

Department of Distributed and Dependable Systems
Technical Report no. D3S-TR-2015-04
December 22, 2015

Statistical Approach to Architecture Modes
in Smart Cyber Physical Systems

Tomas Bures, Petr Hnetynka, Jan Kofron, Rima Al Ali,

Dominik Skoda

Abstract: Smart Cyber-Physical Systems (sCPS) are complex distributed decentralized systems
of cooperating components. They typically operate in uncertain environments and thus require
means for managing variability at run-time. Architectural modes have traditionally been a
proven means for the runtime variability. They are easy to understand, easy to realize in
resource-constrained systems and (contrary to more sophisticated methods of learning)
provide an explicit specification that can be inspected and validated at design time. However, in
uncertain environments (which is the case of sCPS), they tend to lack expressivity to take into
account the level of uncertainty and factor it in the mode-switching logic. In this paper we
present a rich language to specify mode-switch guards. The semantics of the language is based
on statistical tests, which, as we show, is a convenient way to reason about uncertainty in the
state of the environment.

This work was partially supported by the project no. LD15051 from COST CZ (LD)
programme by the Ministry of Education, Youth and Sports of the Czech Republic.

Statistical Approach to Architecture Modes

in Smart Cyber Physical Systems

Tomas Bures1,2, Petr Hnetynka1, Jan Kofron1, Rima Al Ali1, Dominik Škoda1

1 Charles University in Prague

Faculty of Mathematics and Physics

Prague, Czech Republic

{bures, hnetynka, kofron, alali, skoda}@d3s.mff.cuni.cz

2 Institute of Computer Science

Czech Academy of Sciences

Prague, Czech Republic

bures@cs.cas.cz

Abstract— Smart Cyber-Physical Systems (sCPS) are complex

distributed decentralized systems of cooperating components.

They typically operate in uncertain environments and thus require

means for managing variability at run-time. Architectural modes

have traditionally been a proven means for the runtime

variability. They are easy to understand, easy to realize in

resource-constrained systems and (contrary to more sophisticated

methods of learning) provide an explicit specification that can be

inspected and validated at design time. However, in uncertain

environments (which is the case of sCPS), they tend to lack

expressivity to take into account the level of uncertainty and factor

it in the mode-switching logic. In this paper we present a rich

language to specify mode-switch guards. The semantics of the

language is based on statistical tests, which, as we show, is a

convenient way to reason about uncertainty in the state of the

environment.

Keywords—architecture modes, smart cyber physical systems,

statistical testing

I. INTRODUCTION

Smart Cyber-Physical Systems (sCPS) are complex
distributed decentralized systems of cooperating mobile and
stationary devices, which closely interact with the physical
environment. Examples of sCPS include smart home/office,
smart cities, smart traffic, smart manufacturing, etc. The
mobility aspect of sCPS, their openness and potential open-
endness bring about a high level of dynamicity to the system.
Therefore, traditional software development techniques have
been shown not to be very suitable for developing such systems.
Instead, novel approaches and techniques (e.g., [1], [2], [3])
have been proposed to address issues of sCPS development.

Due to operation in uncertain environment, sCPS typically
require means of runtime variability (adaptation). Though there
is a multitude of approaches to variability and adaptation, not
many really address the specifics of sCPS, which on one hand
require powerful means of dealing with environmental
uncertainty, on the other hand, they are resource-constrained and
need strong notion of dependability which essentially excludes
learning-based algorithms in normal operation. (However, as we
argue in our other works [4], learning can still be strongly
benefited from in exceptional situations when no other viable
pre-defined adaptation is available anyway.)

1 http://ascens-ist.eu/

Traditional ways to manage variability [5] are not suitable
for embedded systems. Typical solution for embedded and
dependable systems relies on architectural modes [6]. They are
featured by many components systems and technologies – e.g.,
MyCCM-HI [7], SOFA-HI [8], AADL [9], ProCom [10]. In all
these systems, a mode is a property of a component and the
component behavior depends on the active mode. At a single
instant, a single mode can be active. Switching between modes
is controlled by kind of a mode automaton that is associated with
a component.

Though attractive in their simplicity and explicit and well-
specified behavior, which can be validated before runtime, the
existing approaches to modes turn out to be relatively weak in
addressing the environmental uncertainty. This is mostly
because they decide on the current state and current
observations, while normally when addressing the uncertainty,
one has to work with trends and historical observations
generating likelihood of a future event happening.

While history, future and adversaries are normally tackled
by systems that employ learning and Markov processes, we
argue that modes are still very suitable (due to their simplicity
and explicit specification) even in this case, only the logic for
describing transitions has to be extended (e.g. by notion of
hysteresis).

In this paper, we propose such an approach to modes and
showcase it in the frame of one promising direction for
designing sCPS – namely the component ensembles as
introduces in the scope of the EU FP7 ASCENS project1. For
technical details we rely on the DEECo component model [11],
however, the results are directly applicable to any ensemble-
based component model (e.g., Helena [12]) and with some
integration also to general component models for embedded
system (e.g., AUTOSAR [13]).

The paper is structured as follows. In Section II, we present
a running example that is used as a motivation and for
explanation and evaluation of new concepts. Section III explains
the core concepts and semantics of our approach, while in
Section IV, we discuss issues of the proposed approach. Section
V evaluates the proposed approach using the running example
and Section VI discusses the related work. Section Chyba!
Nenalezen zdroj odkazů. concludes the paper.

II. MOTIVATION EXAMPLE – SMART HOME/OFFICE

As a motivation example, we present here a smart
home/office scenario, in which a set of fully automated cleaner
robots cooperate in order to keep a room clean while balancing
the robots utilization.

The entities in the example are the robotic Cleaners, robots’
Chargers, and Cameras, which monitor areas of the room and
collect information about dirt in the room. A single Cleaner has
an area assigned within the room, in which it should clean dirt.
In the case no area is assigned to the Cleaner, it remains idle and
waits for area assignment. Also, Cleaners are aware of their
battery status. In the case the energy level of the Cleaner’s
battery is too low, the Cleaner looks up for a suitable Charger
and moves to it to be charged. To sum up the Cleaner behavior,
it is either (i) cleaning, or (ii) idle, or (iii) looking for a charger,
or (iv) moving to a charger, or (v) charging.

 A Charger itself is rather a passive entity; it either waits for
a Cleaner to dock in or, with a Cleaner in it, it charges the
Cleaner.

Cameras observe the room and provide information about
areas with dirt that are obtained by Cleaners.

All of these entities can be modeled as components. An
example of such an architecture is given in Figure 1. It is given
in the DSL of the DEECo [11] component model, however,
almost any component model could be used to model the
example.

A component is defined by its state and activities. The state
is given by a list of data fields (termed knowledge in DEECo).
The activities of components are modeled as processes (in some
component models called tasks). These are periodic or event-
triggered activities that typically involve sensing, computation,
mutation of the component data field, and actuating.

The communication among components is realized by
exchanging data about dirty areas to be cleaned (between
Cameras and Cleaners) and about availability of Chargers
(between Chargers and Cleaners). In DEECo, this is modeled by
communication groups (called ensembles). An ensemble
dynamically determines which components are in the
communication group via a membership condition. (Though
other communication pattern – e.g., SOA – could be used as
well.) The contract between components is captured by a
component role which lists the data provided and required. The
list of roles is then specified in component type definition and in
the ensemble definition. A component may naturally provide or
require several different roles.

There are three types of ensembles in the example: (i) the
Charging ensemble, which groups a particular charger with a
robot in the charger, (ii) the Monitoring ensemble between a
robot and camera, which communication locations of dirty spots
to the robot, and (iii) the Room ensemble, which groups all the
entities in the room and primarily allows for balancing the
charges and robots utilization.

To reflect the different situations in which a component may
occur, components have naturally a number of modes. In the
example above, they are implicit and (partially) hidden in the
implementations. The Cleaner component has five processes but

all of them are in fact mutually excluded, i.e., only executed in
different modes. However the exclusion is not visible from the
specification and is hidden in the process implementation (i.e., a
condition whether the process should start or not). Another
example of implicit modes is connected with the Charging
ensemble – the Cleaner and Charger are grouped in this
ensemble only if the Cleaner is in the Charger, i.e. the Cleaner
is in the “Charging mode”.

Clearly, an explicit mode specification, which describes
modes at the level of the architecture, has a significant
documentation value and also eases development and analysis.
There are a number of approaches to make the modes explicit
(as already mentioned, e.g., MyCCM-HI [7], SOFA-HI [8],
AADL [9], ProCom [10], AUTOSAR [13] component systems).
They generally list the possible modes of a component and tie
process scheduling and component communication to each
mode (an example of this is given in Figure 2). The relation
between modes (if given) is typically described by a state
machine (as found e.g. in Simulink [14] or Scade [15] -based

component role Cleaner

 int id

 int energyLevel

 bool inCharger

 Charger charger

 Area cleaningArea

 Camera[] cameras

component role Charger

 int id

 Cleaner cleaner

component role Camera

 Area[] dirtLocations

component type Cleaner features Cleaner

 process findCharger()

 process move()

 process checkEnergyLevelInCharger()

 process waitForDirtyArea()

 process moveAndClean()

component type CleanerChager features Charger

 process setChargingVoltage()

 process unsetChargingVoltage()

component type Camera feature Camera

 process findDirtyAreas()

ensemble Charging

 roles

 Charger charger

 Cleaner cleaner

 condition

 charger.id == cleaner.charger.id

ensemble Monitoring

 roles

 Camera camera

 Cleaner cleaner

ensemble Room

 roles

 multiple Camera cameras

 multiple Charger chargers

 multiple Cleaner cleaners

Figure 1 Robot cleaners example in DEECo

architectures of control systems) where transition guards are
expressions over internal state or sensed data.

Though such approaches are relatively suitable for
traditional embedded systems where the environment is known
and can be modeled (e.g. to provide a model for a Kalman filter
to cope with noise), it turns out that in the context of sCPS the
mode switching would benefit from a bigger expression power
to describe and take into account the uncertainty in the sensed
data and in the state of the environment in general.

 A trivial example is for instance given in Figure 3, which
shows the measured energy level curve of a battery during
continuous discharge. Suppose this happened in the case of the
Cleaner robot. The robot monitors its energy level and switches
to “looking for a charger” mode once the energy level drops
below a specified point. Should the mode switch be guarded by
something as “energy level < 20%”, the robot would interrupt
work and go for recharge prematurely thus compromising the
optimality of the system. In fact, even applying a low-pass filter
on the data may not help in this case, it would only introduce a
small delay to the mode switch. The problem can be detected
only if the data are analyzed more closely and the sudden drop
is evaluated as erratic behavior that lowers the credibility of the
reading.

Building further on this scenario, assume that there is
another transition guarded by “energy level >= 20%” which
switches from “looking for a charger” to “cleaning”. This guard
would alleviate the problem of premature looking for a charger
when a sudden erratic drop in the energy level happens, but
could itself cause oscillation when the energy level gets close to
20%. Such an oscillation could be again removed by a low-pass
filter, however that would assume that the potential noise in the
data is known in order to correctly tune the cut-off frequency of
the filter.

III. STATISTICAL APPROACH TO MODE SWITCHING

In this section, we explain the core concepts and semantics
of our approach. We overview the basic assumptions in Section
III.A. Then in Section III.B we define the logic underlying the
ability to switch modes based on trends and historical
observations and in Section III.C we evaluate the defined
operators.

A. Preliminaries

Similar as in existing approaches to modes in embedded
systems (e.g. AUTOSAR), we assume that component comes
with a set of modes, where a mode determines the tasks (or
processes) executed by a component and the interfaces that the
component requires or provides. We further assume that a
component has a set of data fields (e.g. the component
knowledge as shown in Figure 1) and that the mode switches are
guarded by the expressions over the data fields.

We allow several mode-groups per component, where a
component is exactly in one particular mode per group. For the
sake of simplicity, we unite the concepts of a mode-group and a
component role and thus we the mutually exclusive modes to be
declared within a component role – see Figure 4. Note however,
that this assumption is only for simplicity of explanation. It does
not have an impact on the generality of our approach presented
further.

The defined modes are employed at two places (Figure 2):
(i) for processes definitions (the @inMode lines in the
component types Cleaner and CleanerCharger) and (ii) for
ensembles definitions (Cleaner.mode==charging in the
ensemble definition). A process with a mode annotation is
executed only if its component is in the particular mode while a
component participates in an ensemble only if it is in the
required mode.

To actually describe modes switching, the component role
contains the mode-switch table (see Figure 5, lines 9-15). This
is similar to AADL, where the mode automaton essentially takes
a shape of mode switch table (i.e., a list of conditions and

Figure 2 Sample battery energy level during continuous

discharge

component type Cleaner features Cleaner

 @inMode(findcharger)

 process findCharger()

 @inMode(headingforcharger)

 process move()

 @inMode(charging)

 process checkEnergyLevelInCharger()

 @inMode(idle)

 process checkForMess()

 @inMode(cleaning)

 process moveAndClean()

component type CleanerChager features Charger

 @inMode(charging)

 process setChargingVoltage()

 @inMode(notcharging)

 process unsetChargingVoltage()

ensemble Charging

 roles

 Charger charger

 Cleaner.mode==charging cleaner

 condition

 charger.id == cleaner.charger.id

Figure 3 Association of processes and ensembles with

modes

resulting mode). The conditions in the mode-switch table are
evaluated every time before an associated process or ensemble-
based communication could be executed (i.e. typically
periodically with the period of the process).

To cope with uncertainty in sCPS, we generally stick to the
rule that there is always a default mode provided. This addresses
the cases when the sCPS is caught in an unanticipated situation
or environment. This is also the reason of our preference for a
mode-switch table over a full-fledge mode automaton with
transitions. The default modes typically turn the automaton to an
almost complete graph which is less comprehensible than a
simple mode-switch table.

With the mode-switch table it is generally possible that more
modes are available to select from. (Note that only one such
mode can be activated at a time as they belong to the same role
and thus are mutually exclusive.) At least, the default mode will
be typically available together with other modes. To resolve
these situations, we assume that the conditions in the table are
prioritized from the top to bottom. In Section XX, we show how
to analyze cases in which the default mode applies; this may be
a source of potential errors in the mode design, which, due to the
presence of the default mode, might demonstrate themselves as
late as at runtime.

B. History and Future

A cornerstone of our approach is the ability to switch modes
based on historical development of observed values. This is
important not only to filter out temporary disturbances, but also
to predict trends in the observed data. To this end, we use time-
series instead of single-valued data (as would be the case of
traditional approach to modes). On top of the time-series, we
provide several operators to perform statistical reasoning and to
construct expressions that can be used as guards for the modes.

We define a many-sorted logic for expressing the mode
guards as follows:

Variables 𝐴 = 𝐴1, … , 𝐴𝑛; 𝐵; 𝐶, … are time-series. We
denote 𝑇(𝐴) = 𝑇(𝐴1), … , 𝑇(𝐴𝑛) the series of time when
𝐴1, … , 𝐴𝑛 was sampled.

Operators that return a time-series are:

 Selection 𝐴𝑖 … 𝐴𝑗 denoting a sequence consisting of

elements 𝐴𝑖 through 𝐴𝑗. This can be also one element time-

series – e.g. 𝐴1 denotes a time-series where only the first
element has been preserved.

 Selection [𝐴]𝑥
𝑦

= 𝐴𝑙 … 𝐴𝑟 such that 𝑙 = min {𝑖|𝑇(𝐴𝑖) ≥ 𝑥}
and conversely 𝑟 = max {𝑖|𝑇(𝐴𝑖) ≤ 𝑦} . We call this
selection an (𝑥, 𝑦) window over 𝐴.

 Selection [𝐴|Φ] denoting a sub-series containing only those
𝐴𝑖 for which Φ(𝐴𝑖) is true.

 Resampling 𝐴~ 𝑇(𝐵) of a timeseries 𝐴 to sample times
𝑇(𝐵) by linear interpolation.

2The ordinary least squares (OLS) estimation for 𝑦 = �̂� + �̂�𝑥 is

given by �̂� =
∑ (𝑥𝑖−𝑥)(𝑦𝑖−𝑦)𝑛

𝑖=1

∑ (𝑥𝑖−𝑥)2𝑛
𝑖=1

, �̂� = 𝑦 − �̂�𝑥.

 Resampling 𝐴~̅ 𝑇(𝐵) of a timeseries 𝐴 to sample times
𝑇(𝐵) by using the closest previous value.

 Basic arithmetics over time-series (assumes that 𝑇(𝐴) =
𝑇(𝐵), and 𝑐 ∈ ℝ):

o 𝑐𝐴 – multiplication of each element by a constant

o 𝐴 + 𝑐 – addition of a constant

o 𝐴 + 𝐵, 𝐴 − 𝐵 – element-wise addition/subtraction

o 𝐴 ∙ 𝐵 – element-wise product

Relational operators over timeseries:

 = – equality of two timeseries

Operators that return a cumulative distribution function 𝐹:

 𝑚𝑒𝑎𝑛(𝐴) – distribution used for comparing the sample
mean of 𝐴.

Technically (in the light of Section III.C), it is a distribution
of sample means of the time-series elements under the
hypothesis that the mean is the sample mean of A. Note that
the resulting distribution serves as a plug-in distribution used
for evaluation of ≤𝛾 , … relational operators (defined below)

by means of hypothesis testing. The quantiles of this
distribution are used to establish p-values for the test. For
𝑚𝑒𝑎𝑛(𝐴) , we assume that the samples are i.i.d. random
variables with normal distribution. 𝑚𝑒𝑎𝑛(𝐴) is thus a
shifted and scaled Student’s t-distribution (see Section
III.C).

 𝑙𝑟𝑎(𝐴) – distribution used for comparing the value of

intercept �̂� in linear regression �̂� + �̂�𝑥 fitted to the time-
series 𝐴 via ordinary least squares (OLS)2.

Technically, it is a distribution of intercepts �̂� under the
hypothesis that the true intercept is the one estimated by
OLS.

component role Cleaner

 [cleaning, charging, findingcharger,

 headingforcharging, idle] modes

 int id

 int energyLevel

 bool inCharger

 bool vacuumStatus

 Charger charger

 Area cleaningArea

 Camera[] cameras

component role Charger

 [charging, notcharging] modes

 int id

 Cleaner cleaner

Figure 4 Modes definition

 𝑙𝑟𝑏(𝐴) – distribution used for comparing the slope �̂� .

Technically, it is a distribution of slopes �̂� under the
hypothesis that the true slope is the one estimated by OLS.

 𝑙𝑟(𝐴, 𝑥) – distribution of 𝑦 = �̂� + �̂�𝑥 as above. (Note that

since �̂� and �̂� are random variables, 𝑦 is a random variable
as well.)

Relational operators over the distribution functions realized
by statistical testing:

 𝐹 ≤𝛾 𝑐, 𝐹1 ≤𝛾 𝐹2 – if the null hypothesis 𝑋 ≤ 𝑐 or 𝑋1 ≤ 𝑋2

respectively cannot be rejected at confidence level 𝛾, where
𝑋, 𝑋1, 𝑋2 are random variables with distributions 𝐹, 𝐹1, 𝐹2
respectively .

 𝐹 <𝛾 𝑐, 𝐹1 <𝛾 𝐹2 – if the null hypothesis 𝑋 ≥ 𝑐 or 𝑋1 ≥ 𝑋2

respectively can be rejected at confidence level 𝛾 , where
𝑋, 𝑋1, 𝑋2 are as above.

 ≥𝛾 and >𝛾 are defined correspondingly

 =𝛾 is defined as ≤𝛾 & ≥𝛾

Additionally, we include standard logical operators &,∨, ¬.

Examples: With this apparatus in hand, we can express
mode-switching guards such as:

 𝑚𝑒𝑎𝑛([𝑡𝑚𝑝]𝑛𝑜𝑤−10𝑠
𝑛𝑜𝑤) <0.95 20 – with confidence 95% the

expected value of temperature 𝑡𝑚𝑝 in the past 10 seconds
has been lower than 20 degrees.

 𝑚𝑒𝑎𝑛([𝑡𝑚𝑝𝐵~𝑇(𝐴)]𝑛𝑜𝑤−10𝑠
𝑛𝑜𝑤) − 20

<0,95 𝑚𝑒𝑎𝑛([𝑡𝑚𝑝𝐴]𝑛𝑜𝑤−10𝑠
𝑛𝑜𝑤) – with confidence 95% the

expected value of temperature 𝑡𝑚𝑝𝐴 has been in last 10
seconds at least by 20 degrees lower than the expected value
of 𝑡𝑚𝑝𝐵. Note that 𝑡𝑚𝑝𝐵 is first resampled to sample times
of 𝑇(𝐴) by linear interpolation.

This assumes that within the 10 seconds window, the
temperature is constant and the measurement is subject to
normally distributed error with constant mean and variance. If it
is assumed that the samples within the window have a linear
trend, the comparison can be executed based on statistics of
confidence intervals obtained from the linear regression.

 𝑙𝑟([𝑏𝑎𝑡]𝑛𝑜𝑤−10𝑠
𝑛𝑜𝑤 , 𝑛𝑜𝑤) <0.95 11 – with confidence 95% the

current expected value of battery voltage is less than 11 volts
evaluated over the past 10 seconds.

The 𝑙𝑟 operator can be also exploited to predict values in the
near future based on the current linear trend. Of course, care has
to be taken in interpreting the confidence level of the
extrapolation as the confidence speaks only about the current
trend, not about its accuracy in predicting the future.

 𝑙𝑟([𝑏𝑎𝑡]𝑛𝑜𝑤−60𝑠
𝑛𝑜𝑤 , 𝑛𝑜𝑤 + 120𝑠) >0.95 11 – based on the

trend observed in the past minute, the value of battery
voltage after 120 seconds from now will be, with confidence
of 95%, over 11 volts.

Generally, the 𝑥 parameter of 𝑙𝑟(𝐴, 𝑥) can be arbitrary,
however, it is necessary to remember that the variance of the
prediction grows with the distance of 𝑥 from the mean of 𝑇(𝐴).

The confidence bounds around �̂� + �̂�𝑥 form the usual
“hourglass” shape (see Figure XX). This means that the
statistical test used in the comparison will be the strongest
roughly in the middle of the window and will get weaker
towards the boundaries of the window (see Sect. XXX where
these underlying mathematical formulas are given).

The 𝑚𝑒𝑎𝑛 and 𝑙𝑟 operators can be also exploited to
approximately describe that a value is increasing/decreasing:

 𝑚𝑒𝑎𝑛([𝑏𝑎𝑡]𝑛𝑜𝑤−10𝑠
𝑛𝑜𝑤) <0.95 𝑚𝑒𝑎𝑛([𝑏𝑎𝑡]𝑛𝑜𝑤−70𝑠

𝑛𝑜𝑤−60𝑠)

 𝑙𝑟([𝑏𝑎𝑡]𝑛𝑜𝑤−10𝑠
𝑛𝑜𝑤 , 𝑛𝑜𝑤 − 10𝑠) <0.95

𝑙𝑟([𝑏𝑎𝑡]𝑛𝑜𝑤−10𝑠
𝑛𝑜𝑤 , 𝑛𝑜𝑤)

However, the use of 𝑚𝑒𝑎𝑛 is often incorrect as it assumes
no trends in the observation window. The use of 𝑙𝑟 is correct,
but does not permit to easily reason about the rate of
decrease/increase. A better control is achieved by 𝑙𝑟𝑎 and 𝑙𝑟𝑏,
which expose the distribution of the linear regression
coefficients

 𝑙𝑟𝑏([𝑏𝑎𝑡]𝑛𝑜𝑤−10𝑠
𝑛𝑜𝑤) <0.95− 1 – with confidence 95%, the

battery voltage decreases faster than 𝑓(𝑥) = −𝑥.

Note that the statistical nature of the comparison operators
brings a few unexpected features. In particular, it does not hold
that:

a) 𝐹1 ≤𝛾 𝐹2 & 𝐹2 ≤𝛾 𝐹3 ⟹ 𝐹1 ≤𝛾 𝐹3

b) 𝐹 ≤𝛾 𝑐1 & 𝑐2 ≤𝛾 𝐹 & 𝑐1 ≤ 𝑐2 ⟹ 𝑐1 = 𝑐2

The violation of (a) is caused by the fact the while the
distance between 𝐹1, 𝐹2 and 𝐹2, 𝐹3 was small enough to prevent
the hypothesis test from rejecting (i.e. ≤𝛾 is true), the distance

between 𝐹1, 𝐹3 may be big enough to allow the test to reject, thus
evaluating ≤𝛾 to false.

The violation of (b) has a similar cause – 𝑐1, 𝑐2 are close to
mean of 𝐹 thus no rejection takes place. However 𝑐1 may lie
below the mean of 𝐹 while 𝑐2 may be above it (though
𝐹 ≤𝛾 𝑐1 & 𝑐2 ≤𝛾 𝐹).

The violation of (b) nevertheless leads to an elegant way of
expressing uncertainty:

 𝑙𝑟([𝑏𝑎𝑡]𝑛𝑜𝑤−10𝑠
𝑛𝑜𝑤) <0.95 11 – “provably low battery, drive to

the charger”

 𝑙𝑟([𝑏𝑎𝑡]𝑛𝑜𝑤−10𝑠
𝑛𝑜𝑤) >0.95 11 – “provably sufficient battery,

move to the spot to be cleaned”

 𝑙𝑟([𝑏𝑎𝑡]𝑛𝑜𝑤−10𝑠
𝑛𝑜𝑤) =0.95 11 – “nothing definite can be said

about the battery, monitor area around, but don’t get too far
from the charger”

Note that this is a rather significant difference to the
traditional semantics of comparison operators with real-valued
quantities. There the likelihood that a real-valued observation is
exactly equal to a certain quantity is extremely low (in fact, it is
0). In our interpretation, the equality 𝐹 =0.95 11 means “it
cannot be shown by a statistical test with enough confidence that
a mean is strictly higher or strictly lower”. Thus, the mean is not
compared exactly to number 11, but to a confidence interval
around 11. The confidence interval widens with increasing

variance of samples. Consequently, the likelihood that
𝐹 =0.95 11 may be rather high, since both 𝐹 >0.95 11 and
𝐹 <0.95 11 are rejected.

To simplify the specification, we provide a short-hand
notation for the most common cases:

 𝑏𝑒𝑙𝑜𝑤(𝑥, 𝑦, 𝑤) ⟺ 𝑙𝑟([𝑥]𝑛𝑜𝑤−𝑤
𝑛𝑜𝑤 , 𝑛𝑜𝑤) <0.95 𝑦 … with

confidence 0.95% the current value of 𝑥 is less than 𝑦. It
assumes that there is a linear trend (potentially a zero trend)
in 𝑥 over the past time interval of length 𝑤.

 𝑎𝑏𝑜𝑣𝑒(𝑥, 𝑦, 𝑤) ⟺ 𝑙𝑟([𝑥]𝑛𝑜𝑤−𝑤
𝑛𝑜𝑤 , 𝑛𝑜𝑤) >0.95 𝑦 … similar

as above with 𝑥 greater than 𝑦.

 𝑓𝑏𝑒𝑙𝑜𝑤(𝑥, 𝑦, 𝑤, 𝑓) ⟺ 𝑙𝑟([𝑥]𝑛𝑜𝑤−𝑤
𝑛𝑜𝑤 , 𝑛𝑜𝑤 + 𝑓) <0.95 𝑦 …

the future value of 𝑥 in time 𝑓 from now is expected to be
less than 𝑦.

 𝑓𝑎𝑏𝑜𝑣𝑒(𝑥, 𝑦, 𝑤, 𝑓) ⟺ 𝑙𝑟([𝑥]𝑛𝑜𝑤−𝑤
𝑛𝑜𝑤 , 𝑛𝑜𝑤 + 𝑓) >0.95 𝑦 …

similar as above with the future 𝑥 greater than 𝑦.

C. Evaluation of the Relational Operators

The interpretation we use for 𝐹 ≤𝛾 𝑐 and related operators

relies on checking whether value 𝑐 lies within the confidence
bounds given by 𝐹, i.e. the 1 − 𝛾 and 𝛾 quantiles of 𝐹.

Recall that 𝐹 denotes here the distribution of the statistical
quantity under the hypothesis that the true mean is the sample
mean. In case of the 𝑚𝑒𝑎𝑛(𝐴) operator, it is a distribution of

�̅� + 𝑠𝑇/√𝑛 , where 𝑇 is a random variable with Student’s t-

distribution with |𝐴| − 1 degrees of freedom, �̅� is the sample
mean of 𝐴 and 𝑠2 is a sample variance of 𝐴.

In case of the 𝑙𝑟𝑏(𝐴) operator, assuming the model 𝛼 +
𝛽𝑥 + 𝜖 and normality of the error terms 𝜖 , the 𝑙𝑟𝑏(𝐴) is a

distribution of �̂� + 𝑠�̂�𝑇 , where �̂� is the ordinary least square

estimate of the slope, 𝑠�̂� is the standard error of the estimator �̂�,

and 𝑇 has Student’s t-distribution of |𝐴| − 2 degrees of
freedom. Similar relation holds for the distribution of

intercept �̂� returned by 𝑙𝑟𝑎(𝐴) and the prediction �̂� + �̂�𝑥
returned by 𝑙𝑟(𝐴, 𝑥).

The actual test 𝐹 ≤𝛾 𝑐 is interpreted as:

𝐹 ≤𝛾 𝑐 ⟺ 𝐹(2𝜇 − 𝑐) ≤ 𝛾

where 𝜇 is the mean of 𝐹 and 𝐹(𝑥) denotes the cumulative
distribution function of 𝐹.

The expression 2𝜇 − 𝑐 is derived from the fact that we shift
𝐹 such that its mean is 𝑐 , which is the null hypothesis. This
yields a distribution 𝐹 − 𝜇 + 𝑐 . We then reject the null
hypothesis if 𝜇 is greater than 𝛾 quantile of 𝐹 − 𝜇 + 𝑐. With a
few trivial rearrangements, we arrive at the 𝐹(2𝜇 − 𝑐) ≤ 𝛾.

The test 𝐹1 ≤𝛾 𝐹2 is interpreted as:

𝐹1 ≤𝛾 𝐹2 ⟺ (𝐹1 − 𝐹2)(2𝜇1 − 2𝜇2) ≤ 𝛾

where 𝜇1, 𝜇2 denote the means of 𝐹1, 𝐹2 respectively; (𝐹1 −
𝐹2) denotes the distribution of a subtraction of random variables
𝑋1 − 𝑋2 where random 𝑋1~𝐹1 and 𝑋2~𝐹2.

The expression is derived in a similar way as above. We shift
each of the two distribution to have mean 0 and subtract them:
𝐹1 − 𝜇1 − 𝐹2 + 𝜇2 . This forms a distribution for the null
hypothesis that the mean of 𝐹1 − 𝐹2 is less or equal 0. We reject
if 𝜇1 − 𝜇2 is greater than 𝛾 quantile of 𝐹1 − 𝜇1 − 𝐹2 + 𝜇2.

IV. DISCUSSION

In this section, we will discuss in more detail the issues
already risen in the previous sections. Particularly, these are (i)
verification of completeness of conditions in mode-switching
table and (iii) quantile-based interpretation.

A. Verification of conditions

When designing the mode switching table of a component, an
important aspect is to cover the option space sufficiently. A
disadvantage of the default (true ->) switch option is that the
designer can omit a specific situation that should be covered by
a special mode switch, or simply makes a mistake in the mode
switching specification. There is no way to algorithmically
decide whether this was an intention or not. Therefore, we
provide a support for enumerating cases in which the default
mode switch applies. This is done by means of the Z3 SMT
solver [16], when interpreting the high-level operators as
independent Boolean variables; it is then up to the system
designer to decide whether and which situations currently
covered by the default mode switch should be covered explicitly
by a special one. We believe that such a check can reveal
unforeseen situations, as the number of combinations in more
complex systems can be enormous.

B. Quantile-based interpretation

The operators 𝑚𝑒𝑎𝑛, 𝑙𝑟𝑎, 𝑙𝑟𝑏, and 𝑙𝑟 all give distribution of
a mean value. This is a typical use-case as the mean value if well
understood by practitioners. One however has to be aware of the
fact that mean is typically rather sensitive to outliers. The
computation of the mean can be thus preceded with some form
of outlier detection and exclusion. Care however has to be taken
because the definition of an outlier is purely domain-specific and
requires good understanding of the cause for outliers. This is
because removal of the outliers inherently changes the sample
mean and the variance of the mean, which influences the results
of the statistical tests used for the relational operators. Typically,
this renders the test overconfident and increases the number of
false positives.

An alternative to filtering outliers is to use a statistical value
which is inherently robust to outliers. In particular, a median is
a favorite choice. Also, generalizing the median to an arbitrary
quantile has a nice advantage of giving the ability to reason
about extremal values – e.g. with confidence 𝛾 , 90% of the
measurements fall below a given threshold.

The use of median or quantiles in general however comes
with a relatively high computational cost. Though there exist
relatively simple non-parameteric tests for comparing a median
of a set of i.i.d. observations (i.e. an operator in assumptions
similar to 𝑚𝑒𝑎𝑛), the quantile regression (i.e., yielding
operators similar to 𝑙𝑟𝑎, 𝑙𝑟𝑏, and 𝑙𝑟) is much more complex. It

turns out that its parameters �̂�, �̂� cannot be computed directly
by a formula (as in the case of ordinary least-squares), but
requires minimization, for instance by means of linear
programming.

V. EVALUATION

To evaluate our approach, we apply the logic for the mode
transitions on the smart home/office use-case presented in
Section II. Figure 5 shows the example of the mode specification
attached to an architecture in DEECo specification language
(note that due to space constraints, only parts relevant to modes
are given, leaving out DEECo implementation specifics).

As already mentioned in Section II, all the entities are
modeled as components – Cleaner, Charger and Camera. Recall
that a component is defined by its role and type. A role specifies
the component’s interface, i.e., data (knowledge in the DEECo
terminology) that is communicated with other components (via
ensembles). A particular component type then features a number
of the roles and defines components processes that are executed
either periodically or as a reaction to the knowledge values
changes. The processes operate with the component knowledge.
A single component type can be instantiated many types.

The knowledge of the Charger role consists of its ID and the
Cleaner in the Charger (lines 18 and 19 in Figure 5). Its modes
are either charging or not-charging (line 17). The mode-switch-
table (lines 20-22) is thus quite simple: if there is the Cleaner in
the Charger, it is in the charging mode and vice-versa. The
Camera role is even simpler; it just offers an array of areas with
dirt (line 24) and there are no multiple modes.

1. component role Cleaner

2. [cleaning, charging, findingcharger,

 headingforcharging, aitingfordirt,

 waitingforclosedirt] modes

3. int id

4. <int> energyLevel

5. bool inCharger

6. Charger charger

7. Area cleaningArea

8. Camera[] cameras

9. mode-switch-table

10. aabelow(energyLevel, ENERGYLOWLIMIT)

 && unset(charger) -> mode = findcharger

11. aabelow(energyLevel, ENERGYLOWLIMIT)

 && isset(charger) ->

 mode = headingforcharger

12. faaabove(energyLevel, ENERGYLOWLIMIT,

2min) && isset(cleaningArea) ->

 mode = cleaning

13. inCharger && aabelow(energyLevel,

ENERGYCHARGED) -> mode = charging

14. unset(cleaningArea) &&

aaabove(energyLevel, ENERGYLOWLIMIT) ->

mode = waitingfordirt

15. true -> mode = waitingforclosedirt

16. component role Charger

17. [charging, notcharging] modes

18. int id

19. Cleaner cleaner

20. mode-switch-table

21. isset(cleaner) -> charging

22. unset(cleaner) -> notcharging

23. component role Camera

24. Area[] dirtLocations

25. component type CleanerChager features

Charger

26. @inMode(charging)

27. process setChargingVoltage()

28. @inMode(notcharging)

29. process unsetChargingVoltage()

Figure 5 Example of the mode specification attached to an architecture in DEECo specification language

30. component type Cleaner features Cleaner

31. @inMode(findcharger)

32. process findCharger()

33. @inMode(headingforcharger)

34. process move()

35. @inMode(charging)

36. process checkEnergyLevelInCharger()

37. @inMode(waitingfordirt)

38. process waitForDirtyArea()

39. @inMode(waitingforclosedirt)

40. process waitForDirtyAreaCloseToCharger()

41. @inMode(cleaning)

42. process moveAndClean()

43. component type Camera feature Camera

44. process findDirtyAreas()

45. ensemble Charging

46. roles

47. Charger charger

48. Cleaner.mode==charging cleaner

49. condition

50. charger.id == cleaner.charger.id

51. ensemble Monitoring

52. roles

53. Camera camera

54. Cleaner cleaner

55. condition

56. ...

57. ensemble Room

58. roles

59. multiple Camera cameras

60. multiple Charger chargers

61. multiple Cleaner cleaners

62. condition

63. ...

The most complex role is the Cleaner. Its knowledge consists
of its ID (line 3), energy level (which is a time-series field, line
4), an assigned Charger (line 6), information whether the
Cleaner is in the Charger (line 5), an assigned area to be cleaned
(line 7), and finally all the cameras in the room (line 8).
Regarding the possible modes (line 2), the Cleaner has six of
them – cleaning, charging, finding-charger, heading-for-
charging, waiting-for-dirt and waiting-for-close-dirt. Switches
between these modes, as described in the mode-switch-table
(lines 9-15), are as follows. If the battery energy level is below
prescribed limit and no charger is set, then the Cleaner tries to
find an available charger (line 10). If the energy level is below
the limit but the charger is set, the Cleaner proceeds to the
charger (line 11). If the energy limit is sufficient and,
importantly, will be sufficient within following 2 minutes
(without sufficient energy the Cleaner would not be able to even
start the cleaning) and the cleaning area is set, the Cleaner starts
with cleaning (line 12). If the Cleaner is in the charger, then it
chargers until the energy level is not above the prescribed limit
(line 13). If there is no cleaning area set and the energy level is
sufficient, then the waits for an area to be cleaned (line 14). If
no from the above conditions hold, then the sufficiency of the
energy level for cleaning cannot be evaluated and the Cleaner
waits for an area to be cleaned but accepts only areas close to it
so it spends minimum amount of energy for moving to the dirty
area (line 15).

VI. RELATED WORK

As far as we are aware, there are no other approaches
featuring a language for specifying mode transition that would
be based on statistical testing. However, there are a number of
approaches that are closely related and/or also employ statistical
methods for managing variability.

Regarding our own works, recently, we have used a similar
approach in Stochastic Performance Logic (SPL) [17], [18],
which is a formalism for expressing performance requirements,
together with interpretations that facilitate performance
evaluation. To reason about performance, SPL considers
historical data (i.e., time series of periodic performance
measurements) and offers high-level operators to be used in a
system code. Contrary to approach presented in this paper, SPL
operates with history only and does not consider future.

A closely related approach is Stitch [19], which is a language
for describing architecture-based self-adaptation. One of the
Stitch’s basic concepts is a tactics. It consists of a condition over
the architecture state, an action that has to be performed if the
condition holds, and finally an effect that is a condition, which
should hold after applying the action. Tactics are used in
strategies, which describe dynamic adaptation processes.
Compared to modes, Stitch offers more fine-grained adaptation
of an architecture, which however may not be always ideal for
sCPS thanks to potentially limited hardware of the embedded
elements of the system. Compare to our approach, Stitch does
not allow reasoning about history/future and time-series in
conditions. Probabilities are in Stitch used in strategies to
describe likelihood that the condition will evaluate to true and
subsequently employed in selecting a strategy to be executed.

A dynamic adaptation at runtime is discussed in [20]. To
avoid issues with oscillations of context measures, the authors

suggest to use an event processing engine, namely Esper [21].
Esper offers a SQL-based event processing language, which
allows for defining queries on runtime events with time
windows and aggregation functions (like min, max, average).
However, the analysis via linear regression and/or predictions of
future events is not supported.

REFERENCES

[1] M. Hölzl, A. Rauschmayer, and M. Wirsing, “Software

Engineering for Ensembles,” in Software-Intensive

Systems and New Computing Paradigms, M. Wirsing, J.-

P. Banâtre, M. Hölzl, and A. Rauschmayer, Eds.

Springer, 2008, pp. 45–63.

[2] B. Morin, F. Fleurey, and O. Barais, “Taming

Heterogeneity and Distribution in sCPS,” in Proceedings

of SEsCPS 2015, Firenze, Italy, 2015, pp. 40–43.

[3] I. Ruchkin, B. Schmerl, and D. Garlan, “Architectural

Abstractions for Hybrid Programs,” in Proceedings of

CBSE 2015, Montreal, Canada, New York, NY, USA,

2015, pp. 65–74.

[4] I. Gerostathopoulos, T. Bures, P. Hnetynka, A. Hujecek,

F. Plasil, and D. Skoda, “Meta-Adaptation Strategies for

Adaptation in Cyber-Physical Systems,” in Proceedings

of ECSA 2015, Dubrovnik/Cavtat, Croatia, 2015, vol.

9278, pp. 45–52.

[5] F. Bachmann and L. Bass, “Managing Variability in

Software Architectures,” in Proceedings of SSR ’01,

Toronto, Canada, 2001, pp. 126–132.

[6] D. Hirsch, J. Kramer, J. Magee, and S. Uchitel, “Modes

for Software Architectures,” in Proceedings of EWSA

2006, Nantes, France, 2006, vol. 4344, pp. 113–126.

[7] E. Borde, G. Haik, and L. Pautet, “Mode-based

reconfiguration of critical software component

architectures,” in Proceedings of DATE ’09, Nice,

France, 2009, pp. 1160 –1165.

[8] T. Pop, F. Plasil, M. Outly, M. Malohlava, and T. Bures,

“Property Networks Allowing Oracle-based Mode-

change Propagation in Hierarchical Components,” in

Proceedings of CBSE 2012, Bertinoro, Italy, 2012, pp.

93–102.

[9] P. Feiler, D. Gluch, and J. Hudak, “The Architecture

Analysis & Design Language (AADL): An Introduction,”

Software Engineering Institute, Carnegie Mellon

University, Pittsburgh, Pennsylvania, USA, Technical

Note CMU/SEI-2006-TN-011, 2006.

[10] H. Yin, H. Qin, J. Carlson, and H. Hansson, “Mode

switch handling for the ProCom component model,” in

Proceedings of CBSE 2013, Vancouver, Canada, 2013,

pp. 13–22.

[11] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl,

M. Kit, and F. Plasil, “DEECo: An ensemble-based

component system,” in Proceedings of CBSE 2013,

Vancouver, Canada, 2013, pp. 81–90.

[12] R. Hennicker and A. Klarl, “Foundations for Ensemble

Modeling – The Helena Approach,” in Specification,

Algebra, and Software, S. Iida, J. Meseguer, and K.

Ogata, Eds. Springer, 2014, pp. 359–381.

[13] “Autosar Specification, Release 4.2,” Jul-2015. [Online].

Available: http://www.autosar.org/specifications/release-

42/. [Accessed: 18-Jan-2016].

[14] “Simulink.” [Online]. Available:

http://www.mathworks.com/products/simulink/.

[Accessed: 18-Jan-2016].

[15] G. Berry, “SCADE: Synchronous design and validation

of embedded control software,” in Proceedings of GM

R&D Workshop, Bangalore, India, 2007, pp. 19–33.

[16] L. De Moura and N. Bjørner, “Z3: An Efficient SMT

Solver,” in Proceedings of TACAS’08, Budapest,

Hungary, 2008, vol. 4963, pp. 337–340.

[17] L. Bulej, T. Bureš, J. Keznikl, A. Koubková, A.

Podzimek, and P. Tůma, “Capturing performance

assumptions using stochastic performance logic,” in

Proceedings of ICPE 2012, Boston, USA, 2012, pp. 311–

322.

[18] L. Bulej, T. Bureš, V. Horký, J. Kotrč, L. Marek, T.

Trojánek, and P. Tůma, “Unit testing performance with

Stochastic Performance Logic,” Autom Softw Eng, pp. 1–

49, 2016.

[19] S.-W. Cheng and D. Garlan, “Stitch: A language for

architecture-based self-adaptation,” Journal of Systems

and Software, vol. 85, no. 12, pp. 2860–2875, Dec. 2012.

[20] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A.

Solberg, “Models@ Run.time to Support Dynamic

Adaptation,” Computer, vol. 42, no. 10, pp. 44–51, Oct.

2009.

[21] “Esper.” [Online]. Available:

http://www.espertech.com/products/esper.php.

[Accessed: 18-Jan-2016].

