
Department of Distributed and Dependable Systems
Technical report no. D3S-TR-2024-01
July 12, 2024

Pure methods for roDOT (an extended version)

Vlastimil Dort, Yufeng Li, Ondřej Lhoták, Pavel Parízek

Abstract: Object-oriented programming languages typically allow mutation of objects, but pure meth-
ods are common too. There is great interest in recognizing which methods are pure, because it eases
analysis of program behavior and allows modifying the program without changing its behavior. The
roDOT calculus is a formal calculus extending DOT with reference mutability. In this paper, we explore
purity conditions in roDOT and pose a SEF guarantee, by which the type system guarantees that meth-
ods of certain types are side-effect free. We use the idea from ReIm to detect pure methods by argument
types. Applying this idea to roDOT required just a few changes to the type system, but necessitated
re-working a significant part of the soundness proof. In addition, we state a transformation guarantee,
which states that in a roDOT program, calls to SEF methods can be safely reordered without changing
the outcome of the program. We proved type soundness of the updated roDOT calculus, using multiple
layers of typing judgments. We proved the SEF guarantee by applying the Immutability guarantee, and
the transformation guarantee by applying the SEF guarantee within a framework for reasoning about
safe transformations of roDOT programs. All proofs are mechanized in Coq.

This is an extended version of the ECOOP 2024 paper Pure methods for roDOT [13].

This work was supported by the Czech Science Foundation project 23-06506S, and by the Czech Min-
istry of Education, Youth and Sports project LL2325 of the ERC.CZ programme. This research was also
supported by the Natural Sciences and Engineering Research Council of Canada.

D3S, Technical Report no. D3S-TR-2024-01 1. Introduction

1 Introduction

A feature common to many object-oriented programming languages is that execution of a method can
have important side effects such as creating new objects on the heap or modifying (mutating) existing
objects. For example, a setter method modifies a field of the receiving object. Such effects are also
the reason why, in general, execution of a method cannot be treated as evaluation of a function in a
mathematical sense, because every call of a method with possible side effects can produce different
results.

That being said, many methods in object-oriented programs are actually designed as side-effect-free
and meant to work like pure mathematical functions, producing the same result on each invocation.
An example of such methods are getters, or generally, computations based solely on the arguments
passed into the method. Creating methods without side effects is also often considered to be a good
practice, because it reduces hidden dependencies, and these methods can be used more freely without
the fear of unwanted interaction of their effects. For example, the program code fragment val x =

computeX() ; val y = computeY(), which involves two side-effect-free methods, can be transformed
to val y = computeY() ; val x = computeX() by swapping the order of method calls without any
observable change in the program behavior and semantics. Writing side-effect-free methods also en-
ables a greater degree of parallelization (concurrency) and, in general, makes it easier to understand
the program behavior. Therefore, the issue of purity is relevant to most mainstream object-oriented
programming languages, such as Java, C++, C# and Scala.

However, in common programming languages, pure functions and methods with effects are typ-
ically unified under a single concept of a method, and there is no way to express, check and make
use of method purity at the language level. The idea that a method is pure can be expressed using
an annotation (see, e.g., Checker Framework [14, 10] and Code Contracts [15]), but one must look into
the documentation of such an annotation for the exact meaning of purity, and there may be limited
possibilities of checking automatically whether the annotation is applied properly.

In the context of Java, ReIm [19] introduced annotations with a formal meaning, which give rise to
a type system that allows to recognize side-effect-free methods using the types of their parameters – if
all parameters of a method, including the receiver, have read-only types, the method cannot get hold
of a writeable reference to an existing object, so it is necessarily side-effect free. The advantage of this
general approach, based on the usage of static type systems for reasoning about purity and side-effect
freedom, is the possibility to prove soundness and consistency of such annotations.

Scala favours a functional programming style, so Scala programs are likely to contain more methods
(than Java programs) that can be identified as side-effect-free. Our main objective is to design a type
system that guarantees side effect freedom for Scala methods and supports advanced language features
present in Scala.

Previous formalization efforts for Scala resulted in the Dependent Object Types (DOT) calculus [2],
which captures the essence of Scala’s type system. However, the original DOT calculus does not model
mutation of objects, so purity cannot be addressed there, but some variants that do allow mutation
have been developed. roDOT [12] is an existing core calculus for Scala with reference mutability. It has
mutable fields and a type system feature to distinguish read-only and mutable references. An important
rationale behind the design of roDOT, when compared to other possible approaches, is to use existing
features of Scala, including its rich type system, as much as possible rather than introducing new forms
of types only for reference mutability, to ease adoption of such a type system into the Scala language. In
particular, roDOT expresses the mutability of a reference using a specially designated type member in
the type of that reference. The type system of roDOT also provides an immutability guarantee: an object
can only be mutated if there is a path of mutable references to it from the code being executed.

In this paper, we extend the core roDOT calculus from [12] with the concept of side-effect-free meth-
ods. Before going into details, we want to emphasize that it was not possible to simply adapt ReIm [19]
from Java, because of several challenges specific to Scala and roDOT that we discuss below. However,
we use the idea proposed by the authors of ReIm that side-effect-free methods are recognized based on
the types of their parameters.

The general concept of purity is, in addition to (1) side-effect-freedom, sometimes understood to
comprise more properties: (2) determinism – returning the same value for the same arguments [14],
and (3) termination. In this paper, we focus only on the side-effect-free (SEF) property. We will just
mention that in regards to determinism, mutable DOT calculi including roDOT have semantics that is
deterministic except for instantiation of objects.

Within the context of roDOT, we look at the SEF property from three different perspectives – what a

1

D3S, Technical Report no. D3S-TR-2024-01 1.1 Contribution

SEF method does, how it can be recognized using the type system, and how it can be used in programs.
We define SEF methods in roDOT as those that do not modify any objects that existed on the heap
before the method was called.

As the main result of this paper, we prove the side-effect-free guarantee (SEF guarantee), which says
that methods with read-only parameters do not modify existing objects.

One important related challenge is that in order to state and prove the SEF guarantee, we needed
a way to test whether a given type is read-only. As we will explain, this is not possible in the existing
(original) roDOT type system from [12]. Therefore, one of our contributions is an extension of roDOT
that makes it possible to recognize read-only types.

Another challenge was defining the SEF guarantee formally and proving it in a calculus that sup-
ports a mutable heap (like roDOT). The roDOT operational semantics says that fresh heap addresses
are chosen during method execution. Therefore, after calling a SEF method, these heap addresses can
be different, yet the heap still has the same overall structure. We formally define a concept of similarity
of heaps in roDOT to describe this relation. We prove the SEF guarantee by simulating the execution
of a SEF method with a similar execution, where writeable references are removed, and by applying
roDOT’s immutability guarantee.

Finally, as a corollary of the SEF guarantee, we state and prove a guarantee of safety of a particular
code transformation. The transformation guarantee states that swapping two calls to SEF methods
anywhere in a program does not affect the result of its execution.

Formalizing safe program transformations has to deal with specific issues, such as mixing of pro-
gram code and values together on the program heap, or the heap similarity mentioned above. In order
to deal with these issues, we design a general framework for reasoning about safe transformations in
roDOT. The framework provides a general way to define program transformations, defines what prop-
erties a safe program transformation must have, and provides a general theorem about lifting the safety
of transformation from execution of a small piece of code to execution of the whole program. Within
this framework, we define the specific transformation of swapping two calls of SEF methods. We prove
the transformation guarantee using the SEF guarantee and the lifting theorem.

We mechanized all of our formal results, in particular the soundness proof of the extended roDOT
calculus and the SEF guarantee, in Coq to enable future formal reasoning to build on them. Note that the
soundness of the original roDOT calculus was proved by hand in [12]. We have made our formalization
in Coq public as an artifact for this paper.

1.1 Contribution

In summary, the main contributions of this paper are the following:

• a modification of the original roDOT calculus that makes it possible to test whether a type is
read-only, which is necessary to state and prove the SEF guarantee;

• a formal definition of side-effect-free methods in the context of roDOT, statement and proof of the
SEF guarantee;

• a general framework for defining transformations of roDOT programs and proving that some of
them are safe in that they do not change the result of program execution, statement and proof of a
transformation guarantee, which states that re-ordering calls to SEF methods is safe in that sense;

• the first mechanization of roDOT and its immutability guarantee, with addition of the SEF and
transformation guarantees, and all the proofs in Coq — provided as an artifact.

1.2 Outline

The paper is organized as follows. Section 2 gives an overview of the roDOT calculus, which has been
mechanized in Coq and within which we define the SEF condition. Section 3 discusses the definition of
pure and SEF methods, looking at several variants. It defines the SEF guarantee and identifies necessary
changes to the roDOT type system in order for the guarantee to work. In Section 4 we describe the
changes to the calculus in more detail, and discuss a new proof of type soundness of the calculus. In
Section 5, we describe how we proved the SEF guarantee, and in Section 6 we define and prove the
transformation guarantee within a framework for safe transformations.

2

D3S, Technical Report no. D3S-TR-2024-01 2. Background – the roDOT calculus

x ::= z, s, r Variable
| y | w location, reference
t ::= Term
| vx | x1.mx2 variable, method call
| let z = t1 in t2 let
| let z = ν(s : T)d in t let-literal
| x.a | x1.a := x2 read, write
d ::= d1 ∧ d2 Definition
| {a = x} | {A(r) = T} field, type
| {m(z, r) = t} method
ρ ::= · | ρ, w → y Environment

T ::= Type
| ⊤ | ⊥ | N top, bottom, read-only ⊥
| µ(s : T) | x1.B(x2) recursive, selection
| {a : T1..T2} | {B(r) : T1..T2} field, type decl.
| {m(z : T1, r : T3) : T2} method
| T1 ∧ T2 | T1 ∨ T2 intersection, union
B ::= Type member name
| A | M ordinary, mutability
σ ::= · | let z = □ in t :: σ Stack
Σ ::= · | Σ, y → d Heap
c ::= ⟨t;σ; ρ; Σ⟩ Configuration

Figure 1: roDOT syntax

Γ;ρ ⊢ x1 : {m(z : T1, r : T3) : T2}
Γ;ρ ⊢ x2 : T1 Γ vis x2

Γ;ρ ⊢ x1 : [x2/z]T3 Γ vis x1

T3 indep z

Γ;ρ ⊢ x1.mx2 : [x1/r][x2/z]T2

(TT-Call)

Γ;ρ ⊢ x1 : T1 Γ vis x1

Γ;ρ ⊢ x : {a : T1..T2} Γ vis x
Γ;ρ ⊢ x : {M(r) : ⊥..⊥}
Γ;ρ ⊢ x.a := x1 : T2

(TT-Write)

Γ;ρ ⊢ x : {a : T1..T2} Γ vis x
Γ;ρ ⊢ T2 ro T3 Γ;ρ ⊢ T2 mu(r) T4

Γ;ρ ⊢ x.a : T3 ∧ {M(r) : ⊥..(T4 ∨ x.M(r))}
(TT-Read)

Γ;ρ ⊢ T1 <: T3

Γ;ρ ⊢ T2 <: T3

Γ;ρ ⊢ T1 ∨ T2 <: T3

(ST-Or)

Γ;ρ ⊢ T1 ∧ (T2 ∨ T3) <: (T1 ∧ T2) ∨ (T1 ∧ T3)(ST-Dist)

Γ;ρ ⊢ T3 <: T1 Γ, z : T3, r : T6;ρ ⊢ T2 <: T4

Γ, z : T3;ρ ⊢ T6 <: T5 T6 indep z ⇒ T5 indep z

Γ;ρ ⊢ {m(z : T1, r : T5) : T2} <: {m(z : T3, r : T6) : T4}
(ST-Met)

Figure 2: Selected rules for typing and reduction in roDOT

2 Background – the roDOT calculus

In this section, we present the summary of the roDOT calculus [12], which we use as the baseline for this
work. The DOT calculus [2, 33, 30] is a formal calculus, designed to formalize the essence of the types
of the Scala programming language. In the basic versions of the DOT calculus, objects have read-only
fields (so the objects are immutable), but there are also several versions that allow changing values of
the fields of objects (mutation).

The roDOT calculus [12] evolved from DOT with mutable fields. The goal was to extend DOT with
the ability to control mutation of objects using the type system, while using the existing features of the
DOT calculus, dependent types.

In roDOT, write access to a field is controlled by a reference mutability permission. It is based on
an idea of a reference capability represented by a special type member M. A reference can only be used
to mutate an object if the type of the reference includes this capability, in the form of a type member
declaration {M : ⊥..⊥}. Thanks to that, we can refer to the mutability of a variable x using type selection
x.M.

Without this capability, the field can only be read, but with it, the field can also be written to. The
permission applies transitively, in the sense that reading from a read-only reference always produces
read-only references.

2.1 Syntax and typing

The syntax of terms and types in roDOT is in Figure 1. It uses the A-normal form [36] of terms from
DOT. To avoid ambiguity, if a variable is used in the position of a term, it is marked as vx. Unlike other
versions, the roDOT calculus does not have λ values, but methods are a kind of object member (and
cannot be reassigned), so there is a more explicit relationship of a method, the containing object and the

3

D3S, Technical Report no. D3S-TR-2024-01 2.1 Syntax and typing

reference used to call the method. Objects are represented by the ν(s : R)d constructor, appearing as
literals in the programs and as items on the heap (R is the type of the object and d is a list of member
definitions).

When typing the program or a part of it, free variables are assigned a type in a typing context Γ.
There are several kinds of variables. Abstract variables are variables bound in terms such as let-in terms
and method definitions. When the program executes, objects are created on the heap, and variables
referring to concrete objects on the heap are substituted in place of the abstract variables. Each object
on the heap has a unique location y and one or more references w. In an object on the heap, the values
of fields are locations of other objects. In terms, only references may appear. The kind of the variable
has no effect on execution or typing. In roDOT, references are a separate concept from locations in order
to allow references to the same object to have different types (specifically, different mutabilities). While
the run-time stack and focus of execution work with references that have their own mutabilities, the
heap only works with locations, and mutability is determined by field types.

The types form a lattice, with the top, bottom, union and intersection types. Objects can contain
multiple members – fields, methods and type members. Types of objects are formed by intersection of
individual declaration types for each member.

The type members {A : T..T} specify lower and upper bounds, and they introduce a new dependent
type x.A that has a subtyping relationship with those bounds. This is relevant because roDOT uses a
type member for mutability. The ability to create dependent types in this manner is the defining feature
of the DOT calculus.

The declarations of an object’s members are wrapped in a recursive type, so several declarations in
one object type can reference each other, using a member type selection s.A involving the self-reference
s. An example of a type of an object without mutability is µ(s : {A : T..T}∧{a : s.A..s.A}∧{m(r : T, z :
T) : T}). An object of this type has a type member A with bounds T , a field a with a self-referential
type s.A, and a method m.

In roDOT, dependent types are also used to express the mutability of a reference, by selecting the
special type member M. When accessing an object through a reference which does not have this capa-
bility, for example {a : T..T}, the field can only be read. With it, for example {a : T..T} ∧ {M : ⊥..⊥},
the field can also be written to.

In the declaration of the type member M, the lower bound is always ⊥, and the upper bound de-
termines the mutability. If the upper bound is also ⊥, it means the reference is mutable. Otherwise, it
is read-only. This way, mutable references are subtypes of read-only references, so a mutable reference
can be used anywhere a read-only reference is expected, but not vice versa. We will use MT as a short-
hand for the type member declaration {M : ⊥..T}, or just M when the bound is not important. The
mutability of a reference applies to the whole object – a mutable reference allows writing to all fields.

An example of a type of an object with a type member A, a field a, method m and a mutability
declaration is µ(s : {A : T..T} ∧ {a : T..T} ∧ {m(r : T, z : T) : T}) ∧ {M : ⊥..⊥}.

A declaration of a method allows specifying a type of the receiving reference r : T , which can be
more precise than the type of the recursive self parameter s in the defining object. This allows the type
of the method to require that the receiver be writeable, or allow it to be read-only. It is similar to the
ability to annotate the type of this parameter in Java, used by the Checker Framework [18, 9]. For this
reason, every method in roDOT has two parameters: a normal parameter z and the receiver r, which
is a reference to the object containing the method, like this in Scala. In roDOT, the type of r can be
dependent on z. The parameter r is special in how it gets its type, but in terms of semantics, behaves
the same as z.

Several rules in roDOT need a read-only version of a type. For that, there are two type-level opera-
tions: T ro U means that U is a readonly version of T , T mu U means that U is a mutability bound of
type T (rules are shown in Figure 11 in the appendix). A special type N is defined to be the read-only
version of the least type in the subtyping lattice, ⊥.

The typing rules (selected in Figure 2, full set in Figures 8 to 12 in the appendix) describe correctly
formed programs. In addition to the typing context Γ, which assigns types to variables, the left side
of the typing judgment includes an environment ρ that connects references in the terms to locations of
objects on the heap.

The write term, typed by TT-Write, is guarded by a check of the mutability permission on the re-
ceiving reference. The premise Γ;ρ ⊢ x : {M : ⊥..⊥} ensures that only mutable references can be used
for writing.

Reading a field, typed by TT-Read, is always possible, but the type of the result is changed to read-
only if the source reference is read-only. This type operation is called viewpoint adaptation, and ensures

4

D3S, Technical Report no. D3S-TR-2024-01 2.2 Semantics

that read-onlyness is transitive, which is required for the immutability guarantee of roDOT and for
our SEF guarantee. This is achieved by taking a read-only version of the field’s type, and adding a
mutability that is a union of the mutabilities of the source reference and of the field type. For example,
if a reference w has type {a : T1..µ(s : . . .) ∧MU}, then the term w.a has type µ(s : . . .) ∧Mw.a∨U .

With the vis judgment (Figure 9 in the appendix), roDOT hides captured variables in methods – to
access a value from outside, it must be stored in a field of the containing object, so viewpoint adaptation
applies to it.

Variables appearing in terms and definitions have types given by the typing and subtyping rules in
Figures 9 and 10 in the appendix. Selected rules are shown in Figure 2: ST-Met is a subtyping rule for
method declarations. The part highlighted in grey is not part of roDOT, but our modification, which we
will describe in Section 4.2. Rules ST-Or and ST-Dist are examples of subtyping rules for union types,
which are relevant in Section 4.1.

2.2 Semantics

The operational semantics of roDOT is defined as a small step semantics, with machine configurations
(Figure 1) consisting of a term in the focus of execution t, a stack σ, a heap Σ and an environment ρ. The
environment ρ maps references to locations and the heap Σ maps locations to objects. The stack σ is
used to evaluate terms of the form let z = t1 in t2. The stack is a list of frames of the form let z = □ in t2,
where □ represents t1 while it is being evaluated in the focus of execution. When t1 is evaluated to a
value, that value is substituted for the square in the top frame of the stack, and the t2 from that frame
then becomes the new focus of execution.

Execution starts with the program, an empty stack, empty heap and an empty environment, and
proceeds by steps defined in Figure 13 in the appendix, until it reaches an answer configuration, which
has an empty stack and the focus of execution is a single variable. During execution, new items are
added to the heap and the environment (there is no garbage collection). Calling a method copies its
body to the focus of execution, while the receiver and argument are substituted.

The semantics is generally deterministic – there is no way to express a nondeterministic choice.
However, there is one source of non-determinism: locations of objects on the heap. Allocating objects
must be regarded as a non-deterministic operation because even if the new objects are initially equal,
they may take on different values due to subsequent mutation.

2.3 Properties

The roDOT calculus has the type soundness property (Theorem 1, Theorem 7 in [12]) – a term that has a
type in an empty context can be executed and either reduces to an answer, or executes indefinitely. DOT
and roDOT do not include explicit checks for error conditions, but trying to access (read, write or call)
a non-existing member of an object is an error. In such a case, a reduction step is not defined and the
execution “gets stuck”. The soundness theorem guarantees this does not happen for typed programs.

Theorem 1 (Type Soundness).
If ⊢ t0 : T , The initial term t0 is well typed,

then either ∃w, j,Σ, ρ: ⟨t0; ·; ·; ·⟩ 7−→j ⟨vw; ·; ρ; Σ⟩, then execution terminates in j steps
with answer w,

or ∀j:∃tj , σj ,Σj , ρj : ⟨t0; ·; ·; ·⟩ 7−→j ⟨tj ;σj ; ρj ; Σj⟩. or continues indefinitely.

Type soundness and other properties are based on the fact that during execution, the type of the
configuration is preserved. Rules for typing a machine configuration are in Figure 14 in the appendix.
As the program executes and new objects are added to the heap, new locations and reference variables
are used to refer to the objects. To give the configurations a type, these variables are added to the typing
context. Their type is the type of the object, and has a fixed form – it is a recursive type containing
declarations of all the object’s members, intersected with a declaration of mutability. A typing context
that only contains types of this form is called an inert context. Under an inert context, stronger claims
can be made about types of variables [30], and it plays an important role in the proof of soundness.

The essential property of roDOT is the immutability guarantee (Theorem 2, Theorem 9 in [12]): in
order for an object to be mutated, a writeable reference to it must exist, or it must be possible to reach it
by a path of writeable fields, starting from a writeable reference – the object must be mutably reachable,
defined formally in Figure 3.

5

D3S, Technical Report no. D3S-TR-2024-01 3. Method Purity for roDOT

Γ ⊢ ⟨t;σ; ρ; Σ⟩ mreach y1
y1 → . . .1 {a = y2} . . .2 ∈ Σ

Γ;ρ ⊢ y1 : {a : ⊥..{M(r) : ⊥..⊥}}
Γ ⊢ ⟨t;σ; ρ; Σ⟩ mreach y2

(Rea-Fld)

t tfree w ∨ σ tfree w
w → y ∈ ρ

Γ;ρ ⊢ w : {M(r) : ⊥..⊥}
Γ ⊢ ⟨t;σ; ρ; Σ⟩ mreach y

(Rea-Term)

Figure 3: roDOT mutable reachable references

Theorem 2 (Immutability Guarantee).
If y → d ∈ Σ1 and Γ ⊢ ⟨t1;σ1; ρ1; Σ1⟩ : T , For an object at some point during well-typed

execution,

and ⟨t1;σ1; ρ1; Σ1⟩ 7−→k ⟨t2;σ2; ρ2; Σ2⟩, at any later point,

then either y → d ∈ Σ2, either the object does not change,

or Γ ⊢ ⟨t1;σ1; ρ1; Σ1⟩ mreach y. or it was reachable by mutable references.

3 Method Purity for roDOT

Here we informally define the meaning of side-effect freedom in roDOT, and informally state the main
results of this paper: the SEF guarantee and the transformation guarantee.

We structure our work around an observation that (in any programming language or calculus), we
can look at side-effect freedom from different perspectives:

1. (Static) Recognize which methods are SEF statically at compile time, using types.

2. (Runtime) Define what events can (or cannot) happen when a SEF method is executed.

3. (Usage) Differentiate SEF methods from general methods based on how they can be safely used
in programs.

For each of these perspectives, we will state a SEF condition, each giving a different definition of SEF
methods in roDOT. First we do it informally in this section, and then formalize the definitions in the
following sections. The guarantees then form connections between different SEF conditions.

3.1 Runtime SEF condition

Saying that a method is side-effect-free is informally understood as saying that the execution of the
method will not perform any actions that are considered to be side effects. This view corresponds to the
second perspective on our list.

This perspective is most directly related to the semantics. In roDOT, this means looking at the small
step semantics, defining the beginning and end of execution of a method, and defining the SEF condi-
tion in terms of the state of execution or the steps performed between the beginning and the end. When
looking at the effects caused by method execution, the only relevant part of the machine configuration
is the heap (the focus of execution is the part being evaluated, the stack cannot be changed, and the
mapping from references to locations is only relevant for typing). The heap can only be modified by
two kinds of execution steps: instantiation of an object and writing a value to a field of an object on the
heap.

The condition of side-effect-freedom can be stated in multiple versions of varying strength. In the
strictest sense, we could say that a SEF method cannot have any effect on the heap at all, meaning no
instantiations and no writes. That would, however, be overly restrictive, as object instantiation is one of
the basic operations in object-oriented programming. It is therefore usually (such as in [34, 38, 19, 14])
allowed that a SEF method can instantiate new objects, and also write to the fields of those newly
instantiated objects. In turn, the only forbidden action is writing to fields of previously existing objects.

Another choice in the definition is when the change to the heap is detected, which leads to different
answers to questions such as: (a) Is it allowed to write to a field of an existing object, if the value written
is the same as the current value so the object does not actually change? (b) Is it allowed to write to
a field of an existing object, if the field is restored to the previous value before the end of the method
execution? We choose to allow (a) but not (b), so our definition observes the state of the heap at every
moment during the execution of the method. Allowing (b) would lead to a weaker condition, which
would check the state of the heap only at the end of the method call. Forbidding (a) would lead to a
stronger condition, defined in terms of allowed steps of execution rather than in terms of the state.

6

D3S, Technical Report no. D3S-TR-2024-01 3.2 Static SEF condition

Informal statement of Definition 15 (Run-time SEF condition, in Section 5.1). An execution of a method
is side-effect free, when at every step of execution until returning from the method, the heap contains
all the objects from the start of execution in an unchanged state.

3.2 Static SEF condition

The static perspective (the first in our list) is useful because it provides a way to check that a method is
SEF by looking at the code. We must, however, accept that statically, it will not be possible to recognize
all methods that are pure from the second (and third) perspective.

In ReIm [19], SEF methods are recognized by the mutability of the parameters. roDOT uses the same
notion of transitive read-only references, therefore it should be possible to use an analogous condition
in roDOT.

Informal statement of Definition 11 (static SEF condition). A method has a SEF type, if both its param-
eter and its receiver parameter have read-only types.

This condition will be formally defined in Section 4.1. Example 3 and Example 4 illustrate its ability
to recognize SEF methods.

Example 3. A getter defined as {mget(r, z) = z.a} can be typed with {mget(r : ⊤, z : {a : ⊤..⊤}) : ⊤}.
Both ⊤ and {a : ⊤..⊤} are read-only types, and therefore the getter is SEF.

Example 4. The method msef defined by {msef (r, za) = (letx = ν(ro : Ro) . . . in za.max)} calls a
method of its argument, passing a newly allocated object to it. This method has type {msef (r : ⊤, za :
Tz) : ⊤}, where Tz = {ma(r : ⊤, z : µ(ro : Ro)∧ {M : ⊥..⊥}) : ⊤}. By Definition 11, msef is SEF, because
it has read-only parameters, even though it calls ma, which may mutate the heap.

Example 5 shows how viewpoint adaptation transitively ensures that read-only parameters cannot
be used to modify existing objects. Example 6 shows how a dependent type can change whether the
method is SEF or possibly not.

Example 5. The method defined by {mva(r, z) = (letx = z.a inx.b := r)} mutates an object stored in a
field of the argument z, and therefore is not SEF. This method cannot be typed with a read-only type
for the parameter z, because even if the field a has a mutable type, by viewpoint adaptation of fields in
roDOT, the variable x would also have a read-only type, so the subsequent write would not be allowed.

Example 6. A method with a type {mdep(r : ⊤, za : {a : ⊤..⊤} ∧ x.A) : ⊤} has a parameter with a type
dependent on the variable x, which can decide the mutability. This method is recognized as SEF only
in contexts where N <: x.A. When x.A <: M⊥, then the method can (indirectly) mutate the argument.

3.3 SEF guarantee

For the SEF guarantee (Theorem 16), we want to be able to claim that a method is SEF based on the
type of the method declaration. The SEF guarantee makes the connection from the first to the second
perspective.

Informal statement of Theorem 16 (SEF guarantee, in Section 5.2). Let c1 be a well-typed machine
configuration just prior to executing a method call step w1.mw2. If, by typing of the receiving reference
w1, the method m has a SEF type, then the execution of the method will be side-effect free.

3.4 Using pure methods in roDOT

Finally, the third perspective shows why SEF methods are useful. It is, however, a view from outside of
the method, and does not tell us how to construct a SEF method or check it.

The practical use of a type system with SEF methods comes when it allows us to look at the code,
and based on what we see (from the first perspective) gives us a guarantee about its behavior (second
perspective) and how it can be used (the third perspective). An example of this is allowing safe transfor-
mations of the program, which can be applied at coding time using IDE-provided code transformations,
or at compile time as optimizations. For example, calls to SEF methods can be safely reordered.

To keep the problem simple, we will look at one particular case of such reordering: swapping two
calls to SEF methods. With SEF methods, the code x1.m1(); x2.m2() is equivalent x2.m2(); x1.m1().

7

D3S, Technical Report no. D3S-TR-2024-01 4. Recognizing SEF methods by type in modified roDOT

Informal definition (Call-swapping transformation of programs). A program t1 is transformed into t2
by SEF call-swapping, when the programs are the same except in one place, where t1 calls two methods
in succession, but t2 calls them in the opposite order. Furthermore, within the contexts of typing these
method calls, both methods have the same read-only types, and allow both programs to be typed in the
same manner.

Example 7. A chain of calls letx1 = xo1.m1xa1 in letx2 = xo2.m2xa2 in t, can transformed by call swap-
ping into letx2 = xo2.m2xa2 in letx1 = xo1.m1xa1 in t.

The static condition from the first perspective is already a part of the definition of the transforma-
tion. The transformation guarantee then states that this transformation is safe – it does not change the
behavior of the program. By that, the guarantee connects the static condition (first perspective) with the
call-swapping transformation (third perspective). We use the run-time condition (second perspective)
as a connecting step between them in the proof of this guarantee.

Informal statement of Theorem 27. The call-swapping transformation is safe, in the sense that if for
any programs t1 and t2 related by this transformation, provided that t1 terminates with an answer
c1, then t2 also terminates with an answer c2, which is the same as c1, except for certain unavoidable
differences in variable names and in method bodies.

The formal definition of the transformation, formal statement of the transformation guarantee and
an outline of its proof are provided in Section 6.

4 Recognizing SEF methods by type in modified roDOT

In this section, we formalize the static SEF condition in roDOT given informally in Section 3.2. Although
the notion of read-only types, used by this condition, was already defined in roDOT, we identify issues
with that definition in regards to this new use.

We fix them by updating the calculus with small changes, which comprise adding one new sub-
typing rule and one type splitting rule, and one restriction added to the method subtyping rule. The
updated calculus is neither a subset nor a superset of the original, so it is necessary to update the proof
of soundness and the immutability guarantee, which were proven by hand for the original roDOT
[12]. The soundness proof followed the scheme from [30] and uses an auxiliary definition of invertible
typing, which allows doing proofs by induction on the typing of variables. This is possible thanks to
eliminating possible cycles in the derivation, by forcing the derivation to follow the syntactic structure
of the target type.

One of the new subtyping rules, however, breaks this soundness proof, because it introduces new
possibilities to derive types in cycles, which cannot be repaired by simply handling additional cases in
the original proof. In the presence of cycles, we cannot use the straightforward inductive hypothesis
to prove properties necessary for type safety, because a derivation for typing a variable can involve
derivations of arbitrarily complex types.

We implemented a new proof based on a different auxiliary typing definition, which avoids cycles
by forcing the derivation to arrive at the target type by adding type constructors in a fixed order (for
example, all unions in the type are handled before intersections). Compared to the original invertible
typing, which was single typing judgment with many rules, the new approach leads to a definition
in several layers, where each layer has a small number of typing rules. We call this set of judgments
layered typing. In layered typing, we re-prove important properties of invertible typing, so that the new
definition fits into the rest of the existing soundness proof, and also prove new properties required for
the SEF guarantee.

The rest of this section is structured as follows: in Section 4.1, we formalize static SEF condition, and
discuss the meaning of read-only types in roDOT. In Section 4.2, we propose small changes to the roDOT
calculus to make definitions work for the SEF guarantee. We give a short overview of the structure of
the original soundness proof for roDOT, and show how this proof breaks with the new changes. In
Section 4.3, we describe the new layered typing that replaces invertible typing in the updated proof and
show its important properties.

4.1 Static SEF condition in roDOT

In the SEF guarantee (Theorem 16), we claim that a method is SEF based on the type of the method
declaration. Our SEF guarantee follows the approach of ReIm [19] and requires the parameters to have

8

D3S, Technical Report no. D3S-TR-2024-01 4.1 Static SEF condition in roDOT

read-only types.

4.1.1 Read-only types in roDOT

The check whether a type is read-only was also present in roDOT, but it had a limited purpose – to
ensure that recursive types are read-only in VT-RecI (Figure 9 in the appendix). It was not based on
subtyping, but rather on the relation ro, which makes a read-only version of a type using a syntax-
based type splitting.

This definition did not guarantee that all supertypes of a read-only type are also read-only. As we
will explain in Section 4.1.3, this would be a critical problem for the SEF guarantee.

We solve this problem by using a different notion of read-only types, based on subtyping with the
“read-only bottom” type N.

The purpose of N in the original roDOT was to be the read-only version of the type ⊥ for defining
the ro relation. Because the bottom type ⊥ is a subtype of all types, it is inherently mutable. For that
reason, the type N was added and made a lower bound of read-only types. That allows us to define
read-only types as supertypes of N.

Definition 8 (Read-only types). A type T is read-only, if Γ;ρ ⊢ N <: T .

With Definition 8 settled, we discovered a few problems related to read-only types, which would
not allow us to state the SEF guarantee in the original roDOT.

Our proof of the SEF guarantee, specifically Lemma 19 in Section 5.4, relies on the idea that if a
reference has some read-only type, then any other reference to the same object has that type too. Note
that because of subsumption, a variable of a mutable type also has the corresponding read-only types.
This essentially means that in any place where a reference is used by virtue of its read-only type, it can
be replaced with a read-only version of that reference. With the new Definition 8 of read-only types,
this can be stated as:

Lemma 9 (Read-only types are shared by all references). If Γ ∼ ρ and Γ;ρ ⊢ y : T and Γ;ρ ⊢ N <: T , then
Γ;ρ ⊢ w : T for any w such that ρ(w) = y.

This key lemma, however, does not hold in the original roDOT, because of union types.
Union types were not a part of DOT, but were added to roDOT in order to be used to define view-

point adaptation (union types are already a part of Scala’s type system), along with the subtyping rules
ST-Or, ST-Or1, ST-Or2, ST-Dist, which are shown in Figure 10 in the appendix. However, using unions,
it is possible to construct a type that is a supertype of both N and a mutability declaration:

Example† 10 (In the original roDOT, counter-example to Lemma 9). Let Tam := {a : Ta} ∨ M⊥ be a
union of some field declaration with a declaration of mutability, and Tbm := {b : Tb} ∧M⊥ be a type of
a writeable reference to some other field b.

The type Tam is not mutable, because it is not a subtype of M⊥. It is read-only, because Γ ⊢ N <: Tam,
by the rules of subtyping of union types and by rule ST-N-Fld (Figure 10 in the appendix).

Let y1 be a location of type Tbm, and w2 be a reference to y1 with type Tb := {b : Tbm}. By subtyping
of unions and intersections, Γ ⊢ Tbm <: Tam, so by subsumption, y1 has type Tam. By Lemma 9, w2

should have also type Tam, but in the original roDOT, it does not.

Example† 10 is marked with the † sign, which we use in this chapter to identify properties of the
original roDOT from prior work, in contrast to the modified roDOT in this paper.

We observe that the read-only type Tam in this counter-example is a union of disjoint declarations,
so it does not allow accessing the field aam, or any other member. Therefore, Tam is no more useful
for typing programs than ⊤. In order to make Lemma 9 work, we decided to extend the type system
with new subtyping rules to make types like this equivalent to ⊤. These changes will be described in
Section 4.2.

4.1.2 The SEF condition

A method is statically SEF if the types of its receiver and parameters are read-only according to Defini-
tion 8 i.e., they are supertypes of N. Thanks to subsumption and subtyping of method types, the type
{m(z : N, r : N) : ⊤} is a type bound for methods named m and requires that both the argument and
receiver have read-only types.

9

D3S, Technical Report no. D3S-TR-2024-01 4.2 The updated roDOT calculus

Γ;ρ ⊢ N <: T

Γ;ρ ⊢ T ro T
(TS-N) Γ;ρ ⊢ ⊤ <: N ∨ {M(r) : T1..T2}(ST-NM)

Figure 4: New rules for roDOT

Definition 11 (Static SEF condition). A method is statically SEF if it has a type {m(z : N, r : N) : ⊤}

In Section 5, we will show that this condition works because a method must access all objects
through the argument or the receiver (capturing values is modeled using fields of the receiver), so
the method will not be able to get a writeable reference to any existing object.

4.1.3 Subtyping of method types

In order for the SEF guarantee (Theorem 16) to work with Definition 11, it is critical that all subtypes of
a SEF method type are also SEF. The reason is at the site of a method call, the observed static type of the
method is a supertype of the actual type of the method within its containing object, so this is needed to
make the connection from the SEF type at a call site to the SEF type of the actual method.

That is why Definition 8 needs to be based on subtyping, so that all supertypes of read-only types
are read-only (method types are contravariant in their parameter types).

Still, the type system required one more change related to a possible dependency between the types
of method parameters. In roDOT, the type of the receiver r can be a dependent type referring to the
other parameter z of the method. If, however, the receiver type depended on the mutability of z, then
while typing the body of the method, it would be possible to derive that z is mutable, even if its type is
read-only in the sense of Definition 8. If r has the type {A : z.M..⊥}, one can use the typing rules ST-
SelL and ST-SelU (Figure 10 in the appendix)) to derive z.M <: ⊥. The change to the rules TT-Call and
ST-Met in Figure 2 prevents this issue by disallowing using method types where the receiver depends
on the mutability of the parameter.

4.2 The updated roDOT calculus

In the previous section, we defined the static SEF condition, but identified several reasons why this
definition would not work as intended in roDOT as-is. We fix these issues by changes to the roDOT
calculus, which amount to two new and one modified typing rule:

• A new subtyping rule ST-NM (Figure 4) is added, which makes the union of a mutability dec-
laration and the read-only lower bound N a top-like type (the other direction of subtyping was
already a part of the type system).

• A new rule TS-N (Figure 4) is added to type splitting, making it so that all types that are read-only
by Definition 8 are unaffected by the splitting operation.

• The typing rule TT-Call and subtyping rule ST-Met have a new premise (shown highlighted in
Figure 2), which disallows introducing a dependency between the receiver type and the parameter
in method subtyping. This fixes the problem described in Section 4.1.3.

The new rule ST-NM fixes the counter-example to Lemma 9, because now we have Γ;ρ ⊢ ⊤ <: Tam,
derived from Γ;ρ ⊢ ⊤ <: N ∨M⊤ and Γ;ρ ⊢ N <: {a : Ta}. By subsumption and Γ;ρ ⊢ w2 : ⊤, that also
means that Γ;ρ ⊢ w2 : Tam.

Additionally, we can now improve the type splitting relation ⊢ ro , by extending it with a new rule
TS-N, shown in Figure 4. With that, the condition in VT-RecI (Figure 9 in the appendix) that recursive
types are read-only, Γ;ρ ⊢ T ro T , becomes equivalent to Definition 8:

Lemma 12 (Read-only types). Γ;ρ ⊢ N <: T ⇔ Γ;ρ ⊢ T ro T .

4.2.1 Updating the safety proof

The changes described above require updating the type safety proof of the calculus, to show that the
changes did not allow invalid programs to be typed. The new subtyping rule ST-NM has a significant
effect on the soundness proof, because it makes it possible to derive many additional union types, such
as the now top-like type M∨ N.

10

D3S, Technical Report no. D3S-TR-2024-01 4.2 The updated roDOT calculus

General typing
Γ;ρ ⊢ x : T

Tight typing
Γ;ρ ⊢# x : T

General subtyping
Γ;ρ ⊢ S <: T

Invertible typing
Γ;ρ ⊢## x : T

Tight subtyping
Γ;ρ ⊢# S <: T

Precise typing
Γ;ρ ⊢! x : T

Figure 5: Dependencies (→) and equivalences (⇔) between definitions of typing in roDOT

µ(s : {a : T..T} ∧ {A : {a : T..⊤}}) ∧M⊥

µ(s : {a : T..T} ∧ {A : {a : T..⊤}}) M⊥

{a : T..T} ∧ {A : {a : T..⊤}}

{a : T..T} {A : {a : T..⊤}}

pr
ec

is
e

{a : ⊥..T} w.A

w.A ∧ {a : ⊥..T}

µ(s : s.A ∧ {a : ⊥..T})

µ(s : s.A ∧ {a : ⊥..T}) ∨ S

{a : ⊥..T}

{a : ⊥..T} ∨ S {a : T..⊤} ∨ S

({a : T..⊤} ∧ {a : ⊥..T}) ∨ S

(w.A ∧ {a : ⊥..T}) ∨ S

µ(s : s.A ∧ {a : ⊥..T}) ∨ S

in
ve

rt
ib

le
† atomic

union

logic

main

Figure 6: Example derivation of a type by invertible typing (left) and layered typing (right). Assuming that a variable w has
the type µ(s : {a : T..T} ∧ {A : {a : T..⊤}}) ∧ M⊥ in the typing context, w has all the types shown here, ordered from
types that are simple to derive at the top, to more complex derivations, which make use of derivations above. S is an arbitrary
type.

The proof of soundness of roDOT before these changes followed the structure of the proof of DOT
[30]. The core part of this proof is to show that if a reference w has some declaration type D (such as a
field {a : T}), then the type associated with w in the typing context Γ is an object type containing D or
a more precise declaration of the same member. That means, for Γ;ρ ⊢ w : D, where D is a declaration
type, because the types in Γ correspond to the object on the heap (Γ ∼ Σ), the actual object referred to by
w must contain a corresponding member definition in Σ, and therefore it is safe to access that member.

The proof was based on two alternative definitions of typing for variables – tight typing and invert-
ible typing. Figure 5 shows the relations between the different versions of typing.

Tight typing is used as an intermediate step in equivalence of general and invertible typing. It is very
similar to general typing – it has the same rules, except that subtyping rules involving selection types
(ST-SelL and ST-SelU in Figure 10 in the appendix) use precise typing, a simpler version of variable
typing, which does not have subsumption.

Updating tight typing for our modified rules is straightforward – we apply the same changes as to
general typing, and the proof of equivalence between general and tight typing still works. However,
we will show that updating invertible typing poses a challenge, as it cannot be easily extended with the
additional rules.

4.2.2 Invertible Typing†

The main utility of invertible typing was providing a simple path of derivation of a variable’s type,
starting from the type given to it by the typing context, and ending with a type that was used to access
a member at some particular point in the program. This direct path then allowed induction-based
proofs of properties of the typing relation.

This task would be especially hindered if the typing rules allowed cycles in the derivation, which
would allow the derivation to go through unnecessarily complicated types. For example, with general
typing, it is possible to derive Γ ⊢ x : T from Γ ⊢ x : T ∧ T and vice versa. Therefore, a derivation of
type T can start with Γ ⊢ x : T , go through arbitrarily complicated types such as (T ∧ T)∧ T , and come
back to T . This inhibits arguments by induction on the derivation of a general typing.

Invertible typing in DOT prevented this by ensuring that the derivation closely follows the syntactic
structure of the target type.

11

D3S, Technical Report no. D3S-TR-2024-01 4.3 Layered Typing

The original roDOT adopted the invertible typing from DOT [30], where it has two layers, which we
present using an example derivation of a type for a variable w in Figure 6.

The first layer, precise typing, only derives types by deconstructing the type of the variable given
by the typing context. For each reference w, its type in the typing context is an intersection of a muta-
bility declaration with a recursive type containing an intersection of declarations. Precise typing allows
opening this recursive type and extracting the declarations from the intersection, but does not support
subtyping. The top of Figure 6 shows individual steps of this process.

The second layer, invertible typing†, combines both variable typing and subtyping into a single
layer. In DOT and the original roDOT, it has fewer rules than general typing and subtyping, because it
only has rules that construct the target type syntactically “bottom-up”, such as closing recursive types
(akin to VT-RecI), or deriving intersection and union types. Thus the derivations of invertible typing
are unambiguously guided by the syntax of the target type. The left side of Figure 6 shows individual
steps of this process in building up the type µ(s : s.A ∧ {a : ⊥..T}) ∨ S for w.

As per Figure 5, invertible typing was equivalent to tight typing. That required invertible typing to
be closed under tight subtyping (Lemma† 13).

Lemma† 13 (In original roDOT, invertible typing is closed under subtyping).
If Γ;ρ ⊢## x : T1, and Γ;ρ ⊢# T1 <: T2, where Γ ∼ ρ, then Γ;ρ ⊢## x : T2.

The addition of ST-NM, together with the rules ST-Or and ST-Dist (Figure 2), breaks this. In
Lemma† 13, the case for ST-Or relies on case analysis of deriving union types (Lemma† 14).

Lemma† 14 (In original roDOT, typing with union types can be inverted).
If Γ;ρ ⊢## x : T3 ∨ T4, then either Γ;ρ ⊢## x : T3 or Γ;ρ ⊢## x : T4.

However, the rule ST-NM adds new ways of deriving union types such as N∨M⊥, and the distribu-
tivity rule ST-Dist actually allows deriving arbitrarily large types of the form TN ∨ TM, where the two
parts can consist of arbitrary intersections and unions of various types that contain N and M somewhere
within them.

For example, with the variables from Example† 10, we have Γ;ρ ⊢ w2 : {a : Ta} ∨ M⊥, but Γ;
ρ ̸⊢ w2 : {a : Ta} and Γ;ρ ̸⊢ w2 : M⊥. Such a type cannot be derived in a syntactically bottom-
up manner that invertible typing is based on. Rather than trying to fix invertible typing by adding
complicated rules, we replace it by a new auxiliary typing judgment, which derives types in different
way.

4.3 Layered Typing

In layered typing, we avoid the need for Lemma† 14 by organizing the derivation of a type not bottom-
up, but by handling different type constructors in separate layers of typing judgments. All union type
constructors are derived before intersection types, recursive types and type selections. Additionally, we
derive union types on two layers:

First, the basic layer derives the newly top-like types possible by the rule ST-NM. Because intersec-
tions, recursive types and selections are out of the picture at this layer, these types have a simple form
of possibly nested union types, where one of the sides contains N and the other M, where M is a dec-
laration {M : ⊥..T} for some bound T . We will write that as ⊢ N ◁ TN and ⊢ M ◁ TM. Second, the union
layer derives types possible by the rules ST-Or1 and ST-Or2, allowing nesting a known type of w in a
union with any other type. This way, the layers retain the information about how a union type has been
derived and those cases can be handled separately when inverting the derivation.

Intersection types can be handled in analogy to how any logical formula can be derived by starting
from conjunctive normal form (CNF) and pushing conjunctions down. Any type constructed from a
mixture of union and intersection types can be derived by starting from an intersection of union types
and pushing the intersections down.

The logic layer sitting above the union layer can derive any mixture of unions and intersections
using the LTL-And rule shown in Figure 7. It takes derivations of two types that may have some parts
in common but differ in one place. The common part C∨ is a syntactical context which combines the
argument into a union with other types. For example, we can write the two types {a1 : T1} ∨ {a2 : T2}
and {a1 : T1} ∨M⊥ as C∨[{a2 : T2}] and C∨[M⊥]. If we view these two types as an intersection, then
the rule pushes the intersection down to the place where the two types differ. In the example derivation
on the right of Figure 6, we derived two union types on the union layer. (The type {a : T..⊤} was

12

D3S, Technical Report no. D3S-TR-2024-01 4.3 Layered Typing

Typing layer Relevant type constructors Relevant rules
Atomic layer {a : T..U}, {A : T..U}, {m(S, T) : U} ST-Met, ST-Fld, ST-Typ
Basic layer N ∨M ST-NM

Union layer ⊤, T ∨ U ST-Or1, ST-Or2, ST-Top
Logic layer T ∧ U ST-Dist, ST-And, VT-AndI
Main layer µ(s : T), x.A VT-RecI, ST-SelL, ST-N-Rec

Table 1: The layers of layered typing

Γ;ρ ⊢l x : C∨[T1]
Γ;ρ ⊢l x : C∨[T2]

Γ;ρ ⊢l x : C∨[T1 ∧ T2]
(LTL-And)

Γ;ρ ⊢m x : C∧∨[[v3/r]T1]
Γ ⊢! v2 : {B(r) : T1..T2}
Γ;ρ ⊢m x : C∧∨[v2.B(v3)]

(LTM-Sel)

Figure 7: Selected rules of layered typing

derived on the previous layer and S is an arbitrary type.) On the logic layer, we combined them into
one type, pushing the intersection down to the left.

The rest of the type constructors are handled either below the basic layer or above the logic layer.
Subtyping between declarations is handled in an atomic layer positioned before the basic layer. This
layer only deals with types that are single declarations.

Recursive types of the form µ(s : T) and selection types can “wrap around” or replace any part of
the derived type (in general typing by VT-RecI and ST-SelL, Figures 9 and 9 in the appendix), which
may both appear under unions and intersections, and also contain them within. Therefore, they are
handled above the logic layer in a final, main layer. In the rule LTM-Sel in Figure 7, the syntactic context
C∧∨ can consist of a mixture of unions and intersections. The rules have premises that correspond to
conditions in the relevant rules of tight typing. For example, in Figure 6, the left side of the union is
wrapped under a recursive type in the last step.

The layers are summarized in Table 1, showing the relevant type constructors and the connection to
rules of general typing. Selected rules are shown in Figure 7; full definitions are in Figures 15–19 in the
appendix.

• Typing on the atomic layer (Γ;ρ ⊢a x : T) only gives variables single declaration types – the dec-
larations derived by precise typing, and their supertypes (subtyping rules between declarations
are handled here).

• The basic layer (Γ;ρ ⊢b x : T) additionally gives all variables top-like types of the form TN ∨ TM

and TM ∨ TN, where ⊢ N ◁ TN and ⊢ M ◁ TM.

• The union layer (Γ;ρ ⊢u x : T) handles ⊤ and unions of known and arbitrary types.

• The logic layer (Γ;ρ ⊢l x : T) handles intersections and distributivity. The rule LTL-And takes two
types, preserves their common part, and combines the differing parts using an intersection type –
pushing the intersection down from the top to its target place.

• The main layer (Γ;ρ ⊢m x : T) closes recursive types and handles type selections.

For layered typing, we also proved the following properties:

• If a location has a declaration type by layered typing, then it also has a declaration type by precise
typing, with the same or tighter bounds. This property has three variants, for field, type and
method declarations.

• Layered typing is equivalent to general typing. As in the original proof, we use tight typing as
a step between general and layered typing, and separately prove both directions of equivalence
between tight and layered typing (Lemma 31 and Lemma 37 in the appendix).

• We also use layered typing to prove Lemma 9 – if a location has some read-only type in layered
typing, then all references to that location have that type too.

With these properties, the safety proof from roDOT, with invertible typing replaced by the new layered
typing definition, works as a safety proof of the updated calculus. Formal statements of these and other
selected properties are given in Appendix A.3 in the appendix.

13

D3S, Technical Report no. D3S-TR-2024-01 5. The SEF Guarantee

5 The SEF Guarantee

In Section 3.3, we informally stated the SEF guarantee, which provides the connection between a static
typing condition (Definition 11) and run-time behavior of the method.

In this section, we present the formal definitions of the run-time SEF condition (Definition 15 in
Section 5.1) and the SEF guarantee (Section 5.2). We then outline the proof of the guarantee (Section 5.3)
and discuss some details of the proof (Section 5.4).

5.1 The run-time SEF condition

We informally stated the run-time SEF condition in Section 3.1, where we mentioned that several pos-
sible versions of such a condition could be defined. In our approach, we allow a pure method to create
new objects and to modify just these new objects, which are under full control of the method.

The main SEF condition is that the method must not modify any existing objects that are already on
the heap when the method starts executing. We can state such a condition in three variants, depending
on the way in which it is checked that an object was not modified. Here we will use the variant that
guarantees that existing objects on the heap do not change. In such a case, we say that a given execution
of a method, starting from a method call start and reaching method call end in k steps, has the Sef-I
property (Definition 15). The other possible variants are stated as Definition 42 and Definition 43 in the
appendix.

Definition 15 (Sef-I). A method execution ⟨w1.mw2;σ; ρ1; Σ1⟩ 7−→k ⟨vw3;σ; ρ2; Σ2⟩ is Sef-I when for every
j ≤ k and ⟨w1.mw2;σ; ρ1; Σ1⟩ 7−→j ⟨t3;σ3; ρ3; Σ3⟩, Σ1 is a prefix of Σ3.

5.1.1 Method call limits

Because we are defining a condition on what can happen while a method is executing, we need to
understand what it means in roDOT that a method starts and ends its execution.

In roDOT, a method is called by a term w1.mw2. A method call start is a configuration of the form
⟨w1.mw2;σ; ρ1; Σ1⟩, where w1 is the receiver, m is the called method, w2 is the argument, σ is the con-
tinuation stack, and Σ1 is the existing heap (the environment ρ1 does not have a special significance here).

The execution proceeds by replacing the call term w1.mw2 with the body of the method. Then, the
body is executed. Unless there is an infinite loop, the body of the method will eventually evaluate to a
single value. The machine will reach a configuration ⟨vw3;σ; ρ2; Σ2⟩, where w3 is the result of the call
and σ is the same stack as at the method call start.

The first such configuration after a method call start is the corresponding method call end. Another
such configuration could possibly occur later in a completely unrelated way, but only the first such
configuration is the method call end.

When a method call end is reached, the execution will either terminate, or proceed by popping a
frame from the stack.

5.2 The SEF guarantee

The SEF guarantee, informally stated in Section 3.3, says that a SEF method does not modify existing
objects in the heap during its execution. Theorem 16 is based on Definition 15, and speaks about the
state of the heap at every point during the call. It is not the strongest possible purity guarantee, because
this allows writing the value that already is in the field. On the other hand, it does not allow the value
of fields to be changed and then changed back.

Theorem 16. Let the configuration c1 := ⟨w1.m w2;σ1; ρ1; Σ1⟩ be well-typed in a context Γ. Further assume
that Γ ⊢ w1 : {m(z : N)(r : N) : ⊤}. Then for any k steps of execution:

1. Either the method call has finished executing. There is j < k for which c1 7→j ⟨vw3;σ1;−;−⟩.

2. Or, the method call has not finished executing and in this period existing objects in the heap are
unchanged. For each c1 7→k c2, all heap locations in c1 also exist in c2 and moreover they are unchanged
in c2.

14

D3S, Technical Report no. D3S-TR-2024-01 5.3 Overview of the proof

5.3 Overview of the proof

The SEF guarantee talks about objects not being modified during the execution of methods, based on
the mutability of method parameters. We base our proof of the SEF guarantee on the immutability
guarantee (IG, Theorem 2), which states that individual objects can only be modified through mutable
references. This guarantee was proven for roDOT [12] and is included in our mechanization in Coq.

However, the immutability guarantee cannot be applied at the start of the method, because there
may be many mutable references to objects on the heap. Also, IG guarantees immutability until the end
of execution of the whole program, but the SEF guarantee only until the end of the method.

These differences can be bridged by taking the machine configuration at the method start, and con-
structing a different configuration that will execute the same way until the end of the method, but
removing the parts that prevent the IG from applying.

First, note that the stack is not relevant to how the method executes and stays the same from the
method start until its end. We therefore remove this stack entirely, and get an execution isolated from
the rest of the program. This execution proceeds through the same steps, but stops at the method end.
By removing the stack, we rid the configuration of any references to objects that might be used after
the method call returns. If we apply the IG to this configuration, it will guarantee that objects are not
modified until the end of the method, exactly what is needed for the SEF guarantee.

Removing the stack is not enough for the IG to apply though, because a SEF method can be called
with arguments that are mutable references. We do not want to prevent that from happening, because
even when a method is SEF, it can be useful to pass mutable references to the method and have it return
one of these references with its mutability intact.

What is special about a SEF method is that (because of its declared parameter types) it cannot use
the mutability during its execution. Therefore, when called with mutable arguments, it should execute
in exactly the same way as if called with read-only arguments.

So the second modification to the configuration after removing the stack is to change the mutability
of the arguments to read-only. That way, the alternative configuration contains no writeable references,
and IG guarantees that no objects that were on the heap at the start will be modified. Still, this alterna-
tive configuration executes the same steps as the original, meaning the original method execution also
does not modify any existing object on the heap.

5.4 Proof of the SEF Guarantee

The strategy of the proof of Theorem 16 is to focus on the second case of the SEF guarantee by using the
immutability guarantee to show the theorem for a configuration c2 obtained by temporarily truncating
the stack of c1 from Theorem 16.

Lemma 17 (SEF guarantee without stack). For c1 satisfying the conditions of Theorem 16, let c′1 := ⟨w1.m w2;
·; ρ1; Σ1⟩. If c′1 7→n c′2 for some n and c′2, then the heap of c′2 contains all objects of c′1 without modification.

It is easy to prove the full SEF theorem with this result for c′1. The premise of the immutability
guarantee is that c′1 is well-typed in some context Γ2 and there are no mutably reachable objects in c′1
with respect to the typing of Γ2. Clearly c′1 is well typed in the original context Γ. But for the part about
mutably reachable objects, we cannot just take Γ as Γ2 because for this, Γ2 must assign read-only types
to wi. Even though we have (r : N) in the typing Γ ⊢ w1 : {m(z : N)(r : N) : ⊤}, this does not necessarily
mean Γ(w1) is a read-only type. For example, w1 might be mutable in Γ but m might not make use of
its mutability. Therefore, instead of using Γ as Γ2, we construct Γ2 and show that c′1 is well-typed in Γ2

like so:

1. Reference elimination. Remove bindings for wi from Γ and replace all occurrences of wi with the
corresponding location yi in both Γ and c′1.

2. Read-only weakening. Add back bindings for wi, where the new type bound to wi is the type bound
to yi except with the mutable part set to read-only.

We do this instead of changing the types of wi, because we only know that wi are used in a read-only
way in the focus, while on the heap, wi might be used as a part of dependent types referring to their
mutability. Changing their types would break the typing of the heap.

The second step is essential, because only references can be read-only, while locations always have
mutable types. The references wi are added in the same order as in the original context, to ensure that

15

D3S, Technical Report no. D3S-TR-2024-01 5.4 Proof of the SEF Guarantee

types in the typing context only refer to preceding variables in case the types are dependent. The two
steps above correspond to the following two lemmas.

Lemma 18 (Reference elimination). Let c1 and Γ satisfy the conditions of Theorem 16, and ρ1[wi] = yi.
Define Γ′ as the context obtained from Γ by first removing bindings for wi and then replacing wi with yi. Define
ρ′ as the environment obtained from ρ1 by removing bindings for wi. Then the term y1.m y2 is well-typed under
Γ′;ρ′ and we have heap correspondence Γ′;ρ′ ∼ [yi/wi]iΣ1.

Proof. Because wi is a reference to yi, types assigned to yi and wi by Γ differ only by mutability, and yi
has a mutable type. So Γ(yi) is a subtype of Γ(wi), and the result follows by substitutivity.

Lemma 19 (Read-only weakening). Let c1 and Γ satisfy the conditions of Theorem 16, and y1, y2 be such
that ρ1[wi] = yi. Then there is a context Γ2 binding wi to read-only types such that the configuration c′′1 :=
⟨w1.m w2; ·; ρ1; [yi/wi]iΣ1⟩, is well-typed in Γ2 (formally Γ2 ⊢ c′′1 : ⊤).

By Lemma 19 along with the immutability guarantee, we have SEF established for c′′1 := ⟨w1.m w2;
·; ρ1; [yi/wi]iΣ1⟩. However, we need SEF in particular for the configuration c′1 := ⟨w1.m w2; ·; ρ1; Σ1⟩ in
Lemma 17, where there is no substitution [yi/wi]i in the heap. Nevertheless, this substitution can be
ignored in the sense that execution can only change fields of objects, but in roDOT, fields always store
locations while wi are references. (When a reference is assigned to a field, the corresponding location is
stored, in order to make the field type determine the mutability of the stored value.) Because c′1 and c′′1
are the same everywhere except for [yi/wi]i on the heap, the SEF property of c′′1 can be carried over to
c′1. The first part of carrying the SEF property over to c′1 is to relate each k-th step of execution starting
from c′′1 and the k-th step of execution starting from c′1. We need to show that the two executions are
almost the same, except some specific variables that appear in the machine configuration can differ.
In particular, the references wi can be replaced by the locations yi. Additionally, the locations and
references of newly created objects can differ, because variable names are not assigned deterministically.

For that reason, we define the similarity relation, which formalizes structural equivalence of syntactic
elements such as terms, objects or whole configurations that differ only in names of variables. It relates
two such elements using a renaming relation over variables. A formal definition of similarity and its
basic properties is given in Appendix A.5.

Similarity has two important properties with respect to program execution: (1) it is preserved by
reduction, and (2) if a machine configuration can reduce, then all similar configurations can reduce too
(and the results are similar). That means that if we start with two similar configurations, where the
execution of one reaches an answer state, then the execution of the other will reach a similar answer
state. With this definition of similarity, Lemma 20 formalises the idea that c′′1 is similar to c′1 up to
renaming wi to yi:

Lemma 20 (Similarity for eliminated references). Let c′1 satisfy the conditions of Lemma 17 and c′′1 the con-

ditions of Lemma 19. Then c′1
(w1,y1),(w2,y2)≈ c′′1 .

The final part of carrying over the SEF property to c′1 is to recognize that reduction only changes
values of fields (while the structure of the object, methods and type members are immutable).

Definition 21 (Objects identical except fields). For objects o1 and o2, we write o1
fld
≈ o2 to mean they are

identical except for possibly the values of fields.

Lemma 22 (Reduction only changes fields). If ⟨−;−;−; Σ⟩ 7→n ⟨−;−;−; Σ′⟩ and y is a location in Σ, then

Σ(y)
fld
≈ Σ′(y).

And with this, we can finish the proof of Theorem 16.

Proof. By classical reasoning, assume the condition 1 is false so that the goal is to prove the condition 2.
That is, assume that there is no j < k such that the top-most frame of c1 is popped after execution by j
steps: c1 7→j ⟨vw3;−;−; Σ2⟩. Then, the sequence of reductions c1 7→ ... 7→ c2 corresponds to a sequence
of reductions c′1 7→ ... 7→ c′2 because even though c′1 has no awaiting frames, there are no frame pops in
this execution sequence by the current assumption. By Lemma 17, the condition 2 follows.

16

D3S, Technical Report no. D3S-TR-2024-01 6. Transformations

6 Transformations

In Section 3.4, we informally stated the transformation guarantee, which connects the static SEF condi-
tion with a practical application – that calls to SEF methods can be safely swapped.

Defining the call-swapping and the guarantee in a formal way requires dealing with several techni-
calities particular to the roDOT calculus (or DOT calculi in general). In order to separate the common
problems from the specific case of swapping calls, we build a general framework in which various
transformations of roDOT programs can be defined and proven safe. We instantiate it here only with
the call swapping transformation, but it could represent the general part of a proof of safety for other
transformations, such as reordering field reads or removing dead code.

In Section 6.1, we present the framework for defining and reasoning about safe program transforma-
tions in roDOT and similar calculi, including a general Theorem 25 about safety of transformations. In
Section 6.2, we define the transformation that swaps two calls to methods that are statically determined
to be side-effect free (Definition 26) and state the transformation guarantee.

6.1 Transformation framework

The framework defines a general form for roDOT program transformations, defines the precise meaning
of a safe transformation that “does not affect the behavior of the program”, and provides a way of proving
this property, while helping to deal with common technical issues of DOT formalizations.

Our general approach is to define a transformation that applies to an initial program, and prove it
safe by showing that if the original and transformed program are executed side-by-side, they will either
eventually reach the “same” answer, or both not terminate.

In the initial program, a transformation, such as swapping calls, can be located anywhere, including
inside a body of a method of an object literal, such as letx = ν(r : R){m(r, z) = tm} in t2. We must
consider that in roDOT, terms are in A-normal form, and that a term can have multiple different types.
Also code (terms) and values (objects) are mixed with each other during execution of a program – the
program contains object literals, and methods on the heap contain program code.

During execution, objects are created on the heap, including copies of the code of their methods,
which can be affected by the transformation. It would be too restrictive to require that a transformed
program produce the exact same output value as the original program since the output value may
be an object that may contain the transformed code. To facilitate this, we define each transformation
using a local relation which relates two terms that differ only locally, and the framework provides
lifting operators, which allow this transformation to occur anywhere in a program or in a machine
configuration.

The general safety Theorem 25 is based on executing the two programs and observing that the
intermediate states are also related by the transformation (lifted to whole configurations and allowed
to occur at multiple places), except the moments when the directly affected part of the program is
executing. When the two answers are reached, they will be similar except that bodies of methods on
the heap may differ as the transformation permits.

A more detailed description of the framework design and its definitions are given in Appendix A.7.
The following text describes the most important parts.

6.1.1 Transformations of roDOT programs in general

A transformation of a program is defined as a binary relation on terms – the original program and the
transformed one. For example, the call-swapping transformation is defined as a relation that relates a
program containing two method calls with a program that only differs in the order of those calls.

Because the safety of the transformation depends on typing information, we define the transforma-
tion as a binary relation between triples: the term, its type and a typing context. This generalizes to
other syntactic elements – stacks, heaps and machine configurations, though for each kind of element,
the exact meaning of “typing context” and “type” may differ. For terms, the typing context is actually
paired with a runtime environment Γ; ρ.

Definition 23 (Transformation). A transformation τ is a relation between triples consisting of typing contexts
Γ1,2, types T1,2 and typeable elements X1,2. We write ⟨Γ1 ⊢ X1 : T1⟩ →τ ⟨Γ2 ⊢ X2 : T2⟩ and say that X1 is
transformed into X2.

17

D3S, Technical Report no. D3S-TR-2024-01 6.2 The call-swapping transformation

Like any binary relation, transformations can be symmetric, reflexive or transitive, and we can con-
struct transformations using iteration, composition, union and inversion.

Additionally, a transformation is type-safe, if the syntactic elements on both sides are correctly typed
under the respective contexts. Another useful property of a transformation is being type-identical, where
both the types and typing contexts are the same on both sides.

To facilitate the possibility of the transformation being located anywhere in a term, it is useful to
define the transformation in two steps: (1) A local transformation, which only allows swapping calls at
the root of the term. (2) A lifting operator lift τ which takes a local transformation τ and allows it to be
located at one place anywhere in a term.

Such a local transformation of a term can be further lifted by cfg τ to a whole run-time configura-
tion, where τ applies at exactly one place in the focus of execution, in the stack or on the heap. To allow
multiple occurrences, we can apply the iteration operator to the lifted transformation. Having a defi-
nition that only allows one occurrence is useful in the proof of Theorem 25 in Appendix A.7.4, where
we want to look at each occurrence individually. More details about lifting are in Appendix A.7.3; the
definitions of the lifting operators are shown in Figure 23 and Figure 24.

6.1.2 Safe transformations

The definition of a safe transformation must allow the answers of the two programs to contain different
variable names and allow for the fact that the transformation can occur in the heap of the program an-
swer, possibly at multiple places. Therefore a local transformation is safe if execution of the transformed
program reaches answers related by an iteration of this transformation. To deal with non-deterministic
location names, the transformation is in union with a similarity transformation ≈, which allows one-to-
one variable renaming.

Definition 24 (Safe transformation). A transformation τ is safe if ⟨Γ1 ⊢ c1 : T ⟩ →τ ⟨Γ2 ⊢ c2 : T ⟩ and
c1 −→k c3, where c3 is an answer typed as Γ3 ⊢ c3 : T , implies that there exist c4, Γ4 and j such that c2 −→j c4,
Γ4 ⊢ c4 : T and ⟨Γ3 ⊢ c3 : T ⟩ →(τ∪≈)∗ ⟨Γ4 ⊢ c4 : T ⟩ .

Thanks to being able to define a transformation by applying a general lifting to a local transforma-
tion, the safety proof of such a transformation can be also divided into a theorem that will apply to
any local transformation with certain local properties, and then proving those local properties for the
particular local transformation.

This approach makes it possible to state the call-swapping guarantee presented here (Theorem 27),
or analogous guarantees for other local transformations.

Theorem 25 states that if a local term transformation does not change typing of the term, is compat-
ible with properties such as weakening, narrowing and substitution, does not change whether the term
is an answer or not, and if execution of just the transformed term will eventually reach similar config-
urations, then transforming a program by this transformation anywhere will not change its result. Full
definitions of the premises are in Appendix A.7 as Definitions 49, 50, 52, 56 and 54.

Theorem 25 (General safety for local transformations). If τ is a transformation that is type-identical, type-
safe, compatible with weakening, narrowing and substitution, preserves answers, and eventually reduces to simi-
larity, then (cfg τ∪ ≈)∗ is safe.

6.2 The call-swapping transformation

The specific transformation guarantee that we want to achieve should state that swapping two calls will
not change the outcome of the program, in the sense of Definition 24.

Call-swapping is defined as a local transformation that transforms one program containing two
successive calls into another program in which the calls are swapped. Due to the A-normal form of
terms, two successive calls in the program have the form letxc1 = xo1.m1xa1 in letxc2 = xo2.m2xa2 in t.
In the transformation, the two calls xo1.m1xa1 and xo2.m2xa2 appear in the opposite order, but the
continuation t is the same.

The transformation is only safe if both the methods are SEF, so it has several typing premises, anal-
ogous to the ones of Theorem 16 in Section 5.2.

Definition 26 (Local call swapping). The local call-swapping transformation csw is a transformation of terms
that relates ⟨Γ ⊢ letxc1 = xo1.m1xa1 in letxc2 = xo2.m2xa2 in t : T ⟩ →csw ⟨Γ ⊢ letxc2 = xo2.m2xa2 in
letxc1 = xo1.m1xa1 in t : T ⟩ when

18

D3S, Technical Report no. D3S-TR-2024-01 7. Related work

• xc1,2 are distinct from xa1,2 and xo1,2,

• Γ ⊢ xo1.m1xa1 : Tc1, Γ ⊢ xo2.m2xa2 : Tc2, and Γ, xc1 : Tc1, xc2 : Tc2 ⊢ t : T ,

• Γ ⊢ xo1 : {m1(r1 : N, z1 : Ta1) : ⊤}, and Γ ⊢ xo2 : {m2(r2 : N, z2 : Ta2) : ⊤},

• Γ ⊢ xa1 : Ta1
, and Γ ⊢ xa2 : Ta2

,

• Γ ⊢ N <: Ta1
, and Γ ⊢ N <: Ta2

.

As the the final form of the transformation guarantee, we apply Definition 24 to Definition 26, and
specialize the theorem to initial programs. The proof is given in Appendix A.8.

Theorem 27 (Transformation guarantee). If ⟨⊢ t1 : T ⟩ →lift csw ⟨⊢ t2 : T ⟩ and ⟨t1; ·; ·; ·⟩ −→k c3, where c3 is
an answer typed as Γ3 ⊢ c3 : T , then there exists c4, Γ4 and j such that ⟨t2; ·; ·; ·⟩ −→j c4, c4 is an answer typed
as Γ4 ⊢ c4 : T and ⟨Γ3 ⊢ c3 : T ⟩ →(cfg csw∪≈)∗ ⟨Γ4 ⊢ c4 : T ⟩ .

7 Related work

Since the topic of this work includes both the DOT calculus and method purity, here we discuss previous
work related to these concepts. Prior to this work, many variants of the DOT calculus were published,
some including mechanized proofs. Also the issue of purity in object-oriented languages is of great
research interest, and it is approached from different angles of automation and precision. We give
details about the existing work in the following subsections. As far as we know, our work is the first
one to consider the issue of purity within a DOT calculus.

7.1 Mechanizations of DOT calculi

The first appearance of a DOT calculus [3] did not include a proof of soundness, but was followed by
several versions with proofs in Coq [33, 30] and Iris [17]. In particular, WadlerFest DOT [2], thanks
to its simplicity and its proof of soundness based on invertible typing [30], was used as a baseline for
numerous extensions [32, 22, 31, 23], including roDOT. While objects are immutable in WadlerFest DOT,
it was extended to support mutation using mutable slots in Mutable WadlerFest DOT [32], and more
directly by allowing changing values of fields in kDOT [22]. A simplified version [21] with mutable
fields, but without the specific kDOT feature of constructors, was used as a base for the mechanization
of roDOT.

The differences between the mechanization of roDOT and those of previous DOT calculi mainly
stem from the differences in how roDOT handles variables – namely, typing of variables and terms being
separated from each other, using different definitions of typing contexts to support variable hiding,
using the runtime environment to map references to locations, and using typing information in its
definition of operational semantics.

The mechanization of roDOT includes a feature to ease further extensions to the calculus. The defini-
tions and theorems are parameterized by a “typing mode”, which allows selecting type system features
that are supported. Using this feature, our proofs work for roDOT both with and without the changes
described in this paper.

7.2 Purity in other languages

Purity in programming is such an important concept that in many languages, functions are pure by
default. This approach is typically associated with functional programming, but an object-oriented
system can also be pure [1] when the objects are immutable. That is also the case in the basic DOT
calculus.

In pure functional languages, effects must typically be explicitly declared in the program using
monadic types. This style of programming has been shown to be as powerful as other styles and is
used in practical programming languages such as Haskell.

Regarding purity in object oriented languages with mutable fields, many publications [37, 34, 38, 40,
6, 16, 29] focus on Java and languages with similar type systems, such as C#. For Scala, a type system
for purity was developed, but not based on the DOT calculus [35].

When approached from a practical standpoint, the definition of purity in these languages has to
include considerations other than modification of object fields, such as accessing global variables or

19

D3S, Technical Report no. D3S-TR-2024-01 7.3 Capability and Effect Systems

synchronization. This leads to different definitions of purity. The term “pure” is sometimes used to
mean the same as “side-effect-free”, without requiring determinism.

Observational purity [25, 5] is a weaker property that allows side effects as long as they are not
observable from certain parts of the code. This definition is based on classes and access control, features
which are not modeled in DOT calculi.

Purity is of great use to program verification and specification frameworks, where it enables insert-
ing run-time checks without changing behavior, and allows more precise analysis. Code Contracts [15],
JML [20] and Checker Framework [14] allow annotating a method as pure. Code Contracts do not check
that this annotation is correctly applied, and JML and Checker Framework use simpler checks, where
pure methods are not allowed to call impure methods. Checker Framework uses the fact that side-effect
free methods do not invalidate flow-sensitive types of local variables.

To avoid imposing an annotation burden on the programmer, purity can be inferred by automatic
program analysis [26, 34], and side-effect analysis can be used for program optimization [11].

ReIm [19] provides both a type system for reference mutability and a way to automatically infer mu-
tability types. It can therefore automatically find pure methods, which have all parameters read-only.
We adopted this way of recognizing pure methods by parameter types for roDOT in this work. While
in ReIm, mutability is attached to parameter types as a qualifier in the style of the Checker Framework,
roDOT uses the special member type M to include the mutability in the parameter type using inter-
section types. In ReIm, mutability qualifiers are subjected to qualifier polymorphism and viewpoint
adaptation. roDOT can express the equivalent of polymorphic qualifiers using dependent types and
implements viewpoint adaptation using union and intersection types [12].

7.3 Capability and Effect Systems

There are other ways to express the permitted side-effects of functions using types, which have been
developed in recent work on formal type systems.

The principle of capabilities [28, 27] is to require every operation that can have a side effect to
take an extra value, called a capability, as a parameter. Then, if some function or method does not
have the capability value corresponding to a particular effect, we can conclude that it does not perform
that effect. Capabilities are well suited for coarse-grained effects, such as performing input/output
in general or accessing some specific file, where a single capability value can guard a set of related
operations. To apply such an approach to reasoning about a fine-grained effect such as writing to a field
of a specific object, we would need large numbers of such capability values, one new capability value
for each existing object. For each reference passed to a parameter or stored in a field, a corresponding
capability would need to be passed or stored, thus multiplying the number of parameters and fields.

Wyvern’s effect system [24] expresses possible effects by type members of objects. That is syntacti-
cally similar to how roDOT represents mutability, but the meaning of the type members is different. In
roDOT, the type member of an object reference defines the bounds on the mutability of the reference, the
knowledge about whether a reference may be used for mutation, in the type of that reference. In con-
trast, in Wyvern, the effect member represents a permission to perform an effect, such as file.Write,
where the effect can be independent of the object that contains the effect member. Thus, Wyvern effect
members are more similar to the capability-based approach.

Another successful direction is to use types to express sets of possible variables captured or aliased
by values in the program. Capture Types [7] follow from a capability based approach, and enable
reasoning about where capability values may be stored in the heap or captured in closures, in order
to more precisely reason about where effects may occur. Reachability Types [4] annotate the type
of an expression with a set of variables, which are values that are possibly reachable from the result
of that expression. This can be used in conjunction with effect qualifiers as in Graph IR [8], where a
function type declares a set of variables that can be read or written, describing the possible effects in a
fine-grained way. The types can also be extended to support qualifier polymorphism [39]. This work
is defined in the context of a higher order functional formalism, whereas roDOT is an object-oriented
calculus. Also, both Wyvern and Reachability Types express effects using new constructs added to the
type system, while roDOT aims to encode mutability using the existing DOT constructs of dependent
types, unions and intersections.

20

D3S, Technical Report no. D3S-TR-2024-01 8. Conclusion

8 Conclusion

To conclude, our paper confirms that the reference mutability system provided by roDOT can be me-
chanically proven sound, and with a few changes can be used to guarantee side-effect freedom of meth-
ods, and to justify safe transformations of programs.

References

[1] Martín Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer Science. Springer,
1996. doi:10.1007/978-1-4419-8598-9.

[2] Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. The essence of
dependent object types. In Sam Lindley, Conor McBride, Philip W. Trinder, and Donald Sannella,
editors, A List of Successes That Can Change the World - Essays Dedicated to Philip Wadler on the Occa-
sion of His 60th Birthday, volume 9600 of Lecture Notes in Computer Science, pages 249–272. Springer,
2016. doi:10.1007/978-3-319-30936-1_14.

[3] Nada Amin, Tiark Rompf, and Martin Odersky. Foundations of path-dependent types. In An-
drew P. Black and Todd D. Millstein, editors, Proceedings of the 2014 ACM International Con-
ference on Object Oriented Programming Systems Languages & Applications, OOPSLA 2014, part of
SPLASH 2014, Portland, OR, USA, October 20-24, 2014, OOPSLA ’14, pages 233–249. ACM, 2014.
doi:10.1145/2660193.2660216.

[4] Yuyan Bao, Guannan Wei, Oliver Bračevac, Yuxuan Jiang, Qiyang He, and Tiark Rompf. Reach-
ability types: Tracking aliasing and separation in higher-order functional programs. Proc. ACM
Program. Lang., 5(OOPSLA), oct 2021. doi:10.1145/3485516.

[5] Mike Barnett, David A Naumann, Wolfram Schulte, and Qi Sun. 99.44% pure: Useful abstractions
in specifications. In ECOOP workshop on formal techniques for Java-like programs (FTfJP), 2004.

[6] William C. Benton and Charles N. Fischer. Mostly-functional behavior in Java programs. In Neil D.
Jones and Markus Müller-Olm, editors, Verification, Model Checking, and Abstract Interpretation, 10th
International Conference, VMCAI 2009, Savannah, GA, USA, January 18-20, 2009. Proceedings, volume
5403 of Lecture Notes in Computer Science, pages 29–43. Springer, 2009. doi:10.1007/978-3-540-

93900-9_7.

[7] Aleksander Boruch-Gruszecki, Martin Odersky, Edward Lee, Ondřej Lhoták, and Jonathan
Brachthäuser. Capturing types. ACM Trans. Program. Lang. Syst., 45(4), nov 2023. doi:10.1145/

3618003.

[8] Oliver Bračevac, Guannan Wei, Songlin Jia, Supun Abeysinghe, Yuxuan Jiang, Yuyan Bao, and
Tiark Rompf. Graph IRs for impure higher-order languages: Making aggressive optimizations
affordable with precise effect dependencies. Proc. ACM Program. Lang., 7(OOPSLA2), oct 2023.
doi:10.1145/3622813.

[9] The Checker Framework Manual: Custom pluggable types for Java. https://checkerframework.
org/manual/#initialization-checker, 2022.

[10] The Checker Framework Manual: Custom pluggable types for Java. https://checkerframework.
org/manual/#purity-checker, 2022.

[11] Lars Ræder Clausen. A Java bytecode optimizer using side-effect analysis. Concurrency: Practice
and Experience, 9(11):1031–1045, 1997. doi:10.1002/(SICI)1096-9128(199711)9:11<1031::AID-
CPE354>3.0.CO;2-O.

[12] Vlastimil Dort and Ondřej Lhoták. Reference mutability for DOT. In Robert Hirschfeld and Tobias
Pape, editors, 34th European Conference on Object-Oriented Programming, ECOOP 2020, November
15-17, 2020, Berlin, Germany (Virtual Conference), volume 166 of LIPIcs, pages 18:1–18:28. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ECOOP.2020.18.

[13] Vlastimil Dort, Yufeng Li, Ondřej Lhoták, and Pavel Parízek. Pure methods for roDOT. In ECOOP
2024, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024 (forthcoming).

21

https://doi.org/10.1007/978-1-4419-8598-9
https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1145/2660193.2660216
https://doi.org/10.1145/3485516
https://doi.org/10.1007/978-3-540-93900-9_7
https://doi.org/10.1007/978-3-540-93900-9_7
https://doi.org/10.1145/3618003
https://doi.org/10.1145/3618003
https://doi.org/10.1145/3622813
https://checkerframework.org/manual/#initialization-checker
https://checkerframework.org/manual/#initialization-checker
https://checkerframework.org/manual/#purity-checker
https://checkerframework.org/manual/#purity-checker
https://doi.org/10.1002/(SICI)1096-9128(199711)9:11<1031::AID-CPE354>3.0.CO;2-O
https://doi.org/10.1002/(SICI)1096-9128(199711)9:11<1031::AID-CPE354>3.0.CO;2-O
https://doi.org/10.4230/LIPIcs.ECOOP.2020.18

D3S, Technical Report no. D3S-TR-2024-01 REFERENCES

[14] Michael D. Ernst. Annotation type Pure. https://checkerframework.org/api/org/

checkerframework/dataflow/qual/Pure.html, 2022.

[15] Manuel Fähndrich, Michael Barnett, and Francesco Logozzo. Embedded contract languages. In
Sung Y. Shin, Sascha Ossowski, Michael Schumacher, Mathew J. Palakal, and Chih-Cheng Hung,
editors, Proceedings of the 2010 ACM Symposium on Applied Computing (SAC), Sierre, Switzerland,
March 22-26, 2010, pages 2103–2110. ACM, 2010. doi:10.1145/1774088.1774531.

[16] Matthew Finifter, Adrian Mettler, Naveen Sastry, and David A. Wagner. Verifiable functional pu-
rity in Java. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, Proceedings of the 2008 ACM
Conference on Computer and Communications Security, CCS 2008, Alexandria, Virginia, USA, October
27-31, 2008, pages 161–174. ACM, 2008. doi:10.1145/1455770.1455793.

[17] Paolo G. Giarrusso, Léo Stefanesco, Amin Timany, Lars Birkedal, and Robbert Krebbers. Scala
step-by-step: soundness for DOT with step-indexed logical relations in Iris. Proc. ACM Program.
Lang., 4(ICFP):114:1–114:29, 2020. doi:10.1145/3408996.

[18] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The Java® language specifi-
cation, Java SE 8 edition. https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#
jls-8.4.1, 2022.

[19] Wei Huang, Ana Milanova, Werner Dietl, and Michael D. Ernst. ReIm & ReImInfer: checking
and inference of reference immutability and method purity. In Proceedings of the 27th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012, OOPSLA ’12, pages 879–896.
Association for Computing Machinery, 2012. doi:10.1145/2384616.2384680.

[20] JML reference manual: Class and interface member declarations. https://www.cs.ucf.edu/

~leavens/JML/jmlrefman/jmlrefman_7.html#SEC60, 2022.

[21] Ifaz Kabir. themaplelab / dot-public: A simpler syntactic soundness proof for dependent object
types. https://github.com/themaplelab/dot-public/tree/master/dot-simpler.

[22] Ifaz Kabir and Ondřej Lhoták. κDOT: scaling DOT with mutation and constructors. In Proceedings
of the 9th ACM SIGPLAN International Symposium on Scala, SCALA@ICFP 2018, St. Louis, MO, USA,
September 28, 2018, pages 40–50, 2018. doi:10.1145/3241653.3241659.

[23] Ifaz Kabir, Yufeng Li, and Ondrej Lhoták. ιDOT: a DOT calculus with object initialization. Proc.
ACM Program. Lang., 4(OOPSLA):208:1–208:28, 2020. doi:10.1145/3428276.

[24] Darya Melicher, Anlun Xu, Valerie Zhao, Alex Potanin, and Jonathan Aldrich. Bounded abstract
effects. ACM Trans. Program. Lang. Syst., 44(1), jan 2022. doi:10.1145/3492427.

[25] David A. Naumann. Observational purity and encapsulation. In Maura Cerioli, editor, Funda-
mental Approaches to Software Engineering, 8th International Conference, FASE 2005, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8,
2005, Proceedings, volume 3442 of Lecture Notes in Computer Science, pages 190–204. Springer, 2005.
doi:10.1007/978-3-540-31984-9_15.

[26] Jens Nicolay, Quentin Stiévenart, Wolfgang De Meuter, and Coen De Roover. Purity analysis for
JavaScript through abstract interpretation. Journal of Software: Evolution and Process, 29(12), 2017.
doi:10.1002/smr.1889.

[27] Martin Odersky, Aleksander Boruch-Gruszecki, Jonathan Immanuel Brachthäuser, Edward Lee,
and Ondřej Lhoták. Safer exceptions for Scala. In Proceedings of the 12th ACM SIGPLAN International
Symposium on Scala, SCALA 2021, page 1–11, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3486610.3486893.

[28] Martin Odersky, Aleksander Boruch-Gruszecki, Edward Lee, Jonathan Brachthäuser, and Ondřej
Lhoták. Scoped capabilities for polymorphic effects, 2022. arXiv:2207.03402.

22

https://checkerframework.org/api/org/checkerframework/dataflow/qual/Pure.html
https://checkerframework.org/api/org/checkerframework/dataflow/qual/Pure.html
https://doi.org/10.1145/1774088.1774531
https://doi.org/10.1145/1455770.1455793
https://doi.org/10.1145/3408996
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4.1
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4.1
https://doi.org/10.1145/2384616.2384680
https://www.cs.ucf.edu/~leavens/JML/jmlrefman/jmlrefman_7.html#SEC60
https://www.cs.ucf.edu/~leavens/JML/jmlrefman/jmlrefman_7.html#SEC60
https://github.com/themaplelab/dot-public/tree/master/dot-simpler
https://doi.org/10.1145/3241653.3241659
https://doi.org/10.1145/3428276
https://doi.org/10.1145/3492427
https://doi.org/10.1007/978-3-540-31984-9_15
https://doi.org/10.1002/smr.1889
https://doi.org/10.1145/3486610.3486893
https://arxiv.org/abs/2207.03402

D3S, Technical Report no. D3S-TR-2024-01 REFERENCES

[29] David J. Pearce. JPure: A modular purity system for Java. In Jens Knoop, editor, Compiler Construc-
tion - 20th International Conference, CC 2011, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings, vol-
ume 6601 of Lecture Notes in Computer Science, pages 104–123. Springer, 2011. doi:10.1007/978-

3-642-19861-8_7.

[30] Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták. A simple soundness proof for depen-
dent object types. Proc. ACM Program. Lang., 1(OOPSLA):46:1–46:27, 2017. doi:10.1145/3133870.

[31] Marianna Rapoport and Ondrej Lhoták. A path to DOT: formalizing fully path-dependent types.
Proc. ACM Program. Lang., 3(OOPSLA):145:1–145:29, 2019. doi:10.1145/3360571.

[32] Marianna Rapoport and Ondřej Lhoták. Mutable WadlerFest DOT. In Proceedings of the 19th Work-
shop on Formal Techniques for Java-like Programs, Barcelona , Spain, June 20, 2017, pages 7:1–7:6. ACM
Press, 2017. doi:10.1145/3103111.3104036.

[33] Tiark Rompf and Nada Amin. Type soundness for dependent object types (DOT). In Eelco Visser
and Yannis Smaragdakis, editors, Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH
2016, Amsterdam, The Netherlands, October 30 - November 4, 2016, OOPSLA ’16, pages 624–641. ACM,
2016. doi:10.1145/2983990.2984008.

[34] Atanas Rountev. Precise identification of side-effect-free methods in Java. In 20th International
Conference on Software Maintenance (ICSM 2004), 11-17 September 2004, Chicago, IL, USA, pages 82–
91. IEEE Computer Society, 2004. doi:10.1109/ICSM.2004.1357793.

[35] Lukas Rytz, Nada Amin, and Martin Odersky. A flow-insensitive, modular effect system for purity.
In Werner Dietl, editor, Proceedings of the 15th Workshop on Formal Techniques for Java-like Programs,
FTfJP 2013, Montpellier, France, July 1, 2013, FTfJP ’13, pages 4:1–4:7. ACM, 2013. doi:10.1145/

2489804.2489808.

[36] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style. In
Proceedings of the 1992 ACM Conference on LISP and Functional Programming, LFP ’92, page 288–298,
New York, NY, USA, 1992. Association for Computing Machinery. doi:10.1145/141471.141563.

[37] Alexandru Salcianu and Martin Rinard. A combined pointer and purity analysis for Java pro-
grams. Technical report, Massachusetts Institute of Technology Computer Science and Artificial
Intelligence Laboratory, 2004. URL: https://dspace.mit.edu/handle/1721.1/30470.

[38] Alexandru Salcianu and Martin C. Rinard. Purity and side effect analysis for Java programs. In
Radhia Cousot, editor, Verification, Model Checking, and Abstract Interpretation, 6th International Con-
ference, VMCAI 2005, Paris, France, January 17-19, 2005, Proceedings, volume 3385 of Lecture Notes in
Computer Science, pages 199–215. Springer, 2005. doi:10.1007/978-3-540-30579-8_14.

[39] Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf. Polymorphic reachability
types: Tracking freshness, aliasing, and separation in higher-order generic programs. Proc. ACM
Program. Lang., 8(POPL), jan 2024. doi:10.1145/3632856.

[40] Haiying Xu, Christopher J. F. Pickett, and Clark Verbrugge. Dynamic purity analysis for Java
programs. In Manuvir Das and Dan Grossman, editors, Proceedings of the 7th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering, PASTE’07, San Diego,
California, USA, June 13-14, 2007, pages 75–82. ACM, 2007. doi:10.1145/1251535.1251548.

23

https://doi.org/10.1007/978-3-642-19861-8_7
https://doi.org/10.1007/978-3-642-19861-8_7
https://doi.org/10.1145/3133870
https://doi.org/10.1145/3360571
https://doi.org/10.1145/3103111.3104036
https://doi.org/10.1145/2983990.2984008
https://doi.org/10.1109/ICSM.2004.1357793
https://doi.org/10.1145/2489804.2489808
https://doi.org/10.1145/2489804.2489808
https://doi.org/10.1145/141471.141563
https://dspace.mit.edu/handle/1721.1/30470
https://doi.org/10.1007/978-3-540-30579-8_14
https://doi.org/10.1145/3632856
https://doi.org/10.1145/1251535.1251548

D3S, Technical Report no. D3S-TR-2024-01 A. Appendix – roDOT definitions

A Appendix – roDOT definitions

This appendix contains full versions of definitions, which are partially presented in the paper.
The appendix is organized as follows:

• In Appendix A.1, we include full definitions of general typing and subtyping in roDOT.

• Appendix A.2 contains full definitions of layered typing.

• We show several additional properties of layered typing, which are used in the soundness proof
in Appendix A.3.

• In Appendix A.4 we show different side-effect-freedom conditions as alternatives to Definition 11
in Section 4.1.

• A more detailed discussion and formal definition of similarity (informally discussed in Section 5.3)
is given in Appendix A.5.

• Appendix A.6 contains proofs of lemmas from Section 5.

• Appendix A.7 contains more detailed discussion of the transformation framework.

• The proof of the transformation guarantee (Theorem 27) is given in Appendix A.8.

A.1 Typing and reduction definitions

This section contains full definitions of typing and operational semantics of roDOT, which are partially
presented in Figure 2 in the main paper. Changes to definitions described in the paper are highlighted.

• The typing rules for terms are in Figure 8.

• The typing rules for variables are in Figure 9.

• The subtyping rules are in Figure 10.

• The type splitting rules are in Figure 11.

• The typing rules for typing definitions are in Figure 12.

• The reduction rules (operational semantics) are in Figure 13.

• The rules for typing configurations and heap correspondence are in Figure 14.

24

D3S, Technical Report no. D3S-TR-2024-01 A.1 Typing and reduction definitions

Γ;ρ ⊢ x : T Γ vis x

Γ;ρ ⊢ vx : T
(TT-Var)

Γ;ρ ⊢ t : T1 Γ;ρ ⊢ T1 <: T2

Γ;ρ ⊢ t : T2

(TT-Sub)

Γ;ρ ⊢ t1 : T1 z /∈ fv T2

Γ, z : T1;ρ ⊢ t2 : T2

Γ;ρ ⊢ let z = t1 in t2 : T2

(TT-Let)

Γ;ρ ⊢ x1 : {m(z : T1, r : T3) : T2}
Γ;ρ ⊢ x2 : T1 Γ vis x2

Γ;ρ ⊢ x1 : [x2/z]T3 Γ vis x1

Γ;ρ ⊢ x1.mx2 : [x1/r][x2/z]T2
(TT-Call)

Γ;ρ ⊢ x1 : T1 Γ vis x1

Γ;ρ ⊢ x : {a : T1..T2} Γ vis x
Γ;ρ ⊢ x : {M(r) : ⊥..⊥}
Γ;ρ ⊢ x.a := x1 : T2

(TT-Write)

Γ, s : T1;ρ ⊢ d : T1 z /∈ fv T2 T1 indep s
Γ, z : µ(s : T1) ∧ {M(r) : ⊥..⊥};ρ ⊢ t : T2

Γ;ρ ⊢ let z = ν(s : T1)d in t : T2

(TT-New)

Γ;ρ ⊢ x : {a : T1..T2} Γ vis x
Γ;ρ ⊢ T2 ro T3 Γ;ρ ⊢ T2 mu(r) T4

Γ;ρ ⊢ x.a : T3 ∧ {M(r) : ⊥..(T4 ∨ x.M(r))}
(TT-Read)

Figure 8: roDOT term typing rules

! /∈ Γ2

Γ1, x : T,Γ2 vis x
(Vis-Var)

(Γ1, x : T,Γ2);ρ ⊢ x : T (VT-Var)

Γ;ρ ⊢ x : T1 Γ;ρ ⊢ x : T2

Γ;ρ ⊢ x : T1 ∧ T2

(VT-AndI)

Γ;ρ ⊢ x : T

Γ;ρ ⊢ x : {M(r0) : ⊥..⊤} (VT-M)

Γ;ρ ⊢ x : µ(s : T) T indep s

Γ;ρ ⊢ x : [x/s]T
(VT-RecE)

Γ;ρ ⊢ x : [x/s]T
T indep s

Γ;ρ ⊢ [x/s]T ro [x/s]T

Γ;ρ ⊢ x : µ(s : T)
(VT-RecI)

Γ;ρ ⊢ x : T1 Γ;ρ ⊢ T1 <: T2

Γ;ρ ⊢ x : T2

(VT-Sub)

Figure 9: roDOT variable typing rules

25

D3S, Technical Report no. D3S-TR-2024-01 A.1 Typing and reduction definitions

Γ;ρ ⊢ T <: T (ST-Refl)

Γ;ρ ⊢ T <: ⊤(ST-Top)

Γ;ρ ⊢ ⊥ <: T (ST-Bot)

ρ ⊢ T1 ≈ T2

Γ;ρ ⊢ T1 <: T2
(ST-Eq)

Γ;ρ ⊢ T1 <: T1 ∨ T2
(ST-Or1)

Γ;ρ ⊢ T2 <: T1 ∨ T2
(ST-Or2)

Γ;ρ ⊢ T1 ∧ T2 <: T1
(ST-And1)

Γ;ρ ⊢ T1 ∧ T2 <: T2
(ST-And2)

Γ;ρ ⊢ N <: µ(s : T)(ST-N-Rec)

Γ;ρ ⊢ x : {B(r) : T1..T2}
Γ;ρ ⊢ [x2/r]T1 <: x.B(x2)

(ST-SelL)

Γ;ρ ⊢ x : {B(r) : T1..T2}
Γ;ρ ⊢ x.B(x2) <: [x2/r]T2

(ST-SelU)

Γ;ρ ⊢ T1 <: T2 Γ;ρ ⊢ T2 <: T3

Γ;ρ ⊢ T1 <: T3

(ST-Trans)

Γ;ρ ⊢ T1 <: T2 Γ;ρ ⊢ T1 <: T3

Γ;ρ ⊢ T1 <: T2 ∧ T3

(ST-And)

Γ;ρ ⊢ T1 <: T3 Γ;ρ ⊢ T2 <: T3

Γ;ρ ⊢ T1 ∨ T2 <: T3
(ST-Or)

Γ;ρ ⊢ T3 <: T1 Γ;ρ ⊢ T2 <: T4

Γ;ρ ⊢ {B(r) : T1..T2} <: {B(r) : T3..T4}
(ST-Typ)

Γ;ρ ⊢ T3 <: T1 Γ;ρ ⊢ T2 <: T4

Γ;ρ ⊢ {a : T1..T2} <: {a : T3..T4}
(ST-Fld)

Γ;ρ ⊢ N <: {A(r) : T1..T2}(ST-N-Typ)

Γ;ρ ⊢ N <: {m(z : T1, r : T3) : T2}(ST-N-Met)

Γ;ρ ⊢ N <: {a : T1..T2}(ST-N-Fld)

Γ;ρ ⊢ N ∧ {M(r) : ⊥..⊥} <: ⊥(ST-N-M)

Γ;ρ ⊢ ⊤ <: N ∨ {M(r) : T1..T2}(ST-NM)

Γ;ρ ⊢ T3 <: T1 Γ, z : T3, r : T6;ρ ⊢ T2 <: T4

Γ, z : T3;ρ ⊢ T6 <: T5 T6 indep z ⇒ T5 indep z

Γ;ρ ⊢ {m(z : T1, r : T5) : T2} <: {m(z : T3, r : T6) : T4}
(ST-Met)

Γ;ρ ⊢ {B(r) : T1..T2} ∧ {B(r) : T3..T4} <: {B(r) : T1 ∨ T3..T2 ∧ T4}(ST-TypAnd)

Γ;ρ ⊢ T1 ∧ (T2 ∨ T3) <: (T1 ∧ T2) ∨ (T1 ∧ T3)(ST-Dist)

Figure 10: roDOT subtyping rules

26

D3S, Technical Report no. D3S-TR-2024-01 A.1 Typing and reduction definitions

Γ;ρ ⊢ ⊤ ro ⊤
Γ;ρ ⊢ ⊤ mu(r) ⊤

(TS-Top)

Γ;ρ ⊢ ⊥ ro N
Γ;ρ ⊢ ⊥ mu(r) ⊥

(TS-Bot)

T = {A(r) : T1..T2}
Γ;ρ ⊢ T ro T

Γ;ρ ⊢ T mu(r0) ⊤

(TS-Typ)

T = {m(z : T1, r : T3) : T2}
Γ;ρ ⊢ T ro T

Γ;ρ ⊢ T mu(r0) ⊤

(TS-Met)

T = {a : T1..T2}
Γ;ρ ⊢ T ro T

Γ;ρ ⊢ T mu(r) ⊤

(TS-Fld)

T = µ(s : T1)

Γ;ρ ⊢ T ro T
Γ;ρ ⊢ T mu(r) ⊤

(TS-Rec)

Γ;ρ ⊢ N <: T

Γ;ρ ⊢ T ro T
(TS-N)

Γ;ρ ⊢ T1 ro T2

Γ;ρ ⊢ T3 ro T4

Γ;ρ ⊢ T1 ∧ T3 ro T2 ∧ T4

(TS-AndR)

Γ;ρ ⊢ T1 mu(r) T2

Γ;ρ ⊢ T3 mu(r) T4

Γ;ρ ⊢ T1 ∧ T3 mu(r) T2 ∧ T4

(TS-AndM)

Γ;ρ ⊢ T1 ro T2

Γ;ρ ⊢ T3 ro T4

Γ;ρ ⊢ T1 ∨ T3 ro T2 ∨ T4

(TS-OrR)

Γ;ρ ⊢ T1 mu(r) T2

Γ;ρ ⊢ T3 mu(r) T4

Γ;ρ ⊢ T1 ∨ T3 mu(r) T2 ∨ T4

(TS-OrM)

Γ;ρ ⊢ x : {B(r) : T1..T2}
Γ;ρ ⊢ [x2/r]T2 ro T3

Γ;ρ ⊢ [x2/r]T2 mu(r0) T4

Γ;ρ ⊢ x.B(x2) ro T3

Γ;ρ ⊢ x.B(x2) mu(r0) T4

(TS-Sel)

Γ;ρ ⊢ {M(r) : T1..T2} ro ⊤
Γ;ρ ⊢ {M(r) : T1..T2} mu(r) T2

(TS-M)

Figure 11: roDOT type split rules

Γ, s : T4;ρ ⊢ {A(r) = T} : {A(r) : T..T}(DT-Typ)

Γ, s : T4;ρ ⊢ {A(r) = T} : {A(r) : ⊥..T}(DT-TypB)

Γ, s : T4;ρ ⊢ x : T Γ, s : T4 vis x

Γ, s : T4;ρ ⊢ {a = x} : {a : T..T}
(DT-Fld)

Γ, s : T4;ρ ⊢ d1 : T1 Γ, s : T4;ρ ⊢ d2 : T2

d1 and d2 have distinct member names

Γ, s : T4;ρ ⊢ d1 ∧ d2 : T1 ∧ T2

(DT-And)

z /∈ fv T1 ∪ fv T4, r /∈ fv T3 ∪ fv T1 ∪ fv T4

Γ, s : T4, !, z : T1, r : T4 ∧ [r/s]T4 ∧ T3;ρ ⊢ t : T2

Γ, s : T4;ρ ⊢ {m(z, r) = t} : {m(z : T1, r : T3) : T2}
(DT-Met)

Figure 12: roDOT definition typing rules

27

D3S, Technical Report no. D3S-TR-2024-01 A.1 Typing and reduction definitions

y1 → . . .1 {a = y2} . . .2 ∈ Σ w1 → y1 ∈ ρ1 ρ2 = ρ1, w2 → y2 (w2 fresh)

⟨w1.a;σ; ρ1; Σ⟩ 7−→ ⟨vw2;σ; ρ2; Σ⟩
(R-Read)

w1 → y1 ∈ ρ y1 → . . .1 {a = y2} . . .2 ∈ Σ1

w3 → y3 ∈ ρ Σ2 = Σ1[y1 → . . .1 {a = y3} . . .2]
⟨w1.a := w3;σ; ρ; Σ1⟩ 7−→ ⟨vw3;σ; ρ; Σ2⟩

(R-Write)

w1 → y1 ∈ ρ y1 → . . .1 {m(z, r) = t} . . .2 ∈ Σ

⟨w1.mw2;σ; ρ; Σ⟩ 7−→ ⟨[w1/r][w2/z]t;σ; ρ; Σ⟩
(R-Call)

ρ2 = ρ1, w → y Σ2 = Σ1, y → [y/s][ρ1]d (y, w fresh)

⟨let z = ν(s : T)d in t;σ; ρ1; Σ1⟩ 7−→ ⟨[w/z]t;σ; ρ2; Σ2⟩
(R-LetNew)

⟨let z = t1 in t2;σ; ρ; Σ⟩ 7−→ ⟨t1; let z = □ in t2 :: σ; ρ; Σ⟩(R-LetPush)

⟨vw; let z = □ in t :: σ; ρ; Σ⟩ 7−→ ⟨[w/z]t;σ; ρ; Σ⟩(R-LetLoc)

Figure 13: roDOT reduction rules

Γ;ρ ⊢ T1 <: T2

Γ;ρ ⊢ · : T1, T2

(CT-EmptyS)

Γ;ρ ⊢∼ ·(CT-EmptyH)

Γ ∼ ·(CT-EmptyE)

Γ, z : T1;ρ ⊢ t : T2

z /∈ fv T2 Γ;ρ ⊢ σ : T2, T3

Γ;ρ ⊢ let z = □ in t :: σ : T1, T3

(CT-LetS)

Γ1;ρ ⊢ Γ2 ∼ Σ

Γ1;ρ ⊢ Γ2, w : T ∼ Σ
(CT-RefH)

Γ1, y/s : R;ρ ⊢ d : [y/s]R Γ1;ρ ⊢ Γ2 ∼ Σ R indep s

Γ1;ρ ⊢ Γ2, y : µ(s : R) ∧ {M(r) : ⊥..⊥} ∼ Σ, y → d
(CT-ObjH)

Γ = Γ1, w : µ(s : R) ∧ {M(r) : ⊥..T},Γ2 Γ1 ∼ ρ
Γ1 = Γ3, y : µ(s : R) ∧ {M(r) : ⊥..⊥},Γ4

Γ ∼ ρ, w → y
(CT-RefE)

Γ;ρ ⊢ Γ ∼ Σ
all fields in Σ are locations

Γ;ρ ∼ Σ
(CT-CorrH)

Γ ∼ ρ Γ;ρ ∼ Σ
Γ;ρ ⊢ t : T1 Γ;ρ ⊢ σ : T1, T2

no locations in t and σ

Γ ⊢ ⟨t;σ; ρ; Σ⟩ : T2

(CT-Corr)

z /∈ fv T1 ∪ fv T4, r /∈ fv T3 ∪ fv T1 ∪ fv T4

Γ, !, z : T1, r : [y/s]T4 ∧ [r/s]T4 ∧ T3;ρ ⊢ t : T2

Γ, y/s : T4;ρ ⊢ {m(z, r) = t} : {m(z : T1, r : T3) : T2}
(HT-Met)

Figure 14: roDOT configuration typing rules

28

D3S, Technical Report no. D3S-TR-2024-01 A.2 Layered typing definitions

A.2 Layered typing definitions

In this section, we show the typing rules of layered typing, which was introduced in Section 4.3.

• The first, atomic layer is in Appendix A.2.1 and Figure 15.

• The second, basic layer is in Appendix A.2.2 and Figure 16.

• The third, union layer is in Appendix A.2.3 and Figure 17.

• The fourth, logic layer is in Appendix A.2.4 and Figure 18.

• The fifth, main layer is in Appendix A.2.5 and Figure 19.

• Additional definitions required for layered typing are in Appendix A.2.6.

A.2.1 Atomic layer typing

The atomic layer is between precise typing and the basic layer. It handles declaration subtyping and
equivalence. The subtyping here is limited to simple subtyping between atomic member declarations.
Rules of atomic layer typing are shown in Figure 15.

Γ ⊢! x : T1

ρ ⊢ T1 ≈ T2

Γ;ρ ⊢a x : T2

(LTA-Prec)

Γ;ρ ⊢a x : T1

Γ;ρ ⊢a T1 <: T2

Γ;ρ ⊢a x : T2

(LTA-Sub)

Figure 15: Rules of atomic layer typing

A.2.2 Basic layer typing

The basic layer is between the atomic layer and the union layer. It handles the top-like types N∨{M(r0) :
T1..T2} and {M(r0) : T1..T2} ∨ N. Rules of basic layer typing are shown in Figure 16.

Γ;ρ ⊢a x : T

Γ;ρ ⊢b x : T
(LTB-Atom)

⊢c N ◁ T1

⊢c M ◁ T2

Γ;ρ ⊢b x : T1 ∨ T2

(LTB-NM)

⊢c M ◁ T1

⊢c N ◁ T2

Γ;ρ ⊢b x : T1 ∨ T2

(LTB-MN)

Figure 16: Rules of basic layer typing

A.2.3 Union layer typing

The union layer is between the basic layer and logic layer. It handles union types and the top type.
Rules of union layer typing are shown in Figure 17.

Γ;ρ ⊢b x : T

Γ;ρ ⊢c x : T
(LTC-Basic) Γ;ρ ⊢c x : ⊤(LTC-Top)

Γ;ρ ⊢c x : T1

Γ;ρ ⊢c x : T1 ∨ T2

(LTC-Or1)
Γ;ρ ⊢c x : T2

Γ;ρ ⊢c x : T1 ∨ T2

(LTC-Or2)

Figure 17: Rules of union layer typing

29

D3S, Technical Report no. D3S-TR-2024-01 A.2 Layered typing definitions

A.2.4 Logic layer typing

The logic layer is between the union layer and main layer. It handles intersection types, by treating the
unions derived by the union layer as CNF, and pushing intersections down. Rules of logic layer typing
are shown in Figure 18.

The (LTL-And) rule takes derivations of two types which may have some parts in common, but
differ in one place. For example, we can write the two types {a1 : T1..T1} ∨ {a2 : T2..T2} and {a1 :
T1..T1} ∨ {M(r0) : ⊥..⊥} as C∨[{a2 : T2..T2}] and C∨[{M(r0) : ⊥..⊥}], where C∨ is the common part –
a syntactical context which combines the argument into a union with other types. The rule takes two
such types, preserves their common part, and combines the differing parts using an intersection type –
pushing the intersection down from the top to its target place.

Γ;ρ ⊢c x : T
x ∈ dom Γ

Γ;ρ ⊢l x : T
(LTL-Or)

Γ;ρ ⊢l x : C∨[T1]
Γ;ρ ⊢l x : C∨[T2]

Γ;ρ ⊢l x : C∨[T1 ∧ T2]
(LTL-And)

Figure 18: Rules of logic typing

A.2.5 Main layer typing

The main layer is above the logic layer. It handles selections and recursive types. Rules of main layer
typing are shown in Figure 19.

Here, the syntactic context C∧∨ can consist of a mixture of unions and intersections. The (LTM-Sel)
and (LTM-Rec) have additional conditions which correspond to the conditions in the corresponding
rules in tight typing and subtyping. The (LTM-N) rule handles the fact that Γ;ρ ⊢ N <: µ(s : T).

Γ;ρ ⊢l x : T

Γ;ρ ⊢m x : T
(LTM-Logic)

Γ;ρ ⊢m x : C∧∨[[v3/r]T1]
Γ ⊢! v2 : {B(r) : T1..T2}
Γ;ρ ⊢m x : C∧∨[v2.B(v3)]

(LTM-Sel)

Γ;ρ ⊢m x : C∧∨[[x/s]T]
T indep s

Γ;ρ ⊢# N <: [x/s]T

Γ;ρ ⊢m x : C∧∨[µ(s : T)]
(LTM-Rec)

Γ;ρ ⊢m x : C∧∨[N]

Γ;ρ ⊢m x : C∧∨[µ(s : T)]
(LTM-N)

Figure 19: Rules of main typing

A.2.6 Additional definitions

The layered typing uses additional typing judgements:

• Atomic subtyping (Figure 20) is tight subtyping restricted to simple declarations.

• The definition of N- and M-supertypes (used in the basic typing layer) is also layered. The basic
layer (Figure 21) recognizes declarations and recursive types, and the union layer (Figure 22) adds
top and union types.

30

D3S, Technical Report no. D3S-TR-2024-01 A.3 Layered typing properties

Γ;ρ ⊢# T3 <: T1

Γ;ρ ⊢# T2 <: T4

Γ;ρ ⊢a {B(r) : T1..T2} <: {B(r) : T3..T4}
(LSA-Typ)

Γ;ρ ⊢# T3 <: T1

Γ, z : T3;ρ ⊢ T6 <: T5

Γ, z : T3, r : T6;ρ ⊢ T2 <: T4

Γ;ρ ⊢a {m(z : T1, r : T5) : T2} <: {m(z : T3, r : T6) : T4}
(LSA-Met)

Γ;ρ ⊢# T3 <: T1

Γ;ρ ⊢# T2 <: T4

Γ;ρ ⊢a {a : T1..T2} <: {a : T3..T4}
(LSA-Fld)

Figure 20: Rules of atomic subtyping

⊢b M ◁ {M(r0) : T1..T2}(LNB-M)

⊢b N ◁ N(LNB-N)

⊢b N ◁ {a : T1..T2}(LNB-Fld)

⊢b N ◁ {m(z : T1, r : T5) : T2}(LNB-Met)

⊢b N ◁ {A(r) : T1..T2}(LNB-Typ)

Figure 21: N and M supertypes

⊢b N ◁ T

⊢c N ◁ T
(LNC-Basic) ⊢c N ◁⊤(LNC-Top)

⊢c N ◁ T1

⊢c N ◁ T1 ∨ T2

(LNC-Or1)
⊢c N ◁ T2

⊢c N ◁ T1 ∨ T2

(LNC-Or2)

⊢b M ◁ T

⊢c M ◁ T
(LMC-Basic) ⊢c M ◁⊤(LMC-Top)

⊢c M ◁ T1

⊢c M ◁ T1 ∨ T2

(LMC-Or1)
⊢c M ◁ T2

⊢c M ◁ T1 ∨ T2

(LMC-Or2)

Figure 22: N and M supertypes union closure

A.3 Layered typing properties

The layered typing introduced in Section 4.3 is used in the proof of soundness of the updated roDOT
calculus. The proof relies on several properties of layered typing. We stated the most important in
Section 4.3.

In this section, we show additional properties of layered typing, which are used in proofs of the
main properties and show the general way of working with layered typing.

Lemma 28 (Type declaration inversion). If Γ;ρ ⊢m x : {B(r) : T1..T2}, then there exist T3, T4 such that Γ;
ρ ⊢! x : {B(r) : T3..T4}, Γ;ρ ⊢# T1 <: T3 and Γ;ρ ⊢# T4 <: T2 .

Proof. Declaration types are only affected by the atomic layer, so we can simply invert all rules on the
layers above, and the rules on the atomic layer give us the desired result.

31

D3S, Technical Report no. D3S-TR-2024-01 A.3 Layered typing properties

Lemma 29 (Field declaration inversion). If Γ;ρ ⊢m x : {a : T1..T2}, then there exist T3, T4 such that Γ;
ρ ⊢! x : {a : T3..T4}, Γ;ρ ⊢# T1 <: T3 and Γ;ρ ⊢# T4 <: T2 .

Proof. Declaration types are only affected by the atomic layer, so we can simply invert all rules on the
layers above, and the rules on the atomic layer give us the desired result.

Lemma 30 (Method declaration inversion). If Γ;ρ ⊢m x : {m(z : T1, r : T5) : T2}, then there exist T3,
T4, T6, such that Γ;ρ ⊢! x : {m(z : T3, r : T6) : T3}T4, Γ;ρ ⊢# T3 <: T1, Γ, z : T3;ρ ⊢# T6 <: T5 and
Γ, z : T3, r : T6;ρ ⊢# T2 <: T4.

Proof. Declaration types are only affected by the atomic layer, so we can simply invert all rules on the
layers above, and the rules on the atomic layer give us the desired result.

Lemma 31 (Tight to layered typing). If Γ;ρ ⊢# x : T , then Γ;ρ ⊢m x : T .

The implication from tight typing to invertible typing requires us to show that invertible typing is
closed under the rules of tight typing and subtyping. Because the main layer deals with parts of a type
under some syntactic context C∧∨, it is useful to formulate the property in this way:

Lemma 32 (Layered typing closed under subtyping). If Γ;ρ ⊢m x : C∧∨[T1], and Γ;ρ ⊢# T1 <: T2, then Γ;
ρ ⊢m x : C∧∨[T1].

Similarly to how it was done for invertible typing in the original roDOT, the proof involves inverting
the rules of layered typing. Here though, the inversion has to to go through multiple layers of typing,
until it reaches the layer where the type system feature involved in the subtyping rule is handled.

Below, we show examples of properties of typing on the main layer that are analogous to subtyping
rules.

The subtyping rules for intersection types (ST-And1, ST-And2 and ST-And) must be handled at the
logic layer by the rule LTL-And. On the main layer, we show that the features of the main layer do not
interfere with intersection types, so we can derive and invert them in the same manner:

Lemma 33 (Intersection at the main layer). If Γ;ρ ⊢m x : C∧∨[T1], and Γ;ρ ⊢m x : C∧∨[T2], then Γ;
ρ ⊢m x : C∧∨[T1 ∧ T2].

Lemma 34 (Inversion of intersection at the main layer). If Γ;ρ ⊢m x : C∧∨[T1∧T2], then Γ;ρ ⊢m x : C∧∨[T1]
and Γ;ρ ⊢m x : C∧∨[T2].

The rule ST-Or can be handled, thanks to induction on the tight subtyping and to the syntactic
context C∧∨, by a simpler property:

Lemma 35 (Inversion of union types at the main layer). If Γ;ρ ⊢m x : C∧∨[T ∨T], then Γ;ρ ⊢m x : C∧∨[T].

On the main layer, the N type can be replaced by any read-only type:

Lemma 36 (Replacement of N at the main layer). If Γ;ρ ⊢m x : C∧∨[N], and Γ ⊢m N ◁ T , then Γ;ρ ⊢m x :
C∧∨[T].

Finally, the other implication (invertible typing implies tight typing) is expressed by Lemma 37.

Lemma 37 (Layered to tight typing). If Γ;ρ ⊢m x : T , then Γ;ρ ⊢# x : T .

This was very easy in the original DOT, because there, each rule of invertible typing can be mirrored
by application of just a few rules of tight typing and subtyping.

In layered typing though, the same approach only works up to the logic layer. On the main layer,
there is a problem that the rule LTM-Rec allows closing a recursive type anywhere under a syntactic
context C∧∨.

However, general and tight typing do not have subtyping rules for recursive types. The rule that
closes recursive types in tight typing, which has the same form as VT-RecI, can only close the whole
type, and not just a part of it.

That is because this rule is part of a typing judgment, not subtyping. Therefore, it cannot be com-
bined with other subtyping rules (subtyping of unions, intersections, transitivity).

To solve this problem, we can make use of the requirement that the inside of a recursive type must
be read-only. Then, we can look at what importance this part of the type has in the typing derivation.
We can actually show that any read-only part of a type is either derived from the type of the variable,
or it can be replaced by N:

32

D3S, Technical Report no. D3S-TR-2024-01 A.4 Alternative SEF conditions

Lemma 38 (Replacement of N supertypes at the main layer). If Γ;ρ ⊢m x : C∧∨[T], and Γ ⊢m N ◁ T , then
either Γ;ρ ⊢m x : T or Γ;ρ ⊢m x : C∧∨[N].

This lemma allows us, for a type C∧∨[T], to either bring the type T to the top level and use VT-RecI
to derive the recursive type, or to replace T by N and use subtyping with Γ;ρ ⊢# N <: µ(s : T).

This approach has one issue, however: we cannot prove Lemma 37 by induction on the main-layer
typing derivation, because when we use Lemma 38, it gives a derivation of just T , which is not a sub-
derivation of the derivation of C∧∨[T], so we cannot use the induction hypothesis on it.

Instead of doing the proof directly by induction on the derivation, we do the proof by first using
induction on the number of main-layer rules applied in the derivation, and second induction on the
number of union and intersection constructors within the type.

We handle the main-layer rule applications one by one, so this metric is decreasing, except the case
when Lemma 38 needs to be used. It is only needed if C∧∨ has at leas one union/intersection construc-
tor. In that case, we can find a derivation of T that has the same number of main-layer rule application
as C∧∨[T] and the number of union/intersection constructors is lowered.

A.4 Alternative SEF conditions

We stated the SEF condition (Definition 15) informally in Section 5.1 and formally in Section 3.1, also
mentioning the possibility to stating side-effect-freedom conditions in other variants with weaker or
stronger requirements. Here, we formally state several other variants of how a SEF condition could be
defined in roDOT.

The conditions Definition 39, Definition 40 and Definition 41 have a stronger requirement of not
creating any new objects. The conditions Definition 39 and Definition 42 have a stronger requirement
of not writing to fields of existing objects, even if the write does not actually change the object. The
conditions Definition 41 and Definition 43 have a weaker requirement of object being modifiable if they
are restored back to their original state.

The Sef-N0 property (Definition 39) states that a method does execute any heap-modifying steps.

Definition 39 (Sef-N0). A method execution ⟨w1.mw2;σ; ρ1; Σ1⟩ 7−→k ⟨vw3;σ; ρ2; Σ2⟩ is Sef-N0 when for
every j ≤ k and ⟨w1.mw2;σ; ρ1; Σ1⟩ 7−→j ⟨t3;σ3; ρ3; Σ3⟩ the term t3 is not an object creation or write term.

The Sef-I0 property (Definition 40) states that the heap stays the same during the execution of the
method.

Definition 40 (Sef-I0). A method execution ⟨w1.mw2;σ; ρ1; Σ1⟩ 7−→k ⟨vw3;σ; ρ2; Σ2⟩ is Sef-I0 when for
every j ≤ k and ⟨w1.mw2;σ; ρ1; Σ1⟩ 7−→j ⟨t3;σ3; ρ3; Σ3⟩ we have Σ3 = Σ1.

The Sef-O0 property, defined in Definition 41, allows the method to modify the heap as long as it
restores the heap to its original state before it returns.

Definition 41 (Sef-O0). A method execution ⟨w1.mw2;σ; ρ1; Σ1⟩ 7−→k ⟨vw3;σ; ρ2; Σ2⟩ is Sef-O0 when Σ2 =
Σ1.

The Sef-N property (Definition 42) states that a method does execute any steps that write to objects
on the heap. It is similar to Sef-N0, but allows creation of new objects.

Definition 42 (Sef-N). A method execution ⟨w1.mw2;σ; ρ1; Σ1⟩ 7−→k ⟨vw3;σ; ρ2; Σ2⟩ is Sef-N when for
every j ≤ k and ⟨w1.mw2;σ; ρ1; Σ1⟩ 7−→j ⟨t3;σ3; ρ3; Σ3⟩ the term t3 is not a write term.

The Sef-O property (Definition 43) states that at the end of the method, the new heap has the original
heap as a prefix. It is similar to Sef-O0, but allows creation of new objects.

Definition 43 (Sef-O). A method execution ⟨w1.mw2;σ; ρ1; Σ1⟩ 7−→k ⟨vw3;σ; ρ2; Σ2⟩ is Sef-O when Σ1 is a
prefix of Σ2.

From the three Definitions 15, 42 and 43, Definition 42 is unnecessarily restrictive, because it forbids
modifications of existing objects. The difference between Definition 15 and Definition 43 is that Defi-
nition 43 allows modifying an object, as long as it is changed back before returning from the method.
Making use of this possibility would require tracking the values assigned to the fields, which is out
of scope of roDOT’s type system. Also, although we only consider single-threaded execution, Defi-
nition 43 would not adapt well to possible extensions to multi-threaded environments, because any
changes to the object within the method would be observable from other threads. For these reasons,
we use the Sef-I property (Definition 15) as the definition of a SEF method and the basis for our SEF
guarantee.

33

D3S, Technical Report no. D3S-TR-2024-01 A.5 Similarity

A.5 Similarity

In Section 5.4, we introduced the similarity relation. In this section, we provide the formal definition of
similarity and prove a few important properties.

Similarity formalizes structural equivalence of syntactic elements such as terms, objects or whole
configurations, which differ only in names of variables. The correspondence of variable names on two
sides of the equivalence is specified by a renaming list.

Definition 44 (Renaming). A list of pairs of variables X := (x1,ℓ, x2,ℓ)ℓ=1,...,L is a renaming, which renames
each variable x1,ℓ on the left to x2,ℓ on the right.

For simple syntactic elements, similarity is defined by the ability to get both sides of the equivalence
by substitution starting from a common element.

Definition 45 (Similar variables, objects, terms and stacks). Two terms t1 and t2 (or variables, objects and

stacks) are similar by renaming X := (x1,ℓ, x2,ℓ)ℓ=1,...,L, written t1
X
≈ t2, if there exists a term t3 with list of

variables (x3,ℓ)ℓ=1,...,L, such that fv t3 ⊆ {x3,ℓ}ℓ=1,...,L and [x1,ℓ/x3,ℓ]ℓt3 = t1 and [x2,ℓ/x3,ℓ]ℓt3 = t2.

The definition of similarity for configurations is complicated by variables in the domains Σ and
environment ρ. Because the domains cannot contain duplicates, but we want to have duplicates in the
renaming used for the term, in order to be able to make yi correspond to both yi and wi in Lemma 20. To
allow this, are two lists of variables – one used for domains of Σ and ρ and the other for their codomain,
for the term and the stack.

Definition 46 (Similar configurations). Two configurations ⟨t1;σ1; ρ1; Σ1⟩ and ⟨t2;σ2; ρ2; Σ2⟩ are similar
up to renaming X := (x1,ℓ, x2,ℓ)ℓ=1,...,L in the input and Y := (y1,ℓ, y2,ℓ)ℓ=1,...,L in the output exactly
when

• Terms and stacks are similar by Y : t1
Y
≈ t2 and σ1

Y
≈ σ2.

• Heaps and environments are similar with respect to renaming inputs. For each (x1,k, x2,k) from X ,

either Σ1(x1,ℓ)
Y
≈ Σ2(x2,ℓ) or ρ1(x1,ℓ)

Y
≈ ρ2(x2,ℓ).

• Heap correspondence in similarity. If zi are heap locations in Σi such that (z1, z2) ∈ Y then (z1, z2) ∈
X .

Notation for similarity of configurations is −
Y
≈
X

−, with X,Y omitted for the one that induces equality.

Lemma 47 (Similarity is preserved by reduction). Let c1, c2 be well-typed configurations, c1
Y
≈
X

c2 and

ci 7→n c′i for some n. Then there exists a renaming L := (y1,k, y2,k)k=1,...,K , such that each yi,k is fresh in ci,

and c′1
Y ∪L
≈

X∪L
c′2.

This is illustrated by the following diagram:

c1 c2

c′1 c′2

Y
≈
X

n n
Y ∪L
≈

X∪L

Proof. It suffices to consider the case of a single-step reduction (i.e. when n = 1) because one can just
use subject reduction and induction for the multi-step case. In the single-step case, we solve each case

of ci 7→ c′i (defined in Figure 13 in the appendix), taking advantage of the fact that t1
Y
≈ t2, where ti is

the term of ci, to ensure that the same reduction rule is used to reduce both ci 7→ c′i.
The freshness of the variables yi,k follows from the fact that new in all reduction rules, the domains

of Σ and ρ are either unchanged or extended with fresh variables. The cases of field read and writes
are justified by the second and third conditions of Definition 46 along with the fact that configuration
typing means heap correspondence.

34

D3S, Technical Report no. D3S-TR-2024-01 A.6 Proofs of SEF guarantee lemmata

Lemma 48 (Similarity ensures reduction). If c1
Y
≈
X

c2 for ci well-typed and c1 7→n c′1, then there exists c′2 for

which c2 7→n c′2. This is illustrated by the following diagram:

c1 c2

c′1 c′2

Y
≈
X

n n

Proof. If c2 is an answer configuration, then similarity means c1 must be an answer configuration too,
which is impossible unless n = 0. In the inductive case, use the subject reduction property and the
similarity part of Lemma 47.

Proof. By definitions of c2, c′1 and Definition 46.

A.6 Proofs of SEF guarantee lemmata

In this section, we give proofs to selected lemmata from Section 5.

Lemma (Lemma 20, Similarity for eliminated references). Let c′1 satisfy the conditions of Lemma 17 and c′′1

the conditions of Lemma 19. Then c′1
(w1,y1),(w2,y2)≈ c′′1 .

Lemma (Lemma 19, Read-only weakening). Let c1 and Γ satisfy the conditions of Theorem 16, and ρ1[wi] =
yi. Then there is a context Γ2 binding wi to read-only types such that the configuration c′′1 := ⟨w1.m w2; ·; ρ1;
[yi/wi]iΣ1⟩, is well-typed in Γ2 (formally Γ2 ⊢ c′′1 : ⊤).

Proof. Take Γ′ and ρ′ as from Lemma 18. Let Ti be the read-only version of Γ(yi) so that Ti differs from
Γ(wi) only by mutability. The goal is to take Γ2 := Γ′(wi : Ti)i.

The hardest part of showing Γ2 ⊢ c′′1 : ⊤ is the part of typing w1.m w2. Note that the only difference
between Ti and Γ(wi) is that Ti is by construction read-only while Γ(wi) is possibly mutable. So the
idea is to use the same derivation of Γ′ ⊢ y1.m y2 : ⊤, in the process taking advantage of the fact that
Γ ⊢ w1 : {m(z : N)(r : N) : ⊤} means nowhere in the derivation did one need to use the fact that Γ(wi)
is potentially mutable.

In the derivation of Γ′ ⊢ y1.m y2 : ⊤, one sees there are sub-derivations giving read-only types Ti to
yi. Lemma 9 says that for any context Γ and environment ρ that are in correspondence, if a location yi
can be derived to have a read-only type Ti then one may give the same type Ti to any references wi to
the location yi. The result of Lemma 19 follows.

Lemma (Lemma 22, Reduction only changes fields). If ⟨−;−;−; Σ⟩ 7→n ⟨−;−;−; Σ′⟩ and y is a location

in Σ, then Σ(y)
fld
≈ Σ′(y).

Proof. The only reduction rule that changes existing objects is the field-write reduction rule, which
changes just the fields.

Lemma (Lemma 17, SEF guarantee without stack). For c1 satisfying the conditions of Theorem 16, let c′1 :=
⟨w1.m w2; ·; ρ1; Σ1⟩. If c′1 7→n c′2 for some n and c′2, then the heap of c′2 contains all objects of c′1 without
modification.

Proof. We use Lemmas 20, 47 and 48 to get

c′1 c′′1

c′2 c′′2

(wi,yi)i≈

n n
(wi,yi)i∪L

≈
L

where L is fresh in both c′1 and c′′1 . Let Σ2 be the heap of c′2 and Σ′′
2 be the heap of c′′2 . Let y be a heap

location of Σ1, so that Lemma 22 applied to the left edge means that Σ1(y)
fld
≈ Σ2(y). The immutability

guarantee applies to the right edge because of Lemma 19 and so we know Σ′′
2(y) = Σ1(y). The freshness

of L and the bottom edge then implies Σ2(y)
(wi,yi)i≈ Σ′′

2(y)
(wi,yi)i≈ Σ1(y). But Σ1(y) can only differ from

Σ2(y) in field values and wi are references, so they never occur as values of fields, therefore Σ2(y) =
Σ1(y).

35

D3S, Technical Report no. D3S-TR-2024-01 A.7 Transformation framework

And with this, Theorem 16 follows straightforwardly.

Theorem (Theorem 16, SEF guarantee). Let the configuration c1 := ⟨w1.m w2;σ1; ρ1; Σ1⟩ be well-typed in a
context Γ. Further assume that Γ ⊢ w1 : {m(z : N)(r : N) : ⊤}. Then for any k steps of execution:

1. Either the method call has finished executing. There is j < k for which c1 7→j ⟨vw3;σ1;−;−⟩.

2. Or, the method call has not finished executing and in this period existing objects in the heap are
unchanged. For each c1 7→k c2, all heap locations in c1 also exist in c2 and moreover they are unchanged
in c2.

Proof. By classical reasoning, assume the condition 1 is false so that the goal is to prove the condition 2.
That is, assume that there is no j < k such that the top-most frame of c1 is popped after execution by j
steps: c1 7→j ⟨vw3;−;−; Σ2⟩. Then, the sequence of reductions c1 7→ ... 7→ c4 by Lemma 48 corresponds
to a sequence of reductions c2 7→ ... 7→ c3 because even though c2 has no awaiting frames, there are
no frame pops in this execution sequence by the current assumption. By Lemma 17, the condition 2
follows.

A.7 Transformation framework

In Section 6.1, we described the general transformation framework in short. The framework consists of
definitions and lemmas that enable reasoning about safe transformations of programs in roDOT. In this
section, we present a more detailed discussion and basic definitions of the framework.

A.7.1 Framework design

The framework design is influenced by the following considerations:

• Programs in DOT are terms in λ-calculus style and A-normal form. They are not formed by se-
quences of statements, but rather by nesting let-in terms.

• The program can contain object literals and method definitions, so a transformation such as swap-
ping two calls can also be located inside a body of a method.

• The transformation can be conditioned on local typing information, such as the method calls being
recognized as SEF. In roDOT, this necessitates looking at the typing context Γ that is used for
typing that part of the program.

• The execution of a program is defined using small-step operational semantics, starting from an
initial configuration and applying reduction steps until reaching an answer.

For discussion of what a safe transformation is, we will consider two programs, an original pro-
gram and a transformed program, which only differ in ways allowed by the transformation. Such
a transformation is safe if executions of those two programs reach the “same” answer. We cannot
require the answers of the two programs to be identical, because of the following points.

• During execution of an roDOT program, objects are created on the heap and these objects contain
methods, containing code where the transformation may be located.

Therefore, if we look at execution of the two programs in parallel, the transformation affects not
only the program being executed, but also the bodies of these methods in objects on the heap.

In DOT, the code (terms) and values (objects) are mixed with each other. In order to allow reason-
ing about the transformation, we must consider that during execution, the transformation may be
located at multiple places in the focus of execution, stack and heap.

This also applies to the answer of the program. To define a safe transformation, it would be too
restrictive to require the two programs to produce the exact same output value since the output
value may be an object that may contain the transformed code.

• The locations of objects on the heap are chosen non-deterministically, therefore the framework
must deal with the fact that in the answer and in intermediate states of two executions, location
names can different.

36

D3S, Technical Report no. D3S-TR-2024-01 A.7 Transformation framework

• Otherwise the execution is deterministic. Programs in DOT and roDOT do not read any input and
do not make non-deterministic choices. This makes the situation easier, as we can assume that all
possible executions of one program will reach answers that are similar to each other. Therefore,
the differences in executions of the original and the transformed program are only caused by the
transformation of the initial program.

The transformation framework consists of the following parts:

• Definition of transformations of syntactic elements such as terms and configurations

• Definition of lifting transformations from local term transformations to transformations of whole
programs and run-time machine configurations

• Definition of a similarity transformation, which uses similarity defined in Appendix A.5 to deal
with differences in variable names.

• Definition of important properties of local transformations, which are relevant to showing that
those transformations are safe.

• Lemmas about lifting such properties from local transformations to whole programs.

• Definition of a safe transformation – that does not change the result of execution of a program.

• Theorem 25, about safety of transformations which have the required properties and are lifted to
whole programs.

A.7.2 Transformations

A transformation in general is defined in Definition 23.

• A term transformation is a transformation ⟨Γ1; ρ1 ⊢ t1 : T1⟩ →τ ⟨Γ2; ρ2 ⊢ t2 : T2⟩, where t1,2 are
terms, T1,2 are types, Γ1,2 are typing contexts (mapping variables to types) and ρ1,2 are environ-
ments mapping object references to heap locations.

• A stack transformation is a transformation ⟨Γ1; ρ1 ⊢ σ1 : T1, T3⟩ →τ ⟨Γ2; ρ2 ⊢ σ2 : T2, T4⟩, where
σ1,2 are stacks, T1,2 are types of the holes in the top frame of σ1,2 respectively, T3,4 are types
of the bottom frame of σ1,2, Γ1,2 are typing contexts (mapping variables to types) and ρ1,2 are
environments mapping object references to heap locations.

• A heap transformation is a transformation ⟨ρ1 ⊢ σ1 : Γ1⟩ →τ ⟨ρ2 ⊢ σ2 : Γ2⟩, where Σ1,2 are heaps,
Γ1,2 are typing contexts (mapping variables to types) and ρ1,2 are environments mapping object
references to heap locations. In this definition, the typing context take the position of a type,
because the types of variables in Gamma1,2 correspond to types in Sigma1,2.

• A configuration transformation is a transformation ⟨Γ1 ⊢ c1 : T1⟩ →τ ⟨Γ2 ⊢ c2 : T2⟩, where c1,2 are
configurations, T1,2 are types, and Γ1,2 are typing contexts (mapping variables to types).

Definition 49 (Type-identical transformation). A transformation τ is type-identical, if ⟨Γ1 ⊢ X1 : T1⟩ →τ

⟨Γ2 ⊢ X2 : T2⟩ implies Γ1 = Γ2 and T1 = T2.

Definition 50 (Type-safe transformation). A transformation τ is type-safe, if ⟨Γ1 ⊢ X1 : T1⟩ →τ ⟨Γ2 ⊢ X2 :
T2⟩ implies Γ1 ⊢ X1 : T1 and Γ2 ⊢ X2 : T2.

A.7.3 Transformation lifting

The lifting to configurations is used to relate intermediate states of execution of the original program
with execution of the transformed program. During execution, which is defined using small-step se-
mantics, the place where a transformation is located will move around as the machine state evolves.
For example, when an object is instantiated, if the transformation was applied within a method of that
literal, then after instantiation, the transformation will apply in the heap.

37

D3S, Technical Report no. D3S-TR-2024-01 A.7 Transformation framework

Example 51. Let’s consider two configurations related by a lifted transformation τ : ⟨Γ ⊢ ⟨letx = ν(r :
R){m1(r, z) = t1} in t3;σ; Σ; ρ⟩ : T ⟩ →cfg τ ⟨Γ ⊢ ⟨letx = ν(r : R){m1(r, z) = t2} in t3;σ; Σ; ρ⟩ : T ⟩,
where the bodies of the method are related by τ : ⟨Γ, r : R, z : Tz ⊢ t1 : Tt⟩ →τ ⟨Γ, r : R, z : Tz ⊢ t2 :
Tt⟩. After one reduction step, the next configurations will still be related by the lifted transformation.
⟨Γ ⊢ ⟨[w/x2]t3;σ; Σ, y ∼ ν(r : R){m(r, z) = t1}; ρ, w ∼ y⟩ : T ⟩ →cfg τ ⟨Γ ⊢ ⟨[w/x2]t3;σ; Σ, y ∼ ν(r :
R){m(r, z) = t2}; ρ, w ∼ y⟩ : T ⟩

Term, stack, heap and configuration transformations can be defined by lifting a local term transfor-
mation, as defined in Figure 23 and Figure 24. This lifting contain premises that ensure that both sides
of the transformation are well typed. The rules in these definition mimic the typing rules and heap
correspondence rules, but applying to two terms, stacks, heap or configurations at the same time.

38

D3S, Technical Report no. D3S-TR-2024-01 A.7 Transformation framework

⟨Γ; ρ ⊢ t1 : T ⟩ τ−→ ⟨Γ; ρ ⊢ t2 : T ⟩
Γ; ρ ⊢ T <: S

⟨Γ; ρ ⊢ t1 : S⟩ lift τ−−−→ ⟨Γ; ρ ⊢ t2 : S⟩
(TRFL-Local)

⟨Γ; ρ ⊢ t1 : T1⟩
lift τ−−−→ ⟨Γ; ρ ⊢ t2 : T1⟩

Γ, z : T1; ρ ⊢ t3 : T2 Γ; ρ ⊢ T2 <: S

⟨Γ; ρ ⊢ let z = t1 in t3 : S⟩ lift τ−−−→ ⟨Γ; ρ ⊢ let z = t2 in t3 : S⟩
(TRFL-Let1)

⟨Γ, z : T1; ρ ⊢ t1 : T2⟩
lift τ−−−→ ⟨Γ, z : T1; ρ ⊢ t2 : T2⟩

Γ; ρ ⊢ t3 : T1 Γ; ρ ⊢ T2 <: S

⟨Γ; ρ ⊢ let z = t3 in t1 : S⟩ lift τ−−−→ ⟨Γ; ρ ⊢ let z = t3 in t2 : S⟩
(TRFL-Let2)

⟨Γ, s : R; ρ ⊢ d1 : R⟩ lift τ−−−→ ⟨Γ, s : R; ρ ⊢ d2 : R⟩
Γ, z : µ(s : R) ∧M⊥; ρ ⊢ t : T
Γ; ρ ⊢ T <: S R indep s

⟨Γ; ρ ⊢ let z = ν(s : R)d1 in t : S⟩ lift τ−−−→ ⟨Γ; ρ ⊢ let z = ν(s : R)d2 in t : S⟩
(TRFL-Lit1)

⟨Γ, z : µ(s : R) ∧M⊥; ρ ⊢ t1 : T ⟩ lift τ−−−→ ⟨Γ, z : µ(s : R) ∧M⊥; ρ ⊢ t2 : T ⟩
Γ, s : R; ρ ⊢ d : R

Γ; ρ ⊢ T <: S R indep s

⟨Γ; ρ ⊢ let z = ν(s : R)d in t1 : S⟩ lift τ−−−→ ⟨Γ; ρ ⊢ let z = ν(s : R)d in t2 : S⟩
(TRFL-Lit2)

⟨Γ; ρ ⊢ d1 : T1⟩
lift τ−−−→ ⟨Γ; ρ ⊢ d2 : T1⟩

Γ; ρ ⊢ d3 : T2

d1 and d3 have distinct member names
d2 and d3 have distinct member names

⟨Γ; ρ ⊢ d1 ∧ d3 : T1 ∧ T2⟩
lift τ−−−→ ⟨Γ; ρ ⊢ d2 ∧ d3 : T1 ∧ T2⟩

(TRFL-And1)

⟨Γ; ρ ⊢ d1 : T1⟩
lift τ−−−→ ⟨Γ; ρ ⊢ d2 : T1⟩

Γ; ρ ⊢ d3 : T2

d1 and d3 have distinct member names
d2 and d3 have distinct member names

⟨Γ; ρ ⊢ d3 ∧ d1 : T2 ∧ T1⟩
lift τ−−−→ ⟨Γ; ρ ⊢ d3 ∧ d2 : T2 ∧ T1⟩

(TRFL-And2)

Γ′ = Γ, s : T4, !, z : T1, r : T4 ∧ [r/s]T4 ∧ T3

R = {m(z : T1, r : T3) : T2}
⟨Γ′; ρ ⊢ t1 : T2⟩

lift τ−−−→ ⟨Γ′; ρ ⊢ t2 : T2⟩

⟨Γ, s : T4; ρ ⊢ {m(z, r) = t1} : R⟩ lift τ−−−→ ⟨Γ, s : T4; ρ ⊢ {m(z, r) = t2} : R⟩
(TRFL-Met)

Figure 23: Lifting local transformations to terms

39

D3S, Technical Report no. D3S-TR-2024-01 A.7 Transformation framework

⟨Γ; ρ ⊢ t1 : T1⟩
τ−→ ⟨Γ; ρ ⊢ t2 : T1⟩

Γ ∼ ρ Γ; ρ ∼ Σ
Γ; ρ ⊢ T1 <: T2 Γ; ρ ⊢ σ : T2, S

⟨Γ ⊢ ⟨t1;σ; Σ; ρ⟩ : S⟩
foc τ−−−→ ⟨Γ ⊢ ⟨t2;σ; Σ; ρ⟩ : S⟩

(TRFF-Focus)

⟨Γ; ρ ⊢ t1 : T1⟩
lift τ−−−→ ⟨Γ; ρ ⊢ t2 : T1⟩

Γ ∼ ρ Γ; ρ ∼ Σ
Γ; ρ ⊢ T1 <: T2 Γ; ρ ⊢ σ : T2, S

⟨Γ ⊢ ⟨t1;σ; Σ; ρ⟩ : S⟩
cfg τ−−−→ ⟨Γ ⊢ ⟨t2;σ; Σ; ρ⟩ : S⟩

(TRFC-Focus)

⟨Γ; ρ ⊢ σ1 : T2, S⟩
stack τ−−−−→ ⟨Γ; ρ ⊢ σ2 : T2, S⟩

Γ ∼ ρ Γ; ρ ∼ Σ
Γ; ρ ⊢ T1 <: T2 Γ; ρ ⊢ t : T1

⟨Γ ⊢ ⟨t;σ1; Σ; ρ⟩ : S⟩
cfg τ−−−→ ⟨Γ ⊢ ⟨t;σ2; Σ; ρ⟩ : S⟩

(TRFC-Stack)

⟨ρ ⊢ Σ1 : Γ⟩ heap τ−−−−→ ⟨ρ ⊢ Σ2 : Γ⟩
Γ ∼ ρ Γ; ρ ⊢ t : T1

Γ; ρ ⊢ T1 <: T2 Γ; ρ ⊢ σ : T2, S

⟨Γ ⊢ ⟨t;σ; Σ1; ρ⟩ : S⟩
cfg τ−−−→ ⟨Γ ⊢ ⟨t;σ; Σ2; ρ⟩ : S⟩

(TRFC-Heap)

Figure 24: Lifting local transformations to configurations

40

D3S, Technical Report no. D3S-TR-2024-01 A.7 Transformation framework

A.7.4 General transformation safety

Such transformation guarantees can be proven by looking at executions of the two programs (original
and transformed) in parallel, and showing that the intermediate states are still related by the iterated
lifted transformation (plus similarity), until both executions reach answer states. The answers will
therefore also be related by that transformation, and so the two programs will have the same result in
the sense of Definition 24.

As the two programs execute, the transformation will be moved around in the configuration. The
ability to apply the transformation anywhere is ensured by the lifting operator, but in order for the
transformation to still apply, the typing conditions need to be preserved as well as the configuration
and typing context changes. For that reason, the local transformation has to have additional properties:
weakening, narrowing and substitution.

These properties are analogous to the weakening, narrowing and substitution lemmas, which are
a part of the soundness proof for the roDOT calculus and were adapted from the soundness proof for
DOT [30]. The properties state that the transformation will relate two terms even if the typing context
is extended, when a type in the typing context is refined, or when a variable is substituted in the term
and its type. As an example, the weakening property is stated in Definition 52.

Definition 52 (Transformation weakening). A transformation τ is compatible with weakening, if ⟨Γ1,Γ2 ⊢
t1 : T ⟩ →τ ⟨Γ1,Γ2 ⊢ t2 : T ⟩ implies ⟨Γ1,Γ3,Γ2 ⊢ t1 : T ⟩ →τ ⟨Γ1,Γ3,Γ2 ⊢ t2 : T ⟩.

If a local transformation has these properties, then so does the lifted transformation. The weakening
property can also be lifted to stacks and heaps.

Lemma 53 (Transformation weakening lifting). If a transformation τ is compatible with weakening, then
lift τ is compatible with weakening.

Another important property of a transformation is that it preserves answers:

Definition 54 (Transformation preserves answers). A transformation τ is preserves answers if when ⟨Γ ⊢
c1 : T ⟩ →τ ⟨Γ ⊢ c2 : T ⟩ and c1 is an answer, then c2 is an answer too.

meaning that it only relates answers with answers and non-answers with non-answers.
With these properties, we can show that as the programs both execute a single step, the transfor-

mation will relate the next states, with exceptions stated below. First, the transformation may occur
at more than one location after the step. For example, suppose that before a method call, the transfor-
mation occurred in the body on the heap of the method to be called. After the call, the transformation
occurs both in the heap and in the focus of execution. For that reason, the transformation is iterated
in the conclusion of Lemma 55. Second, when the execution has reached an answer, there are no more
steps. This case is handled separately. Third, when the transformation occurs in the root of the focus,
the executions may diverge for a while, but converge eventually. This case is also handled separately,
and will be resolved later in the proof of Theorem 25 using Definition 56.

Lemma 55 (Transformation execution step). Let τ be a transformation that is type-identical, type-safe, com-
patible with weakening, narrowing and substitution, and preserves answers.

If ⟨Γ ⊢ c1 : T ⟩ →cfg τ ⟨Γ ⊢ c2 : T ⟩, then one of these holds:

• Both c1 and c2 are answers.

• ⟨Γ ⊢ c1 : T ⟩ →foc τ ⟨Γ ⊢ c2 : T ⟩

• There exist c3 and c4, such that c1 −→ c3, c2 −→ c4, and ⟨Γ ⊢ c3 : T ⟩ →(cfg τ∪≈)∗ ⟨Γ ⊢ c4 : T ⟩.

Proof. By the progress lemma, which is a part of the safety proof [12], the configurations c1 and c2 can
each be an answer or reduce to another configuration. Because τ preserves answers, either both are
answers, and the first case applies, or both are not answers, so both can progress. In that case, we do
case analysis for the reduction step and the location where the transformation occurs.

• If in the root of the focus, then the second case applies.

• If in a first part of a let-term, then it moves up as the let term is split. If it applies in a first part
of a let-lit-term, then it moves to the heap as part of a newly instantiated object. If it applies in a
second part of a let-term, then moves to the stack.

41

D3S, Technical Report no. D3S-TR-2024-01 A.8 The call-swapping transformation guarantee

• If in the stack, then in case of steps that change the stack, it either moves up the stack, down the
stack or into the focus. In other cases, it applies the same way in the same stack, but weakening
and similarity is needed in steps that create new variables.

• If in the heap, then it always stays in the heap, where weakening may be applied. In the case of a
method call, it will be additionally copied to the focus, while applying substitution.

The case when the transformation applies in the root of the focus represents the instant when the
two programs start to go in different ways, but the transformation is safe because the programs will still
eventually reach similar states.

In the case of call swapping, this means that in one program, the call to m1 is executed first, then the
call to m2. In the transformed program, it is vice versa. During this time, the intermediate states may
differ arbitrarily, but when they return from both of the calls, the results are the same regardless of the
order.

Definition 56 (Eventual similarity). A transformation τ eventually reduces to similarity, if for ⟨Γ1 ⊢ c1 :
T ⟩ →foc τ ⟨Γ2 ⊢ c2 : T ⟩ where c1 terminates, there exists n ≥ m and c3, c4,Γ3,Γ4, such that

c1 −→n c3, c2 −→m c4, Γ3 ⊢ c3 : T , Γ4 ⊢ c4 : T , and ⟨Γ3 ⊢ c3 : T ⟩ →≈ ⟨Γ4 ⊢ c4 : T ⟩.

With swapping calls, both executions reach similarity in the same number steps, but in general,
the numbers of steps n and m may differ. The condition n ≥ m is needed in order to avoid the case
where the execution of the program on the right side would be indefinitely prolonged by increasing the
number of steps of the execution over and over.

Additionally, we will use the fact that the ≈ transformation is also preserved as the program exe-
cutes.

Lemma 57 (Similarity compatible with reduction). If ⟨Γ1 ⊢ c1 : T1⟩ →≈ ⟨Γ2 ⊢ c2 : T2⟩ and c1 −→ c3,
c2 −→ c4, then ⟨Γ1 ⊢ c3 : T1⟩ →≈ ⟨Γ2 ⊢ c4 : T2⟩.

The property Definition 56 is only concerned with what happens if the transformation occurs once,
in the root of the focus. But with Lemma 55 and Lemma 57, we can show that for a local transformation
with the properties above, if this transformation occurs anywhere in the configuration, any number of
times, the answers will also differ only by occurrences of this transformation and by similarity.

Theorem (Theorem 25, Transformation execution). If τ is a transformation that is type-identical, type-safe,
compatible with weakening, narrowing and substitution, preserves answers, and eventually reduces to similarity,
then (cfg τ∪ ≈)∗ is safe.

Proof. First, do induction on j, the number of steps to reach the answer. For 0 steps, the conclusion
trivially holds. For n + 1 steps, do induction on the iteration of the transformation (cfg τ∪ ≈)∗. Each
step of this iteration is either similarity, or application of cfg τ .

For similarity, use Lemma 57 on all steps of the execution until the answers are reached. That way,
show that the answers are similar. For application of cfg τ , apply Lemma 55 and do case analysis:

• In the case where c1 and c2 are answers, there are no more steps, so just apply the transformation
between c1 and c2.

• In the case where the transformation applies in the focus, use the fact that τ eventually reduces
to similarity. Use Lemma 57 to apply the similarity to the answer and continue using the second
inductive hypothesis with a lesser or equal number of steps.

• In the case where a reduction step is made and the transformation is preserved, apply the first
inductive hypothesis with one fewer step on the rest of the execution.

A.8 The call-swapping transformation guarantee

In this section, we show the proof of Theorem 27, the transformation guarantee stated in Section 6.2. To
prove the transformation guarantee, we first apply Definition 24 to Definition 26:

Lemma 58 (Call swapping is safe). The transformation cfg csw is safe.

42

D3S, Technical Report no. D3S-TR-2024-01 A.8 The call-swapping transformation guarantee

Thanks to using a local transformation csw lifted to configurations, we can prove this lemma using
Theorem 25.

First, we need to to prove the premises of Theorem 25, which are local properties of the local trans-
formation csw defined in Definition 26.

The local transformation csw is trivially symmetric and type-identical, and it preserves answers,
because it only applies to let-terms, which are never in the focus of an answer.

It is also type-safe and compatible with weakening, narrowing and substitution, which can be
proved by applying weakening, narrowing or substitution to each of the typing and subtyping con-
ditions in the definition of csw.

Lemma 59 (Call-swap weakening). The transformation csw is compatible with weakening.

The crucial property that ensures safety of the transformation is that csw satisfies Definition 56.

Lemma 60 (Call swapping eventual similarity). The transformation csw eventually reduces to similarity.

Proof. The proof is based on looking at the execution of let-terms and the method calls in the two pro-
grams, using the SEF guarantee to relate intermediate states by similarity, and combining the informa-
tion obtained from that to relate the states after the calls by similarity. This is captured in Figure 25.

We have two configurations ca = ⟨let xa1 = wr1.m1 wz1 in let xa2 = wr2.m2 wz2 in t(xa1, xa2);σ; ρ; Σ⟩
and cb = ⟨let xb2 = wr2.m2 wz2 in let xb1 = wr1.m1 wz1 in t(xb1, xb2);σ; ρ; Σ⟩. Assuming that they both
terminate, we need to show that they reduce to similar configurations.

ca reduces to method call begin ⟨wr1.m1 wz1;σa1σ; ρ; Σ⟩, where σa1 = let xa1 = □ in (let xa2 =
wr2.m2 wz2 in t(xa1, xa2)). Assuming termination, there must exist a method call end ⟨vwa1;σa1σ; ρρa1;
ΣΣa1⟩. By the SEF guarantee, in the method call end, the heap has a prefix Σ. The stack does not affect
the result, so we can also say that ⟨wr1.m1 wz1; ·; ρ; Σ⟩ 7−→k1 ⟨vwa1; ·; ρρa1; ΣΣa1⟩.

The execution continues by reducing to ⟨let xa2 = wr2.m2 wz2 in t(wa1, xa2);σ; ρρa1; ΣΣa1⟩, then to
ca2 = ⟨wr2.m2 wz2;σa2σ; ρρa1; ΣΣa1⟩, where σa2 = let xa2 = □ in t(wa1, xa2).

This is a method call begin which will reduce to a method call end ⟨vwa2;σa2σ; ρρa1ρa2; ΣΣa1Σa2⟩.
Again, by the SEF guarantee, the heap in the end has a prefix ΣΣa1. And again, the stack does not
affect the execution, so we also have ⟨wr2.m2 wz2; ·; ρρa1; ΣΣa1⟩ 7−→k2 ⟨vwa2; ·; ρρa1ρa2; ΣΣa1Σa2⟩. With
the stack removed, the method call begin does not have any references to the objects created in the
previous call, so it is similar to ⟨wr2.m2 wz2; ·; ρ; Σ⟩ and the method call end is similar to ⟨vwa2; ·; ρρa2;
ΣΣa2⟩.

The execution continues by reducing to ca3 = ⟨t(wa1, wa2);σ; ρρa1ρa2; ΣΣa1Σa2⟩. Now, we will show
that cb reduces to a similar configuration.

cb reduces to method call begin ⟨wr2.m2 wz2;σb2σ; ρ; Σ⟩, where σb2 = let xb2 = □ in (let xb1 =
wr1.m1 wz1 in t(xb1, xb2)).

If we remove the stack, we get a configuration ⟨wr2.m2 wz2; ·; ρ; Σ⟩ for which we already know that
it reduces in k2 steps to something similar to ⟨vwa2; ·; ρρa2; ΣΣa2⟩. That means there are wb2,Σb2, ρb2
similar to wa2,Σa2, ρa2, such that ⟨wr2.m2 wz2; ·; ρ; Σ⟩ 7−→k2 ⟨vwb2; ·; ρρb2; ΣΣb2⟩.

Adding back the stack, we have ⟨wr2.m2 wz2;σb2σ; ρ; Σ⟩ 7−→k2 ⟨vwb2;σb2σ; ρρb2; ΣΣb2⟩.
The execution continues by reducing to ⟨let xb1 = wr1.m1 wz1 in t(xb1, wb2);σ; ρρb2; ΣΣb2⟩, then to

cb1 = ⟨wr1.m1 wz1;σb1σ; ρρb2; ΣΣb2⟩, where σb1 = let xb1 = □ in t(xb1, wb2).
If we remove the stack, we get a configuration ⟨wr1.m1 wz1; ·; ρρb2; ΣΣb2⟩. With the stack removed,

this method call begin does not have any references to the objects created in the previous call, so it is
similar to ⟨wr1.m1 wz1; ·; ρ; Σ⟩, for which we already know that it reduces in k1 steps to something similar
to ⟨vwa1; ·; ρρa1; ΣΣa1⟩. That means there are wb1,Σb1, ρb1 similar to wa1,Σa1, ρa1, such that ⟨wr1.m1 wz1;
·; ρ; Σ⟩ 7−→k1 ⟨vwb1; ·; ρρb1; ΣΣb1⟩.

Adding back the stack and heap, we have ⟨wr1.m1 wz1;σb1σ; ρρb2; ΣΣb2⟩ 7−→k1 ⟨vwb1;σb1σ; ρρb2ρb1;
ΣΣb2Σb1⟩.

The execution continues by reducing to cb3 = ⟨t(wb1, wb2);σ; ρρb1ρb2; ΣΣb2Σb1⟩. Because the vari-
ables and heaps in cb3 were chosen to be similar to the variables and heaps in ca3, we get ca3 ≈ cb3.

Applying Theorem 25 on csw gives us that (cfg csw∪ ≈)∗ is safe. That means cfg csw is safe as well,
because cfg csw ⊂ (cfg csw∪ ≈)∗ = ((cfg csw∪ ≈)∗∪ ≈)∗. This concludes the proof of Lemma 58.

Theorem (Theorem 27, Transformation guarantee). If ⟨⊢ t1 : T ⟩ →lift csw ⟨⊢ t2 : T ⟩ and ⟨t1; ·; ·; ·⟩ −→k c3,
where c3 is an answer typed as Γ3 ⊢ c3 : T , then there exists c4, Γ4 and j such that ⟨t2; ·; ·; ·⟩ −→j c4, c4 is an
answer typed as Γ4 ⊢ c4 : T and ⟨Γ3 ⊢ c3 : T ⟩ →(cfg csw∪≈)∗ ⟨Γ4 ⊢ c4 : T ⟩ .

43

D3S, Technical Report no. D3S-TR-2024-01 A.8 The call-swapping transformation guarantee

⟨letxa1 = wr1.m1 wz1 in
letxa2 = wr2.m2 wz2 in

t(xa1, xa2)
;σ; Σ; ρ⟩

⟨letxb2 = wr2.m2 wz2 in
letxb1 = wr1.m1 wz1 in

t(xb1, xb2)
;σ; Σ; ρ⟩

⟨wr1.m1 wz1

; · · · :: σ; Σ; ρ⟩
⟨wr2.m2 wz2

; · · · :: σ; Σ; ρ⟩

⟨vwa1

; · · · :: σ; ΣΣa1; ρρa1⟩
⟨vwb2

; · · · :: σ; ΣΣb2; ρρb2⟩

⟨letxa2 = wr2.m2 wz2 in
. . .

;σ; ΣΣa1; ρρa1⟩

⟨letxb1 = wr1.m1 wz1 in
. . .

;σ; ΣΣb2; ρρb2⟩

⟨wr2.m2 wz2

; · · · :: σ; ΣΣa1; ρρa1⟩
⟨wr1.m1 wz1

; · · · :: σ; ΣΣb2; ρρb2⟩

⟨vwa2

; · · · :: σ; ΣΣa1Σa2; ρρa1ρa2⟩
⟨vwb1

; · · · :: σ; ΣΣb2Σb1; ρρb2ρb1⟩

⟨t(wa1, wa2)
;σ; ΣΣa1Σa2; ρρa1ρa2⟩

⟨t(wb1, wb2)
;σ; ΣΣb2Σb1; ρρb2ρb1⟩

k1 k2

k2 k1

foc csw

≈

≈

≈

≈

≈

Figure 25: Reduction and transformation of call swapping in focus

Proof. Follows directly by unfolding definitions in Lemma 58 and specializing to initial configurations.

44

	1 Introduction
	1.1 Contribution
	1.2 Outline

	2 Background – the roDOT calculus
	2.1 Syntax and typing
	2.2 Semantics
	2.3 Properties

	3 Method Purity for roDOT
	3.1 Runtime SEF condition
	3.2 Static SEF condition
	3.3 SEF guarantee
	3.4 Using pure methods in roDOT

	4 Recognizing SEF methods by type in modified roDOT
	4.1 Static SEF condition in roDOT
	4.1.1 Read-only types in roDOT
	4.1.2 The SEF condition
	4.1.3 Subtyping of method types

	4.2 The updated roDOT calculus
	4.2.1 Updating the safety proof
	4.2.2 Invertible Typing

	4.3 Layered Typing

	5 The SEF Guarantee
	5.1 The run-time SEF condition
	5.1.1 Method call limits

	5.2 The SEF guarantee
	5.3 Overview of the proof
	5.4 Proof of the SEF Guarantee

	6 Transformations
	6.1 Transformation framework
	6.1.1 Transformations of roDOT programs in general
	6.1.2 Safe transformations

	6.2 The call-swapping transformation

	7 Related work
	7.1 Mechanizations of DOT calculi
	7.2 Purity in other languages
	7.3 Capability and Effect Systems

	8 Conclusion
	A Appendix – roDOT definitions
	A.1 Typing and reduction definitions
	A.2 Layered typing definitions
	A.2.1 Atomic layer typing
	A.2.2 Basic layer typing
	A.2.3 Union layer typing
	A.2.4 Logic layer typing
	A.2.5 Main layer typing
	A.2.6 Additional definitions

	A.3 Layered typing properties
	A.4 Alternative SEF conditions
	A.5 Similarity
	A.6 Proofs of SEF guarantee lemmata
	A.7 Transformation framework
	A.7.1 Framework design
	A.7.2 Transformations
	A.7.3 Transformation lifting
	A.7.4 General transformation safety

	A.8 The call-swapping transformation guarantee

