
 
Department of Distributed and Dependable Systems 
Technical Report no. D3S-TR-2015-04 
December 22, 2015 
 

 

  

 
 

Statistical Approach to Architecture Modes 
in Smart Cyber Physical Systems  

Tomas Bures, Petr Hnetynka, Jan Kofron, Rima Al Ali,  

Dominik Skoda 

Abstract: Smart Cyber-Physical Systems (sCPS) are complex distributed decentralized systems 
of cooperating components. They typically operate in uncertain environments and thus require 
means for managing variability at run-time. Architectural modes have traditionally been a 
proven means for the runtime variability. They are easy to understand, easy to realize in 
resource-constrained systems and (contrary to more sophisticated methods of learning) 
provide an explicit specification that can be inspected and validated at design time. However, in 
uncertain environments (which is the case of sCPS), they tend to lack expressivity to take into 
account the level of uncertainty and factor it in the mode-switching logic. In this paper we 
present a rich language to specify mode-switch guards. The semantics of the language is based 
on statistical tests, which, as we show, is a convenient way to reason about uncertainty in the 
state of the environment. 
 

This work was partially supported by the project no. LD15051 from COST CZ (LD) 
programme by the Ministry of Education, Youth and Sports of the Czech Republic. 



Statistical Approach to Architecture Modes 

in Smart Cyber Physical Systems 

Tomas Bures1,2, Petr Hnetynka1, Jan Kofron1, Rima Al Ali1, Dominik Škoda1

1 Charles University in Prague 

Faculty of Mathematics and Physics 

Prague, Czech Republic 

{bures, hnetynka, kofron, alali, skoda}@d3s.mff.cuni.cz 

2 Institute of Computer Science 

Czech Academy of Sciences 

Prague, Czech Republic 

bures@cs.cas.cz

 

 
Abstract— Smart Cyber-Physical Systems (sCPS) are complex 

distributed decentralized systems of cooperating components. 

They typically operate in uncertain environments and thus require 

means for managing variability at run-time. Architectural modes 

have traditionally been a proven means for the runtime 

variability. They are easy to understand, easy to realize in 

resource-constrained systems and (contrary to more sophisticated 

methods of learning) provide an explicit specification that can be 

inspected and validated at design time. However, in uncertain 

environments (which is the case of sCPS), they tend to lack 

expressivity to take into account the level of uncertainty and factor 

it in the mode-switching logic. In this paper we present a rich 

language to specify mode-switch guards. The semantics of the 

language is based on statistical tests, which, as we show, is a 

convenient way to reason about uncertainty in the state of the 

environment. 
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I. INTRODUCTION 

Smart Cyber-Physical Systems (sCPS) are complex 
distributed decentralized systems of cooperating mobile and 
stationary devices, which closely interact with the physical 
environment. Examples of sCPS include smart home/office, 
smart cities, smart traffic, smart manufacturing, etc. The 
mobility aspect of sCPS, their openness and potential open-
endness bring about a high level of dynamicity to the system. 
Therefore, traditional software development techniques have 
been shown not to be very suitable for developing such systems. 
Instead, novel approaches and techniques (e.g., [1], [2], [3]) 
have been proposed to address issues of sCPS development.  

Due to operation in uncertain environment, sCPS typically 
require means of runtime variability (adaptation). Though there 
is a multitude of approaches to variability and adaptation, not 
many really address the specifics of sCPS, which on one hand 
require powerful means of dealing with environmental 
uncertainty, on the other hand, they are resource-constrained and 
need strong notion of dependability which essentially excludes 
learning-based algorithms in normal operation. (However, as we 
argue in our other works [4], learning can still be strongly 
benefited from in exceptional situations when no other viable 
pre-defined adaptation is available anyway.) 

                                                           
1 http://ascens-ist.eu/ 

Traditional ways to manage variability [5] are not suitable 
for embedded systems. Typical solution for embedded and 
dependable systems relies on architectural modes [6]. They are 
featured by many components systems and technologies – e.g., 
MyCCM-HI [7], SOFA-HI [8], AADL [9], ProCom [10]. In all 
these systems, a mode is a property of a component and the 
component behavior depends on the active mode. At a single 
instant, a single mode can be active. Switching between modes 
is controlled by kind of a mode automaton that is associated with 
a component.  

Though attractive in their simplicity and explicit and well-
specified behavior, which can be validated before runtime, the 
existing approaches to modes turn out to be relatively weak in 
addressing the environmental uncertainty. This is mostly 
because they decide on the current state and current 
observations, while normally when addressing the uncertainty, 
one has to work with trends and historical observations 
generating likelihood of a future event happening.  

While history, future and adversaries are normally tackled 
by systems that employ learning and Markov processes, we 
argue that modes are still very suitable (due to their simplicity 
and explicit specification) even in this case, only the logic for 
describing transitions has to be extended (e.g. by notion of 
hysteresis). 

In this paper, we propose such an approach to modes and 
showcase it in the frame of one promising direction for 
designing sCPS – namely the component ensembles as 
introduces in the scope of the EU FP7 ASCENS project1. For 
technical details we rely on the DEECo component model [11], 
however, the results are directly applicable to any ensemble-
based component model (e.g., Helena [12]) and with some 
integration also to general component models for embedded 
system (e.g., AUTOSAR [13]). 

The paper is structured as follows. In Section II, we present 
a running example that is used as a motivation and for 
explanation and evaluation of new concepts. Section III explains 
the core concepts and semantics of our approach, while in 
Section IV, we discuss issues of the proposed approach. Section 
V evaluates the proposed approach using the running example 
and Section VI discusses the related work. Section Chyba! 
Nenalezen zdroj odkazů. concludes the paper. 



II. MOTIVATION EXAMPLE – SMART HOME/OFFICE 

As a motivation example, we present here a smart 
home/office scenario, in which a set of fully automated cleaner 
robots cooperate in order to keep a room clean while balancing 
the robots utilization. 

The entities in the example are the robotic Cleaners, robots’ 
Chargers, and Cameras, which monitor areas of the room and 
collect information about dirt in the room. A single Cleaner has 
an area assigned within the room, in which it should clean dirt. 
In the case no area is assigned to the Cleaner, it remains idle and 
waits for area assignment. Also, Cleaners are aware of their 
battery status. In the case the energy level of the Cleaner’s 
battery is too low, the Cleaner looks up for a suitable Charger 
and moves to it to be charged. To sum up the Cleaner behavior, 
it is either (i) cleaning, or (ii) idle, or (iii) looking for a charger, 
or (iv) moving to a charger, or (v) charging. 

 A Charger itself is rather a passive entity; it either waits for 
a Cleaner to dock in or, with a Cleaner in it, it charges the 
Cleaner. 

Cameras observe the room and provide information about 
areas with dirt that are obtained by Cleaners.  

All of these entities can be modeled as components. An 
example of such an architecture is given in Figure 1. It is given 
in the DSL of the DEECo [11] component model, however, 
almost any component model could be used to model the 
example.  

A component is defined by its state and activities. The state 
is given by a list of data fields (termed knowledge in DEECo). 
The activities of components are modeled as processes (in some 
component models called tasks). These are periodic or event-
triggered activities that typically involve sensing, computation, 
mutation of the component data field, and actuating. 

The communication among components is realized by 
exchanging data about dirty areas to be cleaned (between 
Cameras and Cleaners) and about availability of Chargers 
(between Chargers and Cleaners). In DEECo, this is modeled by 
communication groups (called ensembles). An ensemble 
dynamically determines which components are in the 
communication group via a membership condition. (Though 
other communication pattern – e.g., SOA – could be used as 
well.) The contract between components is captured by a 
component role which lists the data provided and required. The 
list of roles is then specified in component type definition and in 
the ensemble definition. A component may naturally provide or 
require several different roles. 

There are three types of ensembles in the example: (i) the 
Charging ensemble, which groups a particular charger with a 
robot in the charger, (ii) the Monitoring ensemble between a 
robot and camera, which communication locations of dirty spots 
to the robot, and (iii) the Room ensemble, which groups all the 
entities in the room and primarily allows for balancing the 
charges and robots utilization. 

To reflect the different situations in which a component may 
occur, components have naturally a number of modes. In the 
example above, they are implicit and (partially) hidden in the 
implementations. The Cleaner component has five processes but 

all of them are in fact mutually excluded, i.e., only executed in 
different modes. However the exclusion is not visible from the 
specification and is hidden in the process implementation (i.e., a 
condition whether the process should start or not). Another 
example of implicit modes is connected with the Charging 
ensemble – the Cleaner and Charger are grouped in this 
ensemble only if the Cleaner is in the Charger, i.e. the Cleaner 
is in the “Charging mode”.  

Clearly, an explicit mode specification, which describes 
modes at the level of the architecture, has a significant 
documentation value and also eases development and analysis. 
There are a number of approaches to make the modes explicit 
(as already mentioned, e.g., MyCCM-HI [7], SOFA-HI [8], 
AADL [9], ProCom [10], AUTOSAR [13] component systems).  
They generally list the possible modes of a component and tie 
process scheduling and component communication to each 
mode (an example of this is given in Figure 2). The relation 
between modes (if given) is typically described by a state 
machine (as found e.g. in Simulink [14] or Scade [15] -based 

component role Cleaner 

  int id 

  int energyLevel 

  bool inCharger 

  Charger charger 

  Area cleaningArea 

  Camera[] cameras 

 

component role Charger 

  int id 

  Cleaner cleaner 

 

component role Camera 

  Area[] dirtLocations 

 

component type Cleaner features Cleaner 

  process findCharger() 

  process move() 

  process checkEnergyLevelInCharger() 

  process waitForDirtyArea() 

  process moveAndClean() 

 

component type CleanerChager features Charger 

  process setChargingVoltage() 

  process unsetChargingVoltage() 

 

component type Camera feature Camera  

  process findDirtyAreas() 

 

ensemble Charging 

  roles  

    Charger charger 

    Cleaner cleaner 

  condition 

    charger.id == cleaner.charger.id 

 

ensemble Monitoring 

  roles  

    Camera camera 

    Cleaner cleaner 

 

ensemble Room 

  roles  

    multiple Camera  cameras 

    multiple Charger chargers 

    multiple Cleaner cleaners 

Figure 1 Robot cleaners example in DEECo 



architectures of control systems) where transition guards are 
expressions over internal state or sensed data. 

Though such approaches are relatively suitable for 
traditional embedded systems where the environment is known 
and can be modeled (e.g. to provide a model for a Kalman filter 
to cope with noise), it turns out that in the context of sCPS the 
mode switching would benefit from a bigger expression power 
to describe and take into account the uncertainty in the sensed 
data and in the state of the environment in general. 

 A trivial example is for instance given in Figure 3, which 
shows the measured energy level curve of a battery during 
continuous discharge. Suppose this happened in the case of the 
Cleaner robot. The robot monitors its energy level and switches 
to “looking for a charger” mode once the energy level drops 
below a specified point. Should the mode switch be guarded by 
something as “energy level < 20%”, the robot would interrupt 
work and go for recharge prematurely thus compromising the 
optimality of the system. In fact, even applying a low-pass filter 
on the data may not help in this case, it would only introduce a 
small delay to the mode switch. The problem can be detected 
only if the data are analyzed more closely and the sudden drop 
is evaluated as erratic behavior that lowers the credibility of the 
reading. 

Building further on this scenario, assume that there is 
another transition guarded by “energy level >= 20%” which 
switches from “looking for a charger” to “cleaning”. This guard 
would alleviate the problem of premature looking for a charger 
when a sudden erratic drop in the energy level happens, but 
could itself cause oscillation when the energy level gets close to 
20%. Such an oscillation could be again removed by a low-pass 
filter, however that would assume that the potential noise in the 
data is known in order to correctly tune the cut-off frequency of 
the filter. 

III. STATISTICAL APPROACH TO MODE SWITCHING 

In this section, we explain the core concepts and semantics 
of our approach. We overview the basic assumptions in Section 
III.A. Then in Section III.B we define the logic underlying the 
ability to switch modes based on trends and historical 
observations and in Section III.C we evaluate the defined 
operators. 

A. Preliminaries 

Similar as in existing approaches to modes in embedded 
systems (e.g. AUTOSAR), we assume that component comes 
with a set of modes, where a mode determines the tasks (or 
processes) executed by a component and the interfaces that the 
component requires or provides. We further assume that a 
component has a set of data fields (e.g. the component 
knowledge as shown in Figure 1) and that the mode switches are 
guarded by the expressions over the data fields.  

We allow several mode-groups per component, where a 
component is exactly in one particular mode per group. For the 
sake of simplicity, we unite the concepts of a mode-group and a 
component role and thus we the mutually exclusive modes to be 
declared within a component role – see Figure 4. Note however, 
that this assumption is only for simplicity of explanation. It does 
not have an impact on the generality of our approach presented 
further. 

The defined modes are employed at two places (Figure 2): 
(i) for processes definitions (the @inMode lines in the 
component types Cleaner and CleanerCharger) and (ii) for 
ensembles definitions (Cleaner.mode==charging in the 
ensemble definition). A process with a mode annotation is 
executed only if its component is in the particular mode while a 
component participates in an ensemble only if it is in the 
required mode. 

To actually describe modes switching, the component role 
contains the mode-switch table (see Figure 5, lines 9-15). This 
is similar to AADL, where the mode automaton essentially takes 
a shape of mode switch table (i.e., a list of conditions and 

Figure 2 Sample battery energy level during continuous 

discharge 

component type Cleaner features Cleaner 

  @inMode(findcharger) 

  process findCharger() 

  @inMode(headingforcharger) 

  process move() 

  @inMode(charging) 

  process checkEnergyLevelInCharger() 

  @inMode(idle) 

  process checkForMess() 

  @inMode(cleaning) 

  process moveAndClean() 

 

component type CleanerChager features Charger 

  @inMode(charging) 

  process setChargingVoltage() 

  @inMode(notcharging) 

  process unsetChargingVoltage() 

 

ensemble Charging 

  roles  

    Charger charger 

    Cleaner.mode==charging cleaner 

  condition 

    charger.id == cleaner.charger.id 

 

Figure 3 Association of processes and ensembles with 

modes 



resulting mode). The conditions in the mode-switch table are 
evaluated every time before an associated process or ensemble-
based communication could be executed (i.e. typically 
periodically with the period of the process). 

To cope with uncertainty in sCPS, we generally stick to the 
rule that there is always a default mode provided. This addresses 
the cases when the sCPS is caught in an unanticipated situation 
or environment. This is also the reason of our preference for a 
mode-switch table over a full-fledge mode automaton with 
transitions. The default modes typically turn the automaton to an 
almost complete graph which is less comprehensible than a 
simple mode-switch table.  

With the mode-switch table it is generally possible that more 
modes are available to select from. (Note that only one such 
mode can be activated at a time as they belong to the same role 
and thus are mutually exclusive.) At least, the default mode will 
be typically available together with other modes. To resolve 
these situations, we assume that the conditions in the table are 
prioritized from the top to bottom.  In Section XX, we show how 
to analyze cases in which the default mode applies; this may be 
a source of potential errors in the mode design, which, due to the 
presence of the default mode, might demonstrate themselves as 
late as at runtime. 

B. History and Future 

A cornerstone of our approach is the ability to switch modes 
based on historical development of observed values. This is 
important not only to filter out temporary disturbances, but also 
to predict trends in the observed data. To this end, we use time-
series instead of single-valued data (as would be the case of 
traditional approach to modes). On top of the time-series, we 
provide several operators to perform statistical reasoning and to 
construct expressions that can be used as guards for the modes. 

We define a many-sorted logic for expressing the mode 
guards as follows:  

Variables 𝐴 = 𝐴1, … , 𝐴𝑛;  𝐵;  𝐶, …  are time-series. We 
denote 𝑇(𝐴) = 𝑇(𝐴1), … , 𝑇(𝐴𝑛)  the series of time when 
𝐴1, … , 𝐴𝑛 was sampled.  

Operators that return a time-series are: 

 Selection 𝐴𝑖 … 𝐴𝑗  denoting a sequence consisting of 

elements 𝐴𝑖 through 𝐴𝑗. This can be also one element time-

series –  e.g. 𝐴1 denotes a time-series where only the first 
element has been preserved. 

 Selection [𝐴]𝑥
𝑦

= 𝐴𝑙 … 𝐴𝑟  such that 𝑙 = min {𝑖|𝑇(𝐴𝑖) ≥ 𝑥} 
and conversely 𝑟 = max {𝑖|𝑇(𝐴𝑖) ≤ 𝑦} . We call this 
selection an (𝑥, 𝑦) window over 𝐴. 

 Selection [𝐴|Φ] denoting a sub-series containing only those 
𝐴𝑖 for which Φ(𝐴𝑖) is true. 

 Resampling 𝐴~ 𝑇(𝐵)  of a timeseries 𝐴  to sample times 
𝑇(𝐵) by linear interpolation. 

                                                           
2The ordinary least squares (OLS) estimation for 𝑦 = �̂� + �̂�𝑥 is 

given by �̂� =
∑ (𝑥𝑖−𝑥)(𝑦𝑖−𝑦)𝑛

𝑖=1

∑ (𝑥𝑖−𝑥)2𝑛
𝑖=1

,  �̂� = 𝑦 − �̂�𝑥. 

 Resampling 𝐴~̅ 𝑇(𝐵)  of a timeseries 𝐴  to sample times 
𝑇(𝐵) by using the closest previous value. 

 Basic arithmetics over time-series (assumes that 𝑇(𝐴) =
𝑇(𝐵), and 𝑐 ∈ ℝ): 

o 𝑐𝐴 – multiplication of each element by a constant 

o 𝐴 + 𝑐 – addition of a constant 

o 𝐴 + 𝐵, 𝐴 − 𝐵 – element-wise addition/subtraction 

o 𝐴 ∙ 𝐵 – element-wise product 

Relational operators over timeseries: 

 =  – equality of two timeseries 

Operators that return a cumulative distribution function 𝐹:  

 𝑚𝑒𝑎𝑛(𝐴)  – distribution used for comparing the sample 
mean of 𝐴. 

Technically (in the light of Section III.C), it is a distribution 
of sample means of the time-series elements under the 
hypothesis that the mean is the sample mean of A. Note that 
the resulting distribution serves as a plug-in distribution used 
for evaluation of ≤𝛾 , … relational operators (defined below) 

by means of hypothesis testing. The quantiles of this 
distribution are used to establish p-values for the test. For 
𝑚𝑒𝑎𝑛(𝐴) , we assume that the samples are i.i.d. random 
variables with normal distribution. 𝑚𝑒𝑎𝑛(𝐴)  is thus a 
shifted and scaled Student’s t-distribution (see Section 
III.C).  

 𝑙𝑟𝑎(𝐴)  – distribution used for comparing the value of 

intercept �̂�  in linear regression �̂� + �̂�𝑥  fitted to the time-
series 𝐴 via ordinary least squares (OLS)2. 

Technically, it is a distribution of intercepts �̂�  under the 
hypothesis that the true intercept is the one estimated by 
OLS. 

component role Cleaner 

  [cleaning, charging, findingcharger, 

        headingforcharging, idle] modes 

  int id 

  int energyLevel 

  bool inCharger 

  bool vacuumStatus 

  Charger charger 

  Area cleaningArea 

  Camera[] cameras 

 

component role Charger 

  [charging, notcharging] modes 

  int id 

  Cleaner cleaner 

Figure 4 Modes definition 



 𝑙𝑟𝑏(𝐴)  – distribution used for comparing the slope �̂� . 

Technically, it is a distribution of slopes �̂�  under the 
hypothesis that the true slope is the one estimated by OLS. 

 𝑙𝑟(𝐴, 𝑥) – distribution of 𝑦 = �̂� + �̂�𝑥 as above. (Note that 

since �̂� and �̂� are random variables, 𝑦 is a random variable 
as well.) 

Relational operators over the distribution functions realized 
by statistical testing: 

 𝐹 ≤𝛾 𝑐, 𝐹1 ≤𝛾 𝐹2 – if the null hypothesis 𝑋 ≤ 𝑐 or 𝑋1 ≤ 𝑋2 

respectively cannot be rejected at confidence level 𝛾, where 
𝑋, 𝑋1, 𝑋2  are random variables with distributions 𝐹, 𝐹1, 𝐹2 
respectively . 

 𝐹 <𝛾 𝑐, 𝐹1 <𝛾 𝐹2 – if the null hypothesis 𝑋 ≥ 𝑐 or 𝑋1 ≥ 𝑋2 

respectively can be rejected at confidence level 𝛾 , where 
𝑋, 𝑋1, 𝑋2  are as above. 

 ≥𝛾 and >𝛾 are defined correspondingly 

 =𝛾 is defined as ≤𝛾 & ≥𝛾  

Additionally, we include standard logical operators &,∨, ¬. 

Examples: With this apparatus in hand, we can express 
mode-switching guards such as: 

 𝑚𝑒𝑎𝑛([𝑡𝑚𝑝]𝑛𝑜𝑤−10𝑠
𝑛𝑜𝑤 ) <0.95 20 – with confidence 95% the 

expected value of temperature 𝑡𝑚𝑝 in the past 10 seconds 
has been lower than 20 degrees. 

 𝑚𝑒𝑎𝑛([𝑡𝑚𝑝𝐵~𝑇(𝐴)]𝑛𝑜𝑤−10𝑠
𝑛𝑜𝑤 ) − 20 

<0,95 𝑚𝑒𝑎𝑛([𝑡𝑚𝑝𝐴]𝑛𝑜𝑤−10𝑠
𝑛𝑜𝑤 )  – with confidence 95% the 

expected value of temperature 𝑡𝑚𝑝𝐴  has been in last 10 
seconds at least by 20 degrees lower than the expected value 
of 𝑡𝑚𝑝𝐵. Note that 𝑡𝑚𝑝𝐵 is first resampled to sample times 
of 𝑇(𝐴) by linear interpolation. 

This assumes that within the 10 seconds window, the 
temperature is constant and the measurement is subject to 
normally distributed error with constant mean and variance. If it 
is assumed that the samples within the window have a linear 
trend, the comparison can be executed based on statistics of 
confidence intervals obtained from the linear regression. 

 𝑙𝑟([𝑏𝑎𝑡]𝑛𝑜𝑤−10𝑠
𝑛𝑜𝑤 , 𝑛𝑜𝑤) <0.95 11 – with confidence 95% the 

current expected value of battery voltage is less than 11 volts 
evaluated over the past 10 seconds. 

The 𝑙𝑟 operator can be also exploited to predict values in the 
near future based on the current linear trend. Of course, care has 
to be taken in interpreting the confidence level of the 
extrapolation as the confidence speaks only about the current 
trend, not about its accuracy in predicting the future. 

 𝑙𝑟([𝑏𝑎𝑡]𝑛𝑜𝑤−60𝑠
𝑛𝑜𝑤 , 𝑛𝑜𝑤 + 120𝑠) >0.95 11  – based on the 

trend observed in the past minute, the value of battery 
voltage after 120 seconds from now will be, with confidence 
of 95%, over 11 volts. 

Generally, the 𝑥 parameter of 𝑙𝑟(𝐴, 𝑥)  can be arbitrary, 
however, it is necessary to remember that the variance of the 
prediction grows with the distance of 𝑥 from the mean of 𝑇(𝐴). 

The confidence bounds around �̂� + �̂�𝑥  form the usual 
“hourglass” shape (see Figure XX). This means that the 
statistical test used in the comparison will be the strongest 
roughly in the middle of the window and will get weaker 
towards the boundaries of the window (see Sect. XXX where 
these underlying mathematical formulas are given). 

The 𝑚𝑒𝑎𝑛  and 𝑙𝑟  operators can be also exploited to 
approximately describe that a value is increasing/decreasing: 

 𝑚𝑒𝑎𝑛([𝑏𝑎𝑡]𝑛𝑜𝑤−10𝑠
𝑛𝑜𝑤 ) <0.95 𝑚𝑒𝑎𝑛([𝑏𝑎𝑡]𝑛𝑜𝑤−70𝑠

𝑛𝑜𝑤−60𝑠) 

 𝑙𝑟([𝑏𝑎𝑡]𝑛𝑜𝑤−10𝑠
𝑛𝑜𝑤 , 𝑛𝑜𝑤 − 10𝑠) <0.95 

𝑙𝑟([𝑏𝑎𝑡]𝑛𝑜𝑤−10𝑠
𝑛𝑜𝑤 , 𝑛𝑜𝑤)  

However, the use of 𝑚𝑒𝑎𝑛 is often incorrect as it assumes 
no trends in the observation window. The use of 𝑙𝑟 is correct, 
but does not permit to easily reason about the rate of 
decrease/increase. A better control is achieved by 𝑙𝑟𝑎 and 𝑙𝑟𝑏, 
which expose the distribution of the linear regression 
coefficients 

 𝑙𝑟𝑏([𝑏𝑎𝑡]𝑛𝑜𝑤−10𝑠
𝑛𝑜𝑤 ) <0.95− 1  – with confidence 95%, the 

battery voltage decreases faster than 𝑓(𝑥) = −𝑥. 

Note that the statistical nature of the comparison operators 
brings a few unexpected features. In particular, it does not hold 
that: 

a) 𝐹1 ≤𝛾 𝐹2 & 𝐹2 ≤𝛾 𝐹3 ⟹ 𝐹1 ≤𝛾 𝐹3 

b) 𝐹 ≤𝛾 𝑐1 & 𝑐2 ≤𝛾 𝐹 & 𝑐1 ≤ 𝑐2 ⟹  𝑐1 = 𝑐2  

The violation of (a) is caused by the fact the while the 
distance between 𝐹1, 𝐹2 and 𝐹2, 𝐹3 was small enough to prevent 
the hypothesis test from rejecting (i.e. ≤𝛾 is true), the distance 

between 𝐹1, 𝐹3 may be big enough to allow the test to reject, thus 
evaluating ≤𝛾 to false. 

The violation of (b) has a similar cause – 𝑐1, 𝑐2 are close to 
mean of 𝐹  thus no rejection takes place. However 𝑐1  may lie 
below the mean of 𝐹  while 𝑐2  may be above it (though 
𝐹 ≤𝛾 𝑐1 & 𝑐2 ≤𝛾 𝐹). 

The violation of (b) nevertheless leads to an elegant way of 
expressing uncertainty: 

 𝑙𝑟([𝑏𝑎𝑡]𝑛𝑜𝑤−10𝑠
𝑛𝑜𝑤 ) <0.95 11 – “provably low battery, drive to 

the charger” 

 𝑙𝑟([𝑏𝑎𝑡]𝑛𝑜𝑤−10𝑠
𝑛𝑜𝑤 ) >0.95 11  – “provably sufficient battery, 

move to the spot to be cleaned” 

 𝑙𝑟([𝑏𝑎𝑡]𝑛𝑜𝑤−10𝑠
𝑛𝑜𝑤 ) =0.95 11 – “nothing definite can be said 

about the battery, monitor area around, but don’t get too far 
from the charger” 

Note that this is a rather significant difference to the 
traditional semantics of comparison operators with real-valued 
quantities. There the likelihood that a real-valued observation is 
exactly equal to a certain quantity is extremely low (in fact, it is 
0). In our interpretation, the equality 𝐹 =0.95 11  means “it 
cannot be shown by a statistical test with enough confidence that 
a mean is strictly higher or strictly lower”. Thus, the mean is not 
compared exactly to number 11, but to a confidence interval 
around 11. The confidence interval widens with increasing 



variance of samples. Consequently, the likelihood that 
𝐹 =0.95 11  may be rather high, since both 𝐹 >0.95 11  and 
𝐹 <0.95 11 are rejected. 

To simplify the specification, we provide a short-hand 
notation for the most common cases: 

 𝑏𝑒𝑙𝑜𝑤(𝑥, 𝑦, 𝑤) ⟺ 𝑙𝑟([𝑥]𝑛𝑜𝑤−𝑤
𝑛𝑜𝑤 , 𝑛𝑜𝑤) <0.95 𝑦  … with 

confidence 0.95% the current value of 𝑥 is less than 𝑦. It 
assumes that there is a linear trend (potentially a zero trend) 
in 𝑥 over the past time interval of length 𝑤. 

 𝑎𝑏𝑜𝑣𝑒(𝑥, 𝑦, 𝑤) ⟺ 𝑙𝑟([𝑥]𝑛𝑜𝑤−𝑤
𝑛𝑜𝑤 , 𝑛𝑜𝑤) >0.95 𝑦  … similar 

as above with 𝑥 greater than 𝑦. 

 𝑓𝑏𝑒𝑙𝑜𝑤(𝑥, 𝑦, 𝑤, 𝑓) ⟺ 𝑙𝑟([𝑥]𝑛𝑜𝑤−𝑤
𝑛𝑜𝑤 , 𝑛𝑜𝑤 + 𝑓) <0.95 𝑦  … 

the future value of 𝑥 in time 𝑓 from now is expected to be 
less than 𝑦.  

 𝑓𝑎𝑏𝑜𝑣𝑒(𝑥, 𝑦, 𝑤, 𝑓) ⟺ 𝑙𝑟([𝑥]𝑛𝑜𝑤−𝑤
𝑛𝑜𝑤 , 𝑛𝑜𝑤 + 𝑓) >0.95 𝑦  … 

similar as above with the future 𝑥 greater than 𝑦.  

C. Evaluation of the Relational Operators 

The interpretation we use for 𝐹 ≤𝛾 𝑐 and related operators 

relies on checking whether value 𝑐 lies within the confidence 
bounds given by 𝐹, i.e. the 1 − 𝛾 and 𝛾 quantiles of 𝐹.   

Recall that 𝐹 denotes here the distribution of the statistical 
quantity under the hypothesis that the true mean is the sample 
mean. In case of the 𝑚𝑒𝑎𝑛(𝐴) operator, it is a distribution of 

�̅� + 𝑠𝑇/√𝑛 , where 𝑇  is a random variable with Student’s t-

distribution with |𝐴| − 1 degrees of freedom, �̅� is the sample 
mean of 𝐴 and 𝑠2 is a sample variance of 𝐴.  

In case of the 𝑙𝑟𝑏(𝐴)  operator, assuming the model 𝛼 +
𝛽𝑥 + 𝜖  and normality of the error terms 𝜖 , the 𝑙𝑟𝑏(𝐴)  is a 

distribution of �̂� + 𝑠�̂�𝑇 , where �̂�  is the ordinary least square 

estimate of the slope, 𝑠�̂� is the standard error of the estimator  �̂�, 

and 𝑇  has Student’s t-distribution of |𝐴| − 2  degrees of 
freedom. Similar relation holds for the distribution of 

intercept  �̂�  returned by 𝑙𝑟𝑎(𝐴)  and the prediction �̂� + �̂�𝑥 
returned by 𝑙𝑟(𝐴, 𝑥). 

The actual test 𝐹 ≤𝛾 𝑐 is interpreted as: 

𝐹 ≤𝛾 𝑐   ⟺    𝐹(2𝜇 − 𝑐) ≤ 𝛾 

where 𝜇 is the mean of 𝐹 and 𝐹(𝑥) denotes the cumulative 
distribution function of 𝐹. 

The expression 2𝜇 − 𝑐 is derived from the fact that we shift 
𝐹  such that its mean is 𝑐 , which is the null hypothesis. This 
yields a distribution 𝐹 − 𝜇 + 𝑐 . We then reject the null 
hypothesis if 𝜇 is greater than 𝛾 quantile of 𝐹 − 𝜇 + 𝑐. With a 
few trivial rearrangements, we arrive at the 𝐹(2𝜇 − 𝑐) ≤ 𝛾. 

The test 𝐹1 ≤𝛾 𝐹2 is interpreted as: 

𝐹1 ≤𝛾 𝐹2    ⟺    (𝐹1 − 𝐹2)(2𝜇1 − 2𝜇2) ≤ 𝛾 

where 𝜇1, 𝜇2 denote the means of 𝐹1, 𝐹2 respectively; (𝐹1 −
𝐹2) denotes the distribution of a subtraction of random variables 
𝑋1 − 𝑋2 where random 𝑋1~𝐹1 and 𝑋2~𝐹2. 

The expression is derived in a similar way as above. We shift 
each of the two distribution to have mean 0 and subtract them: 
𝐹1 − 𝜇1 − 𝐹2 + 𝜇2 . This forms a distribution for the null 
hypothesis that the mean of 𝐹1 − 𝐹2 is less or equal 0. We reject 
if 𝜇1 − 𝜇2 is greater than 𝛾 quantile of 𝐹1 − 𝜇1 − 𝐹2 + 𝜇2. 

IV. DISCUSSION 

In this section, we will discuss in more detail the issues 
already risen in the previous sections. Particularly, these are (i) 
verification of completeness of conditions in mode-switching 
table and (iii) quantile-based interpretation. 

A. Verification of conditions 

When designing the mode switching table of a component, an 
important aspect is to cover the option space sufficiently. A 
disadvantage of the default (true -> ) switch option is that the 
designer can omit a specific situation that should be covered by 
a special mode switch, or simply makes a mistake in the mode 
switching specification. There is no way to algorithmically 
decide whether this was an intention or not. Therefore, we 
provide a support for enumerating cases in which the default 
mode switch applies. This is done by means of the Z3 SMT 
solver [16], when interpreting the high-level operators as 
independent Boolean variables; it is then up to the system 
designer to decide whether and which situations currently 
covered by the default mode switch should be covered explicitly 
by a special one. We believe that such a check can reveal 
unforeseen situations, as the number of combinations in more 
complex systems can be enormous. 

B. Quantile-based interpretation 

The operators 𝑚𝑒𝑎𝑛, 𝑙𝑟𝑎, 𝑙𝑟𝑏, and 𝑙𝑟 all give distribution of 
a mean value. This is a typical use-case as the mean value if well 
understood by practitioners. One however has to be aware of the 
fact that mean is typically rather sensitive to outliers. The 
computation of the mean can be thus preceded with some form 
of outlier detection and exclusion. Care however has to be taken 
because the definition of an outlier is purely domain-specific and 
requires good understanding of the cause for outliers. This is 
because removal of the outliers inherently changes the sample 
mean and the variance of the mean, which influences the results 
of the statistical tests used for the relational operators. Typically, 
this renders the test overconfident and increases the number of 
false positives. 

An alternative to filtering outliers is to use a statistical value 
which is inherently robust to outliers. In particular, a median is 
a favorite choice. Also, generalizing the median to an arbitrary 
quantile has a nice advantage of giving the ability to reason 
about extremal values – e.g. with confidence 𝛾 , 90% of the 
measurements fall below a given threshold. 



The use of median or quantiles in general however comes 
with a relatively high computational cost. Though there exist 
relatively simple non-parameteric tests for comparing a median 
of a set of i.i.d. observations (i.e. an operator in assumptions 
similar to 𝑚𝑒𝑎𝑛 ), the quantile regression (i.e., yielding 
operators similar to 𝑙𝑟𝑎, 𝑙𝑟𝑏, and 𝑙𝑟) is much more complex. It 

turns out that its parameters  �̂�,  �̂� cannot be computed directly 
by a formula (as in the case of ordinary least-squares), but 
requires minimization, for instance by means of linear 
programming.  

V. EVALUATION 

To evaluate our approach, we apply the logic for the mode 
transitions on the smart home/office use-case presented in 
Section II. Figure 5 shows the example of the mode specification 
attached to an architecture in DEECo specification language 
(note that due to space constraints, only parts relevant to modes 
are given, leaving out DEECo implementation specifics).  

As already mentioned in Section II, all the entities are 
modeled as components – Cleaner, Charger and Camera. Recall 
that a component is defined by its role and type. A role specifies 
the component’s interface, i.e., data (knowledge in the DEECo 
terminology) that is communicated with other components (via 
ensembles). A particular component type then features a number 
of the roles and defines components processes that are executed 
either periodically or as a reaction to the knowledge values 
changes. The processes operate with the component knowledge. 
A single component type can be instantiated many types.  

The knowledge of the Charger role consists of its ID and the 
Cleaner in the Charger (lines 18 and 19 in Figure 5). Its modes 
are either charging or not-charging (line 17). The mode-switch-
table (lines 20-22) is thus quite simple: if there is the Cleaner in 
the Charger, it is in the charging mode and vice-versa. The 
Camera role is even simpler; it just offers an array of areas with 
dirt (line 24) and there are no multiple modes. 

1. component role Cleaner 

2.   [cleaning, charging, findingcharger, 

        headingforcharging, aitingfordirt,  

        waitingforclosedirt] modes 

3.   int id 

4.   <int> energyLevel 

5.   bool inCharger 

6.   Charger charger 

7.   Area cleaningArea 

8.   Camera[] cameras 

 

9.   mode-switch-table 

10.     aabelow(energyLevel, ENERGYLOWLIMIT)  

 && unset(charger) -> mode = findcharger 

11.     aabelow(energyLevel, ENERGYLOWLIMIT) 

 && isset(charger) -> 

    mode = headingforcharger 

12.     faaabove(energyLevel, ENERGYLOWLIMIT, 

2min) && isset(cleaningArea) ->  

    mode = cleaning 

13.     inCharger && aabelow(energyLevel, 

ENERGYCHARGED)  -> mode = charging   

14.     unset(cleaningArea) && 

aaabove(energyLevel, ENERGYLOWLIMIT) -> 

mode = waitingfordirt 

15.     true -> mode = waitingforclosedirt 

  

16.  component role Charger 

17.    [charging, notcharging] modes 

18.    int id 

19.    Cleaner cleaner 

20.    mode-switch-table 

21.      isset(cleaner) -> charging 

22.      unset(cleaner) -> notcharging 

 

23. component role Camera 

24.   Area[] dirtLocations 

 

25. component type CleanerChager features 

Charger 

26.   @inMode(charging) 

27.   process setChargingVoltage() 

28.   @inMode(notcharging) 

29.   process unsetChargingVoltage() 

Figure 5 Example of the mode specification attached to an architecture in DEECo specification language 

30. component type Cleaner features Cleaner 

31.   @inMode(findcharger) 

32.   process findCharger() 

33.   @inMode(headingforcharger) 

34.   process move() 

35.   @inMode(charging) 

36.   process checkEnergyLevelInCharger() 

37.   @inMode(waitingfordirt) 

38.   process waitForDirtyArea() 

39.   @inMode(waitingforclosedirt) 

40.   process waitForDirtyAreaCloseToCharger() 

41.   @inMode(cleaning) 

42.   process moveAndClean() 

 

43. component type Camera feature Camera  

44.   process findDirtyAreas() 

 

45. ensemble Charging 

46.   roles  

47.     Charger charger 

48.     Cleaner.mode==charging cleaner 

49.   condition 

50.     charger.id == cleaner.charger.id 

 

51. ensemble Monitoring 

52.   roles  

53.     Camera camera 

54.     Cleaner cleaner 

55.   condition 

56.     ... 

 

57. ensemble Room 

58.   roles  

59.     multiple Camera  cameras 

60.     multiple Charger chargers 

61.     multiple Cleaner cleaners 

62.   condition 

63.     ... 

 

 

 



The most complex role is the Cleaner. Its knowledge consists 
of its ID (line 3), energy level (which is a time-series field, line 
4), an assigned Charger (line 6), information whether the 
Cleaner is in the Charger (line 5), an assigned area to be cleaned 
(line 7), and finally all the cameras in the room (line 8). 
Regarding the possible modes (line 2), the Cleaner has six of 
them – cleaning, charging, finding-charger, heading-for-
charging, waiting-for-dirt and waiting-for-close-dirt. Switches 
between these modes, as described in the mode-switch-table 
(lines 9-15), are as follows. If the battery energy level is below 
prescribed limit and no charger is set, then the Cleaner tries to 
find an available charger (line 10). If the energy level is below 
the limit but the charger is set, the Cleaner proceeds to the 
charger (line 11). If the energy limit is sufficient and, 
importantly, will be sufficient within following 2 minutes 
(without sufficient energy the Cleaner would not be able to even 
start the cleaning) and the cleaning area is set, the Cleaner starts 
with cleaning (line 12). If the Cleaner is in the charger, then it 
chargers until the energy level is not above the prescribed limit 
(line 13). If there is no cleaning area set and the energy level is 
sufficient, then the waits for an area to be cleaned (line 14). If 
no from the above conditions hold, then the sufficiency of the 
energy level for cleaning cannot be evaluated and the Cleaner 
waits for an area to be cleaned but accepts only areas close to it 
so it spends minimum amount of energy for moving to the dirty 
area (line 15). 

VI. RELATED WORK 

As far as we are aware, there are no other approaches 
featuring a language for specifying mode transition that would 
be based on statistical testing. However, there are a number of 
approaches that are closely related and/or also employ statistical 
methods for managing variability. 

Regarding our own works, recently, we have used a similar 
approach in Stochastic Performance Logic (SPL) [17], [18], 
which is a formalism for expressing performance requirements, 
together with interpretations that facilitate performance 
evaluation. To reason about performance, SPL considers 
historical data (i.e., time series of periodic performance 
measurements) and offers high-level operators to be used in a 
system code. Contrary to approach presented in this paper, SPL 
operates with history only and does not consider future.  

A closely related approach is Stitch [19], which is a language 
for describing architecture-based self-adaptation. One of the 
Stitch’s basic concepts is a tactics. It consists of a condition over 
the architecture state, an action that has to be performed if the 
condition holds, and finally an effect that is a condition, which 
should hold after applying the action. Tactics are used in 
strategies, which describe dynamic adaptation processes. 
Compared to modes, Stitch offers more fine-grained adaptation 
of an architecture, which however may not be always ideal for 
sCPS thanks to potentially limited hardware of the embedded 
elements of the system. Compare to our approach, Stitch does 
not allow reasoning about history/future and time-series in 
conditions. Probabilities are in Stitch used in strategies to 
describe likelihood that the condition will evaluate to true and 
subsequently employed in selecting a strategy to be executed. 

A dynamic adaptation at runtime is discussed in [20]. To 
avoid issues with oscillations of context measures, the authors 

suggest to use an event processing engine, namely Esper [21]. 
Esper offers a SQL-based event processing language, which 
allows for defining queries on runtime events with time 
windows and aggregation functions (like min, max, average). 
However, the analysis via linear regression and/or predictions of 
future events is not supported. 

REFERENCES 

[1] M. Hölzl, A. Rauschmayer, and M. Wirsing, “Software 

Engineering for Ensembles,” in Software-Intensive 

Systems and New Computing Paradigms, M. Wirsing, J.-

P. Banâtre, M. Hölzl, and A. Rauschmayer, Eds. 

Springer, 2008, pp. 45–63. 

[2] B. Morin, F. Fleurey, and O. Barais, “Taming 

Heterogeneity and Distribution in sCPS,” in Proceedings 

of SEsCPS 2015, Firenze, Italy, 2015, pp. 40–43. 

[3] I. Ruchkin, B. Schmerl, and D. Garlan, “Architectural 

Abstractions for Hybrid Programs,” in Proceedings of 

CBSE 2015, Montreal, Canada, New York, NY, USA, 

2015, pp. 65–74. 

[4] I. Gerostathopoulos, T. Bures, P. Hnetynka, A. Hujecek, 

F. Plasil, and D. Skoda, “Meta-Adaptation Strategies for 

Adaptation in Cyber-Physical Systems,” in Proceedings 

of ECSA 2015, Dubrovnik/Cavtat, Croatia, 2015, vol. 

9278, pp. 45–52. 

[5] F. Bachmann and L. Bass, “Managing Variability in 

Software Architectures,” in Proceedings of SSR ’01, 

Toronto, Canada, 2001, pp. 126–132. 

[6] D. Hirsch, J. Kramer, J. Magee, and S. Uchitel, “Modes 

for Software Architectures,” in Proceedings of EWSA 

2006, Nantes, France, 2006, vol. 4344, pp. 113–126. 

[7] E. Borde, G. Haik, and L. Pautet, “Mode-based 

reconfiguration of critical software component 

architectures,” in Proceedings of DATE ’09, Nice, 

France, 2009, pp. 1160 –1165. 

[8] T. Pop, F. Plasil, M. Outly, M. Malohlava, and T. Bures, 

“Property Networks Allowing Oracle-based Mode-

change Propagation in Hierarchical Components,” in 

Proceedings of CBSE 2012, Bertinoro, Italy, 2012, pp. 

93–102. 

[9] P. Feiler, D. Gluch, and J. Hudak, “The Architecture 

Analysis & Design Language (AADL): An Introduction,” 

Software Engineering Institute, Carnegie Mellon 

University, Pittsburgh, Pennsylvania, USA, Technical 

Note CMU/SEI-2006-TN-011, 2006. 

[10] H. Yin, H. Qin, J. Carlson, and H. Hansson, “Mode 

switch handling for the ProCom component model,” in 

Proceedings of CBSE 2013, Vancouver, Canada, 2013, 

pp. 13–22. 

[11] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, 

M. Kit, and F. Plasil, “DEECo: An ensemble-based 

component system,” in Proceedings of CBSE 2013, 

Vancouver, Canada, 2013, pp. 81–90. 

[12] R. Hennicker and A. Klarl, “Foundations for Ensemble 

Modeling – The Helena Approach,” in Specification, 

Algebra, and Software, S. Iida, J. Meseguer, and K. 

Ogata, Eds. Springer, 2014, pp. 359–381. 



[13] “Autosar Specification, Release 4.2,” Jul-2015. [Online]. 

Available: http://www.autosar.org/specifications/release-

42/. [Accessed: 18-Jan-2016]. 

[14] “Simulink.” [Online]. Available: 

http://www.mathworks.com/products/simulink/. 

[Accessed: 18-Jan-2016]. 

[15] G. Berry, “SCADE: Synchronous design and validation 

of embedded control software,” in Proceedings of GM 

R&D Workshop, Bangalore, India, 2007, pp. 19–33. 

[16] L. De Moura and N. Bjørner, “Z3: An Efficient SMT 

Solver,” in Proceedings of TACAS’08, Budapest, 

Hungary, 2008, vol. 4963, pp. 337–340. 

[17] L. Bulej, T. Bureš, J. Keznikl, A. Koubková, A. 

Podzimek, and P. Tůma, “Capturing performance 

assumptions using stochastic performance logic,” in 

Proceedings of ICPE 2012, Boston, USA, 2012, pp. 311–

322. 

[18] L. Bulej, T. Bureš, V. Horký, J. Kotrč, L. Marek, T. 

Trojánek, and P. Tůma, “Unit testing performance with 

Stochastic Performance Logic,” Autom Softw Eng, pp. 1–

49, 2016. 

[19] S.-W. Cheng and D. Garlan, “Stitch: A language for 

architecture-based self-adaptation,” Journal of Systems 

and Software, vol. 85, no. 12, pp. 2860–2875, Dec. 2012. 

[20] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. 

Solberg, “Models@ Run.time to Support Dynamic 

Adaptation,” Computer, vol. 42, no. 10, pp. 44–51, Oct. 

2009. 

[21] “Esper.” [Online]. Available: 

http://www.espertech.com/products/esper.php. 

[Accessed: 18-Jan-2016]. 

 


