

Department of Distributed and Dependable Systems
Technical Report no. D3S-TR-2017-01
December 22, 2017

Trait-based Language for Smart Cyber-Physical Systems

Tomas Bures, Ilias Gerostathopoulos, Petr Hnetynka, Frantisek
Plasil, Filip Krijt, Jiri Vinarek, Jan Kofron

Abstract: The problem this paper aims to target is how to hoist the cooperation of
software components, acting as autonomous agents and forming coalitions, at the
architectural level in smart cyber-physical systems (sCPS). This is a hard problem as
coalitions can be overlapping, nested, and dynamically formed and dismantled based on
several criteria. To target this issue, we propose and implement an architecture
description language (TCOF-ADL) based on Scala internal DSL, that describes architecture
and formation of dynamic coalitions of components. To raise the level of expressivity, we
introduce the concept of domain-specific extensions (traits) of the core TCOF-ADL to
reflect different concerns—such as movement in a 2D map, state-space modeling of
physical processes, statistical reasoning about uncertainty. This allows configuring the
ADL for the needs of a specific application case and facilitates reuse. To evaluate our
approach, we show how it can be beneficially used in addressing the coordination of
agents within the RoboCup Rescue Simulation League.

This work was partially supported by the project no. LD15051 from COST CZ (LD)
programme by the Ministry of Education, Youth and Sports of the Czech Republic.

Trait-based Language for Smart Cyber-Physical Systems

Tomas Bures1, Ilias Gerostathopoulos2, Petr Hnetynka1, Frantisek Plasil1, Filip Krijt1,
Jiri Vinarek1, Jan Kofron1

1 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
{surname}@d3s.mff.cuni.cz

2 Fakultät für Informatik, Technische Universität München,
Munich, Germany

gerostat@in.tum.de

Abstract. The problem this paper aims to target is how to hoist the cooperation
of software components, acting as autonomous agents and forming coalitions, at
the architectural level in smart cyber-physical systems (sCPS). This is a hard
problem as coalitions can be overlapping, nested, and dynamically formed and
dismantled based on several criteria. To target this issue, we propose and imple-
ment an architecture description language (TCOF-ADL) based on Scala internal
DSL, that describes architecture and formation of dynamic coalitions of compo-
nents. To raise the level of expressivity, we introduce the concept of domain-
specific extensions (traits) of the core TCOF-ADL to reflect different concerns—
such as movement in a 2D map, state-space modeling of physical processes, sta-
tistical reasoning about uncertainty. This allows configuring the ADL for the
needs of a specific application case and facilitates reuse. To evaluate our ap-
proach, we show how it can be beneficially used in addressing the coordination
of agents within the RoboCup Rescue Simulation League.

Keywords: smart cyber-physical systems; autonomic components; component
coalitions; component ensembles; architecture description language

1 Introduction

Smart Cyber-Physical Systems (sCPS) consist of hardware and software components
that need to operate with each other at the syntactic level (API matching, language in-
teroperability), at the semantic level (common vocabulary, contracts for assume-guar-
antee reasoning), and at the strategic level (sharing of goals, cooperation among com-
ponents). In this work, we are concerned with the modeling of cooperation of software
components at the strategic level. We assume that:

 Components act as autonomous agents with their own belief, capabilities, and
lifecycle.

 There are system-level tasks to be performed and joint goals to be achieved
(thus not belonging to any individual component but to the composite system).

2

 Components form cooperation groups—coalitions—in order to perform the
system-level tasks to achieve the required joint goals.

For example, consider an emergency coordination system where fire fighters and
medical first responders carry mobile hand-held devices running software components
supporting their individual missions. Each of those acts autonomously, evaluates the
situation they are in and acts accordingly keeping in mind their own safety. At the same
time, different coalitions can be formed between these components in order to let their
bearers cooperate in the complex, multi-stakeholder tasks of rescue operations (e.g.
moving as a group towards a fire scene and/or approaching those needing emergency
medical care).

We believe that as sCPS will continue to be independently developed as autonomous
entities with cooperation capabilities we will see more such coalitions in future systems.
We thus view the modeling of coalitions in an intuitive, reusable and, at the same time,
semantically rich way as an important challenge for sCPS. In this paper, we focus on
how to model coalitions at design time and on how and under which conditions to form
and dismantle coalitions at runtime.

Component ensembles, i.e. dynamic groups, have been suggested to hoist the coop-
eration concern of dynamically changing sCPS at the level of the architecture1 [6]. This
has been done in the context of specialized component models and languages such as
SCEL [15], DEECo [6], Helena [9]. An ensemble determines (typically by a logical
condition) which components are the members and in which particular roles of the en-
semble they are. Further, it embodies the cooperation among the components towards
some common goal. Conceptually, the ensemble operationalizes the goal.

Despite the work done so far in ensemble-based systems (including our own work
in DEECo), we believe it is still hard for mainstream designers/developers to put these
ideas to action in developing complex real-life systems where ensembles are overlap-
ping, nested, and dynamically formed and dismantled. At the same time, building the
necessary programming abstractions and machinery for ensemble specification and for-
mation from scratch is both time-consuming and error-prone.

In this work, we try to provide a remedy by focusing on the specification (i.e. model
and semantics) of ensembles realizing coalitions and autonomous cooperation within
those coalitions. We specifically strive to address the simplicity and expressivity of the
specification that aligns component-level and coalition-level goals. Taking a pragmatic
approach, we have implemented a domain-specific language on top of Scala to ease the
task of designers/developers in specifying and forming complex real-life ensembles.

Our approach is based on the observation that there are a number of recurring con-
cepts in the specification of membership conditions for coalitions. For example, some
coalitions are formed based on number and type of members (e.g. “group together 3
rescuers”), some on spatial constraints (e.g. “group together components that are phys-
ically close”), some on predictions of certain values/outcomes (e.g. “group together
components based on the estimated number of components necessary to complete the
task A in time”). We further observe that some of these concepts are independent of the
particular sCPS application domain (e.g. number of members), whereas others depend

1 Architecture hoisting is the ownership and management of a property by the architecture [8].

3

on the particular sCPS application domain (e.g. predictive functions, map-based routing
functions). Such domain-dependent concepts can be captured in reusable extensions—
traits—that can be used in addition to the core domain-independent specification ab-
stractions.

Goals: The goal of the paper is to propose and implement an architecture description
language (ADL) termed Trait-based Coalition Formation ADL (TCOF-ADL), in our
case based on Scala internal DSL, that (1) supports separating responsibilities to com-
ponents and coalitions, (2) allows easy and expressive definition of when to establish
the coalition and how to select its members, and (3) includes the coalition formation to
the process model of a component. Further, to increase the expressivity of coalition
specification, we feature the concept of domain-dependent traits embodying particular
domain-dependent concepts and introduce mixing of the traits with the core domain-
independent features of the proposed ADL. This enables a designer to instantiate an
expressive domain-specific ADL for describing autonomous components and coali-
tions for the particular application case in hand.

Structure of the text: Section 2 presents three use cases used for motivating our
work on coalition formation in smart CPS. Section 3 gives an overview of the main
ideas in the design of our ADL and describes both the core concepts of the language
and their extension by domain-dependent traits. An evaluation on the reduce of devel-
opment effort by using our ADL is provided in Section 4, together with a discussion of
limitations of our approach. Finally, Section 5 compares our approach with other ap-
proaches for component coalition formation, and Section 6 concludes with an overview
of the contributions.

2 Use cases

In this section, we describe three use-cases that motivate our work and our decisions in
designing TCOF-ADL.

2.1 RoboCup Rescue Simulation

RoboCup Rescue Simulation2 (RCRS) is a research and educational project targeted on
evaluation of multi-agent solutions in disaster response scenarios. The research on the
project is stimulated by the annual RoboCup competition, one of the most important
competitions in robotics. RCRS provides a simulation platform that imitates a city after
an earthquake. The simulation consists of a map of the city that includes streets, inter-
sections, and buildings, and of stationary and platoon agents. Buildings may collapse
due to the earthquake; they may also be on fire. Street fragments may be blocked by
debris. Stationary agents include Fire Stations, Police Offices and Ambulance Centers.
Platoon agents include Fire Brigades, Police Forces, and Ambulance Teams. Each type
of platoon agent has specific tasks to achieve and different capabilities. Fire Brigades
are responsible for extinguishing fires; Police Forces for removing blocking debris from
the streets; Ambulance Teams for rescuing humans by unburying them and carrying

2 http://roborescue.sourceforge.net/

4

them to Refuges (special type of buildings). Importantly, platoon agents have a limited
view of the world—based on their line of sight—and can communicate with each other
and with the stationary agents either face-to-face (when they are close-by) or by trans-
mitting messages via unreliable radio channels.

In this setting, one of the challenges RCRS raises is how to form and dismantle co-
alitions at runtime between platoon agents in order to efficiently coordinate search and
rescue operations. Coalitions are formed as (potentially heterogeneous) groups of
agents, with each agent featuring a particular coalition-specific role. Agents are selected
for a particular role based on several criteria (which can be also combined), in particu-
lar:

 Based on agent type. A coalition between Fire Brigades and Police Forces can ena-
ble the former to get a route to the fire cleared of blocking debris.

 Based on number of agents. A coalition may require a certain number of Fire Bri-
gades to cooperatively work on extinguishing the fire in a building.

 Based on a soft optimization rule. Among the Fire Brigades eligible for a coalition,
prefer those that are closer to the fire.

 Based on spatial proximity. Platoon agents that are close-by can form a coalition in
order to rendezvous and share updates regarding street blockages (by debris) via
face-to-face communication.

 Based on temporal proximity. Only those buildings are extinguished which can be
reached before they are burnt out (the RCRS simulator assumes burnt out buildings
need not be responded by Fire Brigades).

 Based on estimated cooperation effort. Upon detecting a fire, Fire Brigades can
form a coalition composed of the (estimated) minimum number of Fire Brigades
necessary to prevent the fire from spreading to nearby buildings.

 Based on the probability of effective cooperation. Cooperation is decided based on
the probability of successful communication via unreliable wireless channels. For
example, if communication reliability falls below a certain level, a coalition which
relies on regular rendezvous of agents to exchange data over close-range (i.e. face-
to-face) communication is chosen over a coalition where all agents communicate via
long-range radio.

2.2 Connected Mobility System

Recent initiatives in capital cities around the world (e.g. in Helsinki3) are pushing smart
mobility models that tie together public transport modes with personalized ride-sharing
services. A future Connected Mobility System (CMS) implements this vision by the
cooperation of an array of agents. Principal agents are Passengers who use their mobile
phone apps to request rides in the city. Trams and Regional and Underground Trains
are also part of the system; they follow schedules of pre-defined routes with stops at
designated locations in the city. Cars and Buses, owned by ride-sharing companies, are
agents that follow dynamic on-demand routing. Traffic Stations are stationary agents

3 http://www.cthreereport.com/helsinkis-plan-to-eliminate-cars-by-2025/

5

which gather data on the traffic intensity in different parts of the city. Communication
between the agents is achieved via mobile or radio technology.

Similar to RCRS, there are a number of cases that necessitate cooperation between
the agents in this complex system. Again, coalitions are formed based on several crite-
ria, such as agent type and number (e.g. only a certain number of Passengers form a
coalition to share a means of transport), spatial proximity, estimated cooperation effort
(e.g. coalition among Cars or Buses in order to balance the transportation), agent pref-
erences, etc.

2.3 Swarms of robots

Another example with strong emphasis on cooperation of autonomous agents are at-
tempts in exploiting robotic swarms. When a failure or loss of a single robot is highly
probable, as e.g. when moving and performing tasks in a challenging environment,
swarms of robots are appealing. A swarm is composed of many typically cheap robots
with limited functionalities compared to larger and more sophisticated robots. The ad-
vantage of the robotic swarm comes by achieving tasks collectively. For instance, ro-
bots in a swarm can collectively move a heavy obstacle or make a chain and cross a
wide gap that a single robot would not be able to cross. Alternatively, they may even
sacrifice a robot to achieve a particular goal (with quite some resemblance to the once-
famous computer game Lemmings). This of course requires a good amount of cooper-
ation among the robots in a swarm.

As in the cases in sections 2.1 and 2.2, coalitions have to be formed based on multiple
criteria. For instance, several robots close to one another may group to move a boulder.
Once they become part of the coalition, they are coordinated by the coalition to move
at specified trajectories, thus effectively keeping a formation that acts together as a
much larger and stronger robot. To form such a coalition, the spatial proximity is
needed to select robots that can quickly come to the boulder. Similarly, estimated co-
operation effort is needed to determine the required number of robots. Likewise, the
probability of effective cooperation is useful to decide between alternative strategies to
deal with a task. If there are multiple types of robots, the grouping and distribution of
work to members of a coalition can be based on the actual type and capabilities of each
robot (e.g. based on whether the robot is a flying drone or a two-wheeler).

3 ADL for Coalition Formation

In this Section, we generalize the criteria for coalition formation, described in the use
cases of Section 2, into cooperation concepts and outline a Scala-based internal DSL
that we have developed to specify coalitions and form them at runtime. A prototype
implementation of Trait-based Coalition Formation ADL (TCOF-ADL) along with the
engine forming the coalitions at runtime is available at http://github.com/d3scomp/tcof.

We split the criteria for coalitions in two categories: (i) core concepts that are inde-
pendent of a particular sCPS application domain, (ii) concepts that depend on particular

6

sCPS application domains; we group the latter into reusable traits. By the trait, we de-
note a set of specification concepts that extend the core of the specification language
and can be used optionally (similarly to object-oriented languages, where a trait, or
sometimes called a mixin, is typically a set of orthogonal methods that can be attached
to a class to extend the class’ behavior). The concepts featured by a trait are specific to
a particular application domain (e.g. connected mobility, emergency coordination,
home automation, robotic swarm, etc.) or to a particular aspect of the domain (e.g. nav-
igation in 2D space). This makes the traits reusable across multiple use cases. For ex-
ample, the “map” trait reflects the concept of spatial proximity and can be reused both
in applications that belong to the connected mobility domain and in applications that
belong to the domain of emergency coordination in a city. Any sCPS coalition can be
specified by using the domain-independent concepts and augmenting them with se-
lected traits.

In contrast, coalition criteria (concepts) that do not depend on particular application
domains are universal in sCPS coalition specification, i.e. they typically make sense in
any application domain. For example, the “type” of an agent is a possible criterion for
coalition formation in any application (irrespective of its domain).

3.1 Core concepts

To capture the coalitions at the architectural level, we exploit components and en-
sembles [6]. A component is used to represent an agent, whereas an ensemble represents
a coalition. Below we elaborate on them in detail.

A component represents an autonomic (and potentially mobile) entity. It consists of
a belief (called knowledge in the paper) and periodic activity. Within its activity, the
component operates over its knowledge and interacts with the environment (by sensing
and actuating) and with other components (by sharing part of its knowledge). The
knowledge conceptually comprises local knowledge, which reflects the state of the
component itself, and a partial snapshot of the knowledge of other components, termed
mirror knowledge.

While a component reflects the belief, activities and goals of an individual agent, the
ensemble is used to reflect the shared belief, coordinated activities and joint goals of a
group of agents (called coalition in this paper). An ensemble consists of a number of
member components. It dynamically changes as the members’ goals, knowledge and
the ability to work in the ensembles change. To reflect this dynamic nature of the en-
semble, the ensemble is determined by membership condition, which is a predicate de-
fined over the components’ knowledge. A membership condition example is: “Compo-
nents that are spatially close to a point of interest”. Components within an ensemble
share parts of their knowledge to achieve the joint goal of the ensemble. In addition to
conceptually representing the coalition, an ensemble actively drives and coordinates
the cooperation of components by assigning roles to components within the ensemble
(e.g. which component extinguishes the fire and which protects the nearby buildings by
cooling them down with water) and by performing coalition-level computation. Tech-
nically, an ensemble can be established in centralized or decentralized manner. In the
text below we describe the centralized case, in which an ensemble has an initiator,

7

which is a component that establishes the ensemble, hosts its computation and performs
communication with other member components to collect required knowledge for the
ensemble and to distribute decisions of the ensemble back to its members.

To better reflect the processes and responsibilities in the real-world, we feature hi-
erarchical decomposition of ensembles. The rule is that members of a sub-ensemble
must be members of the parent ensemble too. As such, the highest-level ensemble cor-
responds to the overall joint goal and serves to divide responsibilities. Note, however,
that in contrast to classical component models, ensembles are generally allowed to
overlap. This naturally reflects the fact that a component may have multiple responsi-
bilities (roles) and joint goals at the same time (e.g. refilling water and observing sur-
roundings for potential fire).

As the ensemble is bound to a situation (e.g. firefighter coalition bound to a particu-
lar fire incident) rather than statically to particular components, the same ensemble can
emerge simultaneously at multiple places involving different members. As such, we
distinguish between ensemble definition and ensemble instances. As the names suggest,
ensemble definition describes the membership condition and the coordination (roughly
corresponding to a class in OO languages). The ensemble instance on the other hand is
bound to a certain situation which satisfies the membership condition; it is bound to
particular members and hosted by a particular initiator. For the sake of brevity, we stick
in the paper to the general term ensemble. To avoid confusion, we specifically distin-
guish between ensemble definition and instance when necessary.

3.2 TCOF-ADL

We exemplify our approach on a part of the RCRS use case (Section 2.1). In essence,
each of the key concepts—component, ensemble—is captured as an abstract class.
These are then inherited by application-specific classes as illustrated in the example in
Fig. 1 using TCOF-ADL (our Scala-based internal DSL to describe coalition). Here,
the component instance of FireStation coordinates with instances of FireBrigade in
order to extinguish the fire of a building and protect the surrounding buildings. Simi-
larly, there are components for other RCRS agents (AmbulanceTeam, etc.). Due to space
limits, Fig. 1 does not show how the instances of these classes are actually established;
for simplicity let us assume there exists a singleton FireStation and n instances of
FireBrigade. To achieve the required coordination the ensemble FireCoordination, in-
itiated by FireStation, decomposes to two sets of ensembles—extinguishTeams and
protectionTeams. These sub-ensembles are disjoint in terms of their location on the city
map. Members of the ensemble ProtectionTeam are selected from brigades (instances
of the component FireBrigade) and are associated with a particular fireLocation; the
selection is determined by the membership clause specifying that only the instances of
FireBrigade which are either idle or already at the scene given by fireLocation are
considered. Additionally, they have to be at a distance from which they can reach the
fireLocation before the fireLocation (i.e., building) burns down (otherwise, there is no
reason to go there). Plus, their number has to be 2 or 3. In the action clause the “protec-
tion role” is assigned to the members—selected brigades. The ensemble ExtinguishTeam
is specified in a similar way.

8

We represent both components and ensembles as Scala classes that extend the ab-
stract classes Component and Ensemble respectively. Further, we use the power of Scala
to define new control structures to structure the operation of components (i.e. separation
of sensing, actuation and constraints about states and utility as described later in the
section) and to declare membership condition and coordination of an ensemble. Tech-
nically, these control structures are realized as Scala functions with a “by-name” pa-
rameter [16].

Components. In support of self-adaptation, a component operates on a periodic ba-
sis by performing the classical MAPE-K loop [11]. This is done in the following steps.

In Monitoring, the component senses data from the environment, receives
knowledge from other components and updates its knowledge model (both its local and
mirror knowledge) accordingly. In TCOF-ADL, this is contained within the sensing
construct (Fig. 1, lines 7-12 and 42-44).

In Analysis, the component determines the potential activities it can do in the given
situation. To achieve conceptual autonomy of a component and to align it with behavior
dictated by a coalition, components activities are tied to so called states (line 5). Each
state determines a particular component activity (e.g. going to refill water, seeking ref-
uge in case a firefighter is hurt). A component can be in multiple states at the same
time, which corresponds to the ability to simultaneously perform a number of orthogo-
nal actions (e.g. moving and observing environment). At the same time, TCOF-ADL
allows defining logical predicates over states (lines 14-18), which serve to express de-
pendency of the state on some particular value of component knowledge and the mutual
exclusion of states. To break ties in situation where different conflicting states could be
selected, TCOF-ADL provides a utility function that assigns values to states. The sum
of values of active states then determines the overall utility of a component at given
time (lines 24-26).

This whole leads to a constraint solving problem of determining the active states that
maximize the utility of the component. This is resolved in Planning.

Planning further involves initiation of ensembles. This involves resolving the con-
straint solving problem stemming from ensemble specification (detailed in the next
subsection). This is captured by the ensembleResolution construct (lines 46-49). The en-
semble resolution can be guarded by the component being in a particular state, which
captures the fact that a component can initiate ensembles only when it itself is in certain
situation.

In Execution (contained within actuation construct—lines 19-22 and 51-59) the
component performs the actuation and sends knowledge updates to other components
(to members of initiated ensembles and to potential future ensembles’ initiators). To
abstract the communication for any particular technology and still provide suitable
communication abstractions for coalitions, we exploit the attribute-based communica-
tion paradigm [2]. In this type of communication, the addressing is performed by a
predicate over the knowledge of the receiving component (as opposed to static recipient
identity). This makes it easier to disseminate knowledge needed to establish an ensem-
ble towards ensemble initiators.

Ensembles. The definition of an ensemble is structured following the core concepts
of coalition formation as discussed in Section 2. The selection of agent based on their

9

type is represented by the role construct (line 74). It determines the potential compo-
nents that can take responsibility in the ensemble in the given role. The actual selection
of components is then based on the membership constraints (encapsulated by member-
ship construct—lines 64-70 and 79-91) and the soft optimization rule (defined by the
utility construct—lines 93-96). For example, in the ProtectionTeam ensemble the mem-
bership mandates that the utility is computed as inversely proportional to the travel
time needed for each selected member fire brigade to get to the fire location. Coordina-
tion takes the form of updating certain coordination-relevant knowledge of the ensem-
ble members (encapsulated by coordination construct—lines 98-102). The membership
constraints include both the cardinality constraints (on the number of agents) and the
domain-dependent constraints (such as pertaining to geographical proximity) which ex-
ploit the concepts featured by the traits (Section 3.3).

1. class RescueScenario extends Model with RCRSConnectorTrait
2. with Map2DTrait[MapNodeStatus] with StateSpaceTrait {
3.
4. class FireBrigade(val entityID: EntityID) extends Component {
5. val Protecting, Refilling, Idle, Escaping = State
6.
7. sensing {
8. sensed.messages.foreach {
9. case (InitiatorToFireBrigade(receiverId, ..., fireLoc), _)
10. // ...
11. }
12. }
13.
14. constraints {
15. (Escaping -> (brigadeHealth < MINOR_INJURY_THRESHOLD)) &&
16. (Refilling -> (refillingAtRefuge || tankEmpty)) &&
17. // ...
18. }
19. actuation {
20. sendMessages()
21. performAction()
22. }
23.
24. utility {
25. states.sum(s => if (s == Protecting) 1 else 0)
26. }
27.
28. private def performAction(): Unit = state match {
29. case Refilling if !refillingAtRefuge => moveTo(nearestRefuge)
30. case Escaping if !regeneratingAtRefuge => moveTo(nearestRefuge)
31. case Protecting =>
32. if (inExtinguishingDistanceFromFire) extinguish()
33. else moveTo(assignedBuildingOnFire)
34. case _ => rest()
35. }
36. // ...
37. }
38.
39. class FireStation(val entityID: EntityID) extends Component {
40. val fireCoordination = root(new FireCoordination(this))
41.
42. sensing {
43. processReceivedMessages()
44. }
45.

c
o
m
p
o
n
e
n
t

10

46. ensembleResolution {
47. fireCoordination.initiate() //establishes a number of ProtectionTeam
48. //and of ExtinguishTeam instances
49. }
50.
51. actuation {
52. for (protectionTeam <- fireCoordination.protectionTeams.selected)
53. for (brigade <- protectionTeam.brigades.selected) {
54. val message = InitiatorToFireBrigade(brigade.entityID,
55. brigade.brigadeState, brigade.assignedFireLocation)
56. agent.sendSpeak(time, Constants.TO_AGENTS, Message.encode(message))
57. // ... likewise for ExtinguishTeam
58. }
59. }
60.
61. class FireCoordination(coordinator: FireStation) extends Ensemble {
62. val extinguishTeams =
63. ensembles(buildingsOnFire.map(new ExtinguishTeam(coordinator, _)))
64. val protectionTeams =
65. ensembles(buildingsOnFire.map(new ProtectionTeam(coordinator, _)))
66.
67. membership {
68. extinguishTeams.map(_.brigades)
69. ++ protectionTeams.map(_.brigades)).allDisjoint
70. }
71. }
72.
73. class ProtectionTeam(fireLocation: EntityID) extends Ensemble {
74. val brigades = role("brigades",components.select[FireBrigade])
75. val routesToFireLocation = map.shortestPath.to(fireLocation)
76. val firePredictor = statespace(burnModel(fireLocation), time,
77. fireLocation.status.burnoutLevel)
78.
79. membership {
80. brigades.all(brigade =>
81. (brigade.state == Idle) ||
82. (brigade.state == Protecting) &&
83. sameLocations(brigade.assignedFireLocation)
84.) &&
85. brigades.all(brigade =>
86. routesToFireLocation.timeFrom(mapPosition(brigade)) match {
87. case None => false
88. case Some(travelTime) => firePredictor.valueAt(travelTime) < 0.9
89. }) &&
90. brigades.cardinality >= 2 && brigades.cardinality <= 3
91. }
92.
93. utility {
94. brigades.sum(brigade => travelTimeToUtility(
95. routesToFireLocation.timeFrom(mapPosition(brigade))))
96. }
97.
98. coordination {
99. for (brigade <- brigades.selectedMembers) {
100. brigade.assignedFireLocation = Some(fireLocation)
101. }
102. }
103. }
104.
105. class ExtinguishTeam(fireLocation: EntityID) extends Ensemble { /* ... */ }
106. }

Fig. 1. Example of using TCOF-ADL in forming coalitions

e
n
s
e
m
b
l
e

c
o
m
p
o
n
e
n
t

e
n
s
e
m
b
l
e

11

3.3 Expressivity through domain-dependent traits

The core concepts described above allow for specifying entities (components), the fea-
tures of these entities (components’ knowledge) and coalitions of entities (ensembles).
However, conditions for coalition creation (i.e., the membership condition) lack an abil-
ity to express real-world conditions such as that one component is spatially close to
another one or that a building does not burn down before a firefighter unit reaches the
building, etc. The type of such necessary conditions strongly depends on the particular
domain of an application. To include all the possible types of conditions to the core of
the specification language is not only impractical, as the language would be quite com-
plex and hard to learn, but even impossible, as all the possible application domains
cannot be foreseen. Plus, a single application typically would not need all the condition
types. Indeed, all the examples in Section 2 specify conditions over spatial distances
and estimated travel times. However, while the RCRS use case (Section 2.1) prescribes
conditions over estimates of fire spreading/burning speed, the connected mobility sys-
tem example (Section 2.2) prescribes conditions over estimates of traffic congestions
and vehicle speeds. Thus, in our approach, all these domain-dependent condition types
are designed as reusable traits; designers/developers can pick and use or create only the
traits necessary for their application.

In the rest of the section, we overview several traits that are already available in
TCOF-ADL. As with the core concepts, we illustrate them on the RCRS example in
Fig. 1. The selected traits (line 1) are the map trait and data prediction trait plus a trait
connecting the language run-time with the Rescue simulator (i.e., creates particular
agents and processes messages from/to the simulator—not explained here). Techni-
cally, our traits are developed as Scala traits.

Map Trait. This trait serves to capture spatiotemporal relations between agents to

be included in a coalition. The typical use is to select the agents that are close to each
other or close to a particular point in terms of travel time. An example is on lines 75,
86, 94-95. Line 75 computes the shortest routes to a fire location (via Dijkstra’s algo-
rithm). Lines 86 and 94-95 query the computed travel time needed for a Fire Brigade
to reach the fire location.

Data prediction Trait. This trait serves to capture coalitions formed based on the
prediction of a data value in the system. Such predictions can rely either on state-space
models that capture data evolution based on physical processes [1] or on machine learn-
ing models that capture patterns and trends in historical data. Examples of application
of this trait include (i) the coalition of “Agents within travel time less than the estimated
time until building B is burnt out” and (ii) the coalition of “Agents within travel time
less than the estimated time-to-survive of victim V”.

In our TCOF-ADL, the former is captured by lines 76 and 88. Line 76 initializes a
predictor of how quickly a particular building (fireLocation in the code) burns based
on the burning model of a building represented as an ordinary differential equation
(ODE), which is assumed to be associated with each building, and initial conditions—
i.e. current time and the current burnout level of the building.

12

The predictor uses a solver (i.e. a numerical integrator) to solve the ODE for a spec-
ified point of time (line 88). By combining the Map2DTrait and the StateSpaceTrait
(data prediction), lines 86-88, it is ensured that “All agents selected for the coalition
have to be able to reach the building (i.e. travel time is not None) and the burnout level
of the building at the time the agent reaches it has to be below 0.9 (i.e. the building is
not burnt out yet).

Statistics Trait. This trait offers the possibility to construct a coalition based on
statistical evidence about the behavior of certain stochastic processes in the system.
Here, we build on our previous work in mode-switching based on statistical tests [7].
Due to space constraints, we do not demonstrate this on the example in Fig. 1 (as this
would necessitate including other parts of the scenario); instead, we give an illustration
below.

Consider the coalition that heavily relies on radio communication, so that it can be
formed only if “Expected packet delivery probability over the radio is 90 percent or
more, evaluated over the past one hour with a confidence of 95%”. This would be cap-
tured in our DSL as msgDelivery(time - 3600, time).probability > 0.9 withConfidence 0.95, where
msgDelivery is a Boolean timeseries recording whether an expected packet was re-
ceived or not. The whole expression denotes a one-sided statistical test whether one can
reject the null hypothesis that the samples over the last hour have probability of true
less or equal to 0.9 with significance level ߙ = 0.05.

Note that the above traits can be reused in some sCPS application domains, but not
in others. For example, the data prediction trait for fire and burn out levels can be reused
in applications belonging to the emergency coordination and home automation do-
mains, but not to the connected mobility one.

4 Evaluation and Discussion

4.1 Code size and level of reuse

To compare the development effort when using TCOF-ADL against not using it, we
have developed two versions of the RCRS example described in sections 3.2 and 3.3—
one exploiting the TCOF-ADL framework and one without the TCOF-ADL (both are
available at http://github.com/d3scomp/tcof). The TCOF-ADL-based implementation
is formed by a main class (with nested classes) of 256 lines of code (LOC) (without
blank lines and comments) and 6 additional classes holding some auxiliary functions.
The main class with the auxiliary classes amounts to 409 LOC in total. It further uses
three reusable traits—a connector to the RoboCup simulator, map trait and data pre-
diction trait. Each of these traits is implemented as a set of classes with the overall sizes
of 216, 273 and 70 LOC, respectively. Thus, in total, approximately half of the code is
the business logic of the example and half is the reusable traits.

The implementation without TCOF-ADL is a single Scala class (with nested classes)
with domain-dependent concepts (corresponding to the traits above) embedded in its
code. Since it cannot take advantage of the solver used in TCOF-ADL, it implements

13

simple search heuristics to figure out the cooperation groups (corresponding to ensem-
bles in TCOF-ADL). Overall, it amounts to 1064 LOC—i.e. roughly two times the
TCOF-ADL-based solution. Note that this is less than the TCOF-ADL-based solution
plus the reusable traits. This is because the abstractions introduced in the traits to make
them use case independent add to the total size of the reusable traits. These are of course
missing in the implementation without TCOF-ADL. Though these measurements are
difficult to generalize to other examples, they suggest that the reusability of traits can
bring advantage already when the trait can be reused across two use-cases. Also, TCOF-
ADL removes (at least in the less complicated cases where an ensemble can be ex-
pressed via a logical predicate and utility) the need to provide code that figures out the
composition of cooperation groups. The process of resolving the cooperation groups
typically leads to developing some heuristics that is likely combined with backtracking.
Such heuristics with backtracking is intrinsically difficult to develop and debug. As
such it corresponds to significant development effort, even though, due to recursion,
the eventual amount of LOC is relatively small (39 LOC in our case).

4.2 Limitations – Coping with exponential complexity

The current biggest limitation of our approach is scalability w.r.t. to the exponential
complexity of ensemble resolution. We have tested our implementation with 1 FireSta-
tion and 5 FireBrigades on the Kobe map (that is provided with the RoboCup simula-
tor), which has 755 buildings and 1602 roads. For up to 3 fires in the map, the imple-
mentation we provide resolves ensembles within 1 second. However, with more fires,
the run time grows exponentially (20 s for 6 fires, 120 s for 7 fires).

Internally, our implementation (which we provide as an open source library to re-
solve ensembles) uses a constraint solver for building ensembles (namely the Choco
solver4). We could generally speed up the solving by incorporating a more optimized
solver, however this does not solve the intrinsic complexity of the problem. In this re-
spect, a promising solution seems to be a non-exhaustive search of the state space (by
stopping the solver after some fixed time) and connect it with preconditioning the prob-
lem model such that reasonably good solutions are likely to be found first and likely
suboptimal solutions are discarded upfront. This can be done by sorting the components
in the order by which they are contributing to the utility and discarding components
that have smaller contribution to the utility than a given threshold. In our case, it means
sorting the FireBrigades by the distance to the fire and removing FireBrigades that are
too far. Though this may result in finding a non-optimal solution or in not finding a
solution at all (though it generally exists), our initial experiments suggest that even such
simple means can significantly help in solving the problem without compromising too
much the average quality of the system [12].

4 http://www.choco-solver.org/

14

4.3 What about an external DSL or a graphical DSL?

In parallel with TCOF-ADL, we have designed a similar language but this time as an
external DSL, i.e., an independent language (in contrast to TCOF-ADL which is an
internal DSL since it is embedded in Scala). This DSL, dubbed the Ensemble Definition
Language (EDL) [12], has been implemented with the help of the Eclipse DSL devel-
opment stack—namely by employing Xtext and XTend technologies, as well as Ecore-
based modelling tools. Due to space constraints, examples of the ProtectionTeam ensem-
ble (with a similar functionality as the ProtectionTeam in Fig. 1) are not included here
but can be found at the companion web-page dedicated to the technical aspects
(http://github.com/d3scomp/tcof/blob/master/TECHNICAL.md). Compared with the
internal-DSL way, the external-DSL way has different pros and cons. Due to having a
separate compilation step and working with the model of the ensemble description in-
stead of just data, EDL is directly capable of reflective code generation—it is therefore
potentially more powerful. Additionally, because the external language design is not
bound by the syntax of the host language, some concepts can be captured more naturally
(e.g. cardinality can be written simply as “[2..3]”). In favor of the internal DSL speaks
the tight integration with a general-purpose language and the ability to reuse all libraries
that already exist for it. This makes it easy to introduce various domain-dependent traits
that provide expressive constructs for reasoning about navigation, potentiality, etc.

Another option for developing a DSL would be a graphical one, e.g., as extension to
UML (a UML profile). This has the advantage of providing intuitive understanding of
the relationships between elements. In our case, however, since we attempt to capture
the dynamic evolution of a system, structural diagrams (e.g. extended UML class dia-
grams) that captures a static snapshot are rather unsuitable. It has also been shown that
while a graphical DSL is useful in providing big-picture view, text-based DSLs are
more fitting in capturing the details of a complex application (like the connection of
situations to logical constraints as in our case [18]).

5 Related Work

As mentioned in Section 1, component ensembles have been proposed to realize coali-
tions in sCPS. Till now, several frameworks based on the concept of ensembles have
already been developed and applied. Helena [9], JRESP (http://jresp.sourceforge.net)
and DEECo [6] are examples of them. They all offer components with roles and en-
sembles, however they do not provide self-formation of ensembles based on high-level
specification constructs. The same holds for AbaCuS [3], which, though not an ensem-
ble-based framework, employs opportunistic and attribute-based communication
among components.

The coalition formation is intensively studied in a community around RCRS. Many
approaches [17], based on different criteria, have been already proposed and imple-
mented within the project, however their implementations are low-level (i.e., directly
in Java, in which the whole RCRS simulator is developed) and thus hardly reusable. To
solve the issue, the Agent Development Framework (ADF, https://github.com/ RCRS-
ADF/RCRS-ADF) [19] has been recently proposed and started to be employed in order

15

to allow easy reuse of code among multiple teams participating in the league. ADF
defines a set of Java interfaces/base classes for individual aspects of the implementa-
tion, e.g., tactics for platoons and centers, path planning, communication, and the de-
velopers implement them and compose a complete system from them. This way, it pro-
vides basic structure for agents. It however lacks any ability of defining coalitions as
first class architecture concepts. In general, ADF uses a similar technique as our ap-
proach, i.e., a core plus reusable traits, yet quite low-level (plus, at this time, without
almost any documentation). Also, the traits (i.e., interfaces/base classes) are reusable
only within the rescue league.

Another framework targeting reuse in the RCRS simulator is RMASBench [13] – a
testbed for multi-agent coordination algorithms. Main focus of RMASBench is bench-
marking of distributed constraints optimization problem (DCOP) algorithms. DCOP
algorithms are used within RMASBench to solve coalition formation of the agents. API
in RMASBench adds an extra channel that allows extensive exchange of messages be-
tween agents. DCOP algorithms in RMASBench are modelled as a reusable first-class
entities and when a problem can be solved using an already developed algorithm, pro-
grammer needs to only implement a scoring function.

Multi-paradigm domain-specific languages and modeling languages have recently
emerged [10] and they are quite similar to our approach. Multi-paradigm modeling tar-
gets a combination of multiple abstraction, formalism and (meta-)modeling levels into
a single approach [14]. An example of such language can be QAML [5], which is a
quantitative analysis modeling language constructed following the multi-paradigm
modeling approach, i.e., for individual paradigm concerns reuses existing modeling
languages (e.g., AADL for architecture, MathML for math expressions) and composes
them together. However, compared to our approach, the language is not designed to be
extensible and has no notion of coalitions. Another example can be found in [4], where
the authors describe the process and challenges faced during designing a multi-para-
digm-based software architecture description language—but again as the approach
above, the language is not designed to be extensible and there is no notion of coalitions.

6 Conclusion

In this paper, we have focused on the problem of specifying and forming complex
real-life coalitions of components in smart cyber-physical systems (sCPS). We have
provided an extensible architecture description language that allows for specifying co-
alitions as component ensembles in an intuitive, reusable and, at the same time, seman-
tically rich way. While a conservative way to design and implement a particular sCSP
use case would be to design a dedicated DSL (basically from scratch), this obviously
lacks reusability when multiple use cases featuring partly common concepts are to be
considered. Thus, a strength of our approach is that it provides a compositional way to
design a DSL for a sCSP use case featuring coalitions, by taking advantage of the over-
lap that exists in some sCPS application domains in terms of paradigms they exploit in
modeling reality. Our implementation of the proposed architecture description lan-
guage is publicly available as an open source library at http://github.com/d3scomp/tcof.

16

References

1. Al Ali, R. et al.: Architecture Adaptation Based on Belief Inaccuracy Estimation.
In: Proceedings of WICSA 2014, Sydney, Australia. pp. 87–90 IEEE CS (2014).

2. Alrahman, Y.A. et al.: On the Power of Attribute-Based Communication. In: Pro-
ceedings of FORTE 2016, Heraklion, Crete, Greece. pp. 1–18 Springer (2016).

3. Alrahman, Y.A. et al.: Programming of CAS Systems by Relying on Attribute-
Based Communication. In: Proceedings of ISOLA 2016, Corfu, Greece. pp. 539–
553 Springer (2016).

4. Balasubramanian, D. et al.: Taming Multi-Paradigm Integration in a Software Ar-
chitecture Description Language. In: Proceedings of MPM 2014, Valencia, Spain.
pp. 67–76 (2014).

5. Blouin, D. et al.: QAML: a multi-paradigm DSML for quantitative analysis of em-
bedded system architecture models. In: Proceedings of MPM ’12, Innsbruck, Aus-
tria. pp. 37–42 ACM (2012).

6. Bures, T. et al.: Software Abstractions for Component Interaction in the Internet of
Things. Computer. 49, 12, 50–59 (2016).

7. Bures, T. et al.: Statistical Approach to Architecture Modes in Smart Cyber Physical
Systems. In: Proceedings of WICSA 2016, Venice, Italy. pp. 168–177 IEEE (2016).

8. Fairbanks, G.: Architectural Hoisting. IEEE Software. 31, 4, (2014).
9. Hennicker, R., Klarl, A.: Foundations for Ensemble Modeling – The Helena Ap-

proach. In: Iida, S. et al. (eds.) Specification, Algebra, and Software. pp. 359–381
Springer (2014).

10. Horst, A., Rumpe, B.: Towards Compositional Domain Specific Languages. In: Pro-
ceedings of MPM 2013, Miami, USA. pp. 1–5 (2013).

11. Kephart, J., Chess, D.: The Vision of Autonomic Computing. Computer. 36, 1, 41–
50 (2003).

12. Krijt, F. et al.: Automated Dynamic Formation of Component Ensembles. In: Pro-
ceedings of Modelsward 2017, Porto, Portugal. SCITEPRESS (2017).

13. Maffioletti, F. et al.: RMASBench: A Benchmarking System for Multi-agent Coor-
dination in Urban Search and Rescue. In: Proceedings of AAMAS 2013, St. Paul,
MN, USA. pp. 1383–1384 (2013).

14. Mosterman, P.J., Vangheluwe, H.: Guest Editorial: Special Issue on Computer Au-
tomated Multi-paradigm Modeling. ACM Transactions on Modeling and Computer
Simulation. 12, 4, 249–255 (2002).

15. Nicola, R.D. et al.: A Formal Approach to Autonomic Systems Programming: The
SCEL Language. ACM Trans. Auton. Adapt. Syst. 9, 2, 7:1–7:29 (2014).

16. Odersky, M. et al.: Programming in Scala: A Comprehensive Step-by-Step Guide,
Third Edition. Artima Press (2016).

17. Parker, J. et al.: Exploiting Spatial Locality and Heterogeneity of Agents for Search
and Rescue Teamwork. J. Field Robotics. 33, 7, 877–900 (2016).

18. Poch, T. et al.: Threaded behavior protocols. Formal Aspects of Computing. 25, 4,
543–572 (2013).

19. Takayanagi, K. et al.: Implementation of NAITO-ADF and its Team Design
NAITO-Rescue 2015. In: Proc. of RoboCup Intl. Symp. 2015, Hefei, China. (2015).

