Not Always In Sync

Sometimes things
work quite well

Sometimes
instructions
may not be
the culprit



cbea

Different Metrics Not Always In Sync

Sometimes things
work quite well

Sometimes
instructions
may not be
the culprit

Perhaps
memory
bound ?



cbea

Wall Clock Time Changes Not Always Portable



cbea

Wall Clock Time Changes Not Always Portable

Even large local changes
may not reproduce



cbea

Wall Clock Time Changes Not Always Portable

Even large local changes
may not reproduce

Improvement vs regression
also platform specific



cbea

Wall Clock Time Changes Not Always Portable

Even large local changes
may not reproduce

Improvement vs regression
also platform specific

Note
Measurement variance not shown …



cbea

Take Away So Far …

Looking at more execution metrics can improve accuracy

Can help developers trust detected time changes

Or even direct investigation of change causes

Not really clear how to combine multiple (possibly) conflicting results

Some metrics changing and some not

Some platforms improving and some regressing

Some benchmarks improving and some regressing



cbea

Regression Example: Processor Scheduling I

Code
A microbenchmark that locates the first negative array item.

def run () {
for (i <- 0 until REPEATS) {

blackhole += findNegative (numbers)
}

}

def findNegative (numbers: Array[Int]): Option[Int] = {
numbers.find(_ < 0)

}

What the measurements said
Clear repetition time change between roughly 230ms and roughly 170ms
No change in other observed counters like instruction count
Observed multiple times in versions across several days
Commit changes often clearly unrelated



cbea

Regression Example: Processor Scheduling II
Assembly
Compilation results in reasonably compact assembly code.

0x00007f115c894c00: cmp %r13d,%edi ;loop iteration count test
0x00007f115c894c03: jbe 0x00007f115c89561c
0x00007f115c894c09: mov 0x10(%rdx,%r13,4),%r10d ;fetch array item
0x00007f115c894c0e: test %r10d,%r10d ;negative test
0x00007f115c894c11: jl 0x00007f115c894c2a ;found negative
0x00007f115c894c17: test %eax,0x1942d3e9(%rip) ;safepoint poll
0x00007f115c894c1d: inc %r13d
0x00007f115c894c20: cmp %r13d,%edi ;loop iteration count test (again)
0x00007f115c894c23: jg 0x00007f115c894c00

Analysis
Inner loop executes at IPC 6 when fast or IPC 4.5 when slow
Performance difference inflated from mere 0.5 cycle per iteration
Instruction scheduler counters report different μops port use as the reason
Actual scheduler choice only indirectly influenced by code



cbea

Regression Example: Inlining Heuristic I

Code
A microbenchmark that filters odd array items.

def run () {
for (i <- 0 until REPEATS) {

blackhole += filterOdd (numbers).length
}

}

def filterOdd (numbers: ArrayBuffer[Int]): ArrayBuffer[Int] = {
numbers.filter (_ % 2 == 1)

}

What the measurements said
Times always stable within each run
Repetition time of a run flipping between 5 s and 5.6 s
Rarely observed runs with repetition times of roughly 3.4 s
Share of runs with each time sometimes changes between versions



cbea

Regression Example: Inlining Heuristic II

Analysis
Fast and slow runs differed in what code gets inlined
Inlining heuristic (also) relies on low level graph size of the callee

If callee previously compiled, a cached value was used

If callee not yet compiled, an estimate was made

Caller and callee invocation counters necessarily similar
Hence compilation jobs launched close together in time
That increases the likelihood of the inliner flipping



cbea

Take Away So Far …

Reasons for performance change
not always directly connected to committed code

Especially microbenchmarks may exhibit fragile performance

Responsibility for addressing changes therefore not clear

Hard to tell whether performance regression should be addressed

Especially with benchmarks that
do not represent application performance

Effort needed to investigate reasons is not very predictable



cbea

Thank You !

Do not treat all benchmarks the same …
… using similar run sizes or expecting similar accuracy is not a good idea

Microbenchmarks should get special treatment …
… good for seeing specific changes but bad for judging practical impact

Evaluation cannot stay with developers only …
… users determine important workloads

Contribute to Renaissance …
… and we will start benchmarking your code too :-)

https://d3s.mff.cuni.cz

Our work is kindly sponsored by Oracle Labs.

https://d3s.mff.cuni.cz


cbea

Thank You !

Do not treat all benchmarks the same …
… using similar run sizes or expecting similar accuracy is not a good idea

Microbenchmarks should get special treatment …
… good for seeing specific changes but bad for judging practical impact

Evaluation cannot stay with developers only …
… users determine important workloads

Contribute to Renaissance …
… and we will start benchmarking your code too :-)

https://d3s.mff.cuni.cz

Our work is kindly sponsored by Oracle Labs.

https://d3s.mff.cuni.cz


cbea

Thank You !

Do not treat all benchmarks the same …
… using similar run sizes or expecting similar accuracy is not a good idea

Microbenchmarks should get special treatment …
… good for seeing specific changes but bad for judging practical impact

Evaluation cannot stay with developers only …
… users determine important workloads

Contribute to Renaissance …
… and we will start benchmarking your code too :-)

https://d3s.mff.cuni.cz

Our work is kindly sponsored by Oracle Labs.

https://d3s.mff.cuni.cz


cbea

Thank You !

Do not treat all benchmarks the same …
… using similar run sizes or expecting similar accuracy is not a good idea

Microbenchmarks should get special treatment …
… good for seeing specific changes but bad for judging practical impact

Evaluation cannot stay with developers only …
… users determine important workloads

Contribute to Renaissance …
… and we will start benchmarking your code too :-)

https://d3s.mff.cuni.cz

Our work is kindly sponsored by Oracle Labs.

https://d3s.mff.cuni.cz


cbea

Thank You !

Do not treat all benchmarks the same …
… using similar run sizes or expecting similar accuracy is not a good idea

Microbenchmarks should get special treatment …
… good for seeing specific changes but bad for judging practical impact

Evaluation cannot stay with developers only …
… users determine important workloads

Contribute to Renaissance …
… and we will start benchmarking your code too :-)

https://d3s.mff.cuni.cz

Our work is kindly sponsored by Oracle Labs.

https://d3s.mff.cuni.cz

