Technical report no. D3S-TR-2020-01 Dependable

: b Department of
Department of Distributed and Dependable Systems Distibutod and s
October, 2020

Reference mutability for DOT — roDOT definitions and
proofs

Vlastimil Dort and Ondftej Lhotdk

Abstract: This technical report presents the full definitions, properties and proofs for roDOT. roDOT is
a version of DOT calculus based on kDOT, which adds support for reference mutability types.

This work was partially supported by the Czech Science Foundation project 18-17403S, partially sup-
ported by the Mobility Fund of Charles University, and partially supported by the Charles University
institutional funding project SVV 260588. This research was supported by the Natural Sciences and
Engineering Research Council of Canada.

D3S, Technical Report no. D35-TR-2020-01 CONTENTS
Contents
1 Introduction 3
2 Baseline DOT Definitions 4
21 BaselineSyntax 4
22 BaselineTyping e 4
2.3 Baseline Definition Typing L L 5
24 BaselineSubtyping 5
2.5 Baseline RuntimeSyntax L L 5
2.6 BaselineInert Context 6
2.7 Baseline Reduction 6
2.8 Baseline Configuration Typing 6
3 roDOT Definitions 8
31 Syntax 8
3.1.1 Receiver Parameter 8
312 Kindsof Variables 8
313 AlphaEquivalence 9
3.2 Substitution 9
33 Ellipsis e 10
34 Independence 10
3.5 Dereferencing 11
36 Typing 11
3.7 DefinitionTyping 12
3.8 Heap Definition Typing 13
3.9 Subtyping 13
3.0 Splitting 14
3.11 Equivalence e 15
3.12 Runtime e 16
3121 ImertContext 16
3.13 T-Freevariables 16
3.14 Mutable Objects 17
3.15 Reduction e 18
3.16 Configuration Typing 18
4 Internal Definitions 20
41 TypedReduction 20
42 Typed ReductionInlined 21
43 PreciseTyping 22
4.4 Simplified Precise Typing 23
45 TightTyping 23
46 TightSubtyping 23
47 Invertible Typing e 24
4.8 Selection Inlining Reduction 25
4.9 Method Type Approximation Reduction 26
4.10 Selection Approximation Reduction0 L. 27
411 One Way Tight Subtyping 28
412 No Method Subtyping 29
413 Type Without Selections 30
5 Properties 32
51 Typinglemmata 32
51.1 Equivalencelemmata 32
512 Typingcontextlemmata 34
5.1.3 Environment correspondence lemmata o L. 40
514 Subtypinglemmata. L 41
51.5 Substitution Lemmata L L L L 42
51.6 Splittinglemmata L 55

D3S, Technical Report no. D35-TR-2020-01 CONTENTS

52 Runtimelemmata e e e e 57
5.2.1 T-Free Variables Lemmata 57
52.2 Precisetypinglemmata o oo oo 60
523 Invertible typinglemmata L L L L L Lo 63
524 Dereferencelemmata 66
525 Typingequivalencelemmata 68
52.6 Referencelemmata e 74
527 Restricted Subtyping Lemmata L L L. 77
52.8 Contextshortening lemmata 93
529 Mutationlemmata e e 101
53 Reductionlemmata e e e e e 102
5.3.1 Helper lemmata for progress and preservation 102
532 Readlemmata e 103
53.3 Writelemmata 106
534 Applylemmata L 107
535 LetNewlemmata e 109
536 LetPushlemmata e 112
53.7 LetLoclemmata e e 113
53.8 Reductionequivalence L L 114
54 Theorems o e e 115

D3S, Technical Report no. D35-TR-2020-01

1 Introduction

This document contains full definitions and proofs for the paper Reference Immutability for DOT [1].
Section 2 shows full definition of the baseline DOT, which is a version of kDOT [3, 2] with minor modi-
fications. Section 3 shows full definition of DOT with reference immutability. Section 4 contains further
definitions which are used by proofs and lemmata.

Section 5 contains lemmata and theorems with proofs. The main theorems — Safety Theorem 5.173(S)
and Immutability Guarantee 5.181(IG) are at the end, in Section 5.4. Lemmata are ordered by depen-
dencies, so that a proof of lemma uses lemmata stated above the one being proven.

D3S, Technical Report no. D35-TR-2020-01

2 Baseline DOT Definitions

2.1 Baseline Syntax

The baseline syntax defines how to form types, terms and typing contexts. Compared to kDOT, the
syntax for constructors is removed. Instead of a constructor, an object literal is used to create an object.
The concepts of heap items and literals are merged. The baseline DOT explicitly distinguishes variables
from terms. If variable z is to be used as a term, it is wrapped as vz.

= Variable

x .
lo= Literal

| 2 local | (s : T)d object T: Type

| s self | T top

. I A(z:T)t lambda

|y location £ oom Term | L bottom

d:= Definition - | V(z:T1)T> function
| va var .

| {a =1t} field let = — 1 in ¢ lot I u(s:T recursive

| {A=T} type L ; | {a:Ty. Ty} field decl
| letz=1int let-lit

| dy Ady aggregate . | {A:Ty. T} type decl
| 21.04 := x4 write L

I:= Context | z.A projection
| z.a read . .

| empty | . | Th ATy intersection

| Tz: T binding 12 PP

2.2 Baseline Typing

Term typing (BTT) and variable typing (BVT) defines what types a term or a variable has under a typing
context. We define typing for variables and terms separately, whereas in kDOT, it is a single definition
which does not distinguish variables from terms. We adjust the rules from kDOT for the removal of
constructors and split rules applying to variables from rules applying to other terms. Subsumption rule
exists in both typings. An additional rule (BVT-Var) allows using a variable as a term of the same type.

védomls v Tha:T
_ T :
Tyz:TTyFz:T & il
F'kFz:T;
Pha:p(s:T) z:hi AL
B) (BYVT-RecE)
'k x/s|T a1
Ty < Ty
Tk fo/sT — = 2 (BVT-Sub
Ire /s gy Reen) e D)
FFxz:p(s:T)
I'tz:T
— (BTT-Var)
I'kvze:T Is:ThHd: Ty
F,ZZTll_tZTQ
Pha:V(z:Th)T, z¢tvT,

'k ZTo . T1
'k T1X9 [CUQ/Z}TQ

(BTT-Apply)

Ftax:{a:Tr.T5}
I'z.a:T;

(BTT-Read)

F"(IJlZTl
Fka:{a:T1.T}

I'Fxa:=x1:T5

(BTT-Write)

THt: T
THT <: T

(BTT-Sub)
THt:T,

: (BTT-New)
Phletz=w(s:Th)dint: Ty

F,leTll_tllTQ
F,Z:TQFtQSTg
Zl¢fVT1
22¢fvT3

't let zZ9 =)\(21 : Tl)tl in tg : T3

(BTT-Fn)

Fl‘tliTl
F,ZZT1|_t21T2
z ¢ tvTy
I'kletz=t1inty: Ty

(BTT-Let)

D3S, Technical Report no. D35-TR-2020-01 2.3 Baseline Definition Typing

2.3 Baseline Definition Typing

Definition typing (BDT) is used to give types to definitions which are a part of object literals, either on
the heap or in a let-lit term. It relates the field definitions and type definitions with field declaration
types and type declaration types, and gives an intersection type to an aggregate of definitions.

TF{A=T}:{A:T.7}(BDT-Typ) Thd:Th
'k dg : T2
T'H¢t:T dy and ds have distinct member names
(BDT-Fld) . (BDT-And)
't{a=t}:{a:T.T} T'FdyAdy :Th NTo
2.4 Baseline Subtyping
Subtyping in the baseline DOT is defined the same as in kDOT.
[T < T (BST-Top) TFTy AT, <: Ty (BST-Andl)
'+ L <: 7 (BST-Bot) TET, AT, < T, (BST-And2)
I+ 7T <: 7 (BST-Refl) THT, <: Ty
THT, <:Ts
BST-And
LT < T TFT < AT nd)
I'HTy < T3 (BST T)
TET, < Tso o THT, <: T,
T, <: Ty (BSTT)
Fka:{A: 1.7} FF{A:T.To} <: {A:T5. 74} P
(BST-SelL)
'tTi <:z.A
T3 <:Ty
F'kz:{A:T1.T5} =Ty < Ty
BST-SelU BST-Fld
'tz A<: Ty (©) Fl—{a:Tl..TQ} < {aZTg..T4}()
T35 <:T

Tz:T53FTy <: Ty
't V(Z : Tl)TQ < V(Z : Tg)T4

(BST-Fn)

2.5 Baseline Runtime Syntax

We use y — d as a syntax for heap items instead of y = d to avoid confusion with equality. We use the
name o for stacks, because we use s for self variables. Compared to kDOT, there is only one kind of
stack frame, for evaluating let terms. The syntax of record and inert types is also defined.

cu= Configuration
Y= Heap | (t;0; %)
| - empty heap Q= Member type
I X,y —1 heap object | {a:T.T} tight field decl
o= Stack | {A:T. T} tight type decl
|- empty stack R = Record type
lletz=0int: 0o let frame | Q member
F = Inert context | Ry A Ry intersection
| empty S = Inert type
| F,y:S binding | V(z:T1)T2 function

| u(s: R) object

D3S, Technical Report no. D35-TR-2020-01 2.6 Baseline Inert Context

2.6 Baseline Inert Context

In an inert context, all variables are locations y, and all types are inert types (S). The type member
declarations must be of the form {A : T..T'}. The field declarations must be of the form {a : T..T'}. The
type of variable y can only refer to variables defined previously in the context (cannot refer to following
variables or y itself). General contexts are denoted by I, inert contexts by F.

2.7 Baseline Reduction

The reduction relation defines operational semantics for the baseline DOT. Compared to kDOT, we
remove the rules for constructors and return frames.

y = v(s:T)..q{a=t}..0€X
(y1.0;0;%) — (t;0;%)

(BR-Read)

y1%V(S:T)...l{a:t}...gezl
So=%1y1 = v(s:T)..a{a=vy}...9)

BR-Writ
(y1.a 1= y2;0751) — (vya; 05 X2) (rite)
=S ANz:ThteXx
- Sy (BR-Apply)
(Yy1y2; 05 5) — ([y2/2]t; 03 2)
Yo =% = A Tt
2 =2y 2 Al T (BR-LetFn)

(let zo0 = A(z1 : Tty into; 05 51) — ([y/z2]ta; 05 22)

Yo =31,y = v(s:T)ly/sld
(let z=v(s:T)dint;o;51) — ([y/z]t; 03 3a)

(BR-LetNew)

(let z =1t inta;0;8) — (ty;let 2 =Tinty : 03 %) (BR-LetPush)

(vyslet z=0int :: 0;5) — ([y/z]t; 03 %) (BR-LetLoc)

2.8 Baseline Configuration Typing

Configuration typing defines which configurations are valid. It relates the types of objects in the heap
to the locations in the typing context, and relates the type of the term which is in the focus of exection
with the type of the top frame of the stack.

D3S, Technical Report no. D35-TR-2020-01 2.8 Baseline Configuration Typing

FrTy < T,

—— (BCT-EmptyS
F}_':Tl,TQ(mpy>

F F~ . (BCT-EmptyH)

FFO’STQ,Tg
F,Z:Tll_tZTQ
v T
2Ev Ty (BCT-LetS)
Frletz=0Oint:o:T,T3
FiFFyn X
Fl,ZITl}_tZTQ
fv T
2¢ v (BCT-FnH)
FibEFyy:V(z: T)Ty ~ 2,y = Nz :Th)t
FiFFy~X%
FiFd:[y/s|R
1P fy/s] (BCT-ObjH)
FiFFoy:p(s: R~y —v(s: R)d
F~X
FFF~X FrEt: Ty
ﬁ(BCT-COI‘I’H) FFko: T17 T2

72 (BT
Fr(hos) D orr)

D3S, Technical Report no. D35-TR-2020-01

3 roDOT Definitions

3.1 Syntax

Programs are represented by terms in ANFE. A let-lit term at runtime creates an object with members
specified by a definition d, which can contain field, method and type members. Correctly formed terms
are typed under a typing contextI'.

T = Variable Te= Context
| u abstract | empty
| v global | T,z:T binding
u = Abstract | ! hide
| 2 local d = Definition
l's self | {a =z} field
[r receiver | {m(z,r) =t} method
v = Global | {A(r) =T} type
|y location | dy A ds aggregate
| w reference T := Type
= Term | T top
| v var | L bottom
| let z =t into let | u(s:T) recursive
lletz=w(s:T)dint let-lit | {a:T1.T5} field decl
| 21.0 = 29 write | {m(z: Ty, :T3) : T} method decl
| z.a read | {B(r): T1..Tx} type decl
| 21.m 2o call | 21.B(x2) projection
B = Type name | Ty ATy intersection
| A type member | Ty v Ty union
| M mutability [N read-only bottom

3.1.1 Receiver Parameter

The problem is, that we want to refer to the mutability of the receiver in the return types of methods (it
is required to precisely describe mutability of field read). However, if we use s.M for that purpose, for
example I';p F {m(z) = s} : {m(z : T) : {M : s.M}}, then the type of a mutable value I';p - y : u(s :
{m(z:T):{M:sM}}) canbeopenedtoT;p -y : {m(z: T) : {M : y.M}}, which is a subtype of T’;
pFy:{m(z:T):{M: _L}}. This value can be stored to a field a of type {m(z : T') : {M : L}}, whichis
considered to be a read-only field. Also, when reading this field from a read-only reference, viewpoint
adaptation does not affect its type. Therefore, unless there are other paths to y, y should not be mutably
reachable through the field a. However, at the same time, we can use the value of this field to call m,
which returns a mutable reference to y.

The solution is to forbid the mutability of a value from being propagated into the types of its meth-
ods. That is done by disallowing s.M in the declaration types. Instead, we introduce a variable bound
in the method type, and refer to the mutability of the receiver by .M. We could also use a type variable,
but that would require more syntax extensions: type variables and subtyping bounds in the typing
context.

To allow giving name to return types containing .M, there must be a way to use .M in the defini-
tions of type members. That means adding a parameter r to type members. For simplicity, we add a
parameter to every type member and don’t allow bounds. Even the special M type member has such
parameter, but it has no use. Also, every type selection z1.B(z2) needs to specify an argument.

The consequence is, that for w — y € p, for normal type members, y.A(z2) is equivalent w.A(x2)
(subtyping in both directions). For mutability type member, just one direction: I';p F y.M(z2) <:
w.M (332) .

3.1.2 Kinds of Variables

There are five basic kinds of variables: z for method parameters and local variables. r for receiver
parameters of methods and type memebers. s for self reference of objects. y for heap locations. w for
object references. The letter « can be any of those. The letter u can be z, s or r. In initial configurations,
there can only be z, r and s. They must be bound. In domains of inert contexts, there can only be y or w.

D3S, Technical Report no. D35-TR-2020-01 3.2 Substitution

In domains of heaps and values of fields on a heap, there can only be y. Free variables in terms during
typed reduction can be w. In domain of general context, there can be y, w, z, r and s. In prefix of type
selection, there can be y, w, z, r and s. In a context for definition typing, there is always s at the end. In
a context for a method body, variables in the context are hidden, except r and z at the end.

3.1.3 Alpha Equivalence

We assume alpha-equialent terms, types, statements, and other structures, to be equal. We assume that
in every context, variable names are distinct. Therefore, whenever we write I' = I'y, z : T, '3, then we
can assume that « ¢ dom I'y and ¢ dom I';. Examples of alpha equivalence (not exhaustive):

p(s1:T) = p(s2 : [s2/s1]T)
v(s1: T)d =v(sy: [s2/s1)T)[s2/51]d
{m(zy : Ty, T3) : To} = {m(za : [22/21]Th, r2 : [re/r1)|z2/21)Ts) : [ra/r1][22/21] T2}
{m(z1,m1) =t} = {m(za,r2) = [ra/r1][22/21]t}
T,z : T, Tosp b ag : T3 =T, @y ¢ [xe/21|Th, [w2/x1)Tos[xe/x1]p b [22/x1) s @ [22/21] T3

3.2 Substitution

Substitution [x2/x1])X replaces all free occurences of 1 in X by xo, where X can be a variable x5, a term ¢,
a definition d or a type T'. A variable also can be substituted in a suffix of a typing context. Substitution
lemmata are stated in Section 5.1.5.

o (VX Ve
T3 # T

m (VX-V&I‘N)

(w2 /71 |vars = [Ty /2 |zg (EX-Var)

[z2/x1]23.0 = [xz/:ﬂﬂxg.a(EX'Read)

[xo/x1|x3.0 1= 24 = [X2/T1]T5.0 := [T2/T1] 24 (EX-Write)

[xo/x1]x3.may = [X2/x1]25.Mm [T2/21] 24 (EX-Apply)

[xo/x1]let 2 =ty inty = let z = [xo/21]t; in [z2/21]ts (EX-Let)

t=letz=v(s:T)dinty
[xo/x1]t = let z = v(s : [xa/x1]T)[x2/x1]d in [22/21]t2

(EX-LetNew)

[x2/71]{a = 23} = {a = [xg/xl]x:j}(DX—Fld)

22/ [{A(r) = T} = {A(r) = [w2/21]T} (DX-TyD)

[xo/x1[{m(z,7) =t} = {m(z,r) = [Z‘Q/Il]t}(DX_Met)

[2/21]dy A dy = [w2)31]dy A [w2)71]dy (PX-And)

D3S, Technical Report no. D35-TR-2020-01 3.3 Ellipsis

[.%‘g/xl]T -7 (TX—TOp)

W(TX-BOt>

[22/21]N = N(TX-N)

[22/21 Ty A Ts = [22/21|T1 A [22)21] T (1 X-And)

[22/21] Ty V Ts = [2)21) T} V |22 /21] T (TX-O1)

1 £ SNxo £ S
[w2/@1]p(s : Th) = p(s = [w2/21]TY)

(TX-Rec)

[2a/z1){a: T1. 1o} = {a : [v2/z1]T1..[v2/21]Ts } (FX-FId)

T1FT ATy FET
[1‘2/$1]{A(T) . Tl..TQ} = {A(’/‘) . [.I‘Q/I‘l}Tl..[]}g/JUl]TQ}

(TX-Typ)

T = {m(z : Tl,T : Tg) : Tg}
T1F2NToF2NT1 T N £ 1
[xz/.’ﬂl]T = {m(z : [.’L’g/.’El]Tl,’f' : [fL‘Q/fEl}TQ) : [(EQ/iCl]Tg}

(TX-Met)

[22/71]23.B(z4) = |22 /71]23.B([v2/21]aq) (LX-Sel)

[1’2/1’1]F,$3 : T1 = [l’g/l’l]r, [1’2/1’1]1’3 : [LL‘Q/.’El]Tl (CX_Blnd)

3.3 Ellipsis

Definition d of an object is written as an intersection of individual field, method and type member

definitions. To say that a definition d; is a part of definition dy, we write dy = ...; d; Similarly, we
write 75 = .. .1 T} .. .2 for the corresponding declaration types.
= L1 =
2= (DL-Refl) 27 (TL-Refl)
d= 1 d) T = 1 T -2
diy =...1d3...2 Ty=..1T3...2
R S (DL-And1) T2 2 (TL-Andl)
dl/\dgz...ldg...g Tl/\TQZ...lT3...3
d2:...1d3...2 TQZ...ng...Q
o3 =dq,... o3 =T,...
51l (DL-And2) 5Ll (TL-And2)
dl/\dgz...gdg...g Tl/\TQZ...ng...Q

3.4 Independence

The independence relation T" indep s states that a type T is independent on a variable s, meaning that the

type T does not select the mutability member M on s. Could be equivalently defined as Vr¢: s.M(ro) ¢ T
and Vz,B:x.B(s) ¢ T.

10

D3S, Technical Report no. D35-TR-2020-01

3.5 Dereferencing

TF# s
Ty F£ S
TI-SelM
x.M(z2) indep s(eIM)
Tindep s (FEA00 . Gy
x.A(z2) indep s
1 indep s (T1-Bot
1 indep s) 7 indep s
: (TI-Rec)
Weps(TI'N) wu(sg : T) indep s
T, indep s T indep s
T1 indep s T, indep s (TETyp)
_ 2P (ppAnd) {A(r): T,.Tp} indep s~ "
Ty AT, indep s
T, indep s T, indep s
zjindegs Dncep (TI-F1d)
2 -
TV T inden s\ 170 . T1..Ty} ind
T, VT; indep 3() {a:T1.. 1>} indep s
T indep s
T indep s
T3 ind
P (TI-Met)

{m(z:Th,r : T3) : T»} indep s

3.5 Dereferencing

The dereference substitution [p]d replaces reference variables in d by the corresponding location variables
from p. This is used in the (R-LetNew) reduction rule to ensure that values of fields on the heap are

always heap locations.

w—Yyep

(DU-Var)
[olw =y

x ¢ dom p

(DU-VarN)
[plz =z

[l{a =} = {a = [po} (DU-FId)

P{B(r) = T} = {B(r) = T} (DU-Typ)

[Pl{m(z,r) =t} = {m(z,r) = ¢t} (DU-Met)

[pld1 A da = [p]d1 A [p]da (DU-And)

3.6 Typing
The typing relations I';p - = : T and I';p I ¢ : T'mean that the variable z or a term ¢ has the type 7" in the
typing context I" and the environment p.

11

D3S, Technical Report no. D35-TR-2020-01

3.7 Definition Typing

1¢ T,
T'y,x: T, Tyvisx

(Vis-Var)

F:thIT,FQ

(VT-Var)
TipFa:T
CipkFa: Ty
CipETy <: T¢
M(VT—Sub)
Cipkax:Ts
TipFa:Ty
Tipkax: T
#(VT-AndI)
F;p Fa: T1 A T2
TipbFa:T
I'visx
——(TT-Var)
Lipkve: T
Tipkt: T
TipkTy < T
M(TT—Sub)
Tipkt:Ts
F,p - tl : Tl
Doz:Typkte: Ty
fv T
AR (TT-Let)

Tipkletz=1t1inty:Th

Cipba:p(s:T)
T indep s
Tipbx:[z/s]

(VT-RecE)
T

Tipba:[z/s|T
T indep s
Tipk [z/s]T ro [x/s|T
Tipbax:p(s:T)

(VT-Recl)

TipFa:T
Tipbka:{M(rg): L. T}

(VT-MutTop)

Cipkay: {m(z:Ty,r:T3) : Tn}
Tipb xy : [x2/2]Ts
TipkFay: Ty
I vis 21 T vis z9

TT-Appl
Tipb xzymag : [21/r][xe/2]Te (Y

Cipkay: T
Dipka:{a:T1. T2}
Tipbax: {M(ro) : L..L}
I' vis 21 I'viszx

(TT-Write)
DipkFxa:=x: 15

Oys:Typkd: T
Toz:p(s:Ty) A{M(rg) : L. L};pbt: Ty
z ¢ fv TQ
T; indep s

Dipkletz=wv(s:Th)dint: Ty

(TT-New)

Cipba:{a:T1.To}
TipkTo ro T;
Tip Ty mu(r) Ty
I'visx

Dipbxa: T3 AM{M(r) : L.(Ty VvV 2M(r))}

3.7 Definition Typing

(TT-Read)

The typing relation for definitions I',; s : Ty;p = d : T. mean that the definition d has the type 7" in the
typing context I', where the self-variable s of the object being defined has type T4. There is a cyclic
dependency between term typing and method typing, through (DT-Met) and (TT-New).

12

D3S, Technical Report no. D35-TR-2020-01 3.8 Heap Definition Typing

T,s:Ty;pk{A(r) =T} : {A(r) : T..T} (DT-Typ)

Tys:Ty;pt{A(r) =T} : {A(r): L.T} (DT-TypB)

U,s:Typba:T
T's:Tyviszx
D,s:Typt{a=2}:{a:T.T}

(DT-Fld)

F7S : T4;p}_ d1 ZT1
Ds:Typkds:Th
d; and dy have distinct member names
T,s:TypbdiANde : Th NT

(DT-And)

z¢tvTiUtvTy,r ¢ tvTsUfv Ty Ufv Ty
Dys:Ty,z:Ty,r: Ty AN[r/s]Ta NTs;ptt: Ts
L,s:Typk{m(z,r) =t} : {m(z : Th,r: T3) : T}

(DT-Met)

3.8 Heap Definition Typing

The typing relation for heap object definitions I',y/s : R;p F d : T. mean that the definition d has
the type 7' in the typing context I', where the self-variable s of the object at location y has type R and
definition d. It is used from the (CT-ObjH) rule of heap correspondence. Heap definition typing is
distinguished from definition typing by the heap typing context I',y/s : R. This context ends with a
triple stating that the variable s with type R was replaced by the location y in the definition being typed.
This triple is needed to construct the type given to r for typing bodies of methods. The rules are similar
to the corresponding definition typing rules, except that in (HT-Met) for typing method bodies, r has a
different type, and in (HT-Fld) and (HT-Met), s is not added to the context for typing field values and
method bodies.

T.y/s: TipF {A(r) = T} : {A(r) : 7.7} (HT-Typ)

T,y/s:Tup - {A(r) =T} : {A(r) : L.} (HT-TypB)

TipFa:T
I'visx
Tyy/s: Typk{a=2}:{a:T.T}

(HT-F1d)

T,y/s:Typbdy : T
T,y/s:Typbdo: T
d; and dy have distinct member names
F,y/s Typbdiy Ndy 2 Ty NTo

(HT-And)

z¢tv Ty UtvTy,ré¢tvIzsUfvT UtvTy
Dz Tyr:[y/sfTu ANr/s/TaNTsp bt Th
Tyy/s:Tap b {m(z,r) =t} : {m(z : Th,r : T3) : T}

(HT-Met)

3.9 Subtyping

The subtyping relation I';p = 17 <: T, means that the type T is a subtype of T3 in the typing context
I' and the environment p. The typing context I" is used in the (ST-SelL) and (ST-SelU) rules. There is
a cyclic dependency between variable typing and subtyping, through (ST-SelL) or (ST-SelU) and (VT-
Sub). The environment p is used in the (ST-Eq) rule. Useful simple properties of subtyping are stated in
Section 5.1.4.

13

D3S, Technical Report no. D35-TR-2020-01

3.10 Splitting

TipET < T (ST-Refl)

CipkTy <: Th
CipkTy <: T:
P2 3 QT Trans)
TipkETy <: T

Tipk-T <: T (ST-Top)
F;p Elo<: T(ST-BOt)

p}_Tl"RJTQ

PTIT2 (9TR
TpF T < T,)

TipF Ty <: Ty v T, (ST-Or1)

F,p FTy <:TyVTy (ST_OI2)

Tipb Ty ATy <: Ty (ST-Andl)

Tipb Ty ATy <: T, (ST-And2)

Cipka:{B(r): Th.T>}
Tip b [xe/r]Th <: x.B(x2)

(ST-SelL)

Tipbx:{B(r): T1.T>}
Tip b z.B(xg) <: [x2/r]Ts

(ST-SelU)

TipkHTs <: Ty
TipkETo < Ty

ST-Typ
LipE{B(r) : Th.T2} <: {B(r) : T3..T4}<)
TipH1T5 <1y
F,p FTy <:Ty
Dipk{a:T1.To} <: {a:T5.. T4}

(ST-Fld)

DipETh < T3 Tip b NA{M(ro) : L..1} <: L (ST-N-M)
TipkETy <: Ty
ToET : (ST-Or)
P WV < T3 F;p FN<: M(S . T) (ST-N-RGC)
Dok T < Ty , T ST-N-Fld
Tpb Ty <: T Tipb N <:{a:T,. Tz})
Tor T < DA, oL And)
o’ b2 s Tip N <: {A(r) : Tl..Tg}(ST'N'Typ)
F;p FTs <: Ty

T,z:TspF T <: Ts

T,z:T5,r:

Tespb Ty <: Ty

CipbE{m(z:T1,r:T5) : To} < {m(z: T5,7 : Ts) : T4}

(ST-Met)

CipEN<: {m(z:Th,r: T3) : Tg}(ST'N'Met)

Tip b {B(r): To.Ta} ANB(r) : T5. T4} <: {B(r) : Ty V T5..Ty A Ty} (ST-TypAnd)

F;p T A (T2 V Tg)

3.10 Splitting

The splitting relations I';p = Ty ro Ty and T';p - T mu(r) T5 mean that the type 77 has a read-only
variant 75 and mutability T3 in the typing context I' and the environment p. The mutability can depend

<: (T1 A Tg) \V4 (Tl A TS) (ST-DISt)

on the receiver variable r. Properties of splitting are stated in Section 5.1.6.

14

D3S, Technical Report no. D35-TR-2020-01

3.11 Equivalence

TipkTroT (TS-Top)
DipkE Tmu(r) T
Iip- LroN (TS-Bot)

Tipk L mu(r) L

T = {A(T) : Tl..TQ}
FipETroT
Dipb T mu(rg) T

(TS-Typ)

T={m(z:Ty,r:T3): Ta}

(TS-Met)
I'ipFTroT
TipbE T mu(rg) T
T=Aa:1T).T
la: 1B} 1g g
FipFTroT

Lipk T mu(r) T

Tipbx:{B(r): T1..Ts}
Dipk [xa/r]To ro T;
Tip b [zo/r]To mu(rg) Ty
Tipb z.B(xz) ro T
Tip bk x.B(xs) mu(rg) Ty

(TS-Sel)

3.11 Equivalence

DipH{M(r) : T1.. To} ro T (TS-M)

Dip b A{M(r) : T1.. T2} mu(r) Ty

T=p(s:Th)
TipFTroT
TipETmu(r) T

(TS-Rec)

TipETy ro Th
F;p H T3 ro T4

F,pFTl /\T3 I‘OTQ/\T4

(TS-AndR)

Tip Ty mu(r) Ty
Tip b T3 mu(r) Ty
Tipb Ty AT mu(r) To ATy

(TS-AndM)

F;p F Tl ro T2
FipE-T5ro Ty
F,pl_Tl\/Tg I‘OTQ \/T4

(TS-OrR)

Tip BTy mu(r) Ty
Tip b T3 mu(r) Ty
F,p = T1 V T3 mu(r) TQ V T4

(TS-OrM)

The equivalence relation p = T ~ T, means that the type T} is equivalent to 75 in the environment p.
Two types are equivalent if the have the same structure, but they can differ in references and locations
on left side of normal type selections, as long as the references correspond to the same location in p.
Type selections x1.M(z2) must be the same. For example, w — y - w.A(z) =~ y.A(z). Equivalence
implies subtyping in both directions. The relation is reflexive, symmetric and transitive. Useful simple
properties of equivalence are stated in Section 5.1.1.

v — v € p(VE—RtoL) ok v~ (VE-Refl)
P [V1 =R Vg

P = V1 R Vg
p v R vy phuv=us
—— (VE-Symm) —— (VE-Trans)
plEvy=u pv = u3

15

D3S, Technical Report no. D35-TR-2020-01 3.12 Runtime
p T ~ 7 (TE-Refl)
-Rec
p a1~ x (TE-Sel) pFu(s:Ty) =~ pu(s:Ts)
p a1 A(x) = x9.A(2)
P F T1 ~ T3
pETy =Ty (TE-And) pHA{B(r): T1. 1o} ~ {B(r) : T3..T4}
p|_T1 /\Tg %T3/\T4
ptETy = T;
pETi ~ Ty pETy =T, (TE-FId)
pETy =T, (TE-Or) pH{a:T1.To} =~ {a: T5.14}
p"Tl \/T2 %T3VT4
pbHT =~
P = T2 ~ T5
P = T3 ~ T6

pb{m(z:Ty,r:Ts): To} ~ {a(z: Ty,r: Ts) : TS}(TE—Met)

3.12 Runtime

A machine configuration is a tuple with four parts: the focus of execution t, stack o, environment p and
heap X. The focus of execution t is a term which decides which next step will be taken. The stack
o contains stack frames, which store the second parts of let expressions during reduction of the first
part. The environment p stores the correspondence references used in terms to locations used in the
heap. It maps a reference to the corresponding location. The heap ¥ stores objects. It maps locations to
definitions of members of the object. Correctly formed configurations can be during execution typed in
an inert context.

Y= Heap Q = Member type
|- empty heap | {a:T.T} tight field
| Xy —d heap object | {m(z : Ty,r: T3) : To} method
o= Stack | {A(r): T..T} tight type
|- empty stack | {A(r) : L. T} upper-bounded type
lletz=0int:: 0o let frame R:= Record type
pu= Environment | Q@ member
|- empty environment | R1 AR intersection
| p,w —y assignment S = Inert type
cu= Configuration I u(s: R)A{M(rg) : L.T} object
| (t;0;p; %) Fu= Inert context
Iy o= Heap Context | empty
| T,y/s: R | F,y:S binding

3.12.1 Inert Context

In an inert context, all variables are locations (y) or references (w), all types are inert, which means they
are of the form pu(s : R) A {M(ro) : L..T'}, where R is a record type and R indep s. A record type is
an intersection of method, field and type member declarations with unique names. The type member
declarations must be of the form {A(r) : T..T'} or {A(r) : L..T'}. The field declarations must be of the
form {a : T..T'}. The type of variable = can only refer to variables defined previously in the context
(cannot refer to future variables or x itself). General contexts are denoted by I, inert contexts by F.

3.13 T-Free variables

A t-free variable z in term ¢t is a free variable that occurs in ¢ not as a part of a type. That is, it occurs free
as an operand in a subterm vz, x.a, 1.4 := 3 Or x1.m T3, or in field definition {a = z}. Occurrences in

16

D3S, Technical Report no. D35-TR-2020-01

3.14 Mutable Objects

x1.B(x2) do not count. Because locations cannot be bound in a let term or a method, all occurrences of

y other than y.B(z) and z.B(y) are t-free.

A t-free variable x in stack o, is a variable x that is t-free in ¢, where let z = O in ¢t occurs in ¢ and

T # z.

Properties of t-free variables are stated in Section 5.2.1.

vz tfree z (LF-Var)

x1.mxy tfree a1 (TF-Applyl)

x1.m o tfree xo (TF-Apply2)

z.a tfree ¢ (1F-Read)

1.0 := x4 tfree x; (TF-Writel)

1.0 := 9 tfree x5 (TF-Write2)

d tfree =
T#s

let z =v(s:T1)d in t tfree x

(TF-NewD)

t tfree x
T £z

let z =v(s:T1)dint tfree

(TF-NewT)

3.14 Mutable Objects

t1 tfree x

- (TF-LetPush)
let z = t1 in t5 tfree x

ty tfree x
x#z

let z = 1 in t5 tfree x

(TF-LetPop)

d; tfree x
————(TF-Andl)
di A\ do tfree x

do tfree x
————(TF-And2)
dy N\ ds tfree x
{a = x} tfree o (TF-Fld)

t tfree x
x#z
x#r
TF-Met
{m(z,r) =t} tfree x(t)
t tfree x
T Fz
(TF-LetST)

let z=0int: o tfree x

o tfree x
(TF-LetSS)

let z=0int:: o tfree z

A location is mutably reachable from a configuration, if it is reachable from a mutable t-free variable w in
the term or on the stack through a sequence of fields, where every such field is not read-only
The set of mutably reachable locations changes in the following ways:

® On reduction of let z = v(s : T')d in ¢, the location of the new object is added.

* On reduction of let z = ¢; in ty, variables are moved between the term and stack, so mreach is not

changed.

® On reduction of w;.a := ws, the old value of the field may be removed, if the field is mutable and
there is no other mutable path to that object. If the field is readonly, then the new value may be

removed.

® On reduction of w.a, the location corresponding to w may be removed.

® On reduction of w;.mwy, the location corresponding to w; may be removed, and the location
corresponding to wy may be removed if the parameter is not used in the body of the methods.

F I (t;o; p;) mreach y;
Y1 —)...1{(L:y2}...2 e
Fipbuy i {a: L.{M(ro) : L..1L}}

F (t;o;p;X) mreach y,

(Rea-F1d)

t tfree w V o tfree w
w—Yyep
Fipbw:{M(rg) : L..L}

F I (t;o;p;X) mreach y

(Rea-Term)

17

D3S, Technical Report no. D35-TR-2020-01 3.15 Reduction

3.15 Reduction

The reduction relation defines each step of execution, transforming one machine configuration to the
next. The term in the focus of execution decides which of the rules can be applied. For an answer, no
rule applies, for other configurations, a single rule can be applied - this property is stated as the untyped
progress lemma 5.174(Pg). For a given typed configuration, the next configuration is deterministic, up
to fresh global variables added to the heap and context in the (R-LetNew) and (R-Read) rules.

wy — Y1 €
Y1 —>...1{a:y2}...2 ex
P2 = P1,W2 — Y2
(wi.a; 05 p1; X) — (vwa; 03 p2;)

(R-Read)

w1y —> Y1 €p
w3 — Yz € p
Y1 —>...1{a:y2}...2 €
Zg:Zl[yl —>...1{a:y3}...2]
(wi.a = ws; 03 p; B1) — (vws; o3 p; Ba)

(R-Write)

wp — Y1 €p
y1 = ..a{m(z,r)=t}..0 €%

(w1.mwa; oy p; B — ([w /1][wa/2]t; 05 p; L)

(R-Apply)

p2 = p1, W — Y
Yy =31,y = [y/sllp]d
(let z=v(s:T)dint;o;p1;51) — ((w/z]t; o5 p2; Xa)

(R-LetNew)

(let z =ty into; 050, %) — (ty;let z=0intg 2 0 p;) (R-LetPush)

(vwslet z =0int :: 0y p; XY — ([w/z]t; 05 p;) (R-LetLoc)

3.16 Configuration Typing

Correctly formed configurations have a type under an inert typing context F. The type is preserved
during reduction, this property is stated in 5.171(TPP). The type of the configuration is the type of the
lowest frame on the stack o. The focus of execution ¢ must have the type expected by the highest frame
on the stack. The environment p must correspond to the typing context F. References must have the
same type as the corresponding location, except their mutability may be different. The heap ¥ must
also correspond to the typing context F. The definitions stored on the heap for location y must have the
type prescribed by F under heap typing rules.

18

D3S, Technical Report no. D35-TR-2020-01 3.16 Configuration Typing

BT <15 o piptys) ;W;WE?%
F, T T, (CTEmpty 2 Tupht: Ty

z ¢ tvTy
FipFletz=0Oint:o:Ty,Ts

(CT-LetS)
Fip F~ - (CT-EmptyH)
Fi;pEFa~r ¥

= (CT-EmptyE CT-RefH
T ~.(mptyk) EWFF%w:TwZ(efH)

Fi;pEFo~ X
Fi,y/s: Ripkd:[y/s|R
R indep s
Fi;pFFo,y:u(s: R)A{M(rg) : L.L} ~ 3,y —

~(CT-ObjH)

Iy~p
=T, w:pu(s: R)A{M(ro) : L.T}, T
Iy =Ts,y:pu(s: R)yAN{M(ro) : L..L}, Ty
F~pw—y

(CT-RefE)

F~p
Fip~X%
Fipkt: Ty
(CT-CorrH) Fipbo: Ty, T
no locations in ¢t and o
FE(to;pnX): Ty

FipFF~ X%
all fields in ¥ are locations
Fip~ X

(CT-Corr)

19

D3S, Technical Report no. D35-TR-2020-01

4 Internal Definitions

This section contains additional definitions which are used to state lemmata and prove the main theo-
rems about roDOT.

41 Typed Reduction

For the purpose of proofs of the main theorems 5.173(S) and 5.181(1G), we define typed reduction, which
a variant of the reduction relation which requires the configuration to be typed in a typing context F,
and also defines how the typing context is extended.

to = wi.a
F = (to;o15015%1) : Tp
Fipr Fwy :{a: Ty. T35}
Fip1 F T5 mu(r) Tr
w1 — Y1 € P1
F=F;5,y2:pu(s1: Ri) A{M(rg): L..L},Fy
To = p(s1: Ry) A{M(r) : L..(T7 Vwi.M(r))}
ylﬁ...l{a:yg}...geEl
P2 = P1, W2 — Y2
Ft (to;o1;01;21) : To — Fywa : To b (vws; 015 p2; 21)

(TR'-Read)

to = wy.a := ws
F = (to; o1 p15%1) = To
wy — Y1 € p1
w3 — Y3 € p1
ylﬁ...l{a:yQ}...geEl
22:21[y1—>...1{a:y3}...2]
FF (to;o1501581) : To — F F (vws; 015 p1; X2)

(TR’-Write)

to = W1.M W9
FF (to;o15015%1) : Tp
w1 — Y1 € p1
Y1 —>...1{m(z7r) :t}Q €Y

TR’-Appl
FF (to;o1;01;81) : To — F F <[w1/r][w2/z]t;a1;p1;21>(pply)

to=letz=v(s: R)dint
F+ (to;o15015%1) : To
T=u(s: R)AN{M(rg): L..L}
Yo = Y1, — [y1/s]lp1]d
p2 = pP1, W1 — Y1
FF (to;o1;01551) : To — Foyn - Tywy = T+ ([wy /2]t 015 pa; Xa)

(TR’-LetNew)

to=letz=1t1inty
FF (to;o1;01;%1) : To
oo =letz=0Ointy :: 0
FF (to;ou;p15%1) : To — F = (t1; 005 p1; 21)

(TR’-LetPush)

toszl
F = (to;o15p13%1) = To
or=letz=0Oint: o9

(TR'-LetLoc)
F & (to;o1;01;21) : To — F F (w1 /z]t; 025 p1;21)

20

D3S, Technical Report no. D35-TR-2020-01 4.2 Typed Reduction Inlined

4.2 Typed Reduction Inlined

For convenience, we use a variant of typed reduction rules with premises of typing rules inlined into
the reduction rule. Equivalence of typed reduction and normal reduction is stated in Section 5.3.8.

to = wi.a
FE <w1.a;01;p1;21> : T()
F;pl H wi.a T1
F;pl = w1y - {a : T4..T3}
F;pl - T3 ro T6
F;pl - T3 mu(r) T7
Ty = Ts AMM(r) : Lo.(T5 V wi.M(r))}
w1 — Y1 € 1
Fipr Fy2 : [y1/s]T5
T =u(s:R)AN{M(rg) : L..L}
RZ...g{CLIT5..T5}...4
Fipr BTy <: [y1/s]T5
F;pl F [y1/S]T5 <:Tj
F:Fl,yl :T7F2
F= Fg,yg : ,U,(Sl : Rl) A\ {M(To) : LL},F;L
To = p(s1: Ry) A{M(r) : Lo.(T7 Vwi.M(r))}
Y1 —>...1{a:y2}...2621
P2 = p1, W2 — Y2
Fipr oy 11,1y

TR-Read
FE (to;o1;01;%51) : To— Fws : To <vw2;01;p2;21>()

to = wi.a := ws
FF(wy.a :=ws;01;p1;51) : To
Fipr Fwi.a:=ws: 1T
F;pl F w1y {a : T3..T2}
w1 — Y1 € P1
w3 — Y3 € p1
Fipr Fwy i {M(rg) : L..1}
Fipr Fws : T3
T=u(s: R)AN{M(rg): L..L}
R:...g{alT4..T4}...4
Fipy = T3 <: [y1/s|Ty
Fip1 b [y1/s]Ty <: T
FZFl,yl :T,F2
y1—>...1{a:y2}...2621
EQ:El[yla...l{a:yg}...g]
Fipy oy 211, 1)

TR-Write
Fl—<t0;01;p1;21>:T0|—>F|—<vw3;01;p1;22>()

21

D3S, Technical Report no. D35-TR-2020-01 4.3 Precise Typing

to = W1. M W2
FF (wi.mwsy;o1;p1351) : T
F:p1 Fwimwsy : Th
Fipr Fwy : {m(z: Ts5,r : T5) : Ty}
T = [wy /r][we /2] Ty
Ts = [y1/s]To
Ts = [y1/s]T11
T7 = [y1/s]Tro
w1 — Y1 €M
F;pl F w1y [wQ/Z]TE,
F,Lz:Ts,r: [y1/s]RA[r/sJRATg;p1 bt Ty
Fip1 Fwy 1 T3
T=up(s: R)A{M(rg): L..L}
R = ...3{m(ZIT9,T2T11) 1T10}...4
F;pl FT5 <:Tg
F,z: Tg;pl FTs <: Ty
Foz:Ts,r:Tspr HT7 <: Ty
F:Fl,yl :T7F2
y1— .a{m(z,r) =t}.. .0 €3
F;pl F o1 T17T0

FF (to;01;p1;51) : To — F = {[wy /r][wa/z]t; 01; p1; 51)

(TR-Apply)

to=letz=v(s:R)dint
FF (let z=wv(s: R)dint;o1;p1;51) : To
Fiprbletz=v(s: R)dint: Ty
Foz:pu(s: RYA{M(rg) : L.Llspr Bt Th
F,s :RpppHd: R
T=u(s: R)A{M(rg): L..L}
Yo =%1,y1 = [y1/s][p1]d
p2 = pP1, W1 — Y1
F;pl - g1 ZTl,TO

FF (to;o1;01:%1) : To — Foyn : Towy - T F ((wi/2]t; 015 pa; Ba)

(TR-LetNew)

t():'etZ:tl int2
Ft (let z =t inta;01501;51) : Ty

Fi;p1 - let z=t1inty: T}

F,z: T30 Fto:1TY
F;pl FtliTg

oo =letz=0Ointy :: 07

Fipr oy 211, T
F = (to;o1;p15%1) : To — F = (t1; 025 p15 21)

(TR-LetPush)

to = VWi
FE (vwi;o1;p15%1) : T
Fipr Fvwy - T
op=letz=0Oint: o9
Fip1 Foy: 11, Ty
F F (to; 015015 %1) : To — F = ([w1/2]t; 095 p1; 1)

(TR-LetLoc)

4.3 Precise Typing

Precise typing is a limited variant of variable typing, defined in an inert context, similarly to kDOT [2].
It gives a reference or a location precise types of their members. Related properties are stated in Section
5.2.2.

22

D3S, Technical Report no. D35-TR-2020-01 4.4 Simplified Precise Typing

F=F,v:T,Fq Fhiv: Ty ATy

- (VT-Var) ———— "2(VT,-Andl)
FHo:T FHo:Ty

F l_ . . T F F : T A\ T

Frvenls: D) p geey U BT G i)

F}—QUZ[U/S]T Fl_IUITQ

4.4 Simplified Precise Typing

For convenience, we also use a variant of precise typing which uses the specific form of types that
variables have in an inert context, and has fewer rules.

F=Fy,v:pu(s: R)A{M(rg) : L.T},Fs
[U/S]Rl :...1R2...2

VT;-V
F l—gl v R2 (' ar)

F=F,v:pu(s: R)AN{M(ro): L.T}, Fy
Fliv:{M(ry): L.T}

(VT\2-Var)

4.5 Tight Typing
Tight typing is a limited variant of variable typing, defined in an inert context, similarly to kDOT [2].

Tight typing is only defined for (global) variables, not for terms. The only difference between tight and
normal variable typing is the use of tight subtyping.

Fipbgv:p(s:T)

F=F,v:TF .
— b 2 (VT Var) T indep s

: : VT4-RecE
F,pF#U.T F,pl—#v.[v/S}T< # eC)
Fplypv:Ty) .

Fipby T < T Fip l—# v:lu/s|T
T 2 (VTy-Sub) T indep s
Fiplruv: T FipF [v/s]T ro [v/s|T
(VT »-Recl)
Fipbgv:p(s:T)
Fipbypv:Ty
Fiptk : T
Pr# 0 22 (yT, Andl) Fiplyv:T

. . VT .-MutT
Fipbyv: Ty AT Fip by v: {M(rg) : J_..T}(#-MutTop)

4.6 Tight Subtyping

Tight subtyping is a limited variant of subtyping, defined in an inert context, similarly to kDOT [2]. The
difference between tight and normal subtyping is in the (ST 4-SelL) and (ST4-SelU) rules, where normal
typing uses normal typing of the variable, but tight subtyping uses precise typing to find the bound of
the type member.

23

D3S, Technical Report no. D35-TR-2020-01

4.7 Invertible Typing

Fipby T < T (ST4-Refl)

Fipby Ty < Ty
Fipby Ty < T:
M(ST#—Trans)
Fipby Ty <: Ts

Fiphyu T <: T (ST#-Top)
Fipky L < T (ST4-Bot)

pl_leTQ

_PTIIE2 (gr, R
F;pI—#T1<:T2(#Ea)

FipbaTh < Ty VT (ST4-Orl)

Fipby Ty <: Ty v Ty (ST#-0r2)

F;p }—# T <: T3
Fiplby Ty <: Th

Fipby T) ATy <: Ty (STy-Andl)

Fip by Ty ATy <: Tp (STy-And2)

Frhiv:{B(r) : T1.. T2}
F;p l—# [Z‘Q/T]Tl <: ’U.B(IQ)

(ST 4-SelL)

F "! v {B(’I’) : Tl..TQ}
Fip by v.B(xs) <: [x2/r]T>

(ST 4-SelU)

F;p }_# T3 <: Ty
Fipby Th < Ty

STx-Typ
Fip by {B(r): Ty.To} <: {B(r) : Tg..n}(#Typ)
Fipby T3 <: T
Fipby Th < T,
P4 2% -4 (ST 4-Fld)

Fipby{a:T1.To} <: {a:T5.14}

Fipru NA{M(rg): L. 1} <: L (ST3-N-M)

- ; (ST#—OI‘)
F,p I_# TV, <: T3 F;p l—# N <: ,U/(S . T) (ST#-N-RGC)
Fiptby Ty < T
7,0 # -1 <_ 2 FipFa N<: {a: Tl..TQ}(ST#'N'Fld)
F,p F# T <: 13
Fobs T < T AT, O L#-And)
P S 42 3 FipbFyu N < {A(r) :Tl..Tg}(ST#'N'Typ)
F;p l_# T3 <:Th

F,z:T3;pFTg <: Tx
Foz:T5,r : Tg;pt T <: Ty

Fipby {m(z:Th,r:T5) : To} <: {m(z: T3,r : Tg) : Tu}

(ST#—Met)

Fipba N<:{m(z:Th,r:T3): TQ}(ST#_N_Met)

Fipbu {B(r): Ty..To} AMB(r) : Ts5. T4} <: {B(r) : Ty V T5..T5 A Ty} (ST#-TypAnd)

Fipbyu Ty A (TaV T3) <: (T ATz) V (Ty AT) (ST#-Dist)

4.7 Invertible Typing

Invertible typing is a limited variant of variable typing, defined in an inert context, similarly to kDOT [2].
Properties of invertible typing are stated in section 5.2.3. Equivalence of normal and invertible typing

in an inert context is stated in Section 5.2.5.

24

D3S, Technical Report no. D35-TR-2020-01

4.8 Selection Inlining Reduction

Fhiov:T
— (VTy44-Var)
F;p F## v:T

Fiprypv: T
#(VT##-T@)
F,p F## v T

Fiprgupv: Ty
F;p }_## v T2
Fipbup v:Ti NTy

(VT##—AHdI)

F;p F## (% T1

VT.4x-Orl
Fiprgypv: T \/Tg(##)

F;p F## v T2
Fip F## v:1Ty VT,

(VT##—OI‘Q)

Fipbggp v:[v/s|T
T indep s
Fipk [v/s]T ro [v/s|T

(VT 4x-Recl)
Fipbygv:pu(s:T) ##

4.8 Selection Inlining Reduction

Fipbys v1 2 [vs/r]Th
Frivg : {B(r): T1. Tz}

VT 44-Sel
Fip Fauy v1 0 ve.B(vs) (VT 4-Sel)

Fipbyg v: {B(r) : T1. T}
F;p |_# T3 <:Th
F;p l—# T5 <: Ty
Fipbyg v: {B(r) : Ts5. 14}

(VT44-Typ)

Fipbgg v:{m(z:Ti,r:T5) : T}
Fipby T3 < T
F,z:T5;pFTs <: T3
F,oz:T3,r: Tg;p Ty < Ty

VT 4u-Met
Fip I—##U:{m(ZZTg,TZT6) IT4}(#H#)

F;p F## v {a : Tl..TQ}
F;p l_# T3 <: T1
Fipby Ty <: Ty

F;p "## (2 {a : T3..T4}

(VT y4-Fl1d)

Fiobppv:Th
pFleTQ

= (VTyu-E
F;pF##U:B(##-Eq)

A selection inlining reduction is a relation between two types which allows replacing type selections by
their bounds in one direction ¢. The direction & used in covariant positions replaces by upper bounds.
The result type is a supertype of the original type. The direction © used in contravariant positions
replaces by lower bounds. The result type is a subtype of the original type. Related properties are

stated in Section 5.2.7.

25

D3S, Technical Report no. D35-TR-2020-01 4.9 Method Type Approximation Reduction

F T 5 7 (TR*-Refl)

Ftyv :{B(r) : T1.. Tz}
FF [IQ/T‘]TQ ’—>29 T3
FF Ul.B(LI,‘g) }—)aa T3

(TR*-SelU)

F "1 V1 - {B(T‘) : Tl..TQ}
F [xo/r]Ty —% T3

TR-SelL
F - vy B(z2) — T (TR*-SelL.)
FFT 3 T
FtTy—3T
2 -1 (TRS-And)
FETI AT, l—)i’s T3 ANTy
FHT) 3 Ty
FHT,—5 T
R (TR®-Or)

F|_T1VT2|—>§T3VT4

FHTy '—>S_5 T3
FET, —5 Ty
Frla: 1.1} —5 {a: T5. T4}

(TR®-Fld)

FET) 55 T3
FF Ty Ty
FF{B(r): T1.To} —5 {B(r) : T5.. 14}

(TR*-Typ)

4.9 Method Type Approximation Reduction

A method type approximation reduction is a relation between two types which replaces method types by
T or L. The direction @ used in covariant positions replaces by T. The result type is a supertype of
the original type. The direction © used in contravariant positions replaces by L. The result type is a
subtype of the original type. Related properties are stated in Section 5.2.7.

26

D3S, Technical Report no. D35-TR-2020-01

4.10 Selection Approximation Reduction

T '_>3n T (TRm—TOp)

Ul.B(.’L‘Q) '_>g1 Ul.B(J?Q) (TRm_Sel)

(s :Th) —5 u(s: Ty) (TR™-Rec)

L L (TR™-Bot) Ty —2 Ty
Ty —5 Ty
 EE—— m TR™-And
N +—m= N(TR™-N) Tl/\T2|—>gnT3/\T4(nd)
N ’_>Iél J_(TRIH-N-BOt) T1 }—)gl T3
Ty — Ty (TR™-Or)
Ty VTs }—>gﬂ T3V Ty
T, —™s T
To —2 T,
2T 4 (TR™-F1d)
{a : Tl..TQ} ’_%n {(l : T3..T4}
T1 I—)IB& T3
Ty — T,
L (TR™-Typ)

{B(’I“) : T1..T2} l—)f;n {B(T) : T3..T4}

{m(z:Th,r:Ts) : To} —7 T (TR™-MetU)

{m(z: Ti,r: Ts) : Ty} —2 L (TR™-MetL)

4.10 Selection Approximation Reduction

A method type approximation reduction is a relation between two types which allows replacing type selec-
tions types by T or L. The direction @ used in covariant positions replaces by L. The direction © used
in contravariant positions replaces by T. Related properties are stated in Section 5.2.7 and Section 5.2.8.

27

D3S, Technical Report no. D35-TR-2020-01 4.11 One Way Tight Subtyping

o1 B(az) e, L(TER-SelU)

Ul.B(mg))_>09 T (TER—SG]L)

T }_>§ T (TER—TOP) ’Ul.B(l'g) '_>§ Ul.B(ZL’Q) (TER-SGI)

e TER-Bot
1 +—5 J_(R-Bot) (s Ty) —e (s Tl)(TER—ReC)

N+—g N (TER-N) T —$ T3

— L5t (ppR-And
N—g L(TER-N-Bot) 7\, ey A 7, (TER-And)

T }—>§ T3

Ty —5 T}
(TER-Or)
T VT, }—>§ T3V 1Ty

Ty —° 5 T3
L T (TER-Fld)
{a:T1.To} —§ {a: T5. T4}
Ty —% 5 T3
L T (TER-Typ)

{B(’I") : Tl..TQ} }—>§ {B(T’) : T3..T4}

{m(z Ty, r:T3) : T} —¢, T (TER-MetU)

{m(z : T, 7 : T3) : T} ——¢ | (TER-MetL)

411 One Way Tight Subtyping

One-way tight subtyping is a limited variant of tight subtyping, which allows using the selection rules

only in one direction 4.

28

D3S, Technical Report no. D35-TR-2020-01 4.12 No Method Subtyping

Fiphs T <: T (ST Top) Fip b5 Tt ATy <: Ty (STy-Andl)

e 7 (ST%,-And2
Fiprs L <: 7(ST%-Bot) Fipbs Ty ATy <: Tp OT}-And2)

F,,D F% T <: 15

F,p }_3 T1 < T3
pFTy & Ty FioHTh <t To N'1T3

= (ST%-Eq)

Fip5 Ty < To

Fip 3 T <: T (STj-Refl)

(ST%-And)

F l—! v {B(’I“) : Tl..TQ}

Fip s Ty < Ty Fip 8 v.B(x2) <: [w2/r]Ty
F;p }—3 T <: T3
FipH5 T <: T3

(ST%-SelU)

(ST3-Trans) F o {B(r): Ty.T)
Fip g [xo/r|Th <:v.B(x2)

(ST%-SelLL)

. s . ST®,-Orl
Fip 3 Ty <: Ty v Tp (ST%-Orl) Fopbt Ty <)

Fip 5 Th <: Ty

s . ST%,-Or2 STS,-T
F,p |_5 T2 <: Tl \/TZ(#) F;p '_3 {B(T) : Tl..TQ} < {B(T) :TS..T4}(# yp)
Fip Ff? < Ty Fipbs s Ty <: T
Fiprs Tp <: T (ST%,-Or) FipbH Th <: Ty
FipFS TV, < Ty 7 (ST%,-Fld)

F;p |_§ {a : Tl..TQ} < {(J, : T3..T4}

Fip 5 N <: pu(s : T) (ST N-Rec)

Fip 5 NA{M(rg) : 1.1} <: L(ST3-N-M)

. LS . . ST%,-N-Fld
F,p |_6 N <: {a : Tl..TQ}(#) F;p }_3 N <: {B(T) . Tl..TQ} (ST;{N—Typ)

Fipby Ty < T
F,z:T3;pkTs <: T5
F,z:T5,r:Te;pkTo <: Ty
Fipbs {m(z : Th,r : Ts) : To} <: {m(z : T5,r : Tg) : Tu}

(ST%,-Met)
#

Fip B3 {B(r): Ty.To} AB(r) : T5. T4} <: {B(r) : Ty V T5..Ty A Ty} (ST%-TypAnd)

Fipbs Ty ATy V Ty <: (Ty ATy) V (Th A Ty) (STy-Dist)

FipE5 N <t {m(z:T1,r:T3) : Tv} (ST%-N-Met)

412 No Method Subtyping

No-method tight subtyping is a limited variant of tight subtyping, which allows using the selection rules
only in one direction §, and does not have subtyping betwen method types.

29

D3S, Technical Report no. D35-TR-2020-01

413 Type Without Selections

Fipn T <: T (STE-Top)
Fip o | <: T (STy-Bot)
Fipb3 T < T(ST;—Reﬂ)

Ty =T
¥(ST§;—Eq)
FipbE3 Ty < Ty
Fip bt Ty < Ty
FipbP Ty <: T3

ST -Trans
FipF0 T} <:T3(#)

FipbE3 Ty <: Ty VT (ST%-Or1)

Fip b Ty <: Ty v T, (ST-0r2)

F;p }_gn T <: Tg
F;p }—gn T, <: T3

ST-0
Fip PP TV T < 7, ST%-0r)

FipbFP N <t p(s:T) (ST%-N-Rec)

FipFP N <: {a: T1. 1o} (ST%-N-Fld)

Fip F Ty ATy <: Ty (STH-Andl)

FipFP Ty ATy <: Tp STH-And2)

F,,D an T <:1T5
F,p }_gn T <: T3
FipbE3 Ty <:To NT3

(ST%-And)

F l—! v {B(T) : Tl..TQ}
[l‘g/T]TQ }—>g§ T3
Fip 3 v.B(x2) <: T3

(ST™-SelU)

Friv:{B(r): Th.T>}
[IEQ/T]Tl l—)g Tg
Fip S T3 <:v.B(x2)

(ST™-SelL)

F;p l_r_n6 T3 <: T1
Fip b3t Ty <: Ty

ST%-Typ
Fip F2 {B(r) : Tv..Tx} <: {B(r) :T3..T4}(#-Typ)
FipF2s Ty <2 T
FipHE2 Ty < T,
Pl "2 74 (ST™-Fld)

FipbFP {a:Th.To} <:{a:T3.T4}

Fip P NA{M(rg) : L. L} <: 1 (STR-N-M)

Fip P N <: {A(r) : Tl..TQ}(STI#‘N‘TYP)

Fip P8 {B(r) : Ty. T} AMB(r) : Ts. T4} <: {B(r) : Ty V T5..T5 A T} (STH-TypAnd)

Fip PR Ty ATy V Ty <: (Ty ATy) V (Ty A Ty) (ST-Dist)

4.13 Type Without Selections

The relation T' nosel « means that the type 17" does not contain type selections involving z.

30

D3S, Technical Report no. D35-TR-2020-01

413 Type Without Selections

T nosel z (IN-Top)

1 nosel z (IN-Bot)

N nosel x (TN-N)

T1 nosel x

T5 nosel =
—————(TN-And)
T1 ANT5 nosel x

T nosel x
T5 nosel x

———— (TN-Or)
T, VT nosel x

T3 # x
T3 # T2
x1.B(z2) nosel x3

(TN-Sel)

u(s : T) nosel 2 (TN-Rec)

T nosel x

T5 nosel x
(TN-Typ)

{A(r) : T1.. T3} nosel =

T, nosel =
T5 nosel x

TN-Fld
{a:T1.. T2} nosel x()

T, nosel x
T5 nosel x
T35 nosel x

(TN-Met)

{m(z:Th,r :T3) : T>} nosel

31

D3S, Technical Report no. D35-TR-2020-01

5 Properties

This section contains lemmata and theorems with proofs.

51 Typinglemmata

This section states properties of typing relations in general contexts.

5.1.1 Equivalence lemmata

This section states properties of type equivalence (defined in Section 3.11). Two variables v; and vy are
equivalent under p if v1 — v2 € p, and this relation is reflexive, transitive and symmetric. Two types T}
and T3 are equivalent if they are syntactically the same up to equivalence of variables occurring on the
left hand side of selection of normal type members.

First, we observe that variable equivalence is only defined for global variables, not for abstract vari-
ables.

Lemma 5.1 (EqVKind). If p - x1 = o, then there exist vy, vy, such that xy = vy, and xo = va.
Idea. Variable equivalence only applies to locations and references. v
Proof. By inversion of p - x1 ~ z». O

Equivalence of types is also reflexive, transitive and symmetric. Reflexivity is ensured by (TE-Refl),
but transitivity and symmetry has to be proven by induction, using the reflexivity and transitivity of
variable equivalence.

Lemma 5.2 (EqSymm). If p =Ty = T5, then p = T5 = Tj.

Idea. Type equivalence is symmetric. v
Proof idea. Straightforward induction on type and variable equivalence, with leaf cases swapped. ¥
Proof. Induction on p - T =~ Ty:

* Case (TE-Refl): Ty = T5. By (TE-Refl).

e Case (TE-Sel): T = z1.A(z), and Ty = z2.A(x), and p F z1 = x2. By 5.1(EqVKind), exist vy, v,
such that z; = vy, and z2 = vy. By (VE-Symm), p F 22 = x;. By (TE-Sel).

* Case (TE-And): Ty = T35 ATy, and 15 = T5 NTs, where p - 15 = T5, and p - Ty = Ts. By induction,
ptHT5 = T5,and p - Ty = Ty. By (TE-And).

e Case (TE-OI'): T1 = T3 \Y T4, and T2 = T5 \Y T()', where P = T3 ~ T5, and P = T4 ~ Tﬁ. By induction,
1% F T5 ~ T3, and P = T6 ~ T4. By (TE-OI‘)

e Case (TE-Rec): Ty = p(s : T3), and Th = u(s : Ty), where p - T3 ~ T. By induction, p - T, ~ T5.
By (TE-Rec).

e Case (TE-Typ): T1 = {B(r) : T5.. Ty}, and To = {B(r) : T5..T}, where p F T3 ~ T, and p - Ty =
Ts. By induction, p - T5 = T3, and p - Ts = T4. By (TE-Typ).

e Case (TE-FId): T1 = {a : T5.. 14}, and T = {a : T5..T6}, where p - T3 ~ T5, and p - Ty ~ Ts. By
induction, p - T5 ~ T3, and p - Ts ~ T4. By (TE-FId).

e Case (TE-Met): Ty = {m(z: T5,r : T5) : Ty}, and Tp = {m(z : Tg,r : Ts) : Ty}, where p - T3 = T,
and p - Ty = T7,and p - T5 = Tg. By induction, p - T =~ T3, and p = T7 = Ty, and p + T3 = T5.

By (TE-Met).
O
Lemma 5.3 (EqTrans). If p- Ty ~ Ty, and p Ty =~ T3, then p =Ty = Ts.
Idea. Type equivalence is transitive. v
Proof idea. Straightforward induction on type and variable equivalence. v

Proof. If Ty = T3, then trivially. Induction on p - T =~ Tx:

32

D3S, Technical Report no. D35-TR-2020-01 5.1 Typing lemmata

¢ Case (TE-Refl): Ty = T5. Trivially.

e Case (TE-Sel): 71 = z1.A(x), and Tp = z2.A(z), and p F z1 ~ z3. By inversion of (TE-Sel),
T3 = x3.A(z), and p F 2 = x3. By 5.1(EqVKind), exist v1, ve, v3, such that 1 = vy, and z3 = vy,
and 3 = v3. By (VE-Trans), p - 1 =~ x3. By (TE-Sel).

* Case (TE-And): Ty =Ty ATs, and T5 = T AT7, where p - Ty = T, and p - T ~ T%. By inversion
of (TE-And), T3 = T3 A Ty, where p - T =~ T3, and p - T7 ~ Ty. By induction, p - Ty ~ T3, and
1% F T5 ~ Tg. By (TE—And)

e Case (TE-Or): Ty =Ty V Ts, and T5 = T V Ty, where p - Ty = Ty, and p - T5 = T. By inversion
of (TE-Or), T5 = T3 V Ty, where p - T =~ T3, and p - T7 =~ Ty. By induction, p - Ty ~ Tg, and
1% F T5 ~ Tg. By (TE-OI‘)

e Case (TE-Rec): T1 = u(s : Ty), and Ty = (s : Ts), where p - T, ~ Ts. By inversion of (TE-Rec),
T3 = u(s : Ty), where p - Ts ~ Tg. By induction, p - T, =~ Ts. By (TE-Rec).

e Case (TE-Typ): T1 = {B(r) : T4.T5}, and To = {B(r) : T5..T7}, where p - Ty = Tg, and p F T5 =
T7. By inversion of (TE-Typ), 75 = {B(r) : Ts.. Ty}, where p F Ts = T3, and p - Ty ~ Ty. By
induction, p - Ty =~ T, and p - T5 = Ty. By (TE-Typ).

e Case (TE-FId): T} = {a : T4.T5}, and T> = {a : T;..T7}, where p - Ty = Ty, and p b T5 =~ Tr.
By inversion of (TE-FId), T3 = {a : Ts..Ty}, where p F Ty = T, and p - T7 ~ Ty. By induction,
P = T4 ~ Tg, and P = T5 ~ Tg. By (TE-Fld)

e Case (TE-Met): Ty = {m(z: Ty,r : T5) : T5}, and To = {m(z : T7,r : Ty) : T}, where p - Ty =~ T%,
and p - T5 = T, and p - T =~ Ty. By inversion of (TE-Met), T3 = {m(z : Tho, 7 : T12) : T11}, where
P H T7 ~ TlOr and 1% - Tg ~ Tll/ and P = Tg ~ Tlg. By il’ldUCtiOI'l, P = T4 ~ TIO/ and P F T5 ~ Tllr
and 1% H T6 ~ Tlg. By (TE—Met)

O

Finally we state a lemma to be used in proofs by induction, where we invert equivalence of types,
where one type has a known structure. Because of the (TE-Refl) rule, we cannot immediately say which
one rule was used to derive the equivalence — whether (TE-Refl) or the rule specific to the structure of
the type. This lemma states that in both cases the strucutre of the other type is necessarily the same.

Lemma 5.4 (TEInv). If p = Ty A Tz = T3, then there exist Ty, Ts, such that Ts = Ty AN'T5, and p =Ty = Ty,
and p =Ty = Ts. If p =Ty V Ty = T3, then there exist Ty, Ts, such that Ts = Ty V Ts, and p = Ty =~ T, and
pFTo=Ts. If pt {a: Th..To} = T3, then there exist Ty, T, such that Ts = {a : Ty..Ts}, and p = Ty ~ Ty,
and p =Ty = Ts. If p = {B(r) : Th.. v} = T3, then there exist Ty, T5, such that Ts = {B(r) : Ty.. T}, and
pFTy =Ty, and p b To = Ts. If p & (s : Th) = T, then there exists Ty, such that Ts = u(s : Ty), and
P - T1 =~ T4.

Idea. Type equivalence preserves the structure of a type. \Y

Proof idea. Inversion of type equivalence. In all cases, either a rule specific for the syntax can be used,
or (TE-Refl). The specific rule premises directly correspond to the conclusions of the lemma. In case of
the (TE-Refl) rule, we simply apply (TE-Refl) on the parts of the type. v

Proof. e T} ANTy: By inversion: Subcase (TE-Refl): 75 = T} A T5. Choose Ty = Ty, and T5 = T». By
(TE-Refl). Subcase (TE-And): T3 = T4 AT, where p+ Ty =~ Ty, and p - Ty =~ T5.
e T, VTy: By inversion: Subcase (TE-Refl): T3 = T} V T,. Choose T, = T}, and T5 = T». By (TE-Refl).
Subcase (TE-Or): T3 = Ty V Ty, where p - Ty =~ Ty, and p - Ty =~ T5.
e {a:T).T»}: By inversion: Subcase (TE-Refl): T5 = {a : T1..T»}. Choose T = T}, and T; = T5. By
(TE-Refl). Subcase (TE-FId): T3 = {a : T4..T5}, where p - Ty =~ Ty, and p - Ty ~ Ts.
e {B(r) : Th..T»}: By inversion: Subcase (TE-Refl): T5 = {B(r) : T1..T5}. Choose Ty = T3, and T5 =
Ty. By (TE-Refl). Subcase (TE-Typ): T3 = {B(r) : T4..T5}, where p - T1 = Ty, and p - T = T5.
w(s : T1): By inversion: Subcase (TE-Refl): T5 = u(s : T1). Choose T, = T;. By (TE-Refl). Subcase
(TE-Rec): T5 = (s : Ty), where p = Ty =~ Ty.
O

33

D3S, Technical Report no. D35-TR-2020-01 5.1 Typing lemmata

5.1.2 Typing context lemmata

This section contains lemmata about typing and subtyping in different contexts, notably the weakening
5.5(Wkn) and narrowing 5.13(Narr) lemmata. Their proofs are same or similar to their counterparts in
kDOT [2].

First, the weakening lemmata 5.5(Wkn), 5.6(WknS) and 5.7(WknE) state that various kinds of typing,
subtyping, visibility, splitting and environment correspondence is preserved if the typing context is
extended with more variables.

Lemma 5.5 (Wkn). The following holds for typing, subtyping and splitting:

Idea.

IfT1,T9 vis x, and xo ¢ dom I'y, Ty, then T'y, zo : T5, T’y vis x.

IfT,Ty;pta Ty, and xg ¢ dom I'y, Ty, then T'y, w9 : Ty, Tosp b o 2 Th.

IfT,Ty;p T <: Ty, and xo ¢ dom I'y, Ty, then Ty, xo : To, Tasp F T3 <: Th.

IfT1,Ty;ptTsro Ty, and xo ¢ dom I'y, T, then Ty, 2o : To, T'a;p F T3 ro Ty.

IfT1,To;p - Ts mu(ry) Ty, and xo ¢ dom I'1, Ty, then T'1, xo : T5,Tosp F T3 mu(ry) Ty
IfTy,Topkt: Ty, and xo ¢ dom I'y, Ty, then Ty, z9 : To, To;p -t : 1.

IfT1,To,s: Taspbd :Th, and xo # s, and xo ¢ dom I'1, Ty, then Ty, o : 1o, To, s : Tasp - d - Th.
IfT1,To,y/s : Ta;pbd Ty, and o # s, and xo ¢ dom 'y, Ty, then Ty, 0 : T2, To,y/s : Ta;p b d - Th.

Adding variables to a context preserves typing. v

Proof idea. Induction on variable typing, term typing, definition typing, subtyping and splitting v

Proof. Mutual induction:

Case (Vis-Var): T';,T'y =T'3,z : Ty, Ty, and ! ¢ T'4. The variable x5 will be inserted into I'; or Ty, so
there is Fl, T TQ,FQ = F5,I : T4,F6, and ! §é Fﬁ. By (Vis—Var), Fl,ZC2 : TQ, FQ vis z.

Case (VT-Var): I'1,T's = I's,x : T1,T4. Because z2 ¢ dom I'y,T'5, then x5 # x. Then x5 : Ty is
added into I's or I'y and (VT-Var) applies the same.

Case (VT-RecE): T1 = [z/s]Ty, and T'1, Ty;p bz = (s : Ty), and Ty indep s.

By induction on variable typing, I'1, 2 : T5,T'9;p = @ : pu(s @ Ty). By (VI-RecE), I'1, z2 : T5,T'y;
pbax:lz/s]|Ty.

Case (VT-Recl): T'y,To;p @ : [x/s]Ty, and Ty = p(s : Ty), and Ty, Ta;p B [2/s]Ty ro [z/s]Ty, and
T, indep s.

By induction on ro splitting, I'1,zo : T2,T9;p F [2/s]Ty ro [z/s]T;. By induction on variable
typing, I'1, 2 : To,Tosp b x ¢ [z/s]Ty. By (VI-Recl), 'y, 2 : To, To;p @t p(s = Ty).

Case (VT-MutTop): T1 = {M(r¢) : L..T}. Directly by (VI-MutTop).

Case (VI-AndI): 71 = TyAT5,and I'y, T'9sp b o : Ty, and I'y, I'y;p - @ = T5. By induction on variable
typing, I'1,x2 : To,'osp b 2 : Ty, and 'y, 20 : 15, T95p B 2 @ T5. By (VI-Andl), I't, 2o : 15,
pbax:T.

Case (VI-Sub): I'1,I'9;p = 2 : Ty. 'y, T'9;p B Ty <: T7. By induction on variable typing, I'1, z2 :
T5,T9;p - 2 @ Ty. By induction on subtyping, I'y, 2 : T, T'9;p F Ty <: Ty. By (VI-Sub), I'y, 22 :
T5,Tosp b Th.

Cases (ST-Top), (ST-Bot), (ST-Refl), (ST-Eq), (ST-N-Rec), (ST-N-FId), (ST-N-Typ), (ST-N-Met), (ST-
N-M), (ST-And1), (ST-And2), (ST-Orl), (ST-Or2), (ST-TypAnd), (ST-Dist): Rules are independent
on I, so they apply the same.

Case (ST-And): 17 = Ty AT, and I'1, T'asp = T3 <: Ty, and I'y, I'g;p F T35 <: T5. By induction on
subtyping, Fl,xQ : TQ,FQ;p Ty <: Ty, P1,$2 : TQ,PQ;p F T3 < Ts. By (ST—And), F1,$2 : TQ,FQ;
pbFETs < Ty NTs.

Case (ST-Or): T5 = Ty V T5, and I'1,I'y;p = Ty <: Th, and 'y, T'9;p - T5 <: T3. By induction on
subtyping, Fl,l‘g : TQ,FQ;p = T4 <: Tl/ F]_,Q’,‘Q : T27F2;p = T5 <: Tl. By (ST-OI'), F17.'1?2 : TQ,FQ;
p|_T4\/T5 <: Tl.

34

D3S, Technical Report no. D35-TR-2020-01 5.1 Typing lemmata

e Case (ST-Trans): I'y,To;p T35 <: Ty,and 'y, To;p = Ty <: 1.

By induction on subtyping, Ti,20 @ 15, Tasp F T3 <: Ty, and Ty,20 @ To,Tasp F Ty < 1. By
(ST—Trans), Iy, 2o : T, Fg,p FT5 <:T7.

e Case (ST-FId): T5 = {a : Ty..T5}, and Ty = {a : Ts..T7}, where 'y, Ta;p F Tg <: Ty, and T'q, Ty;
p Ty < Tr.

By induction on subtyping, I'1,z2 : 15, I'a;p F T < Ty, and I'y, 29 : T, Ig;p H T5 <t T7. By
(ST-F1d).

e Case (ST-Typ): T3 = {B(r) : Tu..Ts}, and T1 = {B(r) : Ts..T7}, where I'1,T's;p F T <: Ty, and
Fth;p FTs <:Tr.

By induction on subtyping, Fl,l‘g : Tg,Fg;p = Te <: Ty, and thg : TQ,FQ;/) F Ts <: Tx. By
(ST-Typ).

e Case (ST-Met): T3 = {m(z : Ty,r : Tg) : T5}, and Ty = {m(z : Ty,r : Ty) : Tg}, where I'1,T's;
pFTr < Ty and I'1,T9,2 : Trsp b Ty <: T, and I'y, 9,2« Tr,r @ Tosp B 15 <: Tg. Using
alpha-equivalence, assume that z is disjoint from z and r.

By induction on subtyping, I'y,z2 : T3,T'9;p = Tv <: Ty. By induction on subtyping, I';,z5 :
T, Lo,z : Trspt Ty <: T, and I'y, 29 : T, T'o, 2 : T, 1 : To;p = T <: Tg. By (ST-Met).

e Case (ST—SQIU) T; = $3.B(l’4), and 77 = [{E4/’I’]T5, and Fl, FQ,[) Fas: {B(T) : T4T5}

By induction on variable typing, I'1,zo : T5,T'9;p & 3 @ {B(r) : Ty..T5}. By (ST-SelU), I'1, z2 :
T5,Tosp b x3.B(xy4) < [wa/7]T5.

e Case (ST—SQIL) T; = [$4/T]T4, and T = $3.B(m4), and Iy, Fg,p Fag: {B(’I") : T4T5}

Similarly as (ST-SelU). By induction on variable typing, I'1, x2 : T, T'o;p - @3 : {B(r) : T4..T5}. By
(ST—SelL), ', 2o : T, Fg;p H [1‘4/7‘]T4 < LL'S.B(£L‘4).

¢ Cases (TS-Top), (TS-Bot), (TS-M), (TS-Typ), (TS-Met), (TS-FId), (TS-Rec): Rules do not depend on
T, so they apply the same.

e Case (TS—Sel) T3 = 3}‘3.3(.234). Fl,FQ;p = XT3 {B(T) : T5T6} Fl,FQ;p = [Z‘4/T]T6 ro Tl. Fl,FQ;
P = [I4/T’]T6 mu(rl) T4.

By induction on variable typing and splitting, I'1, z2 : T2,T9;p = x3 : {B(r) : T5. 15}, 'y, 22 :
TQ,FQ;p H [Z‘4/T]Tﬁ ro Tl/ Fl,l‘g : TQ,FQ;p F [.134/7“]T6 mu(rl) T4. By (TS—Sel), Fl,.ﬁg : TQ,FQ;
14 = 1‘3.B(I4) ro Tl, F1,$2 : TQ, Fg,p + $3.B(JC4) mu(rl) T4.

e Case (TS-AndR) T3 = TsNTg, and T7 = T7 A1y, whereI'q, Io;pbF1T5roTx, andI'q, T'o;p T ro Ty.
By induction on splitting, I'1, 2 : T5,I'2;p & T5 ro 17, and I'y,zo : 15,950 = T ro T3. By
(TS-AndR).

e Case (TS—AndM) T3 = T5 A T6, and T4 = T7 AN Tg, where Fl,Fg;p = T5 mu(rl) T7, and Fl,FQ;
P H T6 mu(rl) Tg.

By induction on splitting, 'y, z2 : T5,T'9;p F Ts mu(ry) T7, and 'y, xg : T5,Ta;p F T mu(ry) Ts.
By (TS-AndM).

e Case (TS-OrR): T3 =15V Ts, and 17 = T7 V15, where I'1,I's;p - T5 ro 17, and I', I'g;p F T ro Ts.
By induction on sphttmg, Fhl‘g : TQ,FQ;p H T5 ro T7, and F1,$2 : T27F2;p F T6 ro Ts. By
(TS-OrR).

e Case (TS—OI'M) T3 = 15 V Tg, and T, = T7; Vg, where F1,F2;p T mu(rl) T, and Fl,FQ;
P F TG mu(rl) Tg.

By induction on Splitﬁl’lg, F1, xT9 TQ, Fg;p H T5 mu(rl) T7, and Fl,!EQ : T27F2;p |— T6 mu(rl) Tg.
By (TS-OrM).

e Case (IT-Var): t = vz, and I';,I's;p - = : Ty, and I'y, 'y vis z. By induction on variable typing,
I'y,zg : T3, T9;p F o : Ty. By induction on visibility, I'y, 22 : T3,y vis z. By (TT-Var), I'1, 25 :
T5,Tosp b vx : T7.

e Case (TT-Apply): t = xg.mzy. Tt = [x3/r][xa/2)Ts. T1,Tosp b as i {m(z : T5,7 : T5) : Tu}. I'1, Ty;
pbay:T5.T,Tasp b g : [w4/2]T5. T1,To vis xg. Ty, T'o vis z4.

Using alpha-equivalence, assume that x5 is disjoint from z and r.

35

D3S, Technical Report no. D35-TR-2020-01 5.1 Typing lemmata

By induction on variable typing, I'1,z2 : T5,T9;p - 23 : {m(z : T3,r : T5) : Tu}. By induction
on variable typing, I'1,z9 : T5,T'2;p F 24 : T5. By induction on variable typing, I'1, zo : 15, T'y;
p b x5 : [x4/2]T5. By induction on visibility, 'y, zo : 15,y vis x3, and I'y, 2o : T5, 'y vis x4. By
(TT-Apply), T'1, 22 : To, Tosp bt [xg/7][xa/ 2] T4

e Case (TT—Read): t = x3.a. T1 = T5 A {M(TQ) : J_(TG \/LCg.M(T’()))}. F17F2;p = XT3 . {a : T3T4}
F17F2;p F T4 ro T5. Fl,rg;p H T4 mu(ro) TG. Fl,FQ vis xs3.

By induction on variable typing, I'1, 23 : T5,T'2;p = @3 : {a : T3..T4}. By induction on splitting,
Fhl'g : TQ,FQ;p H T4 ro T5. By induction on Splitting, Fl,.’EQ : TQ,FQ;p - T4 mu(ro) T6. By
induction on visibility, I'1, zo : T,y vis x3. By (TT-Read), I'1, 22 : T2, To;p F ¢t : Ts A {M(ro) :
L(TG V LI,‘3.M(’I"0))}.

e Case (TT—Write): t = I3.a = T4. Pl,FQ;p = Ty Tg. I‘l,I‘g;p H I3 {a : Tng} Fl,FQ;p - XT3 :
{M(ro) : L..1}. T,y vis 3. ', Ty vis 4.
By induction on visibility, I'1, 22 : T5,I'> vis z3, and I't, o : T5,I's vis x4. By induction on
variable typing, I'1,zo : T5,I'2;p & 24 : T3. By induction on variable typing, I'i,z2 : T5,'s;
pt xs: {a: T5..11}. By induction on variable typing, I'1, z2 : T2,T'2;p F 23 : {M(rg) : L..L}. By
(TT-WI'itE), Fl,l‘g : Tg, Fg;p Ft: T1~

e Case (TT-New): t =let z = v(s : T5)d int1. I'1, o, s : Ty;p b d : T5. T'1,T9, 2 = pu(s : T3) A {M(ro) :
L.l};pbty:Ty. 2z ¢ tv T). T3 indep s.
Using alpha-equivalence, assume that x5 is disjoint from s and z.
By induction on definition typing, I';, 3 : T5,T'2,s : T3;p I d : T5. By induction on term typing,
Ti,20: 19, T,z (s : T3) A{M(ro) : L..L};ptt1 : T1. By (TT-New), I'1, zo : T5, Tosp ¢ 2 T7.

e Case (TT-Let): t = let z = t1 in to, where I'1,T'g;p F t1 @ T5, and 'y, 9,2 : T5;p F to : T1, and
z ¢ fv Tl.
Using alpha-equivalence, assume that x5 is distinct from z.
By induction on term typing, I'1,xz2 : T5,I'2;p F t1 : T5. By induction on term typing, I'1, z2 :
TQ,FQ, zZ T3,p = tg : Tl. By (TT—Let), F1,$2 : TQ,FQ;p Ht: Tl.

e Case (TT-Sub): I'1,I'9;p ¢ : T3, and I'1,I'9;p = T3 <: T3. By induction on term typing, I'1, x5 :
T5,T9;p = t : T3. By induction on subtyping, I'1, x5 : T5,'2;p F T3 <: Ty. By (TT-Sub), I'y, 25 :

TQ,FQ;p Ft: Tl.

¢ Cases (DT-Typ), (DT-TypB), (HT-Typ), (HI-TypB): Rules do not depend on I', so they apply the
same.

e Case (DT—Fld) d= {a = 563}, and T = {a : T4..T4}, where Fl,FQ, s: T3 vis xs, and Fl,rg, S Tg;
pbxs:Ty.

By induction on visibility, I'1, z2 : T5,I'2, s : T3 vis z3. By induction on variable typing, I'y, z2 :
T5,To,s: Ty;p b a3 : Ty. By (DT-FId), I'1, 20 : T5, 9,5 : Ty;p F {a = a3} : {a: Tu.. Ty}

e Case (HT-FId): d = {a = 23}, and T} = {a : T4.. T4}, where 'y, T's vis 3, and I'1, T'y;p - 23 1 Ty.
By induction on visibility, I'1, z2 : T5,I's vis x3. By induction on variable typing, I'1, zo : T5,'s;
P = I3 : T4. By (HT—Fld), P17£C2 : TQ, FQ, y/S : T3;p H {CL = $3} : {a : T4T4}

e Case (DT—And) d= d1 A dg, and T1 = T4 A T5, where Fl,FQ, S T37p - dl : T4, and F17F27 S Tg;
ptds: Ty, and d; and dy have distinct member names.
By induction on definition typing, I'1,z2 : 12,T'2,s : Ta;p = dy : Ty, and 'y, 29 @ 15, T, s @ T5;
14 = dg . T5. By (DT—AI’Id), Fhl'g : TQ,FQ, S Tg,p F dl A\ dg . T4 N T5.

e Case (HT—AI’Id) d = diAds,and T1 = TyNTs, where 'y, T, y/S Tyspbdy Ty, andI'{, Ty, y/S 2 Ty;
ptds: Ty, and d; and ds have distinct member names.
By induction on definition typing, I'1, z2 : T2, T'2,y/s: T5;p b dy : Ty, and 'y, 2 : 1o, T2,y /s : T5;
pFdsy:Ts. By (HT-And), 'y, x5 : TQ,FQ,y/S :Tsspbdi Nds 2 Ty NTs.

e Case (DT-Met): d = {m(z,r) = t},and T1 = {m(z : Ty,r : Tg) : T}, where I'1,T'a,s : T3,!, 2 :
T4,7" : T3 N [T/S}Tg A Tg;p Ft: T5, and z ¢ fv T4 U fv Tg, and r ¢ fv T4 U fv T6 U fv Tg. Using
alpha-equivalence, assume that z is disjoint from z and r.

By induction on term typing, I'1,zo : T5,T'9,s : T3,z : Ty, : T3 A [r/s]T5 NTg;p b t : Ts. By
(DT-Met), I'1, 20 : To,Tg, s : Tasp b= {m(z,r) =t} : {m(z : Ty, r : Tg) : T5}.

36

D3S, Technical Report no. D35-TR-2020-01 5.1 Typing lemmata

e Case (HT-Met): d = {m(z,r) = t},and Ty = {m(z : Ty,r : Tg) : Ts}, where I'y, T3, !,z : Ty, 7 :
[y/S]Td A [T/S]Tg A\ T(),p Ft: T5, and z ¢ fv T4 U fv T3, and r ¢ fv T4 U fv T(, U fv T3 Using
alpha-equivalence, assume that z is disjoint from z and r.

By induction on term typing, I'1,xz2 : 12,9,z + Ty,r @ [y/s|T5s A [r/s|Ts AN Tg;p F t @ T5. By
(HT-Met), 'y, 0 : T2, T, y/s : Ta;p b {m(z,7) =t} : {m(z : Ty, 7 : Tg) : Ts}.

O
Lemma 5.6 (WknS). IfT'y,To;p b o : T3, Ty, and I'y, xg : T2, Ty is inert, then T'y, @0 : To, Tysp -0 T3, Th.
Idea. Adding variables to a context preserves stack typing v
Proof. Because I'y, x3 : To, T’ is inert, then zo ¢ dom I'y, I's. Inductionon I'y, T'a;p o = T3, T7:

* Case (CT-EmptyS): I'1,I'y;p = T3 <: T3, and 0 = -. By 5.5(Wkn), I'1, 22 : T5,'9;p = T3 <: T3. By
(CT-EmptyS).

e Case (CT-LetS): 0 =0y :let z=0int. T1,Tg;pb o1 : Ty, T1. T4, Do, 2z : Ty;p bt : Ty, 2 ¢ £v Ty.
Using alpha-equivalence, assume that z is distinct from z.
By induction, I'1, 2 : T5,T'2;p = o1 : Ty, Th. By 5.5(Wkn), I'1, 22 : 15,9,z : T3;p F t : Ty. By

(CT-LetS).
O
Lemma 5.7 (WknE). IfF1,Fy ~ p,and Fy,v : T, Fy is inert, then F1,v : T, Fy ~ p.
Idea. Adding variables to a context preserves environment correspondence v

Proof. Because Fy, v : Tz, Fy is inert, then v ¢ dom Fy, Fy. Induction on Fy,Fg ~ p:

¢ Case (CT-EmptyE): p = -. Directly by (CT-EmptyE).

e Case (CT-RefE): p = p1,w — y,and F3 ~ p;,and F1,Fo = F5,y : u(s: R) A{M(rg) : L..L},Fq,w:
(s R) A{M(rg) : L. T35}, Fs.

Because v ¢ dom Fy,Fy, then v # w, and v # y. v is added into F3, F4 or F5. If v is added into F3,
then by induction. By (CT-RefE), which applies the same.

O

Similarly to weakening lemmata, where the typing context is extended by a new variable, we show
that when the runtime environment is extended, then equivalence, various kinds of typing, subtyping
and splitting are also preserved.

Lemma 5.8 (EWkn). The following holds for typing, subtyping and splitting:
o IfptTs~T, then pyw — y+ T3 = Ti.
o I[fiptao: Ty, thenTip,w — y b o 17.
o Ifipt Ty <: T, thenT;p,w — y = T3 <: T7.
o I[fIsptT5ro T, thenT';p,w — y F T3 ro 17.
o IfT;pt T5 mu(ry) Ty, then T';p,w — y = T5 mu(ry) Ty.
o Ifl'ipbt Ty, thenip,w — y =t : Ty,
o If's: T3;ptd: Ty, then s : Ty;p,w — y b= d: T7.
o IfTy/s:Ts;pd:Ty, thenT,y/s: Ty;p,w =y d: Th.

Proof idea. Straightforward induction on variable typing, term typing, definition typing, type equiva-
lence, subtyping and splitting. v

Proof. Induction on variable typing, term typing, definition typing, type equivalence, subtyping and
splitting:

37

D3S, Technical Report no. D35-TR-2020-01 5.1 Typing lemmata

e Case (VE-RtoL): If v; — vy € p, then vy — v2 € p,w — y. Use the same rule.

* All other cases use p in premises only directly in typing, equivalence, subtyping or splitting. By
induction, show the same for p,w — y, then use the same rule.

O
Lemma 5.9 (EWknS). If T';pt o : T35, T, then T;sp,w — y - o : T3, 1.
Idea. Adding to the runtime environment preserves stack typing v
Proof. T is inert. Induction on I';p - o : T3, T7:

¢ Case (CT-EmptyS): I';p F T3 <: T, and ¢ = -. By 5.8(EWkn), I';p,w — y F T3 <: T1. By (CT-
EmptyS).

e Case (CT-LetS):c =0y :let z=0int. T;pt oy : Ty, T1. T,z : Ts;p bt : Ty. z ¢ v Ty
By induction, I';p, w — y - o1 : Ty, Th. By 5.8(EWkn), I, 2 : T3;p, w — y =t : Ty. By (CT-LetS).

O

For heap correspondence, we state three variants of weakening: appending a location to the con-
text, and appending a reference to both the context and the environment for partial and for full heap
correspondence.

Lemma 5.10 (WknHL). IfFi;p - Fy ~ 3, and Fy,y : T is inert, then F1,y : T;pF Fy ~ X,

Idea. Adding a location to an inert context preserves correspondence of a part of a heap. v
Proof idea. Induction on heap part correspondence, using weakening on object typing. v
Proof. Because Fy,y : T is inert, then y ¢ dom Fy. Induction on Fy;p - Fo ~ X

* Case (CT-EmptyH): Directly by (CT-EmptyH) (does not depend on F).

e Case (CT—Ob]H) Fy = F3,y1 : /J,(S : R) AN {M(To) : J_J_} Y = 237y1 — d. Fl;p F Fs ~ Xs.
Fi,y1/s: Ri;pFd: [y1/s]R. R indep s.

By induction, F1,y : T;p - F3 ~ E3. By 5.5(Wkn), F1,y : T,y1/s : Ryp - d : [y1/s]R. By (CT-ObjH),
Fi,y:Ti;pFFqo~ 3.

e Case (CT—RefH) Fo=Fs,wy :T. Fl,p FF3~ 2.
By induction, Fy,y : T;p F F3 ~ X. By (CT-RefH), F1,y : T;p - Fa ~ 3.

O
Lemma 5.11 (WknHP). IfFi;pF Fy ~ %, and Fy,w : T is inert, then F,w : Tip,w — y F Fg ~ X,
Idea. Adding a reference to an inert context preserves correspondence of a part of a heap. v
Proof idea. Induction on heap part correspondence, using weakening on object typing. v

Proof. Because F1,w : T is inert, then w ¢ dom F;. Induction on Fy;p - Fo ~ X:

¢ Case (CT-EmptyH): Directly by (CT-EmptyH) (does not depend on F).

e Case (CT—Ob]H) F2 = Fg,yl : /.l(S : R) AN {M(To) : LL} ¥ = Zg,yl — d. Fl;p F F3 ~ 23.
Fi,y1/s: RipFd: [y1/s|R. R indep s.

By induction, F1,w : T;p,w — y F F3 ~ X3. By 5.5(Wkn), F1,w : T,y1/s : Ryp b d : [y1/s]R. By
5.8(EWkn), F1,w: T,y1/s: Rip,w =y d : [y1/s]R. By (CT-ObjH), F1,w : T;p,w — y F Fo ~ 3.

e Case (CT—RefH) Fy = F37’LU1 :T. Fl,p FFs~ 3.
By induction, Fy,w : T;p,w — y = F3 ~ . By (CT-RefH), F1,w : Tip,w — y F Fo ~ X,

Lemma 5.12 (WknH). IfF;p ~ ¥, and F,w : T is inert, then F,w : T;p,w — y ~ X.

Idea. Adding a reference to an inert context preserves heap correspondence. v

38

D3S, Technical Report no. D35-TR-2020-01 5.1 Typing lemmata

Proof idea. The heap correspondece rules allow any assignment of types to references and do not depend
on them. v

Proof. By inversion of (CT-CorrH), F;p - F ~ 3, and all fields in ¥ are locations. By 5.11(WknHP),
F,w:Ti;p,w -y F~X. By (CI-RefH), F,w : T;p,w — y - F,w : T ~ X. By (CT-CorrH), F,w : T}
pywW =y ~ X, O

The narrowing lemma states that if a type in a typing context is replaced by a subtype, then typing
is preserved.

Lemma 5.13 (Narr). The following holds for typing and subtyping:

o IfT',u:Ty,Tovisz,andUi;p Ty <: Ty, then 'y, u : T, T’y vis .

o IfT',u:Ty,Topta: Ty, andTi;p b Ty <o Ty, then Iy, w15, Tosp b o 2 1.

o IfT',u:Ty,TosptTy <:Ty,and Ty;p b To <: Ty, then T'y,u: To, Tosp = T3 <: 1.

o IfT',u:Ty,TosptTyro Ty, and I'y;p b To <: Ty, then Ty, u: 1o, To;p = T3 ro Th.

o IfT,u:Ty,Topt Ty mu(r) Ty, and Ty;p F Ty <: Ty, then Ty, u : Ty, To;p - T3 mu(r) Ty.

o IfT',u:Ty,Tospbt: Ty, and Ty;p b Ty <: Ty, thenT'y,u: T, To;p -t 2 Th.

o IfT',u:Ty,To,s:Taspbd: Ty, and Ty;p - To < Ty, thenT'y,u: 15, To,s : Ty;p b d : 1.
Proof. Induction on variable typing, term typing, definition typing, subtyping and splitting:

® Case (VI-Var), z = u: By (VI-Var) and (VI-Sub).
¢ Other cases by induction as in 5.5(Wkn).

O

Finally, lemma 5.14(Unhide) shows that removing ! from a typing context preserves typing.
Lemma 5.14 (Unhide). The following holds for typing and subtyping:

o IfTy,!,Ty vis x, then T'1, T3 vis .

o IfTy,\\Ty;pta Ty, thenT',To;p b : 1.

o IfTy,\Ty;ptT5 <: Ty, then Ty, Tg;p - T5 <: T1.

o IfT,,Ty;ptT5ro Ty, thenT'1,T'y;p - T5 ro 1.

o IfTy,,Ty;p - T5 mu(ry) Ty, then T'1,Ta;p = T5 mu(ry) Ty.

o IfTy,\Ty;pkt: Ty, thenT 1, To;ptt:Ty.

o IfI',I,Iy,s : Ty;pbd: Ty, thenT'1,Ta, s : T;p - d = 1.
Idea. Removing ! from a context preserves typing. v
Proof idea. Induction on variable typing, term typing, definition typing, subtyping and splitting: v
Proof. By induction as in 5.5(Wkn). Removing ! does not affect application of any rule. O

39

D3S, Technical Report no. D35-TR-2020-01 5.1 Typing lemmata

5.1.3 Environment correspondence lemmata

This section contains lemmata about runtime environment correspondence F ~ p. If w — y € p, thenin
a corresponding context, w and y have the same type except mutability. This is stated in three variants,
for when none of the types or one of them is known.

Lemma 5.15 (ECorrInv). If I' ~ p, and w — y € p, then there exist T, 'y, I's, I's, 'y, s, R, such that
F=Ty,w:pu(s: R)AN{M(rg) : L. 1o}, To,and Ty =T3,y: pu(s: R) A{M(rg) : L..L} Ty.

Idea. Location and reference have the same, except for mutability. v
Proof idea. Induction on environment correspondence. v
Proof. InductiononI" ~ p:

¢ Case (CT-EmptyE): Not possible.

e Case (CT—RefE) P = pP1, W1 — Yi. I'= F5,w1 : /L(Sl : Rl) A {M(TQ) : J_.‘Tg},].—‘ﬁ. F5 = F7,y1 : /L(Sl :
Rl) AN {M(’f‘()) : J_J_},Fg F5 ~ p1.

— If w = wy, then choose T, = T3, and s = s;, and R = Ry, and '3 = I';, and I'y = I's, and
Fg = PQ, and F5 = Fl.

— Otherwise, w # w1, therefore w — y € p;. By induction, exist 15, I'y, I'g, I's, Iy, s, R, such
that F5 S Fl,w : ,u(s . R) /\{M(To) : J_..TQ},FQ, and Fl = Fg,y : /J(S : R) /\{M(To) . J_J_},F4
Choose 'y =Tg,wy : u(sy : Ri)A{M(rg) : L..T3}, T, thereforeT' =T, w : u(s : R)A{M(ro) :
1. 75}, .

O

Lemma 5.16 (ECorrInvY). IfTI' ~ p,and w — y € p,and I' =Ty, w : Ty, 'y, then there exist Ty, s, R, T's, T's,
suchthat Ty = p(s : R) A{M(rg) : L. 1o}, and Ty = T3,y : u(s: R) A{M(ro) : L..L}, Ty

Idea. Location has the same type as the reference, except for mutability. v
Proof idea. By 5.15(ECorrInv) and by uniqueness of variables bound in a context. v

Proof. By 5.15(ECorrInv), exist Ty, I's, I'g, I's, T'y, such that I = T's,w : p(s : R) A{M(rg) : L..T2}, T,
and T's = T3,y : u(s : R) A{M(rg) : L..L},T4. Because we assume that variables bound in context are
unique, thereforeI';y =I's, and I's = I'g, and 71 = p(s : R) A {M(ro) : L. To}. O

Lemma 5.17 (ECorrInvW). IfI' ~ p,and w — y € p,and I' =T,y : 11, T, then there exist Ts, s, R, I's, L'y,
suchthat Ty = p(s : R) A{M(ro) : L..L}, and Ty =T5,w : p(s: R) A{M(rg) : L..T5},Ty.

Idea. Reference has the same type as the location, except for mutability. v
Proof idea. Induction on environment correspondence. v

Proof. By 5.15(ECorrInv), exist T, I's, I's, I's, I'y, such that ' = T's,w : p(s : R) A {M(rg) : L. T2}, Ty,
and I's = T's,y : u(s : R) A {M(rg) : L..1},T'5. Because we assume that variables bound in context
are unique, therefore I'y = T'g, therefore I'y = T's,w : pu(s : R) A {M(rg) : L.T5}, Ty, and Th = p(s :
R) AN {M(To) : LTQ} O

40

D3S, Technical Report no. D35-TR-2020-01 5.1 Typing lemmata

5.1.4 Subtyping lemmata

This section contains simple helper lemmata about subtyping. The subtyping rules for intersection and
union types are stated in a way where the intersection or union type is on one side. With transitivity, it
is easy to show subtyping between two intersection and between two union types.

Lemma 5.18 (AndSub). IfF;p FTy <: T3, and Tipb Ty <: Ty, then TipbETy ANToy <: T ATy,
Idea. Subtyping between two intersection types. v

Proof. By (ST-And1), I';p = Ty ATy <: Ty, by (ST-Trans), I';p - T1 A To <: T3. By (ST-And2), T
p Ty NTsy <: Ty, by (ST-Trans), I';p = Ty ATy <: Ty. By (ST-And), I'sp = T1 A To <: Ty A Ty O

Lemma 5.19 (OrSub). If Tsp =Ty <:T5,and Usp = To <: Ty, thenTip =Ty vV Ty <: T3V Ty,
Idea. Subtyping between two union types. v

Proof. By (ST-Orl), I';sp = T3 <: T3 V Ty, by (ST-Trans), I';p = Ty <: T3 V Ty. By (ST-Or2), I'ip F Ty <:
T3V 1Ty, by (ST—Trans), Tip FTy <: T3V Ty By (ST—OI'), Tip FTy v, <: T3V Ty O]

The next lemma shows subtyping between an union and a type member declaration.

Lemma 5.20 (OrTypSub). If T';p = Th <: {B(r) : To.. T3}, and T;p = Ty <: {B(r) : T5..Ts}, then T
p FTyVvVT, <: T, where T; = {B(’I") To ANT5. 15V Te}

Proof. By (ST-Andl), I';p = Ty A T5 <: Ty. By (ST-Orl), I';p - T3 <: T3 V T. By (ST-Typ), I';p F {B(r) :
T5. T3} <: Tr. By (ST-Trans), I';p - Th <: T7. By (ST-And2), T';p F Th A Ts <: T5. By (ST-Or2), T
pFTs <: T35V Ts. By (ST-Typ), I'sp - {B(r) : T5.. 16} <: T7. By (ST-Trans), I';p F Ty <: T7. By (ST-Or), T';
pETy VT, < Tr. O

41

D3S, Technical Report no. D35-TR-2020-01 5.1 Typing lemmata

5.1.5 Substitution Lemmata

This section contains several variants of substitution lemmata, following the form of the substitution
lemma in kDOT [2]. The standard case of substituting an abstract variable for another variable in typing
relations is stated in 5.27(SubV) and 5.28(SubT).

The lemmata 5.21(SubSwap), 5.22(SubVarNe) and 5.23(Subld) show some simple properties of sub-
stitution of variables.

Lemma 5.21 (SubSwap). If x1 # x3 and x1 # x4, then the following holds for variable and type substitution:
* [z4/x3][w2/ 71|70 = [[T4/ 73|72/ 71][4 /73] 70

* [wa/xs][va/21|T = [[xa/23] 22 /21][04 /23] T

PTOOf. Will show that if [1‘4/1‘3] [1‘2/1‘1}1‘0 = Ts, then Hl‘4/l‘3]l‘2/l‘1][l‘4/£3]£0 = T5. Bycases on [1‘4/1‘3][1‘2/.131].%‘0 =
Is5:

e Case (VX-VarE): z3 = [z2/21]x0. ©5 = x4. By cases on x3 = [z2/z1]z0:

— Case (VX-VarE): 1 = x¢. ©3 = 2. Because zg # x3, by (VX-VarN), [z4/z3]x0 = 0 = 1. By
(VX—VarE), [584/‘%3}582 = Ts5. By (VX-V&I'E), HI’4/$3]I’2/I1]1’1 = Ts5.

— Case (VX-VarN): x1 # . 3 = z0. By (VX-VarE), [x4/z3]z0 = x5. Because z; # x3, by
(VX—VarN), [.’L‘4/Z‘3}.’L‘1 =XT1. Because Iy 75 Ts, by (VX-V&I‘N), [[374/333]372/331].’1?5 = Is5.

e Case (VX-VarN): z3 # [z2/x1]20. 5 = [22/21]x0. By cases on x5 = [x2/x1]z0:

- Case (VX-VarE): 1 = zg. x5 = x2. Because zy # 3, by (VX-VarN), [z4/z3]z0 = 20 = 271.
Because x5 # x5, we have zo # x3, so by (VX-VarN), [z4/x3]z2 = x2 = z5. By (VX-VarE),
[[I4/SE3]I2/I1]I1 = T5.

- Case (VX-VarN): I 7£ Tog. Ty = Xo. Because i) # s, by (VX-V&I‘N), [(E4/{E3](E(] = Xog = IT5.
Because x5 # x1, by (VX-VarN), [[z4/z3]z2/21]25 = 5.

Will show that if [CC4/,’B3][.’L‘2/.’L’1]T = TQ, then [[$4/$3]$2/$1][$4/$3]T = TQ. Induction on [1‘4/1‘3}[1‘2/1‘1]1—' =
TQZ

* All cases directly by induction and the same rule.

O
Lemma 5.22 (SubVarNe). If zg # x5, and xo # x5, then [x2/x1]T0 # 5.
PI"OOf. If o = T1, then by (VX—VarE), [:cg/:cl]:co = T2 7é Is. If o 7£ 1, then by (VX—VarN), [IEQ/IEl]JCO =
i) # Is5. O]
Lemma 5.23 (Subld). If x1 # x2, then the following holds for variable and type substitution:
* [za/m][za/zi]zo = [w2/21]20
* [za/mi][we/i|T = [29/m1]T
P?’OOf. o If g = T1. By (VX-V&I‘E), [332/1‘1]1‘0 = T2. By (VX—VarN), [$4/371H.’L‘2/31‘1}$0 = T9.
o If uty) 79 x1. By (VX—VarN), [332/1‘1}330 = Xg. By (VX—VarN), [$4/l‘1][$2/331]l‘0 = Xo.
e For types, by straightforward induction on replacement in types.
O

The lemmata 5.24(SubVis), 5.25(SubIndep) and 5.26(SubEq) show how substitution preserves visi-
bility, independence on mutability and type equivalence.

Lemma 5.24 (SubVis). IfT'y,u: T,y vis z1, and T'1,u : Ty, Ty vis x, then Ty, [z /u]Ts vis [z/u]z;.

Proof. If 1 = wu, then [x/u]z; = x. Because no ! is added, then I'y, [x/u|ly vis z. If ;1 # u, then
[z/u]x; = 1. Because no ! is added, then I'y, [z /u]T"s vis ;. O

42

D3S, Technical Report no. D35-TR-2020-01 5.1 Typing lemmata

Lemma 5.25 (SubIndep). If T indep s, and x # s, then [z /u]T indep s.
Proof. Induction on T indep s:

¢ Case (TI-Top): T = T. By (TX-Top) and (TI-Top).
* Case (TI-Bot): T' = L. By (TX-Bot) and (TI-Bot).
® Case (TI-N): T' = N. By (TX-N) and (TI-N).

e Case (TI-And): T = T} A T, and T} indep s, and T5 indep s. By induction, [z/u]T} indep s, and
[z/u]T> indep s. By (TX-And) and (TI-And).

e Case (TI-Or): T = Ty V Ty, and T1 indep s, and T5 indep s. By induction, [x/u|T; indep s, and
[z/u]T, indep s. By (TX-Or) and (TI-Or).

¢ Case (TI-SelM): T' = x1.M(x2), where 1 # s, and z3 # s. By 5.22(SubVarNe), [z/u]z; # s, and
[z/u]za # s. By (TI-SelM).

e Case (TI-SelA): T' = z1.A(x2), where x5 # s. By 5.22(SubVarNe), [z /u]zs # s. By (TI-SelA).

e Case (TI-Rec): T = u(s2 : T1), and T3 indep s. Using alpha-equivalence, assume that s # s,, and
sy # u, and s # z. By induction, [z/u|T} indep s. By (TX-Rec), [z/u]T = p(s2 : [x/u]Ty). By
(TI-Rec).

e Case (TI-Typ): T = {B(r) : T1..T»},and T} indep s, and T, indep s. By induction, [z/u]T; indep s,
and [z/u]T, indep s. By (TX-Typ) and (TI-Typ).

e Case (TI-Fld): T = {a : T1..T%}, and T} indep s, and T3 indep s. By induction, [z/u]T) indep s,
and [z/u]T> indep s. By (TX-Fld) and (TI-F1d).

e Case (TI-Met): T'= {m(z : Ty,r : T3) : Tz}, and T} indep s, and T3 indep s, and T3 indep s. By
induction, [z/u|T; indep s, and [z/u]T5 indep s, and [z/u]T5 indep s. By (TX-Met) and (TI-Met).
O
Lemma 5.26 (SubEq). If p b T1 = Ty, then p - [x/u]Ty =~ [x/u]Ts.
Proof. Induction on p - T ~ T5:

¢ Case (TE-Refl): Ty = T3, therefore [z/u]Ty = [x/u]|T». By (TE-Refl).

* Case (TE-And): T =13 ATy, and T5 = T5 AT, and p - T3 = T3, and p - Ty ~ Tg. By induction,
p b lx/ulTs = [x/u]Ts, and p & [z/u]Ty =~ [x/u]Ts. By (TE-And) and (TX-And).

e Case (TE-Or): Ty = T3V Ty, and T5 = T5 V Tg, and p - T3 = T, and p - Ty =~ Tg. By induction,
p b lx/ulTs = [z/u]Ts, and p + [z/u]Ty =~ [x/u]Ts. By (TE-Or) and (TX-Or).

e Case (TE-Sel): T1 = z1.A(x3), and Tp = x2.A(z3), and p F x1 = z5. By 5.1(EqVKind), exist vy, va,
such that z; = vy, and zo = v, therefore x; # u, and z2 # u. By (VX-VarN), [z/u]z1 = x1, and
[z/u]zs = w9, therefore p - [z/u]z1 =~ [z/u]z2. By (TE-Sel).

e Case (TE-Rec): T1 = p(s1 : T3),and T = u(sy : Ty), and p = T5 ~ Ty.

Using alpha-equivalence, assume that s; # w, and s; # z. By induction, p I [z/u]T5 ~ [z/u]|T}4.
By (TE-Rec), p F p(s1 : [z/u]Ts) = p(s1 : [z/u]Ty). By (TX-Rec).

e Case (TE-Fld) T = {a : T3..T4}, and T = {a : T5..T6}, and p = T3 ~ T, and P FT, ~ Ts. By
induction, p - [z/u]Ts ~ [z/u]T5, and p F [z/u]Ty = [z/u]|Ts. By (TE-Fld) and (TX-F1d).

e Case (TE-Typ): Th = {B(r) : T5..T4},and To = {B(r) : T5..Ts},and p - T3 = T5, and p - Ty ~ T§.
Using alpha-equivalence, assume that # u, and r # z. By induction, p - [z/u|T3 ~ [z/u|T5, and
p b [x/u]Ty =~ [z/u]Ts. By (TE-Typ) and (TX-Typ).

e Case (TE-Met): T1 = {m(z : T3,7 : T5) : Ty}, and To = {m(z : Tg,r : Tg) : T7}, and p - T3 = Ty,
and pF Ty~ T7,and p F T5 = Ts.

Using alpha-equivalence, assume that r # u, and r # z, and z # v, and z # 2. By induction,
p b [z/ulTs ~ [z/u]Ts, and p F [x/u]Ty ~ [z/u]T7, and p F [z/u]T5 ~ [z/u]Ts. By (TE-Met) and
(TX-Met).

O

43

D3S, Technical Report no. D35-TR-2020-01 5.1 Typing lemmata

The following lemmata 5.27(SubV) and 5.28(SubT) are the main substitution lemmata for variable,
term and definition typing, subtyping and splitting.

Lemma 5.27 (SubV). The following holds for variable typing, subtyping, splitting:

IfTy,u: T, Tospb oy : Th,and w ¢ Ty and Ty, [z/uTasp b x 2 [x/u]Ts, then Tq, [z/ulT2;p b [x/u]zy :
[/u]Ty.

IfTi,u : To,Top b Ty <: Th, and w ¢ Ty and Tq, [z/u|Te;p F x @ [x/u]Ty, then Ty, [z/ulTe;p
[z/u]T5 <: [x/u]T}.

IfTy,u: To,Tosp b T3 vro Ty, and uw ¢ Ty and Ty, [x/ull2;p bz @ [x/u]Th, then Ty, [x/ulT2;p
[z/u]T3 ro [x/u]Th.

IfTy,u: T, Tosp b Tsmu(ry) Ty, and w # riand ¢ # ri, and uw ¢ Ty and Ty, [x/ullosp b a [/u) T,
then Ty, [x/u|Ta;p b [x/u]T5 mu(ry) [x/u]Ty.

Proof idea. Straightforward induction on typing of z, subtyping and splitting. (Adapted from kDOT [2],
Lemma 4.6.3 (page 40).) v

Proof. Induction on typing, subtyping, splitting:

Case (VI-Var): 'y, u : T5, Ty = T'3, 21 : T1, Ty, where z1 ¢ dom T'y.

-IfI'y =T3. 21 = w, and Ty = Tp. By (VX-VarE), [z/u]z1 = z. Trivially, 'y, [z/u]T2;p F
[x/u]zy : [x/u]T.

- If Fl = F3,!E1 : T17F5. F4 = F57’U, : TQ,FQ, therefore T 7é u. By (VT-Var), F17[m/u}f‘2;
p F 1 : Th. By (VX-VarE), [z/u]z; = z;1. By alpha-equivalence, we can assume that, u ¢ fv I'y,
therefore [x/u]Ty = T3.

- If Fg = Pl,u : TQ,F5. FQ = Fs,.’ﬁl : T17P4. By (VT—V&I‘), Fl, [QC/’LL]F5, [iL’/U]iL’l : [ZL’/’LL]Tl, ["E/U}le,
pF[z/ulzy : [x/u]Th.

Case (VT-RecE): Ty = [z1/s]Ty, and T'1,u : T5,T9;p b 21 @ p(s : Ty), and Ty indep s. Using
alpha-equivalence, assume that s # v, and s # z.

By induction on variable typing, I'y, [x/u|l2;p & [z/ulz1 @ p(s : [x/u]Ty). By 5.25(Sublndep),
[z/u]Ty indep s. By (VI-RecE), I'y, [v/u]Ta;p & [z/u]z1 @ [[x/u]x1/s][x/u]Ty. By 5.21(SubSwap),
([z/u]xy/s][z/u]Ty = [x/u]Ty.

Case (VT-Recl): T'y,u : To,Ta;p b a1 : [x1/s]Ty, and Ty = p(s : Ty), and T'y,u @ Ty, Taip
[1/8]T4 ro [z1/s]Ty, and T, indep s. Using alpha-equivalence, assume that s # v, and s # .

By induction on ro splitting, I'1, [z/u|T2;p F [z/u][z1/s]T4 ro [z/u][x1/s]Ts. By induction on
variable typing, I'v,[z/ull'2;p & [z/ulzr @ [z/u]lx1/s]Ts. By 5.21(SubSwap), [z/u][z1/s]Ts =
[[x/u]z1/s][x/u]Ty. By 5.25(Sublndep), [x/u|Ty indep s. By (VI-Recl), 'y, [z/u|l2;p F [z/u]z :
p(s : [z/u]Ty).

Case (VT—AHCH) Ty = Ty ANT5, and T'y,u : To,Tosp B a1 @ Ty, and I'1,u : T5,Tasp B 21 : T5.
By induction on variable typing, T'1, [z/u]T'2;p & [x/ulz1 @ [z/u]Ty, and T'y, [x/u]la;p F [z/u]zy -
[z/u]T5. By (VI-Andl) and (TX-And), I'1, [z/u|T2;p F [x/u]zy @ [z/u]Th.

Case (VI-MutTop): T1 = {M(ro) : L..T}. Directly by (VI-MutTop) and (TX-Top) and (TX-Bot)
and (TX-Typ).

Case (VI-Sub): I'y,u : To,To;p F a1 @ Ty. T'y,u = T5,Tg;p = Ty <: Ty. By induction on variable
typing, I'1, [z/u]T2;p F [z/u]z1 : [x/u]Ty. By induction on subtyping, I'1, [x/u|T2;p F [x/u]Ty <:
[z/u]Th. By (VI-Sub), I'1, [x/u]T2;p F [x/u]xy : [x/u]Th.

Case (ST-Top): 171 = T. Directly by (ST-Top) and (TX-Top).

Case (ST-Bot): 13 = L. Directly by (ST-Bot) and (TX-Bot).

Case (ST-Refl): 175 = T. Directly by (ST-Refl).

Case (ST-And1): T35 = Ty A Ty. By (ST-And1), 'y, [x/u|T2;p F [z/u]Ty A [x/u]T1 <: [z/u]Ti. By
(TX-And).

Case (ST-And2): T3 = Ty A Ty. By (ST-And2), 'y, [x/u|T2;p F [z/u]Ty A [x/u]T1 <: [z/u]Ti. By
(TX-And).

44

D3S, Technical Report no. D35-TR-2020-01 5.1 Typing lemmata

Case (ST-Orl): Ty = T3V Ty. By (ST-Orl), I'y, [z/u|ls;p F [/u]Ts <: [x/u]T3V [x/u]Ty. By (TX-Or).
Case (ST-Or2): Ty = Ty V T3. By (ST-Or2), 'y, [z/u|T2;p b [x/u)Ts <: [x/u]T4V [z/u]T5. By (TX-Or).
Cases (ST-N-M), (ST-N-Rec), (ST-N-Typ), (ST-N-Fld), (ST-N-Met): directly.

Case (ST—And) T, =Ty NTs, and I',u: T27F2;p F Ty <: Ty, and I',u: TQ,FQ;p F T35 <: Ts. By
induction on subtyping, I'1, [z/u|l's;p F [x/u|Ts <: [z/u]Ty, T'1, [z/u]Te;p b [x/u)Ts <: [x/u]T5. By
(ST-And), Ty, [z/u]Te;p b [x/u]T5 <: [x/u]Ty A [2/u]T5. By (TX-And).

Case (ST—OI')Z T3 =T, VT, and T'y,u: TQ,FQ;p Ty <: Ty, and I',u: TQ,FQ;p FTs <: Ty By
induction on subtyping, I'1, [z/u|l's;p F [x/u]Ty <: [z/u]Th, T1, [z/u]Te;p & [x/u)Ts <: [x/u]Ti. By
(ST-Or), I'1, [z/u]l9;p F [/u]Ty V [z /u]Ts <: [z/u|Ti. By (TX-Or).

Case (ST-Trans): 'y, u : Ty, To;p T3 <: Ty, and Ty, u : 1o, To;p B Ty <: T7.

By induction on subtyping, I'1, [z/u]l'2;p & [x/u]T3 <: [x/u]Ty, and Ty, [z/u]Te;p F [x/u]Ty <:
[z/u]Th. By (ST-Trans), I'y, [x/u]T;p F [z/u]T5 <: [z/u]Th.

Case (ST—SelU) T3 = Ig.B(iL’Q), and Tl = [QCQ/T']T5, and Fl, u: TQ,FQ;p F T3 : {B(’l‘) : T4T5}

By induction on variable typing, I'1, [x/u|l2;p F [z/u]zs @ [z/ul{B(r) : T4..Ts}. By (TX-Typ),
Iy, [z/ulTop b [z/u]zs : {B(r) : [v/u]Ts..[x/u]T5}. By (ST-SelU), I'y, [z/u|l2;p F [x/u]xs. B([x/ulz2) <:
[[x/u]ze/r][x/u]Ts. By 5.21(SubSwap) and (TX-Sel), I'v, [z /u]T'2;p F [z /u]zs. B(x2) <: [x/u][z/r]|Ts.

Case (ST-SelL): T5 = [z2/r]Ty, and Ty = x5.B(x2), and 'y, u : T2, Tosp b 23 : {B(r) : Ty..T5}.

Similarly as (ST-SelU). By induction on variable typing, I'1, [z/u]l2;p & [z/u]zs : [z/u]{B(r) :
Ty.T5}. By (TX-Typ), I'1, [z/u]T2;p & [z/u]zs : {B(r) : [z/u]Ty..[z/u]T5}. By (ST-SelL), 'y, [z/u]T'2;
p F [[x/u]ze/r][z/u]Ty <: [x/u]zxs.B([x/u]xz). By 5.21(SubSwap) and (TX-Sel), 'y, [x/u|l2;p F
[z/u][ze /T Ty <: [x/u]zs.B(22).

Case (ST-FId): T5 = {a : Ty..T5}, and Ty = {a : Ts..T7}, where T'y,u : T5,T9;p F T <: Ty, and
Ty,u:To, To;pbT5 <: Tr.

By induction on subtyping, I'1, [z/u]T'2;p & [z/u]Ts <: [x/u]Ty, and Ty, [z/u]Te;p F [z/u]T5 <:
[z/u]T7. By (ST-FId) and (TX-Fld).

Case (ST—Typ) T3 = {B(T) : T4..T5}, and T7 = {B(’I‘) : T6..T7}, where T'y,u: T27F2;p F T <: Ty,
and I'y,u : T5,'9;p b T <: T%. Using alpha-equivalence, assume that u, x are disjoint from r.

By induction on subtyping, T'1, [z/u]T'2;p & [z/u]Ts <: [x/u]Ty, and Ty, [z/u]Te;p F [x/u]Ts <:
[z/u]T7. By (ST-Typ) and (TX-Typ).

Case (ST-Met): T3 = {m(z : T4,7" : Te,) : T5}, and T1 = {m(z : T7,T : Tg) : Tg}, where Fl,u : TQ,FQ;
pbTr <:Ty,and Ty, u: To, T,z : Trsp b Ty <: Tg,and Ty, u : To, T,z : Tryr : Tosp B T <: Ts.
Using alpha-equivalence, assume that u, = are disjoint from z and .

By induction on subtyping, I'1, [z/u|l'2;p F [z/u]T7 <: [z/u]Ty. By induction on subtyping,
Ty, [z/ulls, 2z ¢ [x/u]Trp b [x/ulTy <: [x/u]Ts, and Ty, [z/u|Ts,z : [z/u]Tr,r @ [z/u]Tg;p +
[z/u]Ts <: [x/u|Ts. By (ST-Met) and (TX-Met).

Case (ST-Eq): p - 15 ~ T1. By 5.26(SubEq), p - [z/u]T5 =~ [z/u]T}.

Case (ST—TypAnd) T3 = {B(T) : T4..T5} AN {B(T) : Tﬁ..T7}, and Tl = {B(T) : T4 V T6..T5 A T7} By
(ST-TypAnd) and (TX-And) and (TX-Or) and (TX-Typ).

Case (ST—DISt) T3 = T4 A (T5 V T6) T1 = (T4 A T5) vV (T4 AN TG) By (ST—DISt) and (TX-OI‘) and
(TX-And).

Case (TS-Top): T3 = T,and 17 = T, and T, = T. By (TS-Top) and (TX-Top).

Case (TS-Bot): 75 = L, and 17 = N, and Ty = L. By (TS-Bot) and (TX-Bot) and (TX-N).
Case (TS-M): T3 = {M(r1) : T5.. 14}, and 71 = T. By (TS-M) and (TX-Typ).

Case (TS-Typ): By (TS-Typ).

Case (TS-Fld): By (TS-F1d).

Case (TS-Met): By (TS-Met).

Case (TS-Rec): By (TS-Rec).

45

D3S, Technical Report no. D35-TR-2020-01 5.1 Typing lemmata

e Case (TS—Sel) T3 = £B3.B(£L'2). Fl,u : TQ,FQ;,D H T3 {B(’I") : T5T6} I‘l,u : TQ,FQ;p -
[22/7|Te ro T1. Ty, u: Ty, Tasp &[22 /7] Ts mu(ry) Ty.

By induction on variable typing and splitting, I'y, [x/u|ls;p & [z/ulzs @ [x/ul{B(r) : T5..Ts},
Iy, [z/ulTe;p & [x/u][ze/r]Ts ro [x/ulTy, T, [x/ullsp b [z/u][ze/r]Ts mu(r) [x/u]Ty. By (TX-
Typ), I'1, [x/ulla;p b [x/ulzs : {B(r) : [x/u|Ts..[x/u]Ts}. By 5.21(SubSwap), I'1,[z/u]l2;p +
[[z/u]ze/r][x/u]Ts ro [x/u|Ty, T1,[z/ullep b [[x/u]ze/r][z/ulTs mu(r) [x/u]Ty. By (TS-Sel),
Ty, [z/ulla;p b [x/u]zs. B([x/u]xsz) ro [x/u]Ty, Ty, [x/u]Te;p b [z/u)zs. B([z/u]ze) mu(ry) [z/u]Ty.
By (TX-Sel).

e Case (TS-AndR): T5 = TsATg, and Ty = T7 ATy, where 'y, u : To, T'o;p = Ts ro 17, and 'y, u : To, T'y;
pFTs roTg.

By induction on splitting, I'v, [z/u]T'2;p & [/u]Ts ro [x/u|T7, and 'y, [x/u]l2;p - [z/u]Ts ro [z/u]Ts.
By (TS-AndR) and (TX-And).

e Case (TS—AndM) T3 = T5 A TG/ and T4 = T7 A Ts, where Fl,u : TQ,FQ;/) - T5 mu(rl) T7, and
Fl,u . TQ, Fg,p F TG mu(rl) Tg.
By induction on splitting, I'v, [z/u]T'2;p & [z/u]Ts mu(ry) [z/u]T7, and Ty, [z/u]Te;p F [z/u]Ts mu(ry) [z/u]Ts.
By (TS-AndM) and (TX-And).

e Case (TS-OrR): T5 = T5 V Tg, and 77 = T7 V 1y, where I'y, u : 15, To;pbFTs ro 17, and I'1, u : 15, Ts;
14 - T@ ro Tg.
By induction on splitting, I'1, [z/u]T'2;p b [z/u]Ts ro [x/u]T7, and I'y, [x/u]la;p F [2/u]T6 ro [z/u]Ts.
By (TS-OrR) and (TX-Or).

e Case (TS-OrM): T3 = T5 V T3, and Ty = T7 V Ty, where I'1,u : To,T9;p F T5 mu(ry) Tr, and
Fhu : TQ, FQ,[) F T6 mu(rl) Tg.
By induction on splitting, I'v, [z/u]T'2;p F [z/u]Ts mu(ry) [z/u]T7, and Ty, [z/u]Te;p F [z/u]Ts mu(ry) [z/u]Ts.
By (TS-OrM) and (TX-Or).

O
Lemma 5.28 (SubT). The following holds for term and definition typing:

o IfTy,u:To,Toptt: Ty, and T1,u: Ty, Ty vis x, and u ¢ Ty and T'y, [z /u]Ta;p F x : [x/u]Ts, then
Ty, [z/ullo;p b [x/u]t : [x/u]T;.

o IfT,u:To,To,s: Ty;p b d: Ty, and T'y,u : To, Ty vis zand uw # sand x # s, and v ¢ T'y and
Ty, [x/ullo;p b 2 [x/u]Ts, then Ty, [z /u)Ta, s : [z/u]Ts;p b [x/u]ld : [x/u]T;.

Idea. Substitution preserves typing of terms and definitions. v

Proof idea. (Adapted from kDOT [2], Lemma 4.6.3 (page 40).) Induction on term typing and definition
typing, using 5.27(SubV). v

Proof. InductiononT'y,u: T, To;p -t : Th:

e Case (TT-Var): t = vy, and I'y,u : T, T'9;p 2y : Th, and 'y, u @ 15,19 vis z1. By 5.27(SubV),
Iy, [z/ulTe;p F [x/u]zy : [z/u]Th. By 5.24(SubVis), I'y, [x/u|l'y vis [z/u]z;. By (TT-Var) and (EX-
Var), T'y, [z/u|Ta;p b [x/ulvey : [x/u]Th.

e Case (TT-Apply): t = x3.maxo. Th = [x3/r][xe/2]Ty. T1,u: To,Tosp b a3 - {m(z : Ts,7r : Ts) : Ty}
Fhu : TQ,FQ;p H ZTo Tg. Fl,u : Tg,Fg;p F X3 . [.’172/2,’]T5 Fl,u : TQ,FQ vis xs3. F17’U, : TQ,FQ vis ZTo.

Using alpha-equivalence, assume that u, =, 3 and x5 are disjoint from z and 7.

By 5.27(SubV), I'y, [z/u]Te;p & [x/u]xs : [x/ul{m(z : Ts,r : T5) : Ty}. By (TX-Met), ', [z/u]T2;
p b lz/ulzs : {m(z : [x/u|Ts,r : [x/u]T5) : [z/u]Ts}. By 527(SubV), 'y, [x/u|l;p & [z/u]zs -
[z/u]T5. By 527(SubV), I'1, [z/u|T2;p F [z/u]zs : [x/u][xe/2]Ts. By 5.21(SubSwap), I';p - [z/u]zs :
[z2/z]|[z/u|Ts. By 5.24(SubVis), T'1, [x/ulle vis [z/u]zs, and T'y,[z/u]l'y vis [x/u]xs. By (TT-
Apply) and (EX-Apply), I'1, [z/u|T2;p b [z/ult : [[z/u]zs/r][[x/u]ze/2][x/u]Ty. By 5.21(SubSwap),
[2/u]Ty = [w/ullws/r)[we/ 2Ty = [[x/ulzs /r][x/u][va/2]Ta = [[x/u]xs /r][[x/u]xs/2][x/u]Ts.

46

D3S, Technical Report no. D35-TR-2020-01 5.1 Typing lemmata

e Case (TT—Read): t = x3.q. T1 = T5/\{M(7“0) : J_(Tﬁ\/l'gM(To))} Fl, u: TQ, FQ,p = I3 : {(1 : T3T4}
].—‘17’U, : TQ,FQ;[) F T4 ro T5. Fl,u : T27F2;p = T4 IIlLl(’I"()) TG. I‘l,u : TQ,FQ vis xs3.

By 5.27(SubV), I'1, [z/u|l2;p & z3 @ [x/ul{a : T5.1u}. By (TX-Fld), I'y, [z/u]la;p F 23 : {a :
[z/u]Ts..[z/u]Ts}. By 527(SubV), T'i,[z/ull'e;p & Ty ro [x/u]Ts. By 5.27(SubV), I'i, [x/u|ls;
p F Ty mu(ry) [x/u]Ts. By 5.24(SubVis), I'y, [x/u|ly vis [z/u]zs. By (TT-Read) and (EX-Read),
Ty, [z/ulTo;p b [x/ult : [z/u]Ts A{M(ro) : L..([x/u]Ts V [z/u]zs.M(r0))}. By (TX-Sel) and (TX-Or)
and (TX-Typ) and (TX-And), [x/u|T1 = [z/u]Ts A{M(ro) : L..(TcVx3.M(10))} = [x/u]Ts A{M(ro) :
Lo([z/u)Ts V [x/u]xs.M(rg))}

e Case (TT—Write): t = x3.a := X9. 1"17u : TQ,FQ;p F oy Ts. Fl,u : TQ,FQ;p F g {a : T3T1}
Ty,u:To,Toptas: {M(ro) : Lo.L}. Ty u:T5, Ty vis 3. Ty, u : To, T's vis z5.

By 5.24(SubVis), I'y, [z/u]T's vis [z/uzs, and T'1, [x/u|l's vis [z/u]ze. By 5.27(SubV), T', [z/u]T's;
p b xg i [x/u]T5. By 5.27(SubV), I'y, [z/u]l2;p b 23 : [x/ul{a : T5..11}. By (TX-FId), 'y, [z/u]T2;
pbxs:{a: [x/ulTs..[x/u]T1}. By 5.27(SubV), 'y, [z/u]T2;p - x5 @ [x/u]{M(r¢) : L..L}. By (TX-
Typ) and (TX-Bot), I'y, [z/u]T2;p F x5 : {M(rg) : L..L}. By (TT-Write) and (EX-Write), 'y, [z/u]T'2;
pF[z/ult: [x/u]Th.

e Case (TT-New): t =let z = v(s: T5)d inty. Ty,u: To,To,s: Ty;p b d: T3. Ty,u: To,To, 2 1 p(s:
T3) AN {M(rg) : L..L};pbt1: Ty, 2z ¢ fv Th. Ts indep s.

Using alpha-equivalence, assume that v and « are disjoint from z and s.

By induction on definition typing, I'y, [x/u|l2, s : [z/u]T5;p F [z/u]ld : [z/u]T5. By induction on
term typing, I'1, [x/ull2, 2 : [z/ulu(s : T5) A {M(ro) : L. L};p F [z/ultr : [x/u]Ti. By (TX-Typ)
and (TX-Bot), 'y, [x/u]T2, z : u(s : [x/u]T3) A{M(ro) : L..L};p b [x/ulty @ [x/u]T}. Because = # z,
therefore z ¢ fv [¢/u]Ty. By 5.25(SubIndep). [x/u|T3 indep s. By (TT-New) and (EX-LetNew),
Ty, [z/u]Ta;p b [x/ult : [x/u]T.

e Case (TT—Let): t =let z =ty in ty, where Fl,u : TQ,FQ;p Fotq o Ts, and Fl,u : TQ,FQ,Z : T3;

p"tz :Tl,andz ¢fVT1.

Using alpha-equivalence, assume that v and « are disjoint from z.

By induction on term typing, I'1, [z/u]T'2;p F [z/ult; : [z/u]T5. By induction on term typing,
Iy, [z/ulls, 2 : [x/u]Ts;p F [z/ults : [x/u]T. Because = # z, therefore z ¢ fv [z/u]Th. By (TT-Let)
and (EX-Let), T'y, [z/u]Tao;p b [x/ult : [x/u]T.

e Case (TT-Sub): I'y,u : T5,I'g;p F t : T3, and I'y,u : T5,T;p F T5 <: T3. By induction on term
typing, I'1, [x/u|T2;p F [z/ult : [z/u]T5. By 527(SubV), 'y, [z/ulT2;p F [z/u]T3 <: [z/u]Ti. By
(TT-Sub), T'y, [x/u]Ta;p & [x/ult = [x/u]Ty.

e Case (DT-Typ): d = {A(r) = T4}, and Ty = {A(r) : T4.. T4 }. Using alpha-equivalence, assume that
u and « are disjoint from 7.

By (DT-Typ), I'y, [z/u|T's, s = [x/u]T5;p F {A(r) = [z/u|Tu} : {A(r) : [z/u|Ty..[v/u]Ts}. By (DX-
Typ) and (TX-Typ).

e Case (DT-TypB): d = {A(r) = T4}, and T1 = {A(r) : L..T4}. Using alpha-equivalence, assume
that v and x are disjoint from 7.

By (DT-TypB), I'1, [z/ulT's, s : [x/u]Ts;p b {A(r) = [x/u]Tu} : {A(r) : L..[x/u]Ty}. By (DX-Typ)
and (TX-Bot) and (TX-Typ).

e Case (DT-FId): d = {a = 23}, and T1 = {a : Ty.. T4}, where T'y,u : T5,T9,s : T3 vis x3, and
I'y,u:T5,Tg,s: T3;p - a3 : Ty
By 5.24(SubVis), I'y, [z/u]T2, s : [z/u]T5 vis [x/u]xs. By 5.27(SubV), 'y, [x/u|l2, s : [x/u|Ts;p F
[z/u]zs : [z/u]Ty. By (DT-FId), I'y, [x/u|Te, s : [x/u]Ts;0 - {a = [z/u]zs} : {a : [z/u]Ty..[x/u]Ty}.
By (DX-Fld) and (TX-Fld).

e Case (DT-Met): d = {m(z,r) = t}, and T1 = {m(z : Ty,r : Ts) : T5}, where I'1,u : 15,9, s :
T3, z:Ty,r T3 N [T/S]T3 ANTg;ptEt:T5,and 2z ¢ fv TyUfv T3, and r ¢ fv TyUfv TgUfv T3. Using
alpha-equivalence, assume that u and « are disjoint from r and z.

By induction, I'y, [x/u]ls, s @ [x/u]T3,!, 2 « [x/u]Ty, 7 : [x/u]T5 A [r/s][z/ulTs A [z/u]Te;p - [x/u]t :
[z/u]T5. By (DT-Met), I'1, [z/u]T2, s : [z/u]T5;p - {m(z,7) = [x/u]t} : {m(z : [x/u]Ty,r : [x/u]Ts) :
[z/u]T5}. By (DX-Met) and (TX-Met).

47

D3S, Technical Report no. D35-TR-2020-01 5.1 Typing lemmata

e Case (DT-And): d = dy Ady, and Ty = Ty AN Ts, where I'y,u @ T5,T5,s @ T3;p F dy : Ty, and
Iy,u:T5,To,s:T3;pF dy : Ts,and dy and ds have distinct member names.
By induction on definition typing, I'1, [z/u]T's, s : [z/u]T5;p F [x/uldy : [v/u]Ty, and T'y, [z/u]T, s :
[z/u]T5;p F [x/ulds : [z/u]T5. By (DT-And), I'y, [x/u]Ts, s : [x/u]Ts50 b [x/uldy Alz/ulds : [z/u]TyA
[z/u]T5. By (DX-And) and (TX-And).
O

The lemma 5.29(SubD) relates definition typing and heap item typing. While the definitions appear
in terms, where during execution, fields are assigned reference variables, on the heap fields contain
locations. Definitions can also refer to the self variable s of the object, which on heap is replaced by the
actual location of the object. This lemma shows that replacing the s self variable by the object location,
given definition typing, gives us heap item typing.

Lemma 5.29 (SubD). IfT',s: T5;p b d : Ty, and s ¢ Tand T visyand Tip by : [y/s|Ts, then T,y /s : Ts;
pFly/sld: [y/s]Th.

Idea. Substitution of self variable preserves definition typing. v
Proof idea. Induction on definition typing. v
Proof. Induction on definition typing:

e Case (DT-Typ): d = {A(r) = Ta}, and Ty = {A(r) : Ty..Ty}.

By HT-Typ), T',y/s : Ts;p = {A(r) = [y/s]Tu} : {A(r) : [y/s]Ts..[y/s]T4}. By (DX-Typ) and (TX-
Typ).

e Case (DT-TypB): d = {A(r) =Ty}, and T1 = {A(r) : L..Ty}.

By (HT-TypB), I',y/s : Ts;p = {A(r) = [y/s]Tua} : {A(r) : L.Jy/s]T4}. By (DX-Typ) and (TX-Bot)
and (TX-Typ).

e Case (DT-FId): d = {a = z3},and T1 = {a : Ty.. T4}, where ', s : T3 vis x5, and ', s : T3;p - x5 : T}.
By 5.24(SubVis), I vis [y/s]zs. By 5.27(SubV), I';p & [y/s]zs @ [y/s]Ty. By (HT-FId), T',y/s : Ts;
pE{a=1y/slzs} : {a:[y/s|Ty..ly/s]Ts}. By (DX-FId) and (TX-Fld).

e Case (DT-Met): d = {m(z,r) =t},and T}y = {m(z : Ty,r : Ts) : T5}, where I',s : T3, !,z : Ty,r :

TsN[r/s|Ts NTgpbt:Ts,and z ¢ v Ty Utv Tz, and r ¢ fv Ty U fv T U fv Ts.
By 5.28(SubT) and (TX-And), I',!, z : [y/s|Tu,r : [y/s|Ts A[y/s][r/s)T5 A ly/s|Te;p F [y/slt : [y/s]Ts.
By 5.23(Subld), [y/s][r/s|Ts = [r/s]T5, therefore I',!, z : [y/s|Ty, 7 : [y/s|T5 A [r/s]T5 A [y/s]Te;
pEly/slt : [y/s|Ts. By (HT-Met), I',y/s : Tyip = {m(z,7) = [y/s]t} - {m(z : [y/s]Ta, 7 : [y/s]T5) :
[y/s]T5}. By (DX-Met) and (TX-Met).

e Case (DT-And): d =dy Ady,and Ty = Ty AT5, where T, s : T3;p - dy : Ty, and T, s : T3;p - do = T,
and d; and ds have distinct member names.

By induction on definition typing, I',y/s : Ts;p F [y/sldi : [y/s]Ts, and ', y/s : T3;p F [y/s]ds :
ly/s]T5. By (HT-And), T,y/s : Tip b [y/sldi A [y/slda : [y/sITy A [y/s]Ts. By (DX-And) and
(TX-And).

O

The runtime environment p relates references to heap locations. A reference to the same object as a
location has the same type except mutability. The location is always mutable, so it is safe to replace the
reference by the corresponding location.

First, the lemmata 5.30(SubEqEV) and 5.31(SubEqET) show that replacing a reference by the location
preserves equivalence. Then the lemma 5.32(SubW) shows that it preserves typing, subtyping and
splitting.

Lemma 5.30 (SUbEqQEV). If p1,w — y, p2 = v1 & vg, then py, p2 F [y/w]vr = [y/w]vs.
Proof. Induction on p1, w — y, p2 - v1 = vg:
e Case (VE-RtoL): v1 — v € p1,w — y, pa.

— If vo = w. Not possible because w ¢ p1, and w ¢ ps.

48

D3S, Technical Report no. D35-TR-2020-01 5.1 Typing lemmata

- If v1 = w, and vy # w, then because w ¢ p1, and w ¢ ps, we have vy = y, then by (VX-VarE)
and (VX-VarN), [y/w]v; =y, and [y/w]ve = y. By (VE-Refl).
- If v1 # w, and vy # w, then by (VX-VarN), [y/w]v1 = v1, and [y/w]ve = v,. Trivially.

Case (VE-Refl): v1 = vs, therefore [y/w]v1 = [y/w]vs. By (VE-Refl).

Case (VE-Symm): p1,w — y,p2 F va &~ vy. By induction, p1, p2 F [y/w]ve = [y/w]vi. By (VE-
Symm).

Case (VE-Trans): p;,w — y,p2 F v1 = v3, and p1,w — y,p2 F v3 = vy. By induction, p;,ps F
ly/wlor ~ [y/w]vs, and p1, pa b [y/w]vs = [y/w]vs. By (VE-Trans).

O

Lemma 5.31 (SubEqQET). If p1,w — y, p2 b Th = Ty, then p1, p2 - [y/w]|T1 =~ [y/w]T5.

Proof. Induction on py,w — y, p2 = T1 = Th:

Case (TE-Refl): T = T3, therefore [y/w]T1 = [y/w]T%. By (TE-Refl).

Case (TE-And): Ty = T3 ATy, and To = T5 A Tg, and p1,w — y,p2 F T3 = T5, and p1,w — y, p2 +
Ty = Tg. By induction, p1, p2 F [y/w]|Ts = [y/w]|Ts, and p1, p2 F [y/w]|Ty = [y/w]Ts. By (TE-And)
and (TX-And).

Case (TE-OI')I T1 = T3 V T4, and T2 = T5 V T6, and P1,W — Y, P2 = T3 ~ T5, and P1,W — Y, P2 =
Ty ~ Ts. By induction, p1, p2 F [y/w]Ts = [y/w]|T5, and p1, p2 F [y/w]Ty =~ [y/w]Ts. By (TE-Or)
and (TX-Or).

Case (TE-Sel): Th = z1.A(x3), and Th = x9.A(x3), and p1,w — y, p2 F 1 = z2. By 5.1(EqVKind),
exist v, vg, such that 21 = vy, and zy = ve. By 5.30(SubEqQEV), p1, p2 F [y/w]z1 = [y/w]zs. By
(TE-Sel).

Case (TE-Rec): T1 = p(s1 : T3), and To = pu(sy : Ty), and p1,w — y, po = T3 = Ty.

We know that s; # w, and s; # y. By induction, p1,p2 F [y/w]|T5 ~ [y/w]Ts. By (TE-Rec),
p=p(si s [y/wlTs) ~ p(s : [y/w]Ty). By (TX-Rec).

Case (TE-FId): Ty = {a : T5..T4}, and To = {a : T5.Ts}, and p1,w — y,pa b T35 =~ T5, and
p1,w — y, p2 B Ty = Tg. By induction, p1, p2 F [y/w]|Ts =~ [y/w]Ts, and p1, p2 F [y/w]Ty =~ [y/w]Ts.
By (TE-Fld) and (TX-F1d).

Case (TE-Typ): Th = {B(r) : T5..T4}, and T> = {B(r) : T5..Ts}, and p1,w — y, p2 - T3 =~ T3, and
p1,w =y, po =Ty = Tg.

We know that r # w, and r # y. By induction, p - [y/w]T5 = [y/w]T5, and p - [y/w]|Ty =~ [y/w]|Ts.
By (TE-Typ) and (TX-Typ).

Case (TE-Met): Ty = {m(z : T3, : T5) : Ty}, and To = {m(z : Tg,r : Tg) : Tr}, and p1,w — y, p2 -
T3 ~Tg,and p1,w — y,p2 =Ty ~ T7,and p1,w — y, po b Ts =~ Tg.

We know that r # w, and r # y, and z # w, and z # y. By induction, p1, p2 b [y/w]T5 ~ [y/w]Ts,
and p1, p2 & [y/w]Ty = [y/w]T7, and p1, p2 I [y/w]T5 ~ [y/w]Ts. By (TE-Met) and (TX-Met).

O

Lemma 5.32 (SubW). The following holds for variable typing, subtyping, splitting :

Ifl"l,w : TQ,FQ;pl,w — Y, P2 F Ty Tl, and Fl,w : TQ,FQ ~ P, W — Y, p2 and w ¢ Fl and w ¢ P1
and w & po, then Ty, [y/w]Ta;p1, p2 b [y/w]zy : [y/w]Ty.

IfTy,w: Ty, Toipr,w = y,pe F T3 < Th,and Ty, w : 1o, Ty ~ p1,w — y,pe and w ¢ Ty and w ¢ py
and w ¢ p, then Ty, [y/w|Ta;p1, p2 & [y/w]Ts <: [y/w]Th.

IfFl,w : Tg,Fg;pl,w — Y, P2 + T3 ro Tl,andl“l,w : TQ,FQ ~ P, W — Y, P2 and w ¢ Fl and w é P1
and w ¢ po, then T'y, [y/w]Ta;p1, p2 F [y/w]|T5 ro [y/w]T;.

IfT1,w: 1o, Tosp1,w — y,p2 b Ts mu(ry) Ty, and Ty, w : T5, Ty ~ p1,w — y, p2 and w ¢ Ty and
w ¢ pyand w & po, then T'y, [y/w]Ta;p1, p2 b [y/w]T5 mu(ry) [y/w]Ty.

Proof. Induction on variable typing, subtyping, splitting:

49

D3S, Technical Report no. D35-TR-2020-01 5.1 Typing lemmata

e Case (VI-Var): I'y,w : T5,T's = T's, 21 : T1, Ty, where 21 ¢ dom T'4.

- IfI'y =T, then z1 = w, and T} = T5. By (VX-VarE), [y/w]x1 = y. By 5.16(ECorrInvY), exists
Ty, suchthatTy =I5,y : u(s : R)A{M(ro) : L..L},T'g,and Th = p(s : R)A{M(ro) : L. I4}. By
(ST-Bot) and (ST-Typ) and (ST-Refl) and 5.18(AndSub), I'v, [y/w|T'2;p1, p2 F p(s : R)A{M(ro) :
1.1} <: Ty. By (VI-Var) and (VI-Sub), I'1, [y/w|Ta;p1, p2 =y : 1.

- If Fl = F37£L'1 : Tl,F5, therefore Iy # w. By (VT—Var), Fl, [y/w}I‘z,p - Iy Tl. By (VX-VarE),
[y/w]z1 = x1. By alpha-equivalence, we can assume that, w ¢ fv I', therefore [y/w]|Ty = T3.

- IfF3 = Fl,’LU : TQ,FE,. FQ = F5, T Tl,F4. By (VT—Var), Fl, [y/w}I‘g,, [y/w]xl : [y/’LU]Tl, [y/w]F4,
p [y wlz: : [y/w]Th.

e Case (VI-RecE): T} = [z1/s|Ty, and T'1,w : 15, Ta;p1,w — y, p2 b @1 : p(s : Ty), and T indep s.
By induction on variable typing, I'1, [y/w]|T'2;p01, p2 F [y/w]z1 = p(s : [y/w]Ts). By 5.25(Sublndep),
[y/w]|Ty indep s. By (VI-RecE), I'1, [y/w]|T2;p1, p2 F [y/w]z1 : [[y/w]z1/s]ly/w]Ts. By 5.21(SubSwap),
[ly/wla1/s]ly/w]Ty = [y/w]T}.

e Case (VI-Recl): T'y,w : T, To;p1,w — y,pa b 21 @ [x1/8]Ty, and Ty = p(s : Ty), and T'y, w : Ty, Ty;
p1,w =y, pa - [x1/8]Ty ro [x1/s]T4, and T, indep s.
By induction on ro splitting, I'y, [y/w|T'2;p1, p2 F [y/w][z1/s]Ts ro [y/w][z1/s]Ts. By induction on

variable typing, I'y, [y/w|T'2;p1, p2 F [y/w]z1 : [y/w][z1/s]T4. By 5.21(SubSwap), [y/w][z1/s]Ty =
[ly/w]z1/s]ly/w]Ts. By 5.25(SubIndep), [y/w]Ty indep s. By (VI-Recl), I'1, [y/w|T2;p1, p2 - [y/w]zy

p(s = [y/w]Ty).

e Case (VT—AI’IdI) Tl = T4 N T5, and Fl,w : TQ,FQ;pl,w — Y, P2 = Ty - T4, and Fl,w : TQ,FQ;
p1,w — y,p2 F x1 : Ts. By induction on variable typing, I'y, [y/w|T2;p1, p2 = [y/w]z1 @ [y/w]Ts,
and T'1, [y/w|T2;p1, 02 F [y/w]zr : [y/w]Ts. By (VI-Andl) and (TX-And), I'y, [y/w]T2;p1, 02 F
ly/w]z : [y/w]Th.

e Case (VI-MutTop): 71 = {M(rg) : L..T}. Directly by (VI-MutTop) and (TX-Top) and (TX-Bot)
and (TX-Typ).

e Case (VI-Sub): I'y,w : T5,Ty;p1,w = y,pe b oy« Ty Ty, w 2 1o, Tospr,w — y, p2 - Ty <: Ty. By
induction on variable typing, I'1, [y/w]|T2;p1, p2 b [y/w]z1 : [y/w]Ts. By induction on subtyping,
L'y, [y/wll23p1, p2 b [y/w]Ty <: [y/w]Th. By (VI-Sub), I't, [y/w]l2;p1, p2 & [y/wlay « [y/w]Th.

* Case (ST-Top): T1 = T. Directly by (ST-Top) and (TX-Top).

¢ Case (ST-Bot): 13 = L. Directly by (ST-Bot) and (TX-Bot).

¢ Case (ST-Refl): T3 = Tj. Directly by (ST-Refl).

e Case (ST-Andl): T3 = Ty A Ty. By (ST-Andl), I'y, [y/w|Ta;p1, p2 F [y/w]Ty A ly/w]Ty <: [y/w]|T;.
By (TX-And).

e Case (ST-And2): T3 = Ty A Th. By (ST-And2), I'y, [y/w]|Ta;01, p2 F [y/w]Ty A [y/w]Th <: [y/w]Th.
By (TX-And).

e Case (ST—AI’Id) T1 = T4/\T5, and Fl,w : Tg, Fg;pl,w — Y, P2 + T3 <: T4, and Fl,w : TQ,FQ;pl, w —r
y, p2 F T3 <: T5. By induction on subtyping, I'1, [y/w|T'2;p1, p2 F [y/w]Ts <: [y/w]Ty, T'1, [y/w]Ts;
p1,p2 [y/w]Ts <: [y/w]Ts. By (ST-And), I't, [y/wl'2;p1, p2 = [y/w]Ts <: [y/w]Ty A [y/w]Ts. By

(TX-And).

e Case (ST—OI'l) T1 = T3 \Y T4. By (ST—OI'l), Fl, [y/w]Fg;pl,pg - [y/w]Tg <: [y/’UJ]T3 vV [y/w]T4 By
(TX-Or).

e Case (ST—OIQ) T1 = T4 \Y T3. By (ST—OI'Z), Fl, [y/w]Fg;pl,pg - [y/w]T3 < [y/’LU]T4 V [y/w]T3 By
(TX-Or).

e Case (ST-Or): T35 =T,V Ts, and I'1, w : T5,Tosp1,w — y, po Ty <:Th, and I'1, w : To,Tosp1, w —
y, p2 F Ts <: Ty. By induction on subtyping, I'v, [y/w]|T2;p1, p2 F [y/w]Ty <: [y/w]Ty, T, [y/w]Te;
p1,p2 F ly/wlTs <: [y/w|Ty. By (ST-Or), I'y, [y/w]l2:p1, p2 & [y/w|Ty V [y/w]Ts <: [y/w]Ti. By
(TX-Or).

e Case (ST-Trans): I'y,w : 1o, T'a;p1,w — y, po b T3 <: Ty,and 'y, w : 1o, Tosp1,w — y, po b Ty <: 1.
By induction on subtyping, I'1, [y/w|l'2;p1, p2 F [y/w|Ts <: [y/w]Ty, and T'1, [y/w|Ta;p1,p2 F
[y/w|Ty <: [y/w]Ty. By (ST-Trans), I'1, [y/w]Ta;p1, p2 b [y/w]|Ts <: [y/w]Ty.

50

D3S, Technical Report no. D35-TR-2020-01 5.1 Typing lemmata

e Case (ST—SGIL) T3 = [ZL’Q/T’]T4, and T = l’g.B(xQ), and I'i,w: TQ,FQ;pl,U} — Y, P2 F xs3 . {B(T) :
Ty.Ts).

Similarly as (ST-SelU). By induction on variable typing, I'1, [y/w|L'2;p1, p2 - [y/w]zs : [y/w]{B(r) :
Ty.T5}. By (TX-Typ), 'y, [y/w]la;p1, p2 F [y/wlxs : {B(r) : [y/w]Ty..[y/w]|Ts}. By (ST-Sell),
Iy, [y/w]lospr, p2 F ly/wlas/rlly/w]Ty <: [y/wles.B(ly/w]zs). By 5.21(SubSwap) and (TX-Sel),
Ty, [y/w]Ta;p1, p2 b [y/w]]xe/r|Ty <: [y/w]xs.B(xs).

e Case (ST-SelU): T3 = z3.B(x2), and T = [xo/r]T5, and 'y, w : To, Tosp1,w — y,p2 b a3 : {B(r) :
T4..T5}.

By induction on variable typing, I'1, [y/w|Ta;p1, p2 b [y/wlzs : [y/w{B(r) : T4..T5}. By (TX-
Typ), T'1, [y/w|T2sp1, p2 F [y/wlzs : {B(r) : [y/w]Ty..[y/w]|Ts}. By (ST-SelU), I'y, [y/w]|T2;01, p2 F
[y/wlzs.B([y/wlze) <: [[y/w]ze/7]ly/w]Ts. By 5.21(SubSwap) and (TX-Sel), I'y, [y/w]T2;p1, p2 F
[y/wlzs.B(x2) <: [y/w][z2/r]|T5.

e Case (ST-Typ): T3 = {B(r) : T4..T5},and T1 = {B(r) : Ts..T7}, where I'1, w : T, T'o;p1,w — y, p2 F
Te <: 1Ty, and Fl,w : TQ,FQ;pl,w — Y, P2 F Ty <:17.

By induction on subtyping, 'y, [y/w|l's;p1, p2 = [y/w|Ts <: [y/w]Ty, and T'1, [y/w]Ta;p1,p2 F
[y/w]Ts <: [y/w]T7. By (ST-Typ) and (TX-Typ).

e Case (ST—FICI) T3 = {a : T4..T5}, and T7 = {a : TG..T7}, where T'y,w: T27F2;p1,w — Y, P2 Ty <:
Ty, and Fl,’UJ : TQ,FQ;pl,w — Y, P2 H 15 <:17.

By induction on subtyping, 'y, [y/w|l's;p1, p2 F [y/w|Ts <: [y/w]Ty, and T'1, [y/w]Ta;p1,p2 F
ly/w]|Ts <: [y/w]T7. By (ST-FId) and (TX-FId).

e Case (ST-Met): T5 = {m(z : Ty,r : Tg) : Ts},and Ty = {m(z : T7,7 : Ty) : Tz}, where T'y, w : 15, T'y;
pP1L,W — Y, P2 (= T7 <: T4, and Fl,w : TQ,FQ,Z : T7;p1,w — Y, P2 F Tg <: T6, and Fl,w : TQ,FQ,Z :
Tryr:Tosp1,w — y, p2 B T5 <: Tg.

By induction on subtyping, I'1, [y/w|T'2;p1, p2 b [y/w|T7 <: [y/w]Ty. By induction on subtyping,
Ty, [y/wlle, z : [y/w|Trip1,p2 b [y/w]Ty <: [y/w]Ts, and Ty, [y/w]Te, z = [y/w|Tr,r @ [y/w]Ty;
p1,p2 F ly/w]Ts <: [y/w]Ts. By (ST-Met) and (TX-Met).

e Case (ST-TypAnd): T5 = {B(r) : Ty..T5} A{B(r) : Ts..T7},and Ty = {B(r) : Ty V Ts..T5 AT }. By
(ST-TypAnd) and (TX-And) and (TX-Or) and (TX-Typ).

e Case (ST-Eq): p1,w — y, p2 F T3 = T1. By 5.31(SubEqET), p1, p2 F [y/w]|T5 ~ [y/w]|T;. By (ST-Eq),
01,0201, [y/w|la b [y/w]Ts <: [y/w]T.

e Case (ST-N-M): T3 = N A {M(rp) : L..L}, and T3 = L. By (ST-N-M) and (TX-Bot) and (TX-Typ)
and (TX-N) and (TX-And).

e Case (ST-N-Rec): 75 = N, and T} = (s : Ty). By (ST-N-Rec) and (TX-Rec) and (TX-N).
e Case (ST-N-Fld): 75 = N, and T = {a : Ts..T7}. By (ST-N-Fld) and (TX-Fld) and (TX-N).

e Case (ST-N-Met): 75 = N, and T} = {m(z : Tr,r : Ty) : Ts}. By (ST-N-Met) and (TX-Met) and
(TX-N).

e Case (ST-N-Typ): T5 = N, and T1 = {B(r) : T..T%}. By (ST-N-Typ) and (TX-Typ) and (TX-N).

e Case (ST—DISt) T3 = Ty N (T5 vV T(;) T = (T4 A T5) \ (T4 A T@) By (ST—DISt) and (TX-OI') and
(TX-And).

® Case (TS-Top): T3 = T,and 1y = T, and 7, = T. By (TS-Top) and (TX-Top).

® Case (TS-Bot): 75 = L, and T} = N, and Ty = L. By (TS-Bot) and (TX-Bot) and (TX-N).

e Case (TS-M): T3 = {M(r1) : T5..T4}, and T = T. By (TS-M) and (TX-Typ).

¢ Case (TS-Typ): By (TS-Typ).

* Case (TS-Fld): By (TS-Fld).

¢ Case (TS-Met): By (TS-Met).

* Case (TS-Rec): By (TS-Rec).

e Case (TS-Sel): T3 = x3.B(z2). T'1,w : To,Tosp1,w — y,p2 b 3 : {B(r) : T5.T6}. T1,w : Ty, Ty;
p1,w =y, p2 F[z2/r]Ts ro T1. Ty, w : To, Taspr, w — y, pa b [x2/r|Te mu(ry) Ty.

By induction on variable typing and splitting, I'y, [y/w]T'2;p1, p2 F [y/w]zs : [y/wl{B(r) : T5..Ts},
L, [y/wllosprs po = [y/wllwe/r)Ts ro [y/w]Ty, T, [y/w|laipy, pa F ly/wl[za/r]Ts mau(ry) [y/w]Ty.

51

D3S, Technical Report no. D35-TR-2020-01 5.1 Typing lemmata

By (TX-Typ), I'1, [y/w|l2;p1, p2 b [y/wlas : {B(r) : [y/w]T5..[y/w]Ts}. By 5.21(SubSwap), I't, [y/w]T'2;

p1,p2 F [ly/wlze/r][y/w]Ts ro [y/w|Ty, T, [y/w]l2:p1, p2 F [ly/wlae/rlly/w]Ts mu(ry) [y/w]T}y.

By (TS-Sel), T'1, [y/w]T2;p01, p2 F [y/w]zs.B([y/w]z2) ro [y/w]T1, 1, [y/wl2;p01, p2 b [y/w]xs.B(ly/w]ze) mu(ri) [y,
By (TX-Sel).

e Case (TS-AndR) T3 =T NTg, and T =1T7; N1Tg, where Fl,w : TQ,FQ;pl,w — Y, P2 - 15 ro 17,
and 1—‘1,’11} : Tg,Fg;ph’w — Y, P2 F T ro Tx.

By induction on splitting, I'1, [y/w|T'2;p1, p2 F [y/w]T5 ro [y/w|T7, and I'y, [y/w|la;p1, p2 - [y/w]Ts ro [y/w]|Ts.
By (TS-AndR) and (TX-And).

e Case (TS—AndM) T3 = T5/\T6, and T4 = T7/\T8, where Fl,w : T27F2;p1, w —yY,p2 = T5 Il’lll(’/‘l) T7,
and Fl, w : TQ, Fg;pl,w — Y, P2 = T6 mu(rl) Tg.

By induction on splitting, I'1, [y/w]|T2;01, p2 F [y/w]Ts mu(ry) [y/w]T7, and Ty, [y/w]T2;p01, p2 F
[y/w]|Ts mu(ry) [y/w]Ts. By (TS-AndM) and (TX-And).

e Case (TS-OrR): T35 = T5 VT, and Ty = T7 vV Ty, where I'y, w : 15, T'o;p1,w — y, po = T5 ro Ty, and
Iy,w:T2,Te501,w — y, p2 b T ro Ts.

By induction on splitting, I'v, [y/w|T'2;p1, p2 F [y/w]T5 ro [y/w|T7, and I'y, [y/w|la;p1, p2 - [y/w]Ts ro [y/w]|Ts.
By (TS-OrR) and (TX-Or).

e Case (TS—OI'M) T3 = T5 \/Tﬁ, and T4 = T7 \/Tg, where Fl,w : TQ,FQ;pl, w —yY, P2 = T5 mu(rl) T7,
and Fl,w : TQ,FQ;,D17IU — Y, P2 - T6 mu(rl) Tg.

By induction on splitting, I'1, [y/w]|T2;01, p2 F [y/w]Ts mu(ry) [y/w]T7, and I'y, [y/w]Te;p01, p2 F
ly/w]Ts mu(ry) [y/w]Ts. By (TS-OrM) and (TX-Or).
O
Finally the variant 5.33(SubR) shows that a free variable can be replaced by any variable
Lemma 5.33 (SubR). The following holds for variable typing, subtyping, splitting :
o IfTipb oy Ty, andu ¢ Tand u & p, then Tsp & [x/uzy : [z/u]Th.
o IfTipbTs <:Ty,andu ¢ Tandu ¢ p, thenTip - [z/u]T5 <: [x/u]T7.
e IfTipFTs5ro Ty, and u ¢ T and u ¢ p, then T;p b= [z /u]T5 ro [x/u]T}.
o IfTsptTs mu(r) Ty, andu # ri,and u ¢ T and w ¢ p, then T;p = [z /u]T5 mu(ry) [x/u]Ty.
Proof. Induction on variable typing, subtyping, splitting:
e Case (VT-Var): I' = I's,a; : T1,Ty, where 21 ¢ dom T'y. Because u ¢ T, therefore z1 # u, and
u ¢ Ty, therefore [x/u]xy = x1, and [z /u]Ty = T}.

e Case (VI-RecE): Ty = [x1/s]Ty, and T;p - 21 : (s : Ty), and Ty indep s. Using alpha-equivalence,
assume that s # x.

By induction on variable typing, I';p - [x/u]2: : u(s : [x/u]Ty). By 5.25(SubIndep), [«/u|Ty indep s.
By (VI-RecE), I';p b [z /u]x1 : [[x/u]z1/s][x/u]Ty. By 5.21(SubSwap), [[z/u]z1/s][x/u]Ty = [z/u]T}.

e Case (VI-Recl): T;p b @1 : [x1/s]Ty, and Th = p(s : Ty), and T';p b [z1/s]Ty ro [x1/s]Ty, and
T, indep s. Using alpha-equivalence, assume that s # .

By induction on ro splitting, I';p = [z/u][x1/s]T4 ro [z/u][z1/s]T4. By induction on variable typ-
ing, T'sp + [z/ulzq : [x/u][z1/s|Ty. By 5.21(SubSwap), [z/u][z1/s]Ty = [[x/u]z1/s][z/u]Ts. By
5.25(SubIndep), [z/u]Ty indep s. By (VI-Recl), I';p - [z/u]z1 : p(s @ [z/u]Ty).

e Case (VI-AndI): Ty = Ty ANT5, and I';p - z1 : Ty, and I';p F 21 @ T5. By induction on variable
typing, I';p F [z/u]zy @ [x/u]Ty, and Tip F [x/ulzq : [z/u]T5. By (VI-Andl) and (TX-And), I’;
pF[x/u]zy : [x/u]Ty.

e Case (VI-MutTop): 71 = {M(rg) : L..T}. Directly by (VI-MutTop) and (TX-Top) and (TX-Bot)
and (TX-Typ).

e Case (VI-Sub): I';p + 21 : Ty. I';p B Ty <: Ty. By induction on variable typing, I';p F [z/u]zy :
[z/u]Ty. By induction on subtyping, I';p F [z/u|Ty <: [z/u]Ti. By (VI-Sub), T'ip F [z/u]zy :
[/u]Ty.

52

D3S, Technical Report no. D35-TR-2020-01 5.1 Typing lemmata

¢ Case (ST-Top): Ty = T. Directly by (ST-Top) and (TX-Top).

* Case (ST-Bot): T3 = L. Directly by (ST-Bot) and (TX-Bot).

e Case (ST-Refl): T5 = T;. Directly by (ST-Refl).

e Case (ST-And1): T3 = T1 A Ty. By (ST-And1), T';p &= [z/u]Ty A [z/u|Ty <: [x/u]T;. By (TX-And).
e Case (ST-And2): T3 = Ty ATy. By (ST-And2), T';p = [z/u]Ty A [x/u|Ty <: [z/u]Ty. By (TX-And).

® Case (ST-And): Ty = TyA\Ts,and I';p - T3 <: Ty, and I';p - T3 <: T5. By induction on subtyping, I';
pF[z/ulTs <: [x/u]Ty, Tip k- [x/u]T5 <: [z/u]Ts. By (ST-And), T'sp - [z/u|Ts <: [x/u]Ty A [x/u]Ts.
By (TX-And).

e Case (ST-Orl): Ty = T3V Ty. By (ST-Orl), T';p & [/u]T3 <: [z/u]T3 V [z/u]Ty. By (TX-Or).

e Case (ST-Or2): Ty = T4 V T3. By (ST-Or2), T';p & [x/u|T3 <: [z/u]Ty V [z/u]T5. By (TX-Or).

® Case (ST-Or): T3 =T, VTs,and I';p - T <: Ty, and I';p = T <: 1. By induction on subtyping, I';
p b lx/ulTy <: [z/u]Th, Tip b [z/u]Ts <: [x/u]Ty. By (ST-Or), Iip b [z/u]Ty V [x/u]T5 <: [z/u]Th.
By (TX-Or).

e Case (ST-Trans): I';p - T5 <: Ty, and T';p H Ty <: T1.
By induction on subtyping, I';p b [x/u|T3 <: [z/u]Ty, and T';p & [x/u]Ty <: [z/u]T}. By (ST-Trans),
Dip b [x/u]Ts <: [z/u]Ty.

o Case (ST-SelL): T5 = [z2/r]Ty, and Ty = z5.B(22), and T;p b x5 : {B(r) : Ty..T5}.
Similarly as (ST-SelU). By induction on variable typing, I';p - [z/u]zs : [z/u]{B(r) : T4..T5}. By
(TX-Typ), T';p + [z/u]xs : {B(r) : [z/u]Ts..[z/u|T5}. By (ST-Sell), I'ip & [[z/u]xe/r]|[z/u]Ty <:
[z/u]zs.B([z/u]z2). By 5.21(SubSwap) and (TX-Sel), I';p - [z/u][x2/r|Ty <: [x/u]zs.B(z2).

e Case (ST-SelU): T3 = z3.B(x3), and T = [xo/r]T5, and T;p b a3 : {B(r) : Ty..T5}.

By induction on variable typing, I';p F [z/u]xs : [x/ul{B(r) : Ty..T5}. By (ITX-Typ), I'ip F [z/u]zs
{B(r) : [z/u]Ty..[x/u]Ts}. By (ST-SelU), I';p F [x/u]zs.B([x/ulze) <: [[x/u]ze/r][x/u]Ts. By
5.21(SubSwap) and (TX-Sel), I';p - [z /u]zs.B(z2) <: [z/u][xe/r]T5.

e Case (ST-TypAnd): T5 = {B(r) : T4.Ts} A{B(r) : Ts.. Tz}, and Ty = {B(r) : Ty V Ts..T5 AT }. By
(ST-TypAnd) and (TX-And) and (TX-Or) and (TX-Typ).

e Case (ST-Dist): T5 = Ty A (T5 V T). Th = (Tu ANT5) V (Ts A Tg). By (ST-Dist) and (TX-Or) and
(TX-And).

e Case (ST-Typ): T3 = {B(r) : T4.T5}, and Th = {B(r) : Ts.. 17}, where I';p - Tg <: Ty, and T
p F T5 <: T7. Using alpha-equivalence, assume that v, = are disjoint from r.

By induction on subtyping, I';p F [x/u|Ts <: [z/u|Ty, and T';p F [z/u]Ts <: [z/u]T7. By (ST-Typ)
and (TX-Typ).

e Case (ST-FId): T5 = {a : Ty..Ts},and T} = {a : Ts..T7}, where T;p - T <: Ty, and T;p b T <: T7.
By induction on subtyping, I';p & [z/u|Ts <: [z/u|Ty, and T';p - [z/u]T5 <: [x/u]T7. By (ST-Fld)
and (TX-Fld).

e Case (ST-Met): T5 = {m(z : Ty,7 : Tg) : Ts}, and T4 = {m(z : Tr,r : Ty) : T}, where T
pFETy < Ty,and D,z : Trsp Ty <: T, and I', 2 : T7,r : Ty;p = T5 <: Tg. Using alpha-equivalence,
assume that u, x are disjoint from r and z.

By induction on subtyping, I';p - [z/u]T7 <: [z/u]T,. By induction on subtyping, I, z : [z/u]T7;
pF lz/ulTy <:[z/u]Ts, and T,z : [x/u]T7,r : [x/u]To;p F [z/u]Ts <: [xz/u]Ts. By (ST-Met) and
(TX-Met).

e Case (ST-Eq): p F T ~ T1. By 5.26(SubEq), p I [z/u]T5 =~ [z/u]T}. By (ST-Eq).

e Case (ST-N-M): T3 = N A {M(rp) : L..1}, and T3 = L. By (ST-N-M) and (TX-Bot) and (TX-Typ)
and (TX-N) and (TX-And).

e Case (ST-N-Rec): 75 = N, and 71 = u(s : T4). Using alpha-equivalence, assume that u, = are
disjoint from s. By (ST-N-Rec) and (TX-Rec) and (TX-N).

e Case (ST-N-Fld): 75 = N, and T} = {a : Ts..T7}. By (ST-N-Fld) and (TX-Fld) and (TX-N).

e Case (ST-N-Met): T3 = N, and Ty = {m(z : Ty, 7 : Ty) : Tg}. Using alpha-equivalence, assume that
u, « are disjoint from r and z. By (ST-N-Met) and (TX-Met) and (TX-N).

53

D3S, Technical Report no. D35-TR-2020-01 5.1 Typing lemmata

Case (ST-N-Typ): T35 = N, and T} = {B(r) : Ts..17}. Using alpha-equivalence, assume that u, =
are disjoint from r. By (ST-N-Typ) and (TX-Typ) and (TX-N).

Case (TS-Top): T3 = T,and 17 = T, and T, = T. By (TS-Top) and (TX-Top).
Case (TS-Bot): T3 = L, and 77 = N, and 7y = L. By (TS-Bot) and (TX-Bot) and (TX-N).
Case (TS-M): T3 = {M(r1) : T5.. 14}, and 71 = T. By (TS-M) and (TX-Typ).
Case (TS-Typ): By (TS-Typ).
Case (TS-Fld): By (TS-F1d).
Case (TS-Met): By (TS-Met).
Case (TS-Rec): By (TS-Rec).
Case (TS-Sel): T35 = z3.B(z2). T;p b x5 : {B(r) : T5.T6}. Tip F [z2/r]Te ro Ty. Tip
[x2/7]T6 mu(ry) Ty.
By induction on variable typing and splitting, I';p - [z/u]zs : [x/ul{B(r) : T5..Ts}, Tip & [x/u][z2/r]|Ts ro [x/u]T7,
Tip b [z/u][ze/r]Te mu(r) [x/u]Ty. By (TX-Typ), I'ip b [x/ulzs : {B(r) : [z/u]T5..[z/u]Ts}. By
5.21(SubSwap), I'ip + [[z/ulzs/r][z/u|Ts ro [z/u]Ti, Tip & [[x/ulze/r]lz/u]lTs mu(r) [xz/u|Ty.
By (TS-Sel), T'p - [x/uls. B((x/ulra) xo [x/u)Tr, Tsp ¥ [x/ulrs.B((x/ulz) mu(r) [z/u]Ts. By
(TX-Sel).
e Case (TS-AndR): T5 = T5 A'Tg, and 11 = T7 ATy, where I';p - T5 ro 17, and T';p = T ro Ts.
By induction on splitting, I';p F [z/u]Ts ro [x/u]T7, and T';p & [2/u]Ts ro [z/u]|Ts. By (TS-AndR)
and (TX-And).
e Case (TS-AndM): T5 = T5 AT, and Ty = T7 A Ts, where I';p - T5 mu(ry) 17, and T'jp +
Tﬁ mu(rl) Tg.
By induction on splitting, I';p & [z/u|Ts mu(r) [z/u]T7, and I';p & [z/u]Ts mu(r) [z/u]Ts. By
(TS-AndM) and (TX-And).
e Case (TS-OrR): T3 =T5 vV Tg,and Ty = T7 V Tg, where I';p - Ts ro 17, and T';p - T ro Tg.
By induction on splitting, I';p F [x/u|T5 ro [z/u]T7, and T';p F [z/u]Ts ro [z/u]Ts. By (TS-OrR)
and (TX-Or).
e Case (TS-OrM): T3 = T5V1g, and Ty = T7V Ty, where I';p - T mu(ry) T, and T';p - T mu(rq) Ts.
By induction on splitting, I';p F [z/u|Ts mu(r1) [z/u]T7, and T';p - [z/u]Ts mu(ri) [z/u]Ts. By
(TS-OrM) and (TX-Or).

O

54

D3S, Technical Report no. D35-TR-2020-01 5.1 Typing lemmata

5.1.6 Splitting lemmata

This section contains properties of the type splitting relations - ro and F mu() , defined in Section
3.10. The splitting operations split a type into a read-only and mutability part. The read-only part is an
immutable supertype of the original type.

The lemmata 5.34(ROSub) and 5.35(MUSub) show that the splitting operations give use an upper
bound for the type and its mutability. The lemma 5.36(SplitSub) shows how splitting a type into the
read-only part and mutability can be used to construct the form that is used in the conclusion of the
(TT-Read) rule.

Lemma 5.34 (ROSub). IfT;p Ty ro Ty, then Tip =Ty <: Th.
Idea. The read-only version of a type is a supertype of the original type. v
Proof. Induction onI';p - T} ro T5:

¢ Case (TS-Top): 1> = T. By (ST-Top).

* Case (TS-Bot): T} = L. By (ST-Bot).

® Case (TS-M): T> = T. By (ST-Top).

* Cases (TS-Typ), (TS-Met), (TS-Fld), (TS-Rec): T} = 1. By (ST-Refl).

e Case (TS-Sel): T1 = z1.B(x2). Iip b x : {B(r) : T5..14}. Tip b [x2/7r]T4 ro To. By induction, T';
pF [xe/r|Ty <: Ty. By (ST-SelU), I';p = Ty <: [x2/7]T4. By (ST-Trans), I';p F 11 <: Ts.

e Case (TS—AndR) Ty =T5NTy To = T5 NTg. F,p F 15 ro Ts. F,p F Ty ro Tg. By induction, F,
pFTs <:T5,and I';p - Ty <: Tg. By 5.18(AndSub), I';p = T5 ATy <: T5 A T

e Case (TS-OI‘R) T1 = T3 V T4. T2 = T5 V Tﬁ. F,p + T3 ro T5. F,p F T4 ro T6. By induction, F,
P T3 <: T, and F,p Ty < Tg. By 519(OrSub), F,p FT3Vv T, <:T5V T

O
Lemma 5.35 (MUSub). IfT';p = Th mu(rg) Ts, then T;p b T <: To or Tsp = Ty <: {M(rg) = L..T5}.

Proof. Induction on I';p - T4 mu(rg) Th:

Case (TS-Top): To = T. By (ST-Refl), I';p = T <: 15,
Case (TS-Bot): Ty = L. By (ST-Bot), I';p = L <: {M(ro) : L..L}.

Case (TS-M): T1 = {M(r) : T5..75}. By (ST-Bot), I';p F L <: T3. By (ST-Typ), I';p B {M(r) :
Tl..TQ} < {M(To) : J_Tg}

Cases (TS-Typ), (TS-Met), (TS-FId), (TS-Rec): T; = T. By (ST-Refl).

Case (TS-Sel): T1 = z1.B(z2). T;p b xq : {B(r) : T5..14}. T;p F [z2/r]Ty mu(rg) To. By (ST-SelU),
Tip F Ty <:[xo/r]Ty. By induction, T';p F T <: Ty, or Tip & (2o /7] Ty <: {M(rg) : L..T5}. Unless I';
pF T <: Ty, by (ST-Trans), I';p - Th <: {M(rg) : L. 15}

Case (TS-AndM): Ty = T5 ATy. To = T5 AN Ts. T;p B T3 mu(rg) Ts. T';p B Ty mu(rg) Ts. By
induction, T';p = T5 <: {M(ro) : L. T5}, orI';p B T <: Ty. By induction, I';p F Ty <: {M(ro) :
L. T}, orTipbE T <t Ts. Tspk- T <t Ts,and T';p = T <: T, then by (ST-And), T'sp H T <
Tp. If Isp = T <: T3, then by (ST-Top) and (ST-Trans), I';p = Ty <: T5. By (ST-Refl) and (ST-
And), I';p F T <: T5 NTs. By (ST-And2), T3 AT'sp = Ty <: Ty. By (ST-Typ) and (ST-Trans),
Tip b Ty ATy <: {M(rg) : L.T5 ANTg}. If Tsp B T <: Tg, then by (ST-Top) and (ST-Trans), I';
pt Ts <: Ts. By (ST-Refl) and (ST-And), I';p = T5 <: T5 A Tg. By (ST-Andl), T5 AL'sp =Ty <: Ts.
By (ST-Typ) and (ST-Trans), I';p = T3 A Ty <: {M(r¢) : L..T5 A Tg}. Otherwise, by (ST-TypAnd), I';
P FTsANTy <: {M(’I’o) c LLT5 A Tﬁ}

e Case (TS—OI‘M) Tl = T3\/T4. TQ = T5\/T6. F,p = T3 mu(ro) T5. F,p H T4 mu(ro) TG- By il’ldUCtiOI’l,
Tip b T3 <: {M(ro) : L. 75}, or I';p = T <: Ts. By induction, I';p - Ty <: {M(rg) : L. Ts},
orip = T < Ts. IfTsp = T <: T, then by (ST-Orl) and (ST-Trans), I'sp = T <: Ty, If T
p F T <: Tg, then by (ST-Or2) and (ST-Trans), I';p = T <: T,. Otherwise, by 5.20(0rTypSub), I';
pFTsV T, <: {M(’I“U) L. T5V Tb}

O

55

D3S, Technical Report no. D35-TR-2020-01 5.1 Typing lemmata

Lemma 5.36 (SplitSub). If I';p - o : Th, and T';p = 11 ro T, and Tsp = Th mu(rg) T3, then Tsp = a -
T2 A\ {M(’l"()) : J_(Tg, V T4)}

Proof. By 5.34(ROSub), I';p F T} <: Ty. By (VI-Sub), I';p - x : T. By 5.35(MUSub), I';p + 11 <: {M(ro) :
J_..Tg}, or F;p FT<:Ts. By (ST—OI‘), F;p FT5 <: T3V Ty By (ST-Typ), F;p H {M(’r‘o) : J_Tg} < {M(’l‘o) :
L.(T5VTy)}.

IfT;p Ty <: {M(rg) : L. T3}, then by (VI-Sub), I';p - = : {M(ro) : L..(T5 vV Ty)}. Otherwise, I';
p T < T5. By (VI-MutTop), I';p - = : {M(ro) : L..T}. By (ST-Typ), I';p F {M(ro) : L. T} <: {M(ro) :
1..T3}. By (VI-Sub), I';p = = {M(rg) : L..T5}. By (VI-Sub), I';p = = : {M(rg) : L..(T5 V T4)}. By
(VI-AndI), T;p bz - To A {M(rg) : L..(T5V Ty)}. O

Lemma 5.37 (RecordRO). IfT';p - Ry ro Ry, then Ry = Ry.
Idea. Read-only version of a record type is the same type. v
Proof. Induction on R;:

e If Ry = R3 A Ry4. By inversion of (TS-AndR), Ry = Rs A Rg, where I';p = R3 ro R4, and T
pF Rs ro Rg. By induction, Rs = R3, and Rg = Ra.

e If Ry = {a:Ty..T1}. By inversion of (TS-Fld), Rs = R;.

e If Ry = {A(r) : Ty..T»}. By inversion of (TS-Typ), R2 = R;.

o If Ry = {m(z:T1,r:T3) : T»}. By inversion of (TS-Met), Ry = R;.

56

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

5.2 Runtime lemmata

This section states properties related to machine configurations and their reduction.

5.2.1 T-Free Variables Lemmata

The following lemmata state that in a term, there are no unexpected locations, which correspond to
an object on the heap. However, this only holds for occurrences outside of a type, because defining a
method which takes a parameter of type y.A(z) is allowed even though y does not exist.

Lemma 5.38 (TVC). IfI';pF o : T, then x € dom I'.
Proof. Induction on variable typing:

¢ Case (VI-Var): Rule requires € dom I'.
e Cases (VT-RecE), (VI-Recl), (VT-AndlI), (VI-MutTop), (VI-Sub): All these rules have a premise of
the form I';p - « : T3. By induction.
O

Lemma 5.39 (FVC). If'sp -t : T, and t tfree x, then x € dom I'. If I';p = d : T, and d tfree z, then
z € dom I

Proof. Induction on on term and definition typing:

e Cases (TT-Var), (TT-Apply), (TT-Read), (TT-Write): By 5.38(TVC).

* Case (TT-New): If x = z, then there are no free occurrences in ¢. Otherwise by induction on term
typing. If x = s, then there are no free occurrences in d. Otherwise by induction on definition

typing.
® Case (TT-Let): occurrences in ¢; by induction. If z = z, then there are no free occurrences in 5.
Otherwise by induction on term typing.

* Case (TT-Sub): By induction on term typing.

¢ Cases (DT-Typ), (DT-TypB): no t-free occurrences.
* Case (DT-FId): By 5.38(TVC).

¢ Case (DT-And): By induction on definition typing.

¢ Case (DT-Met): If z = z, then there are no free occurrences in t,. If z = s, then there are also no free
occurrences in ty, because the method definition can only be typed inside v(s : T1)d. Otherwise
by induction on term typing.

O
Lemma 5.40 (SEVC). IfF;p o : 11,15, and o tfree z, then x € dom F.
Proof. Induction on stack typing:

¢ Case (CT-EmptyS): No occurrences.

® Case (CT-LetS): Occurrences in ¢ by induction. If © = z, then there are no t-free occurrences.
Otherwise, by 5.39(FVC).

O
Lemma 5.41 (RFV). IfF;p & (t;0;p;2) : T, then all t-free variables in t and o are references.

Proof. By 5.39(FVC), all t-free variables in ¢ are in dom F. By 5.40(SFVC), the same for t-free variables
in s. Because F is inert, all such variables are references of locations. Configuration typing requires that
there are no locations in ¢ and s. O

Lemma 5.42 (IFV). IfF;p & (t;-; p;-) : T, then t has no t-free variables.

Proof. By 5.39(FVC), all t-free variables in ¢ are in dom F. By configuration typing, heap correspon-
dence and runtime environment correspondence, they also have a corresponding locatoin on the heap.
Because the heap is empty, there are no such variables. O

57

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

Locations cannot appear in the body of a method. This is required because otherwise a read-only
method of an object could modify captured variables. This is achieved by variable visibility.

Lemma 5.43 (VVE). If ',z : T vis x1, and x1 # xo, then I' vis x;.

Proof. By inversion of (Vis-Var), I',zo : T =T1,21 : T1,T'y, and | ¢ I's. Because x1 # 2, I's =T'5, 22 : T,
andI' =T, : T1,T'3, and | ¢ I's. By (Vis-Var). O

Lemma 5.44 (VEV). IfT';p bt : T, and t tfree x, then I" vis x. If I';p = d : T, and d tfree x, then T vis z.
Idea. If a variable is t-free in a typed term or definition, then it must be visible in the typing context. Vv
Proof idea. Induction on t-free variable. Rules for typing terms and definitions containing variables
require visibility. v
Proof. Induction on t tfree z:

* Case (TF-Var): t = vz. By inversion of (TT-Var), I vis .

* Case (TF-Applyl): t = z.m 5. By inversion of (TT-Apply), I vis x.
e Case (TF-Applyl): ¢t = x1.m x. By inversion of (TT-Apply), I vis z.
¢ Case (TF-Read): t = z.a. By inversion of (TT-Read), I vis «.

* Case (TF-Writel): t = z.a := z». By inversion of (TT-Write), I vis z.
* Case (TF-Write2): t = x1.a := x. By inversion of (TT-Write), I vis z.

e Case (TF-NewD): t = let z = v(s : T1)d in t. d tfree z. x # s. By inversion of (TT-New), I', s : T1;
ptd:Ti. Byinduction, I, s : T} vis z. By 5.43(VVE), I vis z.

* Case (TF-NewT):t = let z = v(s : T1)d in t. t tfree x. « # z. By inversion of (TT-New), I, z : Tj;
p -t : T, Byinduction, I', z : T3 vis . By 5.43(VVE), I vis z.

* Case (TF-LetPush): ¢t = let z = t; in t3. ¢; tfree . By inversion of (TT-Let), I';p - ¢1 : T31. By
induction, I" vis z.

* Case (TF-LetPop): t = let z = ;1 in ta. o tfree z. # 2. By inversion of (TT-Let), I,z : T7;
p Fta : T5. By induction, I, z : T3 vis =. By 5.43(VVE), I vis x.

e Case (TF-Fld): d = {a = x1}, and I vis z. The t-free occurence is z; by (TF-Fld), so = = z;.

¢ Case (TF-Met): d = {m(z,r) = t}. t tfree z. © # z. x # r. By inversion of (DT-Met), ', !, 7 : T3, = :
Ty;p Ft: Ty By induction, I, !, r : T3,z : T} vis z. By 5.43(VVE) twice, I, ! vis z. By 5.14(Unhide),

T vis z.

* Case (TF-Andl): d = dy A dy. d; tfree x. By inversion of (DT-And), I';p - dy : 7. By induction,
T vis z.

* Case (TF-And2): d = dy A dg. d2 tfree x. By inversion of (DT-And), I';p = ds : T». By induction,
T vis z.

O
Lemma 5.45 (VVC). IfT'1,!, T’y vis z, then « € dom I's.

Proof. By inversion of (Vis-Var), I'1,!,T'y = I's,x : T,T'y, where ! ¢ T'y. Therefore = must be after !, so
z € dom I's. O

Lemma 5.46 (MLoc). IfFip & (to;0;0; %) : To, and y1 — d € X, where d = ... {m(z,1) = t3} ..., then
there is no v for which t3 tfree v.

Idea. Method bodies cannot contain any t-free locations and references. v

Proof idea. Because of the use of ! in method definition typing, references and locations are not visible
in the body and therefore cannot be t-free. v

Proof. By inversion of (CT-ObjH), F,y1/s : R;p b d : [y1/s]R. By induction on definition typing (DT-
And) and (DT-Met), exists some T5, T3, Ty, such that I'g;p F t3 : T3, where I'y = F,!,r : Ty, z : Ty, If
ts tfree v, then by 5.44(VFV), I'y vis v. By 5.45(VVC), v € dom (r : Ty, z : T3), which is a contradiction.

O

58

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

Lemma 5.47 (TFSub). If [vs/ult tfree vy, then vy = vy V t tfree vy. If [v2/u]d tfree vy, then v; =
vy V d tfree vy.

Idea. If vy is t-free in a term after substitution, then it was inserted by the substitution or it was t-free
before substitution. v

Proof idea. If vy is not the newly substituted variable, then the same occurrence that makes it t-free after
substitution also makes it t-free before substitution. v

Proof. Suppose that v; # vo. Induction on [vy/u]t tfree vy:

¢ Case (TF-Var): [ve/u]t = vu;. By (EX-Var), t = vz, and v; = [vz/u]x. Because v1 # vg, then u # z,
and = = v, so by (TF-Var), v tfree vs.

e Case (TF-Applyl): [ve/ult = vi.mza. By (EX-Apply), t = z1.mz3, and v; = [va/u]z;. Because
vy # vg, then u # x1, and =1 = vy, so by (TF-Applyl), z1.m x5 tfree vs.

e Case (TF-Apply2): [vo/ult = z1.mwv1. By (EX-Apply), t = x3.mx2, and vi = [va/ulxe. Because
vy # vy, then u # 3, and x2 = vy, so by (TF-Apply2), z5.m z, tfree vs.

e Case (TF-Read): [ve/u]t = v1.a. By (EX-Read), t = z1.a, and v1 = [ve/u]z1. Because v1 # v, then
u # x1, and x, = vy, so by (TF-Read), z:.a tfree v,.

e Case (TF-Writel): [va/u]t = v1.a := x2. By (EX-Write), t = z1.a := 3, and v; = [va/u]z1. Because
vy # Vg, then u # x1, and z1 = vy, so by (TF-Writel), z;.a := z3 tfree vs.

e Case (TF-Write2): [va/u]t = z1.a := v1. By (EX-Write), t = x3.a := 2, and v; = [va/u]z2. Because
vy # Vg, then u # x9, and z2 = vy, so by (TF-Write2), z3.a := z2 tfree vs.

e Case (TF-NewD): [va/u|t = let z = v(s : Ry)d; in ty. d; tfree vy. By (EX-LetNew), t = let z = v(s :
R3)ds in ta, and [va/u]ds tfree v1, where d; = [v2/u]ds. By induction, d; tfree v;. By (TF-NewD),
let z = v(s: Ra)ds in ts tfree v;.

e Case (TF-NewT): [va/u]t = let z = v(s : R1)d; in t1. d; tfree vi. By (EX-LetNew), t = let z = v(s :
Ry)ds in tg, and [ve/ults tfree v1, where t1 = [va/u]ts. By induction, to tfree v;. By (TF-NewT),
let z = v(s: Ra)ds in ts tfree v;.

e Case (TF-LetPush): [va/ult = let z = t1 in ta. t1 tfree v;. By (EX-Let), ¢t = let z = t3 in t4,
and [va/u]ts tfree vy, where t; = [vo/u]ts. By induction, dy tfree vi. By (TF-LetPush), let z =
ts in ty tfree vq.

e Case (TF-LetPop): [va/u]t = let z = t; in ty. tp tfree v;. By (EX-Let), t = let z = 3 in t4,
and [va/ulty tfree vy, where to = [v2/ults. By induction, dy tfree v;. By (TF-LetPop), let z =
t3 in ty tfree v;.

e Case (TF—Andl) [UQ/’UJ}d = dl AN dg. d1 tfree V1. By (DX—And), d= d3 A d4, and [Ug/u]dg tfree v,
where d; = [v2/u]ds. By induction, d3 tfree v;. By (TF-Andl), ds A d4 tfree v;.

e Case (TF-And2): [ve/u]d = dq A dq. da tfree vq. By (DX-And), d = d3 A d4, and [ve/u]dy tfree vy,
where dy = [v2/u]ds. By induction, d4 tfree vi. By (TF-And2), d3 A d4 tfree v;.

e Case (TF-Fld): [ve/uld = {a = v1}. By (DX-FId), d = {a = x1}, where v; = [va/u]z;. Because
v1 # v, then u # z1, and x1 = vy. By (TF-FId), {a = z1} tfree vs.

e Case (TF-Met): [vo/uld = {a(z,r) = t1}. t; tfree v;. By (DX-Met), d = {a(z,r) = t2}, and
[ve/u]ts tfree vy, where t1 = [va/u]te. By induction, ¢, tfree v;. By (TE-Met), {a(z,7) =
ta} tfree v;.

O

59

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

5.2.2 Precise typing lemmata

This section states properties of the precise typing relation defined in Section 4.3.
Because types in an inert context have a prescribed form, precise typing can only give variables a
type of one of four forms.

Lemma 5.48 (PrecForms). IfF by v : T, then either Th = u(s : R) A{M(ro) : L. To} or Ty = p(s : R) or
T1 = {M(To) : J_TQ} or [’U/S]R = ...1 Tl ¥ where F = Fl,U : ILL(S : R) AN {M(T’o) : J_..TQ},FQ.

Proof. Inductionon F - v : T7:

Case (VTi-Var): F = Fy,v : T1,Fs. By inertness of F, T1 = p(s : R) A{M(ro) : L..T5}.

Case (VTi-Rec): Ty = [v/s1]T5, where F Fy v : p(sq : T3). By induction, s; = s, and T5 = R. By
(TL—Reﬂ), [’U/S]R = ...1 Tl BB

Case (VTi-And1): F - v : T1 A T5. By induction, Th = p(s: R),or [v/s]R = ...3T1 AT3...4. In the

second case, there exist .. .1, ...3, such that [v/s]R=...1 T} .. .o.
¢ Case (VT\-And2): F v : T3 ATh. By induction, Ty = {M(ro) : L..T2},0r [v/s|R = ... 3T3ATy .. .4.
In the second case, there exist .. .1, ..., such that [u/s][R=...1 T} .. 2.

O

Lemma 5.49 (NoPrecTyp). Fth v : LF A v :v.Bx), Ftho : iV, FHA v :NFHov:T,
Fthv: {B(’I“) : Tl..TQ} A\ {B(’I“) : T3T4}

Proof idea. By precise typing and structure of types in an inert context. v

Proof. Types in the inert context have the form u(s : R) A {M(rg) : L..T'}, where R is an intersection of
types, which cannot be any of the types in this lemma. O

To simplify some proofs about precise typing, we show equivalence of precisse typing with a sim-
plified version which derives the precise type in one step.

Lemma 5.50 (PrecSim). IfF v : {B(r) : T1..T2}, then either B =M, and F k2 v : {M(r) : T1..T5} or B #
M,andF by v {B(r): Th.To}. FF v v s {m(z : Ty, r : T5) : T}, then F b v s {m(z : Ty, r : T3) : To}. If
Fhiv:{a: T1.To}, then F by v : {a: T1.. T2}

Proof. e Type member: By 5.48(PrecForms), F = Fy,v : u(s : R) A {M(ro) : L. T4}, Fa. If B # M,
then [v/s]R = ...1 {B(r) : T1..T2} .. .2, then by (VT\;-Var). Otherwise, by inertness of F, {B(r) :
Ty.To} = {M(rg) : L..T}}, then by (VT2-Var).

¢ Field member: By 5.48(PrecForms), F = Fi,v : u(s : R) A {M(ro) : L. T4}, Fy, and [v/s|R =
el {a : Tl..TQ} ... By (VTgl-VaI').

¢ Method member: By 5.48(PrecForms), F = Fy,v : u(s : R) A {M(ro) : L. T4}, Fy, and [v/s]R =
el {m(z : Tl,’/‘ : Tg) : Tg} R, By (VT!l—Var).
O

Lemma 5.51 (PrecSimInv). IfF -y v: T, then F v : T.

Proof. By inversion of (VT;-Var), F = Fq,v : u(s: R1) A{M(rg) : L.T5},Fo,and [v/s]R1 = .. 1T .. 0.
By (VT\-Var), F - v : p(s : Ri) A {M(rg) : L.T5}. By (VTi-Andl), F ki v : p(s : R1). By (VIi-Rec),
Ftyv:]v/s|R;. By (VIi-Andl) and (VTi-And2), F - v : T O

For a type member in an object, the declaration type given by precise typing is uniquely determined
(stated by 5.52(UPrecTyp)) and the bounds are tight or the lower bound is L (stated by 5.53(SubPrecTyp)).

Lemma 5.52 (UPrecTyp). If F Fy v : {B(r) : Th..T2}, and F by v : {B(r) : T5..T4}, then Th = T3, and
Ty =Ty

Proof idea. By inversion of simplified precise typing and by structure of types in an inert context v

Proof. e If B = M, then by 5.50(PrecSim), F 12 v : {B(r) : T1. T2}, and F ko v : {B(r) : T3..T4}. By
inversion of (VTp-Var), F = F1,v : u(s1 : R1) A{M(rg) : L. 15}, Fa, and {M(ro) : L.T5} = {B(r) :
Tl..Tg}, and F = Fg,?} : M(SQ : Rg) AN {M(To) : l..Tﬁ},F;L, and {M(To) : LT@} = {B(’I“) : T3T4}
Because v ¢ dom Fy, and v ¢ dom F4, we have Ts = Tg, therefore Ty = T3, and T = Ty.

60

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

e If B # M, then by 5.50(PrecSim), F - v : {B(r) : T1..T5}, and F v : {B(r) : T5..14}. By in-
version of (VT!l-VaI'), F = F17U : /J(Sl : Rl) AN {M(’I’O) : J_..Tg,},FQ, and [’U/Sl]Rl = ... {B(’I") :
Tl..TQ}...Q, and F = Fs,v /,L(SQ : Rg) A\ {M(To) : J_..Tg},F4, and [’U/SQ]RQ = ...3 {B(T) :
T5.T4}...4. Because v ¢ dom Fy, and v ¢ dom Fy, we have Ry = Ry, and s; = s3. Because

member names in an inert context are unique, therefore 77 = 753, and 75 = T}.
O

Lemma 5.53 (SubPrecTyp). IfF by v : {B(r) : T1..T2}, then either Ty = To or Th = L.

Idea. In type member types given by precise typing, the lower bound either L or the same as the upper
bound v

Proof idea. In an record type, the bounds are either the same, or the lower bound is L. Substituting s
does not change that. v

Proof. If B = M, then by 5.50(PrecSim), F 15 v : {B(r) : T1..1»}. By inversion of (VTip-Var), F = Fq,v :
N(Sl : Rl)/\{M(To) : J_..T5},F2, and {M(To) : J_T5} = {B(T‘) : Tl..TQ}, therefore Tl =1.IfB 7& M, then
by 5.50(PrecSim), F 13 v : {B(r) : T1..T»}. By inversion of (VI;-Var), F = F1,v : p(s1 : R1) A {M(ro) :
1. T5},Fg,and [v/s|Ry = ...1 {B(r) : T1.. T2} By inertness of F, Ty = Ty, or 71 = L. O

Because of the similarity of the types given to a location and a reference to the same object, the type
declaration types given to these variables are equivalent.

Lemma 5.54(EqPrecTypL) states this for a reference and a location, when one of the types is known.
Lemma 5.55(EqPrecTyp) states this for two general global variables, when one of the types is known.
Lemma 5.56(EqPrecTypG) states this for two general global variables, when both of the types are
known.

Lemma 5.54 (EqPrecTypL). If w — y € pand F ~ p, then

o IfF -y w: {A(r) : T1..To}, then there exist T3, Ty, such that F &y : {A(r) : T5. T4}, and p = Ty = T3,
and p - Ty ~ Ty.

o IfFtyy: {A(r) : Ts..Ts}, then there exist Tz, Tg, such that F -y w : {A(r) : T7. Ts}, and p = Ts = T,
and p - Tg ~ Tg.

Idea. The precise types of a type member as seen from a reference and as seen from a location exist if
the other one exists, and they are equivalent. v

Proof idea. The bounds are obtained by taking the bounds from the heap type and substituting either w
or y for s. v

Proof. By 5.50(PrecSim), F Fn w : {A(r) : Th.To}, and F ki y : {A(r) @ T5..Ts}. By inversion of

(VTll—Var), F = Fl,w : M(Sl : Rl) A {M(To) : J_..Tlg},FQ, and [U)/Sl]Rl = ...1 {A(T) : TlTQ} .2,
By 5.16(ECorrInvY), F = Fs,y : u(s1 : R1) A {M(ro) : L..L},F4. Choose T3, and T4, such that R; =
...9 {A(T) : Tg..Tlo} .10/ and T3 = [y/Sl]Tg, and T4 = [y/sl]TIO/ therefore [y/sl]Rl = ...3 {A(T) :

T3.T4}...4. By inertness of F, Ry indep s;, therefore Ty indep s, and T3¢ indep s;. By 5.67(IndepEq),
pr Ty = T3, and p - Ty, =~ Ty. By (VIyy-Var), F ny y @ {A(r) : T3.1,}. By 5.51(PrecSimInv),
FFy: {A(r) : T5..14}. By inversion of (VTi1-Var), F = F5,y : p(s2 : Ra) A {M(rg) : L. T4}, Fe, and
[y/SQ]RQ = ...5 {A(T) : T5..T6} « .6 By 5.17(ECOI‘I‘II‘1VW), F= F7,w : /1(82 : Rg) AN {M(To) : J_..T15}, Fg.
Choose T7, and Tg, such that R2 = ...11 {A(T) : T11..T12} .12y and T7 = [U)/SQ}T]_]_, and Tg = [w/SQ]Tlg,

therefore [w/s1]R1 = ...7 {A(r) : T7..Ts} .. .s. By inertness of F, R, indep s;, therefore 77, indep sg,
and T, indep s. By 5.67(IndepEq), p - T5 ~ 17, and p F Ty = Ts. By (VIy-Var), F iy w : {A(r) :
T7.Tg}. By 5.51(PrecSimInv), F - w : {A(r) : T7..Ts}. O

Lemma 5.55 (EqPrecTyp). If p - vi = vy and F ~ p, then

o IfF by vy : {A(r) : Th.. To}, then there exist Ts, Ty, such that F =y ve : {A(r) : T3. Ty}, and p = Ty = T,
and p b Ty ~ Ty.

o IfF vy : {A(r) : T5.. T}, then there exist Ty, T, such that F =y vy : {A(r) : T7. T}, and p + Ts = T,
and p - Tg =~ Tg.

Idea. The precise types of a type member as seen from two equivalent variables exist if the other one
exists, and they are equivalent. v

61

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

Proof idea. By induction, 5.54(EqPrecTypL) and equivalence properties of -~ v

Proof. Induction on p - v & va:

Case (VE-RtoL): v1 — vy € p. Because F ~ p, therefore v; = w, and v, = y. By 5.54(EqPrecTypL).
Case (VE-Refl): v; = vy. By 5.52(UPrecTyp) and (TE-Refl).
Case (VE-Symm): p |- vo = v;. By induction.

Case (VE-Trans): p F v; = vz, and p F vs = ve. By induction, exist Ty, T1¢, such that F
vy : {A(r) : Ty. Tho}, and p F 11 = Ty, and p - T» ~ Tyo. By induction, exist T3, T4, such that
F kv {A(r) : T5.74}, and p - Ty = T3, and p + Ty9 ~ Ty. By 5.3(EqTrans). By induction,
exist T11, Th2, such that F F vg : {A(r) : T11..T12}, and p F T5 = T11, and p + T ~ Tiz. By
induction, exist Tz, Ts, such that F F vy : {A(r) : T7.. 15}, and p - 111 ~ T7, and p - Th2 = Tg. By
5.3(EqTrans).

O

Lemma 5.56 (EqPrecTypG). If pt v1 = vo, and F ~ p,and F -y vy : {A(r) : T1. T}, and F by vy - {A(r) -
Tg..T4}, then 1% F T1 =~ T3, and P - TQ ~ T4.

Idea. The precise types of a type member as seen from two equivalent variables are equivalent. v
Proof idea. By 5.55(EqPrecTyp) and uniqueness of precise types v

Proof. By 5.55(EqPrecTyp), exist 15, Tg, such that F F vy @ {A(r) : T5. 7}, and p - Ty = T, and
P - TQ =~ Tﬁ. By 552(UPrecTyp), T3 = T5, T4 = T@. O

The following lemmata 5.57(CtxM) and 5.58(CtxF) show how from a field or method declaration
type given by precise typing, we can see that the record type in the inter typing context contains a
corresponding declaration. This is one step in showing that the object actually contains the member.

Lemma 5.57 (CtxM). IfF Fy yy - {m(z: To,7 : Ts) : Tr}, then F = Fy,y1 - p(s : ...3{m(z: To, 7 : T11) :
T10} .. .4)/\{M(7‘0> : L..LL Fo, and Y1 §é dom Fo, and Ts = [yl/S]Tg and Ts = [yl/S]Tu and T = [yl/S]Tw.

Idea. If a location has a precise method type, then the method type is a part of the location type in the
context. v

Proof. By 5.50(PrecSim), F ki1 y1 : {m(z : Ts,r : Tg) : Tr}. By inversion of (VI;-Var), we have
F=F1,y1:pu(s: R)A{M(ro) : L.T},Fy,and [v/s]R = ... {m(z: T, : Tg) : T7}...2,and y; ¢ dom Fy,
therefore exist Ty, T11, T10, such that R = ...3{m(z : To,r : T11) : Tio}...4, and Tg = [y1/s]Ty and
Ts = [y1/s]T11 and T7 = [y1/s]T10. By inertness of F, T' = L. O

Lemma 5.58 (CtxF). If F F y; : {a : Ty..Tg}, then there exists Ts, such that [y1/s|T5s = Tz = Ty, and
F=F,y:pu(s:...53{a:T5.T5}...4) AN{M(rg) : L..L} Fo, and y; ¢ dom Fs.

Proof idea. (Adapted from kDOT [2] Lemma 4.7.7 (page 46).) v

Proof. By 5.50(PrecSim), F i1 y;1 : {a : Ty..T3}. By inversion of (VIi;-Var), we have F = Fq, 41 : u(s :
R) A{M(rg) : L. T}, Fy, and [v/s]R = ...1{a : Ty.Ts}...2, and y; ¢ dom Fs, therefore exist Ty, T5,
such that R = .. .3{a : T19..T5} .. .4, and Ty = [y1/s]T5 and Ty = [y1/s]T10. By inertness of F, T' = L,
and Tig = T5. Because of determinism of substitution, Ty = Ty. O

62

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

5.2.3 Invertible typing lemmata

This section states properties of the invertible typing relation defined in Section 4.7.
The types L and N act only as lower bounds and there cannot be any objects that have these types.
Lemma 5.59(NolnvTyp) shows that these types are never given by invertible typing.

Lemma 5.59 (NoInvTyp). F;p ys v: L, FiplFus v N
Idea. Types 1 and N are never derived by invertible typing. v
Proof. Induction on invertible typing:

® Case (VT4y-Var): By 5.49(NoPrecTyp).

e Other cases syntactically cannot derive L or N.
O

The following lemmata invert the rules of invertible typing. Note that unlike in DOT, the (VT 44-Eq)
rule requires using induction.

Lemma 5.60 (InvT). If F;p1 Fyx v : {B(r) : Th.. 1>}, then there exist Ts, Ty, such that F v : {B(r) :
T5..T4}, and F;p F# T <:1T5, and F;p F# T, <:Ts.

Idea. For invertible typing to a type member, there is a precise typing to a type member with tighter
bounds. v

Proof idea. (Adapted from kDOT [2], page 49). v
Proof. Induction on invertible typing:

® Case (VT44-Typ): By induction and (ST4-Trans).

e Case (VTux-Eq): Fip Fys v @ Ty, and p F {B(r) : Th.. Ty} =~ Ti4. By inversion of (TE-Typ),
Ty =A{B(r) : T11..T12},and p F Th = T11, and p F Ty = T15. By induction, F -y v : {B(r) : T5..14},
and F;p l—# T <: T, and F;IO }—# Ty <:Tio. By (ST#-Eq), F;p l—# T <:T1q, and F;p l—# Tio <: Th.
By (STy-Trans), Fip by T1 <: T, and Fip by Ty <: To.

e Case (VIxpg-Var): F v : {B(r) : T1..I»}. Choose T5 = T3, and Ty = Ts. By (ST x-Refl).
O

Lemma 5.61 (InvF). If Fip1 Fuw y1 : {a: Ty.. T3}, then there exist Ty, Ty, such that F by yq : {a : Ty.. T3},
and Fip by Ty <: Ty, and Fip 4 T <: T5.

Idea. For invertible typing to a field member, there is a precise typing to a field member with tighter
bounds. v

Proof idea. (Adapted from kDOT [2], page 49). v
Proof. Induction on invertible typing:

e Case (VT##-Fld)Z F;p F## Y1 - {a : T11..T12}, and F;p |_# Ty <: Th1, and F;p |‘# T <: Tj. By
induction, F Fy y1 : {a : Ty..Ts}, and Fip by Th1 <: Ty, and F;p by Ty <: T19. By (STx-Trans), F;
P l—# T, <: Ty, and F;p l—# Ts <: Ts3.

e Case (VTypy-Var): F by yi : {a: T,.. T3}. Choose Ty = Ty, and Tg = T3. By (ST4-Refl).

e Case (VTy4-Eq): Fip by y1 : Tha, and p - {a : Ty.. T3} ~ T14. By inversion of (TE-Fld), T14 =
{CL : Tll..Tlg}, and P - T4 ~ T11, and P = T3 ~ T12. By induction, F F! Y1 {CL : Tg..Tg}, and F,
P F# T <: Ty, and F;p F# Tg <: Tho. By (ST#-Eq), F;p F# Ty <:Th1, and F;p F# Tio <: 1Tj. By
(STy-Trans), Fip b4 Ty <: Ty, and Fip 4 Ty <: T.

O

Lemma 5.62 (InvM). IfF;p by y1 : {m(z : Ts,7 : T5) : Ty}, then F by yp - {m(z : Tg, 7 : Tg) : Tr}, and F;
pla Ty < T, and F,z : Ty;p - Ts <: Ty, and F, z : T;p = T <: Ty,

Idea. 1f a location has an invertible method type, then it has a precise method type. v

63

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

Proof idea. (Adapted from kDOT [2], page 49). v
Proof. Induction on invertible typing:
* Case (VT x4-Met): By induction and (STx-Trans) on the result type and (ST-Trans) on parameter
type and mutability.
¢ Case (VT4y-Var): By (STy-Refl) and (ST-Refl).

e Case (VTuu-Eq): Fip Fusy y1 : Tha, and p = {m(z : T5,7 : T5) : T4} = Ti4. By inversion of
(TE—Met), T14 = {m(z : T11, T T13) : Tlg}, and P F T3 ~ Tll/ and P H T5 ~ T13, and P - T4 ~ T12.
By induction, F by y1 : {m(z : T, r : Tg) : T7}, and Fip by T11 <: Tg, and Fyp by T13 <: Ty, and F;
plu Ty <: Tio. By (STy-Eq), Fip by T3 <: Thy, and Fip by Ts <: Tz, and Fip by Tho <: Ty. By
(STy-Trans), Fip by T5 <: Ts,and Fip by Ts <: Ty, and Fip Fx T <: Ty.

O
Lemma 5.63 (InvAnd). If F;ptyy v :Th ATy, then Fip gy v - Th, and Fip Fyp v To.

Idea. If a global variable has an invertible intersection type, then it has both the types in the intersection.
\%

Proof. Induction on invertible typing:

e Case (VT##-AI’ICH)I F;p F## v:TY, and F;p "## v Th.

® Case (VIyg-Var): F kv : Ty ATy By (VI-Andl), F b v : Th. By (VI gx-Var), Fip bysu v : 11 By
(VT!-AI’le), F |—[v TQ. By (VT##—Var), F;p F## v Tg.

e Case (VTu4-Eq): Fip by v : T3, and p - T5 =~ Ty A Tp. By 5.4(TEInv), T5 = Ty A T5, and
pF Ty~ T, and p - T5 =~ T,. By induction, F;p Fyuy v : Ty, and Fip Fyy v 0 Ts. By (VT x4-Eq), F;
plygpv:Ti,and Fip Fyy v Th.

O
Lemma 5.64 (InvOr). If FipbFyyv: T VTs, then Fipbyu v :Tior Fipbyuy v : To.

Idea. If a global variable has an invertible union type, then it has at least one of the types in the union.
\%

Proof. Induction on invertible typing:

Case (VT##-OI‘l)I F;p F## v: 1.
Case (VT##-OIQ)I F;p F## v Th.
Case (VT 44-Var): Not possible by 5.49(NoPrecTyp).

Case (VTx4-Eq): Fip Fypgp v : Ty, and p F T3 = T7 V Tp. By 54(TEInv), T3 = T4 V T5, and
pF Ty =~ T,and p F T5 ~ T5. By induction, either Fip Fuy v : Ty, or Fip Fuy v @ Ts. By
(VT##-ECD, either F;p F## v Tl, or F;p |—## v T2.

O
Lemma 5.65 (InvRec). If Fi;p by v:pu(s:Th), then Fip byy v : [v/s]Th.

Idea. 1f a global variable has an invertible recursive type, then it has the type with the self variable
replaced. v

Proof. Induction on invertible typing:

e Case (VTxg-Recl): Fip by v [v/s]T7.

e Case (VT gx-Var): F vt u(s : Ty). By (VIi-Rec), F Fy v : [v/s]T1. By (VTgpg-Var), Fip Fys v -
[v/s]Th.

e Case (VI4x-Eq): Fip Fug v : To,and p = To ~ p(s : T1). By 5.4TEInv), To = p(s : T3), and
p F T3 =~ Ty. By induction, F;p Fxx v : [v/s]T3. By 5.26(SubEq), p - [v/s]T3 ~ [v/s|Ti. By
(VT##-Eq), F;p "## v [’U/S]Tl.

O

64

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

Lemma 5.66 (InvSel). If F;p byy v : v1.B(x), then Fip Fyy v 2 [x/r]T5, where F -y vy : {B(r) : T3.. Ty} or
B#M,and F by vy : {B(r) : T5.. Ty}, and p - vy = vy.

Idea. If a global variable has an invertible selection type, then it has the type of its bound. v
Proof. Induction on invertible typing:

e Case (VTyuy-Sel): Fip Fyy v [x/r|Ts5, where F - vy : {B(r) : T5..14}.
® Case (VT4-Var): Not possible by 5.49(NoPrecTyp).

e Case (VTxx-Eq): Fip Fusp v : T, and p F To =~ v;.B(z). By 54(TEInv), T = v,.B(z), and
p vy &= vy, and B # M. By induction, F;p by v : [x/r|T3, where F -y vs : {B(r) : T5..74}, and
p Fvs = vy. By 5.3(EqTrans), p - v3 = v;.

O

65

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

5.2.4 Dereference lemmata

This section contains lemmata about deriving typing relations involving locations (y) from typing rela-
tions involving the corresponding references (w, when w — y € p).

Lemma 5.67 (IndepEq). If T indep s, and w — y € p, then p - [w/s|T =~ [y/s|T.
Idea. If a type is independent, then w and y are interchangeable. v
Proof. Induction on type independence indep :

e Cases (TI-Top), (TI-Bot), (TI-N): ' = T, or T'= L, or T = N. In all these cases, [w/s|T = [y/s]|T.

By (TE-Refl).

e Case (TI-And): T' = T1 A T». By induction, p F [w/s]Th =~ [y/s]Th, and p - [w/s|T> =~ [y/s|T». By
(TE-And).

e Case (TI-Or): T = Ty V T5. By induction, p F [w/s|Th = [y/s|T1, and p F [w/s]T> = [y/s]T>. By
(TE-Or).

¢ Case (TI-SelM): T = x1.M(z2), where z1 # s, and z2 # s. [w/s]T = [y/s]T. By (TE-Refl).

e Case (TI-SelA): T' = 1. A(x2). 2 # s. If z1 = s, then by (VX-VarE), [w/s]z1 = w, and [y/s]z1 = y.
By (VE-RtoL), p - w ~ y and (TE-Sel), p - w.A(x2) =~ y.A(z2). Otherwise, x1 # s, [w/s]T = [y/s|T.
By (TE-Refl).

e Case (TI-Rec): T' = p(sy : Th). T1 indep s. By induction, p [w/s]Th = [y/s|Ti. By (TE-Rec),
pt sy [w/s]T) = p(sy - [y/s]T).

e Case (TI-Fld): T = {a : T1..T>}. Ty indep s. T, indep s. By induction, p - [w/s|Ty ~ [y/s]T1, and
p b lw/s|Ty = [y/s|T>. By (TE-FId), p F {a : [w/s|T1..[w/s|T>} =~ {a: [y/s|T1..[y/s]T2}.

e Case (TI-Met): T = {m(z : T1,r : T3) : Tx}. T1 indep s. T» indep s. T3 indep s. By induction,
p b lw/sTh ~ [y/s|Ty, and p + [w/s]Ta =~ [y/s|T>, and p F [w/s|T5 ~ [y/s]T3. By (TE-Met),
pHEA{m(z: [w/s|Ty,r: [w/s|Ts) : [w/s]Ta} = {m(z : [y/s|T1,7 : [y/s|T3) : [y/s|T2}.

e Case (TI-Typ): T = {B(r) : T1..T2}. Ty indep s. T, indep s. By induction, p F [w/s]T1 =~ [y/s]Th,
and p & [w/s|Ty ~ [y/s|Ts. By (TE-Typ), p = {B(r) : [w/s]T1..[w/s|Ta} = {B(r) : [y/s|T1..[y/s]|T>}.

O
Lemma 5.68 (DerefT). IfI';pF-w : Ty, and w =y € p,and ' ~ p, then T;p -y : Th.
Idea. y has all the types that a corresponding w has. v
Proof idea. Induction on variable typing, using type equivalence to handle recursive types. v

Proof. Induction on variable typing:

e Case (VI-Var): I' = I'1,w : T1,T9. By 5.16(ECorrInvY), T1 = u(s : R) A {M(r¢) : L. 15}, and
Iy = T3,y : pu(s @ R)A{M(ro) : L..L},Ty. By (ST-Refl) and (ST-Bot) and 5.18(AndSub), T’;
pFp(s: R)AN{M(ro) : L..L} <:T1. By (VI-Var), I;pFy @ p(s : R) A{M(ro) : L..L} and (VI-Sub),
Tipky:Th.

e Case (VI-Recl): I';p - w : [w/s]Ty. T indep s, where T7 = u(s : T). By induction, I';p F y -
[w/s|T,. By 5.67(IndepEq), p - [w/s|T> ~ [y/s]T>. By (ST-Eq), I';p b [w/s|Ty <: [y/s]T>. By
(VI-Sub), I';p F y : [y/s]T. By (VI-Recl), T'sp -y« To.

e Case (VI-RecE): I';p - w : p(s : Ts), where Ty = [w/s]T», and T indep s. By induction, I';
pty:u(s: Ty). By (VI-RecE), T';p y : [y/s]To. By 5.67(IndepEq), p F [w/s|T> = [y/s]T>.
By 5.2(EqSymm), p - [y/s]T> ~ [w/s]T>. By (ST-Eq), I';p = [y/s]Ta <: [w/s]T>. By (VI-Sub), I';
pEy:w/s|Ts.

® Case (VI-Andl): I';p - w : Th, and I'sp = w : T3, where T) = T5 A T3. By induction, I';p - y @ 15,
and I';p -y : T3. By (VI-Andl), I';p -y : 1o A T5.

e Case (VI-MutTop): Ty = {M(r¢) : L..T}. By (VI-MutTop).

® Case (VI-Sub): I';p - w : Ty, where I';p = Ty <: T3. By induction, I';p - y : 1. By (VI-Sub), T';
pFy:Ty.

66

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

O

The following lemmata show that replacing references by location preserves definition typing, and
in the opposite direction that before the replacement, the reference must have been referring to the same
object.

Lemma 5.69 (DeD). IfF,s: To;pbd: Ty, and F ~ p, then F, s : To;p F [pld : Th.

Idea. Changing all references in an object definition to locations preserves its type. v
Proof idea. Induction on definition typing. Only fields are affected. v
Proof. InductiononF,s : To;ptd: Ty:

e Case (DT-Typ): d = {A(r) = T'}. By (DU-Typ), [p]{ A(r) = T} = {A(r) = T'}. Directly by (DT-Typ).

e Case (DT-TypB): d = {A(r) = T}. By (DU-Typ), [pl{A(r) = T} = {A(r) = T}. Directly by
(DT-TypB).

e Case DT-Fld): d ={a =z} Th ={a:T3.13}. F,s : To;p b a : T3. F,s : Ty vis z. T5 indep s.
If z € dom p, then x = w, where w — y € p, and [p]z = y. By 5.7(WknE), F,s : T, ~ p. By
5.68(DerefT), F, s : To;p = : T5. By inertness of F, F vis y. By (DT-FId), F, s : To;p - {a = y} : T1.
Otherwise, z ¢ dom p. By (DU-VarN), [p]x = z. By (DU-FId), [p]d = d.

e Case (DT—AI’Id) d=di Ndy. T1 = T3 NTy. F, S Tg,p Fd Ts. F, S TQ,,O Fdy: Ty By il’ldUCtiOH,
F,s:Toptk [pldy : T, F, s : Tosp b [plds : Ty. By (DU-And), [p]d = [p]d1 A [p]d2. By (DT-And).

e Case (DT-Met): d = {m(z,r) = t}. By (DU-Met), [p|[{m(z,7) = t} = {m(z,r) = t}. Directly by

(DT-Met).
O
Lemma 5.70 (Delnv). If [pld = ...1 {a = y}...o, then either d = ...3{a = z}...4, where x ¢ dom p or
d=..3{a=v}...4, Wherev — y € p.

Proof. Inductionon [pld =...1{a=y}...2
e Case (DL-Refl): [p]d = {a = y}. By inversion of (DU-FId), d = {a = z}, where [p]z = y. By
inversion: Subcase (DU-Var): = w, and w — y € p. Subcase (DU-VarN): z ¢ dom p.
* Cases (DL-And1), (DL-And2): By inversion of (DU-And), and by induction and (DL-And1) or by
(DL-And2).

O

67

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

5.2.5 Typing equivalence lemmata

This section contains lemmata establishing equivalence of typing relations (normal, tight and invertible)
in an inert context. The main lemma 5.77(VTEq) states that in an inert context, normal typing implies
invertible typing. Typing equivalence lemmata and their proofs are adapted from kDOT [2].

The lemma 5.71(SubRTight) is a variant of 5.33(SubR), but for tight typing.

Lemma 5.71 (SubRTight). If F;p by T3 <: T, then Fip o4 [z/7]T5 <: [z/r]T}.

Proof idea. Substitution on tight subtyping. r cannot be in the context, so it cannot be used in selection
rules. \Y

Proof. We know that r ¢ F. Induction on F;p 4 Ty <: T7:

¢ Case (ST4-Top): 71 = T. Directly by (ST4-Top) and (TX-Top).

® Case (STx-Bot): T5 = L. Directly by (ST4-Bot) and (TX-Bot).

* Case (STy-Refl): T3 = T;. Directly by (ST x-Refl).

e Case (ST#-AI‘ICll)Z T5 =T1 ANTy. By (ST#-AI’Idl), FiprFy [.T/’I“]T4/\ [ac/r]Tl <: [.Q?/T]Tl. By (TX-And).

e Case (STyx-And2): T3 = Ty ATh. By (ST-And2), Fip by [x/r|Tu N[z /r|Ty <: [x/r]Ti. By (TX-And).

® Case (STy-And): T = Ty AN T5, and Fip F4 T3 <: Ty, and Fip F» T3 <: T5. By induction
on subtyping, Fip Fu [z/r]T5 <: [z/r]Ty, Fip F4 [z/r]T5 <: [z/r]T5. By (STx-And), Fip 4
[z/r|Ts <: [x/r]Ta A [z/r]T5. By (TX-And).

e Case (ST4-Orl): 71 = T3 V Ty. By (STx-Orl), Fip b [x/7]T5 <: [z/r]T5 V [x/r]T4. By (TX-Or).

e Case (ST4-Or2): Th = Ty V Ts. By (ST4-Or2), Fip by [x/r]T3 <: [z/r]Ts V [x/7]T3. By (TX-Or).

® Case (STy-Or): T3 = Ty VT5, and Fip F» Ty <: Ty, and F;p Fx T5 <: Th. By induction on
subtyping, Fip by [z/r|Ty <: [z/r]Th, Fip by [x/7]T5 <: [x/r|Ti. By (ST%-Or), Fip by [x/r]Ta V
[/r|Ts <: [x/r]Ti. By (TX-Or).

® Case (STy-Trans): Fip by T3 <: Ty, and Fip by Ty <: T
By induction on subtyping, F;p bu [z/r|Ts <: [z/r|Ty, and Fip by [2/r]Ty <: [z/r]T1. By (STx-
Trans), Fip by [x/r]Ts <: [x/r]Th.

e Case (ST#-TypAnd) T5 = {B(T’Q) : T4..T5} N {B(T’Q) : T6..T7}, and T = {B(T’Q) Ty V1. T5 /\T7}
By (STx-TypAnd) and (TX-And) and (TX-Or) and (TX-Typ).

e Case (ST#-DISt) T3 =Ty N (T5 V Tﬁ) T = (T4 A T5) V (T4 A TG) By (ST#—DISt) and (TX-OI‘) and
(TX-And).

e Case (ST#-Typ) T3 = {B(T‘Q) : T4..T5}, and T, = {B(TQ) : T6..T7}, where F,p |_# Ts <: Ty, and F,
p F4 Ts <: T;. Using alpha-equivalence, assume that r, « are disjoint from 75.

By induction on subtyping, F;p bFu [z/r|Ts <: [z/r|Ty, and Fip by [2/r]T5 <: [z/r]T7. By (STx-
Typ) and (TX-Typ).

e Case (STy-Fld): T5 = {a : T4.Ts}, and Th = {a : Ts..T7}, where F;p Fy Ty <: Ty, and F;
p l—# Ts <: T7.

By induction on subtyping, F;p by [z/r|Ts <: [z/r|Ty, and Fip by [z/r]T5 <: [z/r]T7. By (STx-
Fld) and (TX-FId).

e Case (STy-Met): T3 = {m(z : Ty,ro : Tg) : T}, and Ty = {m(z : Ty,7m9 : Ty) : Ts}, where F;
ply Tn < Ty,and F,z : Ty;p - Ty <: Tg, and F,z : Ty, 1o : Ty;p - T5 <: Tg. Using alpha-
equivalence, assume that 7, = are disjoint from r; and z.

By induction on subtyping, F;p k4 [z/r]T7 <: [z/r]Ty4. By 5.33(SubR), F, z : [x/r|T7;p & [z/r]|Te <:
[z/r|Ts, and F, z : [x/r|T7,ro : [x/r|To;p - [x/r]Ts <: [x/r]Ts. By (STx-Met) and (TX-Met).

e Case (ST%-N-M): T3 = NA{M(rg) : L..1}, and T3 = L. By (ST%-N-M) and (TX-Bot) and (TX-Typ)
and (TX-N) and (TX-And).

e Case (STx-N-Rec): T5 = N, and T1 = p(s : Ty). Using alpha-equivalence, assume that r, x are
disjoint from s. By (ST4-N-Rec) and (TX-Rec) and (TX-N).

e Case (ST%-N-Fld): T3 = N, and T = {a : Ts..T% }. By (ST%-N-Fld) and (TX-Fld) and (TX-N).

68

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

* Case (STy-N-Met): 75 = N, and 71 = {m(z : T7, 72 : Tp) : T3}. Using alpha-equivalence, assume
that r, = are disjoint from 7 and z. By (ST%-N-Met) and (TX-Met) and (TX-N).

e Case (STy-N-Typ): T5 = N, and Ty = {B(r2) : Ts..T7}. Using alpha-equivalence, assume that r, x
are disjoint from r. By (ST»-N-Typ) and (TX-Typ) and (TX-N).

® Case (ST4-Eq): p+ T3 = T31. By 5.26(SubEq), p b [x/7|T5 ~ [z/r]|T}. By (STx-Eq).

e Case (STy-SelL): Ty = v1.B(z2), and F Fy vy : {B(r2) : T4.T5}, and T3 = [zo/ro]Ty. Using
alpha-equivalence, assume that » ¢ T, and that r; is distinct from r and z2. By (ST4-Sell), F;
p Fu vi.B([x/r|xe) <: [[x/r]ze/ro]Ty. By (VX-VarN), [z/r]u; = v;. By 5.21(SubSwap) and (TX-
Sel).

e Case (ST#—SQIU) T3 = U1.B($2), and F }_! (N T {B(’/‘Q) : T4..T5}, and T1 = [.132/7‘2]T5. Using
alpha-equivalence, assume that » ¢ T5 and that r; is distinct from r and z,. By (STx-SelU), F;
p Fu [lx/r]ae/ra)Ts <: vi.B(lz/r]x2). By (VX-VarN), [z/rJv1 = vi. By 5.21(SubSwap) and (TX-
Sel).

O

The following lemmata follow the proof of soundness of [4].
The lemma 5.72(ClInv) shows that invertible typing is closed under tight subtyping. The proof is
adapted from the Coq proof of [4].

Lemma 5.72 (ClInv). If Fip bygy v : Ty, and Fip by T <: T, where F ~ p, then Fip by v 2 T
Proof. Induction on tight subtyping;:

¢ Case (STy-Top): 7o = T. By (VT 4x-Top), Fspbyp v T.

Case (ST4-Bot): T1 = L. Not possible by 5.59(NolnvTyp).

Case (ST4-Refl): T} = T5. By the premise.

Cases (ST4-N-Rec), (STx-N-Fld), (ST4-N-Met), (ST4-N-Typ): T1 = N. Not possible by 5.59(NolnvTyp).

Case (ST4-N-M): T1 = N A {M(rg) : L..L}. By 5.63(InvAnd), F;p Fxx v : N. Not possible by
5.59(NolnvTyp).

Case (STx-Andl): T} = T» A T3. By 5.63(InvAnd), Fip Fyy v = To.
Case (STx-And2): T} = T3 A Ts. By 5.63(InvAnd), Fip by v : To.

Case (STx-And): Ty = T3 A Ty, where Fip 4 17 <: T3, and Fip F» 11 <: Ty. By induction, F;
P F## (O Tg, and F;p }—## v T4. By (VT##-AI‘ICH), F;p F## v T3 A\ T4.

Case (ST4-Orl): Ty =T V T3. By (VT44-Orl).
Case (ST4-Or2): Ty = T3 V T1. By (VT44-Or2).

Case (ST4-Or): T1 = T3 V Ty, where Fip . T3 <: Ty, and Fip F4 Ty <: T5. By 5.64(InvOr), F;
pFauy v:Ts, 0r Fiptyy v: Ty By induction, Fip Fuy v To.

Case (STy-Trans): Fip by Ty <: T3, and Fip F» T3 <: 1. By induction, F;p Fuy v : T35. By
induction, F;p Fuy v : Ts.

Case (ST#-SGIL)Z T2 = UQ.B(CCl), and T1 = [l‘l/r]Tg, where F |—1 Vg {B(T‘) : T3..T4}. By (VT##—
Sel), F;p by v : vo.B(r).

Case (STy-SelU): T1 = v2.B(x1), and Ty = [z1/r]|Ty, where F +y ve : {B(r) : T5..T4}. By
5.66(InvSel), F k1 vy : {B(r) : T5. 15}, and Fip Fyp v @ [21/r]T5, or B # M, and F +y v :
{B(r) : T5.T}, and F;p Fyp v : [21/7]T5, and p F v3 = va.

-If B =M, thenF F vg : {B(r) : T5..T6}, and F;p Fyp v @ [x1/r]T5. By 5.52(UPrecTyp),
T; = T3, and Ts = Ty, so0 Fip Fyp v : [21/7]T3. By 5.53(SubPrecTyp), either T3 = T}, or
T3 = L. By 5.59(NoInvTyp), T3 # L,s0 T35 =Ty, and Fip by v 2 [21/r]Ts, s0 Fipbyy v To.

- If B#M,thenF ky vs : {B(r) : T5..T6}, and Fip Fuw v @ [x1/7]T5, and p - vz &~ vy. By
5.53(SubPrecTyp), either T = T, or Ts = L. By 5.59(NolnvTyp), Ts # L, so T5 = Tg, so F;
p Fusn v [x1/7]T6. By 5.56(EqPrecTypG) and 5.2(EqSymm), p - T ~ T4. By 5.26(SubEq),
p b lx1/r)Ts = [x1/r)Ts. By (VTpu-Eq), Fipbpp v [x1/r]Ty, so Fip gy v To.

* Case (STx-Typ): By (VT xx-Typ).

69

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

e Case (ST#—TypAnd) T = {B(T’) : T3..T4} A {B(?") : T5T6} T = {B(’f’) T3V T5. Ty /\TG}
By 5.63(InvAnd). F;p bxs v : {B(r) : T5.. 14}, and F;p Fux v : {B(r) : T5..1s}. By 5.60(InvT)
and 5.52(UPrecTyp), exist 17, Ty, such that F F v : {B(r) : T7..T5}, and F;p b T3 <: T7, and F;
pluTs < Tr,and Fip by Ty <: Ty, and Fip by T <: Ts. By (ST-And), Fip Fu Ts <: Ty ATg. By
(ST4-Or), Fip by T3V T5 <: T7. By (STy-Typ), Fip by {B(r) : T7. T} <: {B(r) : T3 VT5..Ty NTg}.
By (VTyy-Var), F b v : {B(r) : T7..Ts}. By (VT g4-Typ), FFi v : {B(r) : T3 VT5..T4 N Tg }.

¢ Case (ST4-Fld): By (VT 4-F1d).
e Case (ST#—Met): By (VT##—Met).
¢ Case (ST4-Eq): By (VT 4%-Eq).

e Case (ST#-DiSt)Z Ty =T3NTyVTs. Ty = (T3 A\ T4) V (Tg A\ T5) By 5.63(InvAnd), F;p F## v: T3,
and Fip Fyuy v 0 Ty V T5. By 5.64(InvOr), Fip Fyy v : Ty, or Fip by v - Ty U Fip by v 2 Ty
By (VT##—AndI), Fip F## v T3 AN Ty. By (VT##—Orl), Fip by v (T3 AN T4) V (T3 A T5).
Otherwise, F;p Fyy v @ Ts. By (VTgu-Andl), Fip Fysw v : T3 AT5. By (VIup-Or2), Fip by v :
(T5 NTy) V (T3 N T5).

O

Next, the lemma 5.73(ToInv) shows that tight typing implies invertible typing. The proof is adapted
from [4], Theorem 3.6 (page 14).

Lemma 5.73 (Tolnv). IfF;pby v: T, where F ~ p, then Fiptpy v : T.
Proof. Induction on tight variable typing:

e Case (VIy-Var): F =Fi,v:T,Fy. By (VI)-Var), F -y v : T. By (VIgx-Var), Fipbyu v T.

e Case (VT4-RecE): T' = [v/s]Ty, and Fip F» v @ p(s : Th), and 77 indep s. By induction, F;
pFyg v p(s:Th). By 5.65(InvRec), Fip Fuy v : [v/s]Th.

e Case(VTg-Recl): T = pu(s:T1),and F;p b4 v : [v/s]T1, and T3 indep s, and T;p - [v/s]Ty ro [v/s]|T7.
By induction, F;p by v : [v/s]Th. By (VTgg-Recl), Fip byy v p(s : Th).

® Case (VT4-Andl): T = Ty A Ty, where Fip b4 v : Ty, and Fi;p F4 v : Ty, By induction, F;
P F## v Tl, and F;p }—## v TQ. By (VT##-AI’ICH), F;p |—# v T1 AN TQ.

e Case (VTg-MutTop): T = {M(rg) : L..T}. By inertness of F, there exist R, s, T1, such that
Frkiov:pls: R)A{M(ro) : L.T1}. By (VI1-And2), F Fy v : {M(rg) : L..T1}. By (VT 4x-Var),
F;p F## v {M(T‘o) : J_Tl} By (ST#-BOt) and (ST#-TOP) and (VT##-TYP), F;p F## (2 {M(To) :
1.T}

* Case (VIy-Sub): Fi;p Fx v : Ty, where Fip -4 17 <: T. By induction, Fi;p Fxx v : T1. By
5.72(ClInv), Fspbyp v : T

O

The next lemma shows that a type declaration type given by tight typing implies a type decalaration
type given by precise typing, with possibly tighter bounds. The lemma is adapted from [4], page 15.

Lemma 5.74 (SelP). If Fip1 by v : {B(r) : T1..T2}, where F ~ pq, then there exist Ts, Ty, such that
Frhyv:{B(r): T5.Tu},and Fip1 b Ty <: T5, and Fipy by Ty <: T,

Proof. By 5.73(Tolnv), F;p1 Fyp v : {B(r) : T1..12}. By 5.60(InvT). O

The next lemma shows that a type declaration type given by tight typing implies tight subtyping
between its bounds and selection of that type member.
This lemma is adapted from [4], Lemma 3.4 (page 12). It is used in 5.76(ToTight).

Lemma 5.75 (SelR). If F;p1 by v : {B(r) : T1..T5}, where F ~ pq, then F;p by [z /r]Ty <:v.B(z2), and F;
pFuv.B(x) <: [z2/r]T5.

Proof. By 5.74(SelP), F -y v : {B(r) : T5.14}, and Fip by Th <: T5, and Fip 4 Ty <: T, By (STy-
Sell), Fip b T5 <: v.B(z2). By 5.71(SubRTight), F;p Fx [x2/r]Th <: [z2/r]T5. By (STg-Trans), F;
p by [xe/r]Th <:v.B(x2). By (STx-SelU), F;p by v.B(z2) <: Ty. By 5.71(SubRTight), F;p b [xe/r]Ty <:
[z2/7]T. By (STg-Trans), Fip Fy v.B(z2) <: [x2/7]T5. O

70

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

Next, the lemma 5.76(ToTight) shows that variable typing implies tight typing in an inert context.
The lemma is adapted from [4], Theorem 3.3 (page 12).

Lemma 5.76 (ToTight). If F;p v : T, where F ~ p, then F;p by v : T. If F;p - Th <: Ty, where F ~ p, then
F;p l—# T <:Ts.

Proof idea. Induction on variable typing, term typing and subtyping: For subtyping rules (ST-SelL)) and
(ST-SelU), use induction on variable typing and 5.75(SelR). For other typing rules, use the same tight
typing rule. v

Proof. Induction on variable typing and subtyping:

* Case (VI-Var): F = Fq,v : T, Fy. By (VT4-Var).

e Case (VI-RecE): F;p v : u(s : Th), and Ty indep s, where T' = [v/s]T1. By induction, F;
plyv:p(s:T1). By (VI4-RecE).

e Case (VT-Recl): F;p F v : [s/v]T1, and T} indep s, and F;p & [s/v]T} ro [s/v]T1, where T' = pu(s :
T1). By induction, F;p b v : [s/v]T1. By (VT 4-Recl).

* Case (VI-Andl): F;p v : Th, and Fip - v : Ty, where T' = 17 A T». By induction, F;p 4 v : 17,
and F;p b4 v : Ts. By (VT 4-AndlI).

e Case (VI-MutTop): T = {M(ro) : L..T}. By (VT4-MutTop).

* Case (VI-Sub): F;p - v : T, where F;p = T7 <: T. By induction, Fip Fx v : Ty, and Fip by T <: T
By (VT 4-Sub).

¢ Case (ST-Top): T3 = T. By (STx-Top).

* Case (ST-Bot): 11 = L. By (STx-Bot).

® Case (ST-Refl): T1 = T5. By (STx-Refl).

e Case (ST-N-Rec): T1 = N, and T5 = p(s : T3). By (STx-N-Rec).

e Case (ST-N-M): T3 = N A {M(rg) : L..1}, and T» = L. By (STx-N-M).
* Case (ST-And1): 71 = T5 A T5. By (STx-Andl).

® Case (ST-And2): 71 = T3 A T. By (ST4-And2).

* Case (ST-And): F;p - 17 <: T3, and F;p - 11 <: Ty, where 15 = T3 A T;. By induction, F;
P l—# T, <:T3,and F;p |_# T <: Ty By (ST#—And)

¢ Case (ST-Orl): T, = T3 V T5. By (ST4-Or1).
¢ Case (ST-Or2): 75 = T3 v T1. By (ST4-Or2).

® Case (ST-Or): F;p - T3 <: Ty, and Fip = Ty <: Ty, where T7 = T3 VvV Ty. By induction, F;
P |_# T3 <: Ty, and F;p |_# T, <:Ts. By (ST#-OI‘).

® Case (ST-Trans): Fi;p - T <: T3, and F;p - T <: T3. By induction, F;p 4 17 <: T3, and F;
p Fy 15 <: T3. By (STy-Trans).

e Case (ST-Sell): Ty = x1.B(z2), and T1 = [za/r]|T3, where Fip - z1 : {B(r) : T3..T4}. By 5.75(SelR).
e Case (ST-SelU): Th = z1.B(x2), and T5 = [xo/r]Ts, where Fip b 21 : {B(r) : T5..T4}. By 5.75(SelR).

e Case (ST-Typ): T1 = {B(r) : T5.. 14}, and To = {B(r) : T5..T}, where F;p - T5 <: T3, and F;
pF Ty <: Ts. By induction, F;p b4 Ts <: T3, and F;p 4 Ty <: Ts. By (STx-Typ).

e Case (ST-FId): Ty = {a : T3.. 1y}, and T5 = {a : T5..Ts}, where F;p - T5 <: T3, and F;p - Ty <: Tg.
By induction, F;p 4 T5 <: T3, and F;p b4 Ty <: Ts. By (STx-Fld).

e Case (ST-Met): 71 = {m(z : Ts,r : T5) : Ty}, and To = {m(z : Ts,7 : Ts) : T}, where F;
pbHTs < Ty, and F,z : Tg;p = Ts <: T5, and F,z : Tg,r : Ts;p B Ty <: T7. By induction, F;
P l—# Te <: T5s. By (ST#—Met).

e Case (ST—TypAnd) T = {B(’I") : Tg..T4} AN {B(T) : T5..T6}, and T = {B(T) T3V T5. Ty N Tg} By
(ST4-TypAnd).

e Case (ST-Eq): p F T = T». By (STx-Eq).
e Case (ST-N-Fld): T3 = N, and Tz = {a : T5..T4}. By (STx-N-Fld).
e Case (ST-N-Met): T} = N, and Ts = {m(z : T5,r : T5) : Tu}. By (STx-N-Met).

71

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

e Case (ST-N-Typ): Th = N, and T> = {B(r) : T5..T4}. By (STx-N-Typ).
e Case (ST—DISt) Ty =T3NTy VT, and To =T33 NTy VT3 NTs. By (ST#-DISt)

O
Lemma 5.77 (VTEq). IfF;ptv : T, where F ~ p, then Fip by v : T
Idea. In an inert context, normal typing implies invertible typing. v
Proof. By 5.76(ToTight), F;p 4 v : T. By 5.73(Tolnv), Fip by v : T O

The following lemmata show the opposite direction of the equivalence, going from precise and
invertible typing to normal typing.

Lemma 5.78 (VTEqB). IfF - v: T, thenFiptFov: T.
Idea. In an inert context, precise typing implies normal typing. v
Proof. Induction on precise typing:

e Case (VT\-Var): F = Fy,v: T,Fs. By (VI-Var).

e Case (VT\-Rec): T' = [v/s]Ty, and F F v : pu(s : T1). By 5.48(PrecForms) and by inertness of F,
T indep s. By (VT-RecE).

¢ Case (VIi-Andl): F - v : T ATy. By induction, Fip v : T'ATy. By (ST-And1), F;p - T ATy <: T
By (VI-Sub), F;p v : T.

® Case (VI1-And2): F - v : T4 AT. By induction, F;p v : Ty AT. By (ST-And2), F;p =Ty AT <: T
By (VI-Sub), Fip v : T.

O
Lemma 5.79 (STEqB). If Fip 4 11 <: Ts, then Fip =T <: To.
Proof. Induction on tight subtyping:
* Cases (STx-SelU), (STx-SelL): By 5.78(VTEqB) and (ST-SelU) or by (ST-SelL).
e Other cases straightforward by induction and the corresponding subtyping rule.
O

Lemma 5.80 (FromInv). IfF;ptyuy v: T, then Fip b v : T.
Proof. Inductionon F;p Fyy v : T

® Case (VIyy-Var): F - v : T. By 5.78(VITEqgB).

® Case (VIyg-Top): FHv:Ti,and T = T. By (ST-Top). F;p - T1 <: T. By (VI-Sub).

e Case (VTygu-Andl): T = T4 AT, and Fip Fyuy v @ Ty, and Fip Fy4u v @ To. By induction, F;
pFv:Ty,and F;p - v : T5. By (VI-AndlI).

e Case (VT 4x-Orl): T =1, V15, and F;p b4 v : T1. By induction, F;p - v : T3. By (ST-Orl), F;
pF Ty <:T. By (VI-Sub).

e Case (VT 4x-Or2): T =11 V15, and Fip by v : T5. By induction, Fip F v : T5. By (ST-Or2), F;
pH T, <: T. By (VI-Sub).

e Case (VT gg-Recl): T = p(s: T1),and Fip by v 2 [v/s]T1, and Ty indep s, and F;p - [v/s]T; ro [v/s]T7.

By induction, F;p - v : [v/s]T}. By (VI-Recl).

e Case (VTgp-Sel): T = vy.B(z), and Fip Fgs v : [x/r]Ty, and F F vy : {B(r) : T1..T2}. By
induction, F;p - v : [z/r]Th. By 5.78(VIEgB), F;p - ve : {B(r) : T1..T2}. By (ST-Sell), F;p
[z/r]Th <:T. By (VI-Sub).

e Case (VIuu-Typ): T ={B(r) : T1. To},and Fip gy v : {B(r) : T3. T4}, and Fi;p Fu T <: T5, and
Fip b4 Ty <: T. By induction, Fip - v : {B(r) : T5..T4}. By 5.79(STEqB), F;p - T} <: T3, and F;
pF T, <: Ty By (ST-Typ), F;p - {B(r) : T5..T4} <: T. By (VI-Sub).

72

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

e Case (VTyp-Met): T = {m(z : Th,r : T3) : To}, and Fip Fyy v @ {m(z : Ts,r : Tg) : Tu},
and Fip b 77 <: T3, and F,z : Th;p B Ty <t Tg, and F,z : Th,r @ T3;p = Ty <: Tp. By
induction, Fip b v : {m(z : Ts,r : Tg) : T4}. By 5.79(STEqB), F;p - T1 <: T3. By (ST-Met), F;
pE{m(z:Ts,r : Tg) : Ty} <: T. By (VI-Sub).

e Case (VTyx-FId): T = {a : T1. 1o}, and Fip s v : {a : T5.14}, and Fip by T <: T5, and F;
p Fu Ty <: Ty. By induction, F;p - v : {a : T5..Ty}. By 5.79(STEgB), F;p - T1 <: T3, and F;
pbF T, <:Ty. By (ST-FId), F;p F {a : T5..T4} <: T. By (VT-Sub).

® Case (VTxx-Eq): p F T =~ Ty, and F;p Fxx v : T1. By induction, F;p - v : T;. By (ST-Eq) and
(VI-Sub).

O

73

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

5.2.6 Reference lemmata

This section contains lemmata about deriving typing relations involving references (w) from typing
relations involving the corresponding location (y, when w — y € p).

Lemma 5.81 (EqRO). If F;p = Ty ro Ty, and p = Ty =~ T5, and F ~ p, then there exists Ty, such that F;
pbTsro Ty, and pt Ty ~ Ty.

Proof. Inductionon F T =~ Ts:

e Case (TE-Refl): T; = T5. Choose Ty = T5. By (TE-Refl).

e Case (TE-Sel): Ty = v1.A(z2), and T3 = v2.A(z2), where p - v1 = vy. By inversion of (TS-Sel),
F by vy 2 {A(r) @ T5..T6}, where F;p - Tg ro Tp. By 5.55(EqPrecTyp), F Fy va : {A(r) : T7.Ts},
where p - Ts =~ Ts. By induction, exists T4, such that F;p - Ts ro Ty, and p - T = T4. By (TS-Sel),
F;pt T5 ro Ty.

* Case (TE-And): Ty = T5 A Tg,and T5 = T7 A 1g, and p = 15 ~ 1%, and p - Ts =~ T3. By inversion
of (TS—AndR), exist Tg, Tl(], such that T3 = T‘g AN Tl(), and F,p F T5 ro Tg, and F,p F T() ro Tl(). By
induction, exist 711, T2, such that F;p - Ty ro 111, and F;p - Ty ro T2, and p - T7 ~ Ty, and
P = Tg ~ T12. Choose T4 = T11 AN T12. By (TE-AI’Id) and (TS—Al’ldR)

e Case (TE-Or): T1 =15 VT, and Ty = T7 V1g,and p - T3 = 17, and p - T ~ Tg. By inversion
of (TS-OrR), exist Ty, T, such that T5 = Ty V Ty, and F;p = T5 ro Ty, and F;p = T ro Ty9. By
induction, exist T11, T2, such that F;p - Ty ro 111, and F;p - Ty ro Ty, and p - T7 ~ Ty1, and
1% F Tg =~ Tlg. Choose T4 = T11 vV T12. By (TE-OI‘) and (TS-OI'R)

e Case (TE-Rec): 71 = p(s : T5), and T5 = u(s : T7), and p - T5 ~ T7. By inversion of (TS-Rec),
Ty =T;. Choose Ty = T3. By (TS-Rec).

e Case (TE-Typ): T1 = {A(r) : T5..Ts}, and T3 = {A(r) : T7..T3}. By inversion of (TS-Typ), T> = T1.
Choose Ty = T5. By (TS-Typ).

e Case (TE-FId): Th = {a : T5.. 1}, and T3 = {a : T7..T3}. By inversion of (TS-Fld), T» = T. Choose
Ty = T3. By (TS-F1d).

e Case (TE-Met): T1 = {m(z : Ts,r : Tr) : T}, and T3 = {m(z : Ts,r : Tho) : To}. By inversion of
(TS-Met), T5 = T3. Choose Ty = T3. By (TS-Met).

O
Lemma 5.82 (RefPrecRec). If F b1y :p(s:Th),andw —y € pand F ~ p, then F -y w : p(s : T1).

Idea. Precise recusive type of a reference is the same as the precise types of the corresponding location.
v

Proof. By 5.48(PrecForms), F =F1,y: pu(s : T1) A {M(ro) : L. 15}, Fo. By 5.17(ECorrInvW), Fy; = F3, w
(s :T1) AM{M(rg) : L. T3}, Fy. By (VTi-Var) and (VTi-Andl), F -y w = p(s : Th). O

Lemma 5.83 (RefPrecFld). IfF 1y :{a:Ti.To},andw — y € p,and F ~ p, then F -y w : {a : T5..T4},
where pb Ty ~ T3, and p b Ty =~ Ts.

Idea. Precise types of fields of a reference are equivalent to the precise types of the corresponding loca-
tion. v

Proof. By 5.50(PrecSim), F k1 y : {a : 71..75}. By inversion of (VT1-Var), F = Fy1,y : u(s : R) A {M(ro) :
1.1}, Fy, where [y/s]R = ...1 {a: T1..T2} .. .o. By 5.17(ECorrInvW), Fo = F3,w : p(s : R) A {M(ro) :
1..77},F4. Choose T3, and Ty, such that R = .. .5 {a : T5.. 16} . . .6, and T3 = [w/s|T5, and Ty = [w/s]Ts,
therefore [w/s|R = ...3{a : T3..T4}...4. By inertness of F, R indep s, therefore T; indep s, and
Ts indep s. By 5. 67(Indequ) pbE Ty ~Ts,and p - Ty =~ Ty. By (VI;-Var), F -y w : {a : T5..14}. By
5.51(PrecSimInv), F - w : {a : T3..T4}.

Lemma 5.84 (RefPrecMet). If F ky y : {m(z : Ty,r : T3) : To}, and w — y € p, and F ~ p, then
Frhiw:{m(z:Ty,r:Ts) : Ts}, where pb Ty = Ty, and p = Ts =~ Ty, and p = Tg = Tj.

Idea. Precise types of methods of a reference are equivalent to the precise types of the corresponding
location. v

74

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

Proof. By 5.50(PrecSim), F i1 y : {m(z : T1,r : T3) : To}. By inversion of (VTy;-Var), F = Fq,y :
wu(s : R) A{M(ro) : L..L} Fo, where [y/s]R = ...;{m(z : Th,r : T3) : To}...o, and y ¢ dom F5. By
5.17(ECorrInvW), Fo = F3,w : u(s : R) A {M(rg) : L..To},Fs. Choose Ty, and T5, and T§, such that
R=..5{m(z:Tr,r:Ty):Tg}...s,and Ty = [w/s]T7, and T5 = [w/s]Tg, and Ts = [w/s]|Ty, therefore
[w/s|R = ...3{m(z : Tu,r : Tg) : T5}...4. By inertness of F, R indep s, therefore 77 indep s, and
Ts indep s, and Ty indep s. By 5.67(IndepEq), p = 11 =~ Ty, and p - Ty = T35, and p - T3 = Ts. By
(VTn-Var), F by w: {m(z : Ty,r : Ts) : T5}. By 5.51(PrecSimInv), F b w : {m(z : Ty, : Ts) : T5 }. O

Lemma 5.85 (RefPrecTyp). IfF k1 y : {A(r) : Th. To},and w — y € p,and F ~ p, then F by w : {A(r) :
T3.Ty}, where p T3 =~ Ty, and p = Ty =~ Tb.

Idea. Precise types of normal type members of a reference are equivalent to the precise types of the
corresponding location. v

Proof. By 5.54(EqPrecTypL). O
Lemma 5.86 (RefPrecRecord). If F i y: Ry, andw — y € p,and F ~ p, then Fip - w : R;.
Proof. Induction on R;:

o If Ry = Ry A R3. By (VI1-Andl), F - y : Ry, and F - y : R3. By induction, F;p - w : Ry, and F;
pFw: Rs. By (VI-Andl), F;p - w : Ry.

e If Ry = {a : T1..T1}. By 5.83(RefPrecFld) and (TE-FId), F - w : Ry, where p - R; = Ry. By
5.78(VTEqB), F;p - w : Rs. By (ST-Eq) and (VT-Sub), F;p - w : R;.

o If Ry = {A(r) : T1..T»}. By 5.85(RefPrecTyp) and (TE-Typ), F k1 w : Ry, where p - Ry = Rs. By
5.78(VTEqgB), F;p - w : Ry. By (ST-Eq) and (VI-Sub), F;p - w : R;.

o If Ry = {m(z:Th,r : T3) : Tr}. By 5.84(RefPrecMet) and (TE-Met), F k1 w : Ry, where p - Ry =
R,. By 5.78(VTEgB), F;p - w : Ry. By (ST-Eq) and (VI-Sub), F;p - w : R;.

O
Lemma 5.87 (RefT). If Fipty: Ty, and F;pt Ty ro T, and F ~ p,and w — y € p, then Fi;p - w : Th.
Idea. w has the read-only part of the type y has. v

Proof. Induction on splitting and invertible typing. By 5.77(VTEq), F;p Fu y : T1. If that is by (VT 44-
Eq), then Fip Fuy y : T3, where p - T35 = T7. By 5.2(EqSymm), p - T7 =~ T3. By 5.81(EqRO), exists Ty,
such that F;p - T3 ro Ty, and p - T = T}. By induction, F;p - w : Ty. By 5.2(EqSymm), p - Ty = T5. By
(VTx4-Eq), F;p = w : Ty. Otherwise induction on F;p - T7 ro T5:

¢ Case (TS-Top): To = T. By (ST-Top) and (VI-Sub).
® Case (TS-Bot): T} = L. Not possible by 5.59(NoInvTyp).
* Case (TS-M): T, = T. By (ST-Top) and (VT-Sub).

e Case (IS-Typ): Ty = Tp = {A(r) : T5..T4}. By 5.60(InvT), F -y y : {A(r) : T5..T6}, and Fip - T <:
Ts, and Fip - Ty <: Ty. By 5.85(RefPrecTyp), F - w : {A(r) : T7. 13}, and p F T5 =~ 17, and
pFTs = Ts. By (ST-Eq), F;p - Ts <: Ty, and F;p - Ty <: Ts. By (ST-Trans), F;p - 13 <: T%, and F;
pF T <: Ty. By (ST-Typ), Fsp - {A(r) : T7.. 15} <: To. By 5.78(VIEQB), F;p - w : {A(r) : 7. Ts}.
By (VI-Sub), F;p - w : T5.

e Case (TS-Fld) T, =15 = {(l : T3T4} By 561(IIIVF), FH Yy {a : T5..T6}, and F,p FT5 < T, and
IipF T <: Ty. By 5.83(RefPrecFld), F k1 w : {a : T7. T3}, and F + T5 ~ T7, and F - Ty ~ T;. By
(ST-Eq), Fsp F 15 <: 17, and F;p - Ty <: Ts. By (ST-Trans), Fip - 15 <: Ty, and F;p - Ty <: T}.
By (ST-Fld), F;p + {a : T7.. T3} <: T». By 5.78(VTEqB), Fip - w : {a : T7..Ts}. By (VI-Sub), F;
pFw:Ts.

e Case (TS-Met): Ty =Ty = {m(z : T3,r : T5) : T4 }. By 5.62(InvM), F by y : {m(z : Ts,r : Tg) : v},
and F;p b T5 <: Ts,and F,z : Ty;p = T7 <: Ty, and F, z : T3;p - T <: Ts. By 5.84(RefPrecMet),
Fhow:{m(z:Tor:Tn): T} and p - Ts = Ty, and p F T1g = T7, and p F T1; ~ Tg.
By (ST—Eq), F,p F T <: Ty, and F,z: Tg,p F Ty < 1%, and F,Z : T37p F T < Ts. By (ST—
Trans), F;p T3 <: Ty, and F,z : Ty;p F Thg <: Ty, and F, z : T3;p = 111 <: T5. By (ST-Met), F;
p {m(z s Ty, r Tll) : TIO} <: Ts. By 578(VTEC1B), FipkFw: {m(z Ty, r Tll) : TIO}- By
(VT-Sub), F;p - w : Ts.

75

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

e Case (TS-Rec): Th = T = pu(s : T3). By inversion: Subcase (VTyy-Var): F F y : Ti. By
5.82(RefPrecRec), F +y w : Ty. Subcase (VTgx-Recl): Fip bFux y : [y/s]T5, and T35 indep s,
and F;p - [y/s]T5 ro [y/s]T5. By induction, F;p Fuy w : [y/s]T5. By 5.67(IndepEq), F I [y/s]T5 ~
[w/s]T5 and (ST-Eq) and (VI-Sub), F;p Fuy y : [y/s|Ts. By (VI-Recl), Fip by @ pu(s : T3).

e Case (TS-Sel): T1 = z.B(z2), and F;p + = : {B(r) : T3..174}, and F;p b [z2/r]Ty ro T». By
inversion: Subcase (VT 4x-Var): F - y : T. Not possible by 5.49(NoPrecTyp). Subcase (VT x4-
Sel): F by « : {B(r) : T5.Ts}. Fip Fup y @ [x2/r]T5. By 5.77(VIEq), Fip Fug z : {B(r) :
T3..T,}. By 5.60(InvT), exist T7, Ts, such that F + x : {B(r) : T7..Ts}, and Fip 4 T3 <: Tx,
and Fip 4 Ty <: Ty. By 5.52(UPreclyp), Tr = 15, and Ty = Ts. By 5.53(SubPrecTyp), either
Ts = 1, or Ts = Ts. By 5.59(NolnvTyp), Ts # L, so Ts = T, therefore Fip Fyy v @ [x2/r]T6.
By 571(SubRT1ght), F;p |—# [LL'Q/’I"]TG < [CUQ/’F]T4. By 572(CHI’IV), F;p F## Yy [$2/T]T4. By
5.80(FromInv), F;p F y : [z2/r]Ty. By induction, F;p F w : Tb.

e Case (TS-AndR): T3 = T5 ATy, and Ty = T5 A Tg, where F;p - T3 ro 15, and F;p - Ty ro Tg.
By inversion: Subcase (VIx4-Var): F -y y : T1. By 5.48(PrecForms), either exist s, R, 1%, such
that T3 = u(s : R), and Ty = {M(ro) : L..T7}, or exists R, such that 71 = R. If T} = R, then by
5.86(RefPrecRecord), F;p - w : R. By 5.37(RecordRO), T, = T}. Otherwise. By inversion of (TS-
M), Ts = T. By inversion of (TS-Rec), 75 = T3. By (VT\-Andl), F - y : T5. By 5.82(RefPrecRec),
F by w : T5. By 5.78(VTEqQB), F;p - w : T5. By (ST-Top) and (VT-Sub) and (VT-AndI), F;p F w :
T5 A Tg. Subcase (VT yx-Andl), Fip Fuy y @ T3, and Fip by y : Ty By induction, Fip = w : Tk,
and F;p - w : Tg. By (VI-Andl), Fip - w : Ts.

® Case (TS-OrR): Ty = T5VTy. Ty = T5 V1, where Fip = T5 ro 15, and F;p - T ro Tg. By inversion:
Subcase (VTx4-Var): Not possible by 5.49(NoPrecTyp). Subcase (VIx4-Orl): Fip Fuxn y @ T5.
By induction, F;p = w : T5. By (ST-Orl), F;p = T5 <: Ty. By (VI-Sub), F;p - w : Tp. Subcase
(VT 4-0Or2): Fip Fauy y - Ty. By induction, F;p F y : Ts. By (ST-Or2), Fip F T <: T. By (VI-Sub),
Fiptkw:Ts.

O

76

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

5.2.7 Restricted Subtyping Lemmata

This section contains lemmata about restricted versions of tight subtyping, defined in sections 4.11 and
4.12, and how they commute with relations -—"%, —™ and ——*° defined in sections 4.8, 4.9 and 4.10.

Lemma 5.88 (AndSubS). IfFip 5 Th <: 15, and Fip =5 T <: Ty, then Fip B Ty ATy <: T5 ATy

Proof. By (ST;L—Andl), Fip B8 Ty N1y <: T, by (ST;&—Trans), Fip 5 Th ATy <: T3. By (ST;é-AndZ), F;
p l—g T NTy <: T, by (ST;E—Trans), F;p |—% T NTy <: Ty By (ST:#-AI’Id), F;p |—§ Th ANTy <: T35 ANTy. O

Lemma 5.89 (OI'SleS). IfF;p F% T1 <: T3, and F;p I—Z Ty <: Ty, then F:p |—% Ty VT, <: T3V Ty

Proof. By (ST:'#—Orl), Fip B T3 <: T3 VvV T}, by (ST;-Trans), Fip 5 T <: T3 V Ty. By (ST;E-OrZ), F;
P |_(S; Ty <:T3V Ty, by (ST;E—TI'B.HS), F,p |_(S; Ty <: T3V Ty. By (ST;;-OI'), F,p l_f; Ty VT <: T3V Ty O]

Lemma 5.90 (AndSubM). IfF;p b Th <: T3, and Fip F* Ty <: Ty, then Fip 5 Ty ATy <: T35 AN T

Proof. By (ST;-Andl), Fip 2 Ty ANT5 <: Ty, by (ST;&“-Trans), Fip =53 Ty ATy <: Ty. By (ST;;-AndZ), F;
pFR Ty ATy <: Ty, by (ST;Q—Trans), Fip g Ty ATy <: Ty By (ST3-And), Fip B Ty ATy <t T3 ATy [

Lemma 5.91 (OrSubM). IfF,,O }_gn T <: T, and F,p |_gn Ty <: Ty, then F,p l_gn TV Ty <: T3V Ty

Proof. By (STQ—Orl), Fip B Ty <: T3 V Ty, by (ST;;—Trans), Fip F Ty <: T3 V Ty. By (ST;;—OrZ), F;
P l_fsn Ty, <: T3V 1Ty, by (ST;—TI'&DS), F,p l_f;n Ty <: T3V Ty. By (ST;—OI‘), F,p |_1g1 Ty VT <: T3V Ty]

Lemma 5.92 (SRedSub). If F =T ——%, To, then Fip H5, Ty <: To. If F =Ty w3 T, then Fip -3 T <:

1.
Idea. F——7 implies subtyping in the direction of § v
Proof idea. Straightforward induction v

Proof. Inductionon F 1T ——5 Ts:

* Case (TR®-Refl): By (ST5,-Refl).

e Case (TR%-SelU): Ty = v1.B(z2), and F =y vy : {B(r) : T5..T4}, and F F [x2/r]Ty —%, T, and
§ = &@. By induction, Fip 5, [22/r]Ty <: Tz. By (ST}-SelU), Fip k5 v1.B(x2) <: [z2/r|Ts. By
(ST-Trans), F;p 5, v1.B(x2) <: To.

e Case (TR%-SellL): 71 = v1.B(xz2), and F -y vy : {B(r) : T3..7y4}, and F = [z5/r]T3 —% T3, and
6 = ©. By induction, Fip b3, To <: [va/r]T5. By (ST-Sell), Fip b2, [22/r]T5 <: vi.B(x2). By
(ST;—Trans), Fip F Th <: v1.B(x2).

* Case (TR%-And): T\ = T35 ATy, and Ty = T5 AN Ts, where F = T3 +—% T5, and F = Ty —5 Ts.
If 0 = @, then by induction, F;p 3, T3 <: Ts, and Fip 3, Ty <: Ts. By 5.88(AndSubS), F;
p e T3 NTy <: Ts N Tg. If § = ©, then by induction, F;p 3, T5 <: T3, and F;p -3, Ty <: Ty. By
588(AndSubS), F,p Fse Ts NTg <: T35 NTy.

¢ Case (TR®-Or): T1 = T35V Ty, and Ty = T5 VT, where F = T3 +—5 T, and F - T, +—5 Ts. If 6 = @,
then by induction, F;p 3, T3 <: Ts, and F;p 5, Ty <: Tg. By 5.89(OrSubS), Fip =5, T3 vV Ty <:
Ts V Ts. If 6 = ©, then by induction, F;p -3, T5 <: T3, and F;p -3, Ty <: Ty. By 5.89(OrSubS), F;
pFSG Ts5VTg <: T3V Ty

e Case (TR*-Fld): Ty = {a : T3..T4}, and T = {a : T5..T}, where F + T3 —°; T5, and F F
Ty w5 Tg. If 6 = @, then by induction, F;p F3, Ty <: Tg, and F;p 3 T5 <: T3. By (Sle#-Fld),
Fip 5 {a : T3.74} < {a : T5.T}. If 6 = ©, then by induction, F;p 3, T3 <: Ts, and F;
p g Ts <: Ty. By (ST-Fld), Fip B3 {a : T5. 76} <: {a: T3..T4}.

e Case (TR*-Typ): T1 = {B(r) : T5..14}, and T, = {B(r) : T5..T5}, where F F T3 —* ; T5, and
F Ty 5 Ts. If 0 = @, then by induction, F;p &, Ts <: T3, and F;p 3, Ty <: Ts. By (ST;E—Typ),
Fip 5 {B(r) : T3..T4} <: {B(r) : T5..Ts}. If § = ©, then by induction, F;p 3, T3 <: T5, and F;
p e To < Ty. By (STy-Typ), Fip b5 {B(r) : T5. T} <: {B(r) : T5..T4}.

O

77

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

Lemma 5.93 (SRedInv). If F F Ty A T5 35 T4, then there exist Ty, Ty, such that Ty = Ty A T5, and
FrETo —5 Ty, and F = T3 —5 T5. If F = Ty Vv T3 —5 T, then there exist Ty, Ty, such that Ty = Ty V T,
and F = Ty —5 Ty, and F = T3 —5 Ts. IfF = {a : T5.. T3} +—5 T, then there exist Ty, Ts, such that
T = {a : T4..T5}, and F + T I—)S_5 Ty, and F + T3 }—>(S; Ts. IfF H {B(T) : TQ..Tg} '—>?5 Ty, then there
exist Ty, Ty, such that Ty = {B(r) : Ty.T5}, and F = T —° s Ty, and F + T5 —5 Ts.

Idea. For the purpose of induction or inversion of -——$ in the case of intersection, union, field and type
member types, we can assume the relation between the corresponding parts. If the (TR®-Refl) rule was
used, the situation is the same as if the specific rule was used. v

Proof. * T, A T3: By inversion: Subcase (TR®-Refl): T1 = T> A T5. Choose Ty = 15, and T5 = T3. By
(TR®-Refl). Subcase (TR®-And): Trivially.

e 75 V T3: By inversion: Subcase (TR*-Refl): 77 = 75 V T3. Choose Ty = 15, and 15 = T13. By
(TR®-Refl). Subcase (TR®-Or): Trivially.

e {a:T5.T5}: By inversion: Subcase (TR®-Refl): T = {a : T5..T3}. Choose Ty = Ty, and T5 = T3. By
(TR®-Refl). Subcase (TR®-Fld): Trivially.

e {B(r) : T»..T5}: By inversion: Subcase (TR®-Refl): 71 = {B(r) : T»..T5}. Choose T, = T, and
T5 = Ts. By (TR®-Refl). Subcase (TR®-Typ): Trivially.
O

Lemma 5.94 (SRedMut). IfF F {M(rg) : L..L} 5 Ts, then To = {M(rg) : L..L}.
Idea. {M(r¢) : L..L} does not reduce to any other type. v

Proof. By inversion:

Case (TR®-Refl): Trivially.

Case (TR*-Typ): To = {M(rg) : T5.. T4}, where F - L —* ; T3, and F - L +—% T4. By 5.93(SRedInv),
T3=1,and T, = L. O
Lemma 5.95 (SRedTrans). IfF Ty +——5 Tb, and F = Ty —5 T, then F = Ty —5 Ts.

Idea. -3 is transitive v

Proof. Inductionon F F T —% Ty:

¢ Case (TR*-Refl): T} = T5. Trivially.

e Case (TR*-SelU): T1 = v1.B(x2), and F by vy : {B(r) : T4..T5}, and F F [22/7]Ts +—%, Tz. By
induction, F & [z2/r|T5 ——7 Ts. By (TR*-SelU), F + Ty —3, T5.

e Case (TR*-SelL): T\ = v1.B(x2), and F Fy vy : {B(r) : T4. 75}, and F + [2/r]Ty —% Tp. By
induction, F b [25/7]Ty —% Ts. By (TRS-SelL), F + T} —%, Ty,

e Case (TR*-And): Ty = Ty ATy, and Ty = T A T7, and F - Ty ~—3 Tg, and F = T5 +—3 Ty By
5.93(SRedInvy), Ty = TsA\Ty, and F = Tg 5 Ty, and F + Ty 5 T. By induction, F = Ty 3 T,
and F = T5 ——5 Ty. By (TR*-And), F F T —§ Ts.

® Case (TR*-Or): Ty = Ty V15, and 1o = T V17, and F - Ty +—5 T, and F = T5 —% Tr7. By
5.93(SRedInv), T3 = TgVTy, and F - T +—35 Ts, and F - T —§ Ty. By induction, F + Ty —§ T,
and F F T +——3 Ty. By (TR>-Or), F - Ty 3 Ts.

e Case (TR*-FId): Tt ={a : T4. T5},and Ty = {a : Ts..T7}, and F - Ty +—5 5 T, and F - T5 —5 T7.
By 5.93(SRedInv), T3 = {a : T5.. Ty}, and F + Ts ——* 5 Ty, and F + T7 —% Ty. By induction,
F Ty 5 Ty, and F + T5 —3 Ty. By (TRS-FId), F - Ty —5 T5.

e Case (TR*-Typ): Tn = {B(r) : Tx..T5}, and T, = {B(r) : T.. 17}, and F - Ty, —° 5 Tg, and
F = T5 —5 Tr. By 5.93(SRedInv), T5 = {B(r) : Ts..To}, and F - Ts +—* ; Ty, and F = 17 —5 T,
By induction, F - Ty —% ; Ty, and F + T —3 Ty. By (TR*-Typ), F + T} —3 Ts.

O

Lemma 5.96 (SRedCom). IfF T —§ Ty, and F = T\ — T5, then there exists Ty, such that F - T —%
Ty, and F = T —5 Ty

78

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

Idea. If a type reduces to two types, then we can find a common type to which both of those type
reduce. v

Proof idea. The reductions can differ, if on some part of the type, one used the (TR®-Refl) rule while the
other uses the (TR®-SelU) or (TR®-SelL) rule. In that case, we always choose the selection rule. v

Proof. Inductionon F + T —% T:

e Case (TR®-Refl): T} = T5. Choose Ty = T3. By (TR®-Refl).

e Case (TR*-SelU): Ty = v1.B(x2), and F -y vy : {B(r) : T5.. 15}, and F F [22/r]Ts %, T, and
0 = @. By inversion: Subcase (TR%-SelU): F ty vy : {B(r) : T7..13}, and F F [25/7]Tg +——, To.
By 5.52(UPrecTyp), Ts = Ty, therefore F + [x9/7|Ts ——, T3. By induction, exists T4, such that
F T, —% Ty, and F = T3 %, Ty. Subcase (TR®-Refl): T; = T3. Choose Ty = 1.

e Case (TR*-SelL): T1 = v1.B(x2), and F -y vy : {B(r) : T5.. T}, and F = [z3/r]T5 +——% T3, and
0 = ©. By inversion: Subcase (TR®-SelL), and F + [z5/7|T5 ——¢ T3: By induction, exists T4, such
that F = Ty —3 Ty, and F = T3 —¢, Tj. Subcase (TR®-Refl): T} = T3. Choose T = T5.

* Case (TR*-And): Th = T5 AT, and Ty = T7 ATz, and F = T5 +—% Ty, and F F Ty +—% Ts.
By 593(SREdIHV), T3 = Ty A T, and F + Ts '—>3 Ts, and F + Ts '—)% Tio- By induction,
exists T, such that F = T7 —§ T1y, and F F Ty —% T4;. By induction, exists T'2, such that
FF T3 '—>3 T, and F + Tho I—)Z Tio. By (TRS—And), FrET; NTg I—)} Ti1 A Tho. By (TRS—And),
FF Tg A T10 '—>?§ T11 A Tlg. Choose T4 = T11 A T12.

® Case (TR®-Or): Th = Ts VT, and T = Ty VTg,and F = T5 +—% T7, and F + T —5 Ts.
By 5.93(SRedInv), T35 = Ty V Thg, and F + T5 —% Ty, and F + Tg —5 Tio. By induction,
exists 171, such that F - Ty +—35 T4y, and F = Ty —5 T31;. By induction, exists T2, such that
F+ Tg I—)% T12, and F + T10 F—)g T12. By (TRS-OI'), F+ T7 vV Tg I—)% T11 vV T12. By (TRS-OI'),
FFE Tg V T10 '—>?§ Tll \Y T12. Choose T4 = T11 \Y T12.

e Case (TRS-Fld) T = {a : T5..T6}, and T, = {a : T7..T8}, and F Ts l—)ié 17, and F + T }—>f'5 Ts.
By 5.93(SRedInv), T3 = {a : Ty..Tho}, and F - T5 +——* ; Ty, and F + Ty —5 Tho. By induction,
exists 111, such that F = 17 ——*° 5 11y, and F - Ty —* 5 T7;. By induction, exists T2, such that
FETg '—>3 Tia, and F + Tio '—)3 Tio. By (TRb-Fld), F+ {a : T7..Tg} ?—)E {a : T11..T12}. By
(TRb-Fld), FF {a : Tg..T]Q} ’—)3 {(l : T11..T12}. Choose T, = {a : Tll--T12}'

e Case (TR*-Typ): T = {B(r) : T5..Ts}, and T, = {B(r) : T7.. g}, and F - T5 % T%, and
F F TG ’—)3 Tg. By 593(SREdInV), Tg = {B(?") : Tg..Tlo}, and F + T5 '—)5_6 Tg, and F +
Ts —% Thp. By induction, exists T, such that F - T7 —% 5 T1y, and F F Ty +—* ; T1,. By
induction, exists T13, such that F - Ty ——3 T12, and F + T¢ —5 T12. By (TR®-Typ), F F {B(r) :
T7..Tg} '—>?§ {B(’/‘) : T11..T12}. By (TRS-Typ), FF {B(’I") : Tg..Tlo} I—)% {B(T) : T11..T12}. Choose
T4 = {B(T’) . Tll..Tlg}.

O

Lemma 5.97 (SRedEq). If p = T =~ T, and F = Ty — T3, then there exists Ty, such that F = Ty —5 Ty,
and p = Ts = Ty.

Idea. S reduction preserves equivalence v
Proof. Inductionon F F T ——3 Ts:

¢ Case (TR*-Refl): T} = T3. Choose T = T5. By (TR®-Refl), F - 15 ——5 T}.

e Case (TR*-Sell): 71 = v1.B(x3), and F -y vy : {B(r) : T5.. T}, and F = [z3/r]T5 +—% T3, and
0 = ©. By inversion:

— Case (TE-Refl): T; = T5. Choose Ty = T3. By (TE-Refl), p - T3 =~ Tj.

— Case (TE-Sel): Ty = v3.A(x2), where A = B, and p - v; = ve. By 5.56(EqPrecTypG), F F v :
{B(’I“) : T7..T8}, where P = T5 ~ T7, and P = TG ~ Tg. By 526(511qu), P - [LIIQ/T]TS) ~ [IQ/’I"]T’y.
By induction, exists T}, such that F &= x5 /r]T7 —¢ Ty, and p - T3 =~ Tjy. By (TR®-SelL).

e Case (TR%-SelU): Ty = v1.B(x2), and F -y vy : {B(r) : T5.. 15}, and F F [x2/r]Ts —%, T3, and
J = ®. By inversion:

79

D3s,

Technical Report no. D35-TR-2020-01 52 Runtime lemmata

— Case (TE-Refl): Ty = T5. Choose T = T3. By (TE-Refl), p - T3 =~ Tj.

— Case (TE-Sel): Ty = vo.A(z2), where A = B, and p - v1 = vq. By 5.56(EqPrecTypG), F t v, :
{B(r) : T7..T5}, where p - T5 ~ T7,and p - Ts = Ts. By 5.26(SubEq), p I [22/7]T6 = [z2/7|T5.
By induction, exists T}, such that F = [x5/r]Ts % T4, and p - T3 = Tj. By (TR®-SelU).

Case (TR%-And): Ty = T5 N1, and T3 = T7 ATy, and F + T5 +—5 17, and F - Ts —% T5. By
54(TEInv), T = Ty A Tho, where p = T5 = Ty, and p F Ty ~ T1p. By induction, exist 173, Th2,
such that F - Ty +——% Ty, and F - Ty —5 Thg, and p F T7 = T11, and p = Tz = Ti2. Choose
T4 = T11 N T12. By (TE—Al’ld) and (TRS—AI’Id)

Case (TR*-Or): 11 = Ts V1, and T3 = 17 VIg, and F F 15 +—5 17, and F = Ts —% T3. By
54(TEInv), T5 = Ty V Tho, where p = T5 = Ty, and p - T ~ Tjp. By induction, exist 111, Ti2,
such that F - Ty —% Ty, and F - Tyg —% Tig, and p F T7 = T4y, and p - Ty =~ Tj5. Choose
T4 = T11 V Tlg. By (TE-OI’) and (TRS—OI').

Case (TR*-FId): Th = {a : T5..T6},and T5 = {a : T7..Ts},and F F T5 5 T, and F - T —5 Ts.
By 5.4(TEInv), T5 = {a : Ty..T10}, where p - T5 = Ty, and p - Ty =~ To. By induction, exist 711,
T12, such that F + Tg '—>?S T11, and F + T10 P—>:§ T12, and P H T7 ~ T11, and P - Tg ~ T12. Choose
T4 = {a : T11..T12}. By (TE—Fld) and (TRS-Fld)

Case (TR*>-Typ): T1 = {B(r) : T5.Ts}, and T3 = {B(r) : T7.. T3}, and F F T5 +—3 T, and
F F Tg —5 Ts. By 5.4(TEInv), T5 = {B(r) : Ty..Tho}, where p = T5 ~ Ty, and p - Ty ~ T1o. By
inUCtiOH, exist 111, Tho, such that F + Ty '—>g T4, and F Tho >—>?5 Tio, and P [17 ~ Ti4, and
p b T = Tho. Choose Ty = {B(r) : T11..T12}. By (TE-Typ) and (TR*-Typ).

O

Lemma 5.98 (SRedSubCom). IfF;p -5 Th <: Ty, and F = Ty 5 T5, and F - Ty —5 Ty, then there exist
Ts, T, such that F & T5 +—5 Ty, and F = Ty +—5 T, and Fip 5 Ty <: Tg.

Idea.

If we have subtyping of T} and 75, which uses selection subtyping only in one direction, in an

inert context, and if we reduce the types on both sides by inlining some type selections in the same
direction, then we can further reduce those to again have subtyping between them. (Method types are
overlooked in this phase.) v

Proof. Induction on F;p 5 T <: T5:

Case (ST;&—Top): T, = T. By inversion of (TR®-Refl), Ty = T. Choose T5 = T3, and Ts = T. By
(ST5,-Top), Fip b5 T <: Tg. By (TR-Refl).

Case (ST;E-Bot): Ty = L. By inversion of (TR®-Refl), 75 = L. Choose T5 = 1, and Ty = T4. By
(ST -Bot) and (TR*-Refl).

Case (ST;E-Reﬂ): T1 =T5. By 5.96(SRedCom), exists T5, such that F - T5 ——3 15, and F - T —%
T5. Choose Tg = T5. By (ST;E—Reﬂ).

Case (ST-N-Rec): 71 = N, and T, = w(s : T7). By inversion of (TR®-Refl), T3 = T3, and T = T.
Choose T5 =15, and T = Ty.

Case (ST3-N-M): 71 = N A {M(ro) : L..1}, and T> = L. By 5.93(SRedInv), 753 = Ts A Ty, where
FFN++—3 Ty, and F = {M(rg) : L.1} 3% Ty. By inversion of (TR%-Refl), 75 = N. By
5.94(SRedMut), Ty = {M(rg) : L..L}, therefore T35 = T3. By inversion of (TR°-Refl), Ty = T5.
Choose T5 = T3, and Tg = T4.

Case (ST,-Andl): 71 = T> A T7. By 5.93(SRedInv), T3 = Ts A Ty, where F = Ty 5 T, and
F F T7 +—% Ty. By 5.96(SRedCom), exists 15, such that F = Ty —% T, and F F T, —% Tg.
Choose T5 = Ts A Ty. By (ST%-Andl), Fip 5 T5 <: Ts. By (TRS-Refl), F + Ty —5 Ty. By
(TR®-And), F F T35 —% T5.

Case (ST;L-AndZ): Ty = Ty ATy, By 5.93(SRedInv), T3 = Ty A Tg, where F = Ty +—5 T, and
F F T7 —% Ty. By 5.96(SRedCom), exists 15, such that F = Ty +—% T, and F F T, —% T,
Choose Ts = Ty A Ts. By (ST;E—AndZ), Fip F Ts <: Tg. By (TR®-Refl), F F Ty —5 Ty. By
(TR-And), F F T —5 T,

Case (ST;E-And): To =Ty N1y, and Fip 5 11 <: 17, and F;p 5 11 <: T3. By 5.93(SRedInv),
Ty = Ty A Tip, where F F T —5 Ty, and F F Ty —§ Ti. By induction, exist T, T3, such that
Fip 5 Th1 <: Tig, and F F T3 +—5 111, and F = Ty ——$ T3, By induction, exist T2, T14, such
that F,p |_3 T12 <: T14, and F T3 l—)z Tlg, and F T10 '—>?§ T14.

80

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

- If 0 = @. By 5.92(SRedSub), F;p F§ T3 <: T3, and F;p F§ T35 <: T15. Choose 15 = T3. By
(TRS-Refl), F + T3 —5 T5.

— Otherwise, 0 = ©. By 5.96(SRedCom), exists T3, such that F - Ty ——5 T5, and F - T —%
Ts5. By 5.95(SRedTrans), F F T3 +——5% T5. By 5.92(SRedSub), F;p -} 15 <: 111, and F;
p l—g Ts <: Tho.

Choose T = Tz NThy. By (ST;&—Trans), F,p "% 15 <: 113, and F,p }_% Ty <:Th4. By (ST;&—And), F,
p 5 Ts <: Tg.

e Case (ST;—Orl): T, = T1 vV Tr. By 5.93(SRedInv), Ty = T3 V Ty, where F + 17 +—% T3, and
F F T7 % Ty. By 5.96(SRedCom), exists 15, such that F = Ty % T5, and F F T3 +—% T5.
Choose Ts = T5 V Ty. By (ST;é-Orl), Fip H5 Ts <: Tg. By (TR®-Refl), F - Ty —% Ty. By (TR®-Or),
FET,—5 Ts.

e Case (ST%-Or2): T, = T7 V Th. By 5.93(SRedInv), Ty = Ty V Ty, where F = Ty +—5 T, and
F F T7 % Ty. By 5.96(SRedCom), exists 15, such that F = Ty +—% T5, and F F T3 —% T5.
Choose Ts = Ty V T5. By (ST;-OrZ), Fip H5 Ty <: Tg. By (TR®-Refl), F - Ty —% Ty. By (TR®-Or),
FHT, —s3 Tg.

e Case (ST;é-Or): Ty = Ty vz, and Fip F5 Tr <: Ty, and Fip 5 Tz <: T5. By 5.93(SRedInv),
T3 =Ty V Tig, where F F T —% Ty, and F F Ty —§ Ty. By induction, exist T, T13, such that
F,p |_(S; Ty, <: s, and F + Ty l—)z T4, and F + Ty '—>3 Tis. By il’ldUCtiOI’l, exist T2, Thy, such
that F,p l‘f’s Tio <: Ty, and F Tho '—>?S Tio, and F T, l—)% Th4.

- If § = ©. By 5.92(SRedSub), F;p 5 Ti3 <: Ty, and F;p F§ Ti4 <: Ty. Choose Ty = Ty. By
(TRS—Reﬂ), FHT, ’—>?$ Ts.

— Otherwise, 0 = @. By 5.96(SRedCom), exists Tg, such that F - T3 —§ T, and F - T4 —%
Ts. By 5.95(SRedTrans), F + T, +—3% Ts. By 5.92(SRedSub), F;p 5 Tis3 <: T, and F;
P Fg Ty <:Tg.

Choose Ts =Ty, V Ths. By (ST;&-Trans), F,p |_(S; T, <: Tg, and F,,O |_% Tho <: Tg. By (ST?#—OI'), F;
p 5Ty < Tg.

e Case (ST;&—Trans): Fip 5 T <: Ty, and Fip H5 Ty <: Ts. By (TR®-Refl), F + T —% T7.

- If 6 = @®. By induction, exist 15, Ty, such that F;p 5 T5 <: Ty, and F F T3 +—% T5, and
F = Ty —% Ty. By induction, exist T, 16, such that F;p -5 T1g <: Ts, and F = Ty —5 T,
and F F T, —5 Tg. By 5.92(SRedSub), F;p -5 Ty <: T1g. By (ST;E-Trans), Fip 5 T5 <: Ts.

— Otherwise, 6 = ©. By induction, exist Ty, T, such that F;p -5 Ty <: Tg, and F F Ty —5 T,
and F - T; 5% Ty. By induction, exist 75, T1g, such that F;p F T5 <: Tip, and F
T3 —3% T, and F = Ty ——5 T19. By 5.92(SRedSub), F;p F§ Tig <: Ty. By (ST;&—Trans), F;
p 5 Ts <: Tg.

e Case (ST;E—SelL): Ty = v1.B(z3), and F Fy vy : {B(r) : T7. 13}, and Ty = [z2/7]T7, and § = ©.
By (TR®-Sell), F + T, +——% T3. By 5.96(SRedCom), exists T, such that F = T3 +——3$ T, and
F = Ty —5 Tg. Choose T5 = Ts. By (ST -Refl), Fip 5 T5 <: Tg.

* Case (ST3-SelU): T = v1.B(z2), and F -y vy : {B(r) : T7.. T3}, and Ty = [x2/7]Ts, and § = @. By
(TR*-SelU), F + 17 —% T4. By 5.96(SRedCom), exists 15, and F - T5 ——5 15, and F - Ty —3$ T5.
Choose T = Ts. By (ST -Refl), Fip 5 T5 <: Tg.

* Case (STy-Typ): 71 = {B(r) : T7.. T3}, and T = {B(r) : Ty..Tio}, and Fip ° ; Ty <: Tr, and F;
P |_3 Tg < TIO- By 593(SRedInV), exist T11, T12, such that T3 = {B(T) : Tll--TIQ}r and F + T7 l—)‘ia
Ti1, and F = Ty —% Tho. By 5.93(SRedInv), exist T13, Ti4, such that Ty = {B(r) : T13..T14}, and
F Ty —* 5 Ti3, and F - T1g —% Th4. By induction, exist 115, Th7, and F F T1; —* 5 T'5, and
F+ T13 '—)S_6 T17, and F,p |_5_6 T17 < T15. By induction, exist T16, Tlg, and F + T12 ’—)3 T16,
and F T14 ’—>3 Tlg, and F;p |—:(’5 T16 < Tlg. Choose T5 = {B(’I“) : T15..T16}, and TG = {B(T) :
Ty7.T1s}. By (ST;E—Typ), Fip 5 Ts <: Ts. By (TR®-Typ), F = T35 ——5 Ts. By (TR®-Typ), F = T, —5
Ts.

* Case (ST3-Fld): T1 = {a: T7..Ts}, and T> = {a : Ty..T1o}, and Fip I° ; Ty <: T7, and Fp 5 Tz <:
T1o. By 5.93(SRedInv), exist T11, Th2, such that T3 = {a : T11..T12}, and F = T7 —® s 111, and F -
Ts '—)3 Tio. By 593(SRedInV), exist 143, 114, such that T, = {CL : T13..T14}, and F + Ty l—)ia T3,

81

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

and F - T10 }—>§ T14. By induction, exist T15, T17, and F - Tll }—)575 T15, and F - T13 ’—)s;(; T17,
and F,p "5_5 Ty <: Tis. By induction, exist Thg, Ths, and F Tio '—>3 T, and F Tia ’—)3 Tis,
and F;p |—3 Tie <: Tig. Choose Ts = {a : T15..T16}, and T = {CL : T17..T18}. By (ST:S#-Fld), F;
P |_3 Ts <: Tg. By (TRS—Fld), Fr T; P—)% Ts. By (TRS—Fld), FETy }—)g Ts.

* Case (ST -Met): 71 = {m(z: T7,r : Ty) : T}, and To = {m(z : T19,r : Th2) : T11}. By inversion of
(TR®-Refl), T3 = Ty, and T, = T5. Choose Ts = T3, and Tg = T}.

e Case (ST;&—TypAnd) T = {B(T‘) : T7..T8} N {B(’I’) : Tg..Tlo}, and Ty = {B(’f‘) 2 T7 Vv Ty Tg A T10}~
By 593(SRedInV), T3 = {B(T) : T11..T12} A {B(’I") : T13..T14}, where F F 17 '—)5_5 T4, where
F - Ty —5 Tio, where F = Ty —° 5 Ti3, where F = Thg +——5 T4, and Ty = {B(r) : Ti5 V
Ti7.Tie N Tlg}, where F + T P—>S_5 Ti5, where F + Ty l—)% Tys, where F + Ty ’—>S_5 Ti7,
where F T10 '—>f§ Tlg. By 596(SRedC0m), exist Tlg, TQQ, T21, TQQ, such that F T11 l—)ig Tlg,
and F + T15 I—)ié Tlg, and F + T12 ’—>?; Tgo, and F + T16 }—>§ Tgo, and F + T13 I—)ia Tgl,
and F + T17 }—>s_5 T21, and F + T14 '—)?5 T22, and F + Tlg '—>?5 T22. Choose T5 = {B(’l") :
T19..T20} A\ {B(’I“) : TQl..TQQ}, and T = {B(r) 2T VT51..T59 A TQQ}. By (TRb-Typ) and (TR®*-And),
F + T3 —}% T5. By (TR®-And) and (TR*-Or) and (TR*-Typ), F = Ty —} Tg. By (ST%-TypAnd), F;
p =5 T <: Tg.

e Case (STy-Eq): ptHTh = T>.

- If 6 = ®. By 5.97(SRedEq), exists 17, such that p - T3 ~ T7, and F - T, 5 T7. By
5.96(SRedCom), exists 15, such that F - T, —% T, and F = Ty —% T5. Choose 15 = T3.
By (ST;-Eq), Fip 5 T3 <: T7. By 5.92(SRedSub), Fip F§ 17 <: Ts. By (ST;&-Trans), F;
p l—g T3 <: Tg.

— Otherwise, § = ©. By 5.97(SRedEq), exists T%, such that p - Ty ~ T7, and F - T} —% T%. By
5.96(SRedCom), exists T5, such that F + T5 5 T5, and F F T7 —% T5. Choose T = T4. By
5.2(EqSymm), p - T7 ~ T}. By (ST-Eq), Fip b5 T7 <: Ty. By 5.92(SRedSub), F;p 5 T <: T7.
By (ST -Trans), F;p 5 T5 <: Tj.

e Case (ST;E—N—Fld): Ty = N, and T;, = {a : T7..Tg}. By inversion of (TR®-Refl), 75 = Tj. By
593(SRGdInV), exist T11, le, such that T4 = {a : T11..T12}. Choose T5 = T3, and T@ = T4. By
(ST-N-FId), F;p 5 T5 <: Ts.

e Case (STj&—N—Met): Ty = N, and To = {m(z : Tho,r : Th2) : T11}. By inversion of (TR®-Refl),
T3 = T1, and T4 = TQ. Choose T5 = T3, and T6 = T4.

* Case (ST%-N-Typ): 71 = N, and Ty = {A(r) : T7..Ts}. By inversion of (TR®-Refl), T3 = T3. By
5.93(SRedInv), exist T11, T12, such that T, = {A(r) : Th1..T12}. Choose T5 = T3, and T = T4. By
(ST -N-Typ), Fip 5 15 <: Tg.

* Case (STy-Dist): Tt = Ty AT VTy. T = (T7 NTg)V (T7 ATy). By 5.93(SRedInv), T = TioAT11 VT2,
where F = T; +—5 Tio, where F + Ty +—5 Ty1, where F + Ty +—§ Tip, and Ty = (Ti3 A
T14) vV (T15 A Tlﬁ), where F T7 '—>§ T13, where F TS }—>3 T14, where F T7 '—>?S T15,
where F + Ty —% Tis. By 5.96(SRedCom), exist 117, T1s, T19, such that F - Tyo —5 Ti7,
and F + T13 '—>?§ T17, and F + T11 l—)g Tlg, and F + T14 ’—>?5 TlS/ and F + T12 }—)g Tlg,
and F - Tig 5 Thg. By 5.95(SRedTrans), F = T7 +——5 Ti7. By 5.96(SRedCom), exists T3,
such that F F T15 ——5 Ty, and F + T17 ——5 Tyo. By 5.95(SRedTrans), F + T3 —5 Ty, and
F T10 ’—>% Tgo. Choose T5 = T20 N T18 vV Tlg, and T6 = (T20 A Tlg) \Y (T2O A Tlg). By (TRS—OI')
and (TR®-And), F = T3 ——}% T5. By (TR®-And) and (TR*-Or), F F Ty —§ Tg. By (ST%-Dist), F;
p 5 Ts < Tg.

O

Lemma 5.99 (ToSRed). IfFip by Tt <: Ty, and § € {@, @}, then there exist T3, Ty, such that F = Ty —§ T,
and F =Ty —5 Ty, and Fip 5 Ty <: 1.

Idea. If we have subtyping of 77 and 75 in an inert context, then we can inline some type selections
on both sides, such that the subtyping between the reduced types uses selection subtyping only in one
direction. (Except in method types, which are overlooked in this phase.) v

Proof. Induction on F;p -y Th <: T:
* Case (STy-Top): 1> = T. Choose T3 = Ty, and Ty = T5. By (ST, -Top) and (TR*-Refl).

82

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

Case (STx-Bot): 71 = L. Choose T35 = T3, and T, = T5. By (ST;E—Bot) and (TR®-Refl).

Case (STy-Refl): T} = T5. Choose T3 = Ty, and Ty = T1. By (ST%,-Refl) and (TR*-Refl).

Case (ST%-N-Rec): Ty = N, and T> = p(s : T5). Choose T3 = T, and Ty = T5. By (ST%-N-Rec) and
(TR®-Refl).

Case (STx-N-M): T7 = N A {M(rg) : L..L}, and T, = L. Choose 75 = Ty, and Ty = T». By
(ST%-N-M) and (TR*-Refl).

Case (STx-And1): Ty = T A Ts. Choose T3 = T1, and Ty = T5. By (ST -And1) and (TR*-Refl).
Case (STx-And2): Ty = T5 A T5. Choose T3 = Ty, and Ty = T5. By (ST -And2) and (TR®-Refl).

Case (STy-And): Ty = T5 A Tg, and Fip 4 17 <: Ty, and Fip b4 11 <: Tg. By induction, there
exist 17, Tg, such that F - T +—35 17, and F + T5 —% T3, and F;p 5 T7 <: Ts. By induction,
there exist Ty, T19, such that F = T1 ——5 Ty, and F = Ts —% Tio, and Fip F§ Ty <: T1g. Choose
Ty, =Ts NTip. By (TR®-And), F + T5 i—)i’s Ty.

- If § = @, then by 5.92(SRedSub), F;p -5 11 <: 1%, and F;p 5 T1 <: Ty. Choose T3 = T;. By
(TRS—Reﬂ), FF T1 *—)g T3.

— Otherwise, § = ©. By 5.96(SRedCom), exists T3, such that F - 17 —% T3, and F - Ty —%
T3. By 5.95(SRedTrans), F = 11 ——5 T5. By 5.92(SRedSub), F;p -5 T3 <: T, and F;p 5 T3 <:
Ty.

By (ST%-Trans), Fip b5 T3 <: Ty. By (ST%-Trans), F;p 5 T3 <: Tho. By (ST-And), Fip B35 T3 <: T}
Case (ST4-Orl): T; =Ty V T5. Choose T3 = Ty, and Ty = T». By (ST;E-Orl) and (TR®-Refl).
Case (STx-Or2): 75 = T5 vV T. Choose 15 = Ty, and T, = T5. By (ST;L—OrZ) and (TR®-Refl).

Case (ST4-Or): Th = 15 V Tg, and Fip F4 T5 <: Ty, and Fip 4 Ts <: T5. By induction, there
exist Ty, Tg, such that F - T5 +—35 17, and F = Ty —% T3, and F;p 5 T7 <: Ts. By induction,
there exist Ty, 119, such that F - T ——5 Ty, and F = Ty —% Ty, and Fip F§ Ty <: Tio. Choose
T35 =17V Ty. By (TRS—Or), FHTy ’—)3 Ts.

- If § = ©, then by 5.92(SRedSub), F;p -5 Tg <: Ty, and F;p 5 Ty¢ <: T. Choose Ty = T5. By
(TRS—Reﬂ), FF T2 ’—>?; T4.

— Otherwise, 6 = @. By 5.96(SRedCom), exists T}, such that F - Tg +——3$ Ty, and F - T —%
T4. By 5.95(SRedTrans), F + 15 —% Ty. By 5.92(SRedSub), Fip F§ Tz <: Ty, and F;p 5
Tio <:Ty.

By (ST%-Trans), F;p 5 T7 <: Ty. By (ST -Trans), Fip =5 Ty <: Ty. By (ST%-Or), Fip 15 T5 <: Tj.
Case (STy-Trans): Fi;p » Ty <: Ts, and F;p 4 T5 <: T,. By induction, there exist 77, T5, such
that F - Ty +—35 T7, and F F T5 +—3 Ty, and F;p 5 T7 <: Tg. By induction, there exist Ty, To,
such that F = T5 —% Ty, and F + Ty ——§ Thg, and F;p 5 Ty <: T19. By 5.96(SRedCom), exists
T11, such that F Tg l—)f; T11, and F Tg '_)?5 T11.

- If 6 = @. By 5.98(SRedSubCom), exist T'2, Ty, such that F;p F§ Tig <: Ty, and F - T —5
Tyg, and F + Tyg +—5 Ty. Choose T3 = T7. By 5.95(SRedTrans), F + T, ——% Ty. By
5.95(SRedTrans), F = Ty +——35 Ti2. By 5.92(SRedSub), Fip 5 Ty <: Tia. By (STy-Trans), F;
pHS T <: Ty

— Otherwise, 6 = ©. By 5.98(SRedSubCom), exist 112, T3, such that F;p 5 T3 <: T2, and
Fr 17 +—5 T3, and F F 11, —% Th9. Choose T, = Thg. By 5.95(SRedTrans), F - T —5 T5.
By 5.95(SRedTrans), F - Ty ——35 T12. By 5.92(SRedSub), F;p 5 T <: Ty. By (STj&-Trans), F;
p l—g T3 <:Ty.

Case (ST#—SGIL) T2 = Ul.B(I’Q), and F F! V1t {B(T’) : T5..T6}, and T1 = [I’Q/T’}T5. If6 = D, then by
(TR®-Refl) and (TR®*-SelU), F - v1.B(x2) —%, [2/r]Ts. By 5.53(SubPrecTyp), Ty = L, or Ts = T.
By (ST%-Bot) or by (ST;E-Reﬂ), Fip 5 Ty <: [x2/r]Ts. Choose Ts = T, and Ty = [z2/7]Ts. If§ = ©,
then by (TR®-Refl) and (TR®-SelL), F - v;.B(x2) % [x2/7]T5. Choose Ty = T3 = T1.

Case (STy-SelU): Th = vi.B(z2), and F by vy : {B(r) : T5. T}, and Ts = [29/7]T6. If 6 = &, then
by (TR®-Refl) and (TR®-SelU), F - v1.B(x2) %, [v2/7]Ts. Choose T5 = Ty = Ty. If § = ©, then by
(TR®-Refl) and (TR®-SelL), F F v1.B(x2) — [x2/r]T5. By 5.53(SubPrecTyp), 75 = L, or Ts = Tg.
By (ST%,-Bot) or by (ST -Refl), F;p -5 [22/r]T5 <: Tp. Choose T3 = [z2/7|T5, and Ty = T.

83

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

e Case (STy-Typ): Th = {B(r) : T5.Ts}, and Thr = {B(r) : T7..Ts}, and F;p 4 Tr <: Ty, and Fip b4
Ts <: Tg. By induction, there exist Ty, Tho, such that F = T7 —* ; Ty, and F = T5 ——* 5 T19, and F;
p F 5 Ty <: Thp. By induction, there exist 711, T2, such that F - Tg —§ 11, and F = T —5 T1o,
and F,p l_g T11 < T12. By (TRQ-Typ), F+ {B(T) : T5..T6} }—)3 {B(T) : T10~-T11}- By (ST;ﬁ-Typ), F,
P l_g {B(T’) : TIO--Tll} <: {B(T) : Tg..Tlg}. By (TRS—TYP), Fr {B(T’) : T7..T8} I—)?; {B(’/‘) : Tg..Tlg}.
Choose T3 = {B(’f‘) : TlO--Tll}/ and T4 = {B(’I’) : Tg..Tlg}.

e Case (STy-Fld): Ty = {a: T5.Ts}, and Ty = {a : T7. T3}, and Fip b T7 <: T, and Fip 4 T <:
Ts. By induction, there exist Ty, T4, such that F - 177 —* ; Ty, and F -+ T5 +—* 5 T1g, and F;
p F* s Ty <:Typ. By induction, there exist 71, T12, such that F - T —% Th1, and F - Ty ——5 T,
and F,p "% T <: Tio. By (TRS-Fld), FF {a : T5..T6} ’—)3 {(1 : TIOHTll}- By (ST;E-Fld), F,
14 |—3 {a : Tl()..TH} < {CL : T9..T12}. By (TRE-Fld), FF {a : T7..T8} }—% {a : Tg..Tlg}. Choose
T3 = {a : T10~-T11}/ and T4 = {a : Tg..Tlg}.

e Case (STx-Met): Choose T3 = T3, and Ty = T5. By (ST%-Met) and (TR*-Refl).

* Case (STy-TypAnd): Choose T3 = Ty, and T = T5. By (ST%-TypAnd) and (TR®-Ref]).
e Case (STx-Eq): Choose T3 = T1, and Ty = T>. By (ST%-Eq) and (TR®-Refl).

¢ Case (STx-N-Fld): Choose T3 = T3, and Ty = T3. By (ST%-N-Fld) and (TR®-Refl).

* Case (STx-N-Met): Choose T3 = T1, and Ty = T5. By (ST%,-N-Met) and (TR*-Refl).

¢ Case (STx-N-Typ): Choose T3 = T1, and Ty = T. By (ST%-N-Typ) and (TR®-Refl).

* Case (STy-Dist): Choose T3 = T3, and Ty = T5. By (ST -Dist) and (TR*-Refl).

Lemma 5.100 (TRedMut). If {M(ro) : L..L} ——% T5, then Ty = {M(rg) : L..L}.

Proof. By inversion of (TR™-Typ). To = {M(ro) : T5..14}, where L ——¢ T3, and L +—§ Ty. By
inversion of (TR™-Bot), 75 = L,and Ty = L. O

Lemma 5.101 (ERedMut). If {M(ro) : L..L} ——=§ T5, then Ty = {M(ro) = L..L}.

Proof. By inversion of (TER-Typ). T = {M(r¢) : T3..T,}, where | +——¢ T3,and L —¢, 7. By inversion
of (TER-Bot), T3 = 1,and T, = L. O

Lemma 5.102 (TRedEx). For each T} there exist T5, T3, such that Ty ——g Ty, and Ty ——& T3.

Idea. In a type, we can replace occurrences of method types by T or L. Occurrences in recursive types
are not touched. v
Proof. o If T4 = T, then choose T = T3 = T. By (TR™-Top).

e If T} = 1, then choose T, = T3 = L. By (TR™-Bot).

e If 77 = N, then choose 7> = N, and 73 = L. By (TR™-N) and (TR™-N-Bot).

o If 77 = p(s: Ty), then choose Tp = T3 = T7. By (TR™-Rec).

o If T} = z1.B(z2), then choose T, = T3 = T. By (TR™-Sel).

o If Ty = Ty N T, then by induction, there exist T, 17, T3, Ty, such that T} —a Ts, and T —a 17,
and Ty —3 Ty, and T5 —3 Ty, then choose T> = Ts A Tr, and T3 = Tg A Ty. By (TR™-And).

e If Ty = T, vV T5, then by induction, there exist Tg, T7, Tg, Ty, such that T ——3 Ty, and T5 — 1%,
and T —2 Tg, and T5 —3 Ty, then choose Ty = Ty V T7, and T3 = Ty V Ty. By (TR™-Or).

e If Ty = {a : T4..T5}, then by induction, there exist Ts, 17, Ts, Ty, such that T, —2 Ts, and
Ts —3 Tr,and Ty — % Ty, and T5 — 3 Ty, then choose Ty = {a : T¢.. 17}, and T3 = {a : Ts..To}.
By (TR™-FId).

e If Ty = {B(r) : T4..T5}, then by induction, there exist Tg, T7, Ts, Ty, such that T, —3 Tg,
and T5 +—p Ty, and T} +—§ T, and T5 —2 Ty, then choose T, = {B(r) : T;..T7}, and
T3 = {B(’I") : Tng} By (TRm-Typ).

o If Ty = {m(z: Ty,r : Tp) : T5}, then choose T> = T, and T5 = L. By (TR™-MetU) and (TR™-MetL).

O

84

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

Lemma 5.103 (ERedEx). For each T there exist Ty, T3, such that Ty ——g, Ty, and Ty nosel yo, and T ——¢,
T3, and T5 nosel ys.

Idea. In a type, we can replace occurrences of method types and selections by T or L, such that the
resulting type does not contain type selections. Occurrences in recursive types are not touched. v

Proof.

e If T} =T, then choose T; = T3 = T. By (TER-Top) and (TN-Top).

If T7 = L, then choose T = T3 = L. By (TER-Bot) and (TN-Bot).
If Ty = N, then choose 75 = N, and 73 = L. By (TER-N) and (TN-N). By (TER-N-Bot) and
(TN-Bot).
If Ty = p(s : Ty), then choose T, = T3 = T. By (TER-Rec) and (TN-Rec).
If Ty = x1.B(x2), then choose T, = 1, and T3 = T. By (TER-SelU), T} +—¢, T5. By (TER-Sell),
Ty —¢ T3. By (TN-Bot), 1> nosel y,. By (TN-Top), T3 nosel .
If T1 = T4 A Ts, then by induction, there exist Tg, 17, Ty, Ty, such that Ty ——¢, T, and T5 —¢, 17,
and Ty ¢ Ty, and T5 ——¢ Ty, and Ty nosel yo, and 77 nosel y3, and Tz nosel y,, and
Ty nosel yo, then choose To = T A T7, and T3 = Tz A Ty. By (TR™-And), Ty ¢, 15, and
Ty —¢ T3. By (TN-And), T nosel gy, T3 nosel y,.
If Ty = Ty V T3, then by induction, there exist Tg, 17, T3, Ty, such that T g 16, and T g T,
and Ty +—¢ Ty, and T5 ——¢ Ty, and Ty nosel yo, and T7 nosel yz, and Tz nosel y,, and
Ty nosel y3, then choose T = T5 V17, and T3 = Tz VTy. By (TR™-Or), T} +——§, 15, and T ——¢ T5.
By (TN-Or), 15 nosel y, T3 nosel ys.
If T = {a : T4..Ts}, then by induction, there exist Tg, T%, Ty, Ty, such that Ty ——¢ Tg, and
Ts —§ 17, and Ty ——§ Ty, and T5 ——¢ Ty, and T nosel y,, and T nosel y,, and T nosel y,,
and Ty nosel y;, then choose Ty = {a : T..T7}, and T3 = {a : T5..Ty}. By (TR™-FId), T} +—§, 1o,
and T —¢ T3. By (TN-Fld), T, nosel y;, T3 nosel ys.
If Ty = {B(r) : Ty4..T5}, then by induction, there exist T, 17, Ty, Ty, such that T, —¢ Tg, and
Ts ——§ 17, and Ty ——g Ty, and T5 ——¢ Ty, and T nosel y,, and T nosel y,, and T3 nosel y,,
and Ty nosel ys, then choose Ty = {B(r) : Ts..T7}, and T5 = {B(r) : Ts..Ty}. By (TR™-Typ),
Ty —§ Ty, and Ty ¢ T3. By (TN-Typ), 1> nosel y3, T3 nosel ys.
If Ty = {m(z:Ty,r:Tg) : Ts}, then choose T, = T, and T3 = L. By (TR™-MetU), T} ¢, T>. By
(TR™-MetL), Ty ——¢ T3. By (TN-Top), T2 nosel y,. By (TN-Bot), T3 nosel ys.

O

Lemma 5.104 (TRedU). If 11 ——3 Tb, and Ty —§" T3, then Ty = Ts.

Idea. —™ is deterministic v

Proof. Induction on T ——§" T5:

Case (TR™-Top): 71 = T, and T = T. By inversion of (TR™-Top), 75 = T.

Case (TR™-Bot): 71 = L, and 75, = L. By inversion of (TR™-Bot), T5 = L.

Case (TR™-N): 71 = N, and 75 = N, and § = &®. By inversion of (TR™-N), 75 = N.

Case (TR™-N-Bot): T} = N, and 75 = L, and § = ©. By inversion of (TR™-N-Bot), 75 = L.

Case (TR™-Sel): T1 = z1.B(z2), and T = z1.B(x2). By inversion of (TR™-Sel), T5 = z1.B(z2).
Case (TR™-Rec): Ty = pu(s : T), and T = p(s : T). By inversion of (TR™-Rec), T5 = u(s : T).

Case (TR™-And): T1 = T4 ANTs, and 15 = Ts A 17, where T, 5" T, where Ts +—3* 17. By
inversion of (TR™-And), T3 = Ts A Ty, where Ty —}3 Ts, where T5 +—5 Ty. By induction,
Tg = TG, and Tg = T7.

Case (TR™-Or): T1 = Ty V15, and 1> = 15 V Ty, where Ty +—§" Ts, where T5 —§" T7. By
inversion of (TR™-Or), T5 = T5 V Ty, where Ty — 3" Tg, where T5 ——5 Ty. By induction, Ty = T,
and Tg = T7.

Case (TR™-FId): T1 = {a : T4x..T5}, and T> = {a : T;..T7}, where Ty —™; T, where T5 —3* T7.
By inversion of (TR™-FId), T5 = {a : Ts..Ty}, where Ty —™; Ty, where T5 ——3* Ty. By induction,
Tg = TG, and Tg = T7.

85

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

e Case (TR™-Typ): Tn = {B(r) : T4.T5}, and To = {B(r) : Ts..I7}, where T, —™; Tg, where
Ts —% Tr. By inversion of (TR™-Typ), T3 = {B(r) : Ts..Ty}, where T, —"™; Ty, where T5 —}"
Ty. By induction, Ty = T, and Ty = T7.

e Case (TR™-MetU): T4 = {m(z : Ty,r : Ts) : T5}, and To = T, and § = &. By inversion of
(TR™-MetU), T3 = T.

e Case (TR™-MetL): T = {m(z : Ty,r : T5) : T5}, and Tbo = 1, and 6 = ©. By inversion of
(TR™-MetL), T5 = L.

O

Lemma 5.105 (ERedCom). If T} ——¢, Ty, and Ty ¢, T3, and Ty nosel x, and T3 nosel x, then there
exists Ty, such that Ty —§, Ty, and Tsp &= Ty <: Ty, and Tsp = Tz <: Ty, and Ty nosel x. If T ——¢, T, and
Ty ——¢ T3, and T, nosel x, and T3 nosel x, then there exists Ty, such that Ty ——¢ Ty, and T;p = Ty <: Ty,
and T;p b Ty <: T3, and Ty nosel .

Proof. Induction on T} —§ To:

e Case (TER-Top): T3 = T, and 7o = T. By inversion of (TER-Top), 75 = T. Choose Ty = T.
By (TER-Top), T1 +——§ T4. By (ST-Refl), I';p = Tp <: Ty, and I';p = T3 <: Ty. By (ST-Refl), T
pFTy <:Tp,and I';p F Ty <: T3. By (TN-Top), T4 nosel z.

e Case (TER-Bot): 71 = 1, and T, = 1. By inversion of (TER-Bot), T35 = L. Choose T, = L.
By (TER-Bot), T1 ——§ Ty. By (ST-Refl), I';p = T <: Ty, and I'sp = T3 <: Ty. By (ST-Refl), T
pFTy <:Ts,and I';p = Ty <: T3. By (TN-Bot), T4 nosel x.

® Case (TER-N): 77 = N, and 75 = N, and § = @. By inversion of (TER-N), 73 = N. Choose T, = N.
By (TER-N), T} —§ Ty. By (ST-Refl), I';p = T <: Ty, and T';p = T3 <: Ty. By (TN-N), T4 nosel z.

* Case (TER-N-Bot): 71 = N, and 75 = 1, and § = ©. By inversion of (TER-N-Bot), 73 = L. Choose
Ty = 1. By (TER-N-Bot), 71 ——§ Ty4. By (ST-Refl), I'sp = 15 <: Ty, and I';p = T3 <: Ty. By
(TN-Bot), T4 nosel .

¢ Case (TER-And): T} = T5 A T, and 1> = T7 A Ty, such that T5 ——§ T, such that T —§ Ts.
By inversion of (TER-And). T3 = Ty A T1o, where T5 ——§ Ty, and T —§ Tio. By inversion of
(TN-And), T nosel z, and T3 nosel x, and Ty nosel x, and T}y nosel x.

- If § = &. By induction, exist T11, Th2, such that T5 —§ Ty, and I';p - T <: Ty, and T
P F Ty <: T11, and T11 nosel z, and Ty i—)g Ti2, and F;p Ty <:Tis, and F;p F T <: Tio,
and T2 nosel z. Choose Ty = 111 A Ti2. By (TER-And), 71 +—§ T4. By 5.18(AndSub), T';
pFTy <:Ty,and I';p F T3 <: Ty. By (TN-And), T4 nosel z.

- Otherwise, 6 = ©. By induction, exist T, T12, such that T5 ——§ Ty, and I';p = 11y <: T,
and I';p = 111 <: Ty, and 711 nosel z, and Tg —§ Tig, and I';p F Tho <: Ty, and T
14 = T12 <: Tl(), and T12 nosel z. Choose T4 = T11 A T12. By (TER—And), T1 '—>(C§ T4. By
5.18(AndSub), I';p - Ty <: T, and I';p - Ty <: T5. By (TN-And), T, nosel z.

* Case (TER-Or): T1 = 15 V T, and 1> = 17 V Ty, such that T5 ——§ T%, such that Ts ——§ T5. By
inversion of (TER-Or). T3 = Ty V T, where T5 ——§ Ty, and T —§ T1o. By inversion of (TN-Or),
T7 nosel z, and Ty nosel z, and Ty nosel z, and 77 nosel z.

- If 6 = @. By induction, exist 111, T12, such that 75 +—§ Ty, and I';p B 17 <: Ty, and T
P Ty <:Thq, and 771 nosel x, and Ts l—)g Ti», and F,p F Ty <:Tis, and F,p F T <: Tio,
and T2 nosel z. Choose Ty = Ty V Ti2. By (TER-Or), T7 +—§ Ty. By 5.19(OrSub), I';
pFTy <:Ty,and I';p F Ty <: Ty. By (TN-Or), T4 nosel z.

— Otherwise, § = ©. By induction, exist 111, T12, such that 75 —§ 111, and I';p = 111 <: 17,
and I';p F 11y <: Ty, and 711 nosel z, and Tg ——§ Tho, and I';p F Tip < Ty, and T
P F Tis <: Tho, and Tio nosel z. Choose T, = 111 V Tio. By (TER—OI‘), T }—>§ Ty. By
5.19(0OrSub), I'sp =Ty <: Ty, and I';p - Ty <: T3. By (TN-Or), T} nosel z.

® Case (TER-Sel): T1 = z1.B(x2), and T5 = z1.B(z2). Choose Ty = T;. By (TER-Sel), Ty +—§ Tj.
Trivially, T4 nosel z. By inversion:

— Case (TER-Sel): T3 = x1.B(z2). By (ST-Refl), I';p - T» <: Ty, and T';p F T5 <: Ty. By (ST-Refl),
TipbTy <:Ty,and T;p - Ty <: T3.

86

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

— Case (TER-SelL): T3 = T, and § = ©. By (ST-Top), I';p - Ty <: T3. By (ST-Refl), I';p - T, <:
Ts.

— Case (TER-SelU): T3 = L, and 6 = . By (ST-Bot), I';p - T5 <: Ty. By (ST-Refl), I';p - Tp <:
Ty.

e Case (TER-Sell): T1 = z1.B(z2),and T = T, and § = ©. By inversion:

— Case (TER-Sel): T35 = z1.B(z2). Choose Ty = Tj. Trivially, T, nosel z. By (TER-Sel), T —¢
Ty. By (ST-Top), I';p = Ty <: Ts. By (ST-Refl), I';p - Ty <: Ts.

— Case (TER-SelL): T3 = T. Choose Ty = T. By (TN-Top), T4 nosel z. By (TER-SelL), T1 —§
T4. By (ST-Refl), I';p = Ty <: T5. By (ST-Refl), I';p - Ty <: T3.

¢ Case (TER-SelU): T} = z1.B(z2), and T, = L, and 6 = &. By inversion:

— Case (TER-Sel): T3 = z1.B(z2). Choose Ty = T). Trivially, T4 nosel z. By (TER-Sel), T} —§
Ty. By (ST—BOt), Tipb Ty < Ty. By (ST-Reﬂ), TipbTs < Ty.

— Case (TER-SelU): T3 = L. Choose T, = L. By (TN-Bot), T} nosel z. By (TER-SelU), 11 —§
Ts. By (ST-Refl), I';p - T <: Ty. By (ST-Refl), I';p - T3 <: Ty.

e Case (TER-Rec): T1 = u(s : T7), and T = pu(s : Tr). By inversion of (TER-Rec), T5 = u(s : T7).
Choose T = pu(s : Tr). By (TER-Rec), Ty +——§ Ty. By (ST-Refl), T';p F Ty <: Ty, and Tsp = T3 <: Ty
By (ST-Refl), I';p - Ty <: Ty, and I';p = Ty <: T3. Trivially, T4 nosel z.

e Case (TER-FId): Th = {a : 5.1}, and T> = {a : T7..1s}, such that T5 —°; T, such that
Ts —§ Ts. By inversion of (TER-FId). T3 = {a : Ty..T1o }, where T5 ——*° 5 Ty, and Ty —§ Tho. By
inversion of (TN-Fld), 7% nosel x, and Tg nosel x, and Ty nosel z, and T} nosel .

- If § = @. By induction, exist T11, T2, such that T5 —° 5 T11, and I';p = 11y <: Tr, and T
P FTy <: Ty, and T11 nosel z, and Ts '—>§ Tia, and F;p Ty <:Tis, and F;p F T <: Tio,
and T2 nosel z. Choose Ty = {a : T11..Th12}. By (TER-FId), Ty ¢ Ty. By (ST-Fld), T
pFTy <:Ty,and I';p F T3 <: Ty. By (TN-FId), T4 nosel z.

— Otherwise, 6 = ©. By induction, exist 711, T2, such that T5 —¢ 5 T1, and I';p - T <: T4,
and I';p - Ty <: Th1, and 711 nosel z, and Ts —§ Tio, and I'sp B Tho <@ Ty, and T
P F T < Tho, and T15 nosel x. Choose T, = {a : Tll..Tlg}. By (TER—Fld), T l—)g Ty. By
(ST-FId), I'sp =Ty <: Ty, and T';p = Ty <: Ts. By (TN-Fld), T4 nosel z.

e Case (TER-Typ): Th = {B(r) : T5.. T}, and Tp = {B(r) : T7..Ts}, such that T5 —° 5 T7, such that
T —§ Ts. By inversion of (TER-Typ). T5 = {B(r) : Ty..T1o}, where T5 —° 5 Ty, and T —§ Tho.
By inversion of (TN-Typ), T7 nosel z, and T nosel z, and Ty nosel z, and T}y nosel z.

- If 0 = @. By induction, exist 111, Th2, such that 75 —¢ 5 T4, and I';p - 111 <: 1%, and T
P Ty <: Ty, and 771 nosel x, and Ts '—)g Ti», and F,p F Ty <:Tis, and F,p F T <: Tio,
and 712 nosel z. Choose Ty = {B(r) : T11..Th2}. By (TER-Typ), Ty —§ Tu. By (ST-Typ), I';
pFTy <:Ty,and I';p Ty <: Ty. By (TN-Typ), T4 nosel z.

— Otherwise, 6 = ©. By induction, exist T11, T2, such that T5 —° 5 Ty1, and I';p = T7 <: T4,
and I';p = Ty <: Th1, and 711 nosel z, and Tg —§ Tig, and I';p F Ty <: Ty, and T
p Ty <: Ty, and T12 nosel z. Choose T, = {B(r) : Th1..T12}. By (TER-Typ), Ty +—§ Tu.
By (ST-Typ), I'sp b Ty <: T, and I';p = Ty <: T3. By (TN-Typ), 14 nosel z.

e Case (TER-MetU): T1 = {m(z : Ts,r : T7) : T}, and To = T, and § = @. By inversion of (TER-
MetU). T3 = T. Choose T, = T. By (TER-MetU), T1 —§ T}. By (ST-Refl), I';p - 1> <: Ty, and T';
p T3 <: Ty By (ST-Refl), I'sp = Ty <: 15, and I';p = Ty <: T3. By (TN-Top), T4 nosel x.

e Case (TER-MetL): Ty = {m(z : T5,r : T7) : T}, and T» = L, and 6 = ©. By inversion of (TER-
MetL). 75 = L. Choose Ty = L. By (TER-MetL), T1 ——§ T4. By (ST-Refl), I';p - T3 <: Ty, and T';
p T3 <: Ty By (ST-Refl), I'ip - Ty <: 15, and I';p = Ty <: T5. By (TN-Bot), T, nosel z.

O

Lemma 5.106 (TRedEq). If p F Th = Ty, and Ty ——§" Ty, then there exists Ty, such that To —§ Ty, and
P - T3 ~ T4.

87

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

Idea.

M reduction preserves equivalence \Y

Proof. Induction on p - T3 ~ T5:

Case (TE-Refl): Ty = T5. Choose T = T3. By (TE-Refl).

Case (TE-Sel): T} = vi.A(z2), and T = vy.A(x2), where p - v = v,. By inversion of (TR™-Sel),
T5 = T3. Choose T = T5. By (TR™-Sel).

Case (TE-And): Ty = T5 AT, and Ty = T A Ts, and p = T =~ T7, and p - T ~ Tg. By inversion of
(TR™-And), exist Ty, T19, such that T3 = Ty A Ty, and T5 —5* Ty, and Tg — 5 T10. By induction,
exist 111, Tia, such that Ty ’_%n T4, and Tio l—):;n Tis, and P F T, ~ Ty, and P F 1y ~ Tis.
Choose Ty = T11 A Ti2. By (TE-And) and (TR™-And).

Case (TE-Or): Th1 = T5 VT, and T5 = 17 V Ty, and p - T5 = T, and p - Ty ~ Tg. By inversion of
(TR™-Or), exist Ty, Tio, such that T3 = Ty V Thg, and T5 —3" Ty, and T —5* Tho. By induction,
exist T11, T12, such that Tg '_>gn T11, and Tl() '—)fsn Tlg, and P - T7 ~ T11, and 14 F Tg ~ T12.
Choose Ty = T11 V Th2. By (TE-Or) and (TR™-Or).

Case (TE-Rec): T1 = (s : T5), and To = p(s : Tr), and p - T5 ~ T;. By inversion of (TR™-Rec),
T3 =T;. Choose Ty = T5. By (TR™-Rec).

Case (TE-Typ): Ty = {B(r) : T5..Ts}, and To = {B(r) : T7r.Ts},and p - T5 = T7, and p F T =~ Ts.
By inversion of (TR™-Typ), exist Ty, T1o, such that T3 = {B(r) : Ty..Tio}, and T5s —"™; Ty,
and Ts —5 Tho. By induction, exist %1, T2, such that Ty —™; 111, and T1g —3* T2, and
1% F T7 ~ Tll/ and P F Tg ~ Tlg. Choose T4 = {B(T) : Tll..Tlg}. By (TE-Typ) and (TRm-Typ)

Case (TE-FId): T1 = {a : T5.Ts}, and Ty = {a : T7. T3}, and p - T5 =~ T7, and p F Ty = Ts. By
inversion of (TR™-F1d), exist Ty, Tio, such that T3 = {a : Ty..Tho}, and T5 —™; Ty, and T — 5
Tio. By induction, exist 111, T12, such that Ty —™ T11, and Thg —5" Th2, and p - T7 = T1;, and
P F Tg ~ T12. Choose T4 = {a : T11-~T12}‘ By (TE-Fld) and (TRm—Fld)

Case (TE-Met): Ty = {m(z : T7,r : Ty) : Tz}, and To = {m(z : Tyo,7 : T12) : T11}. If 6 = &, then
by inversion of (TR™-MetU), T3 = T. Choose Ty = T. By (TR™-MetU) and (TE-Refl). Otherwise,
0 = ©, then by inversion of (TR™-MetL), T3 = L. Choose Ty = L. By (TR™-MetL) and (TE-Refl).

O

Lemma 5.107 (TRedCom). If F;p =3, T <: Ty, and Ty ——§ T3, then there exists Ty, such that Ty ——g Ty,
and Fip B3 Ty <: Ty, If Fip 3, Ty <2 Ty, and Ty ——2 T, then there exists T, such that Ty —— % Ts, and F;
p Frél Ts <: Tg.

Idea. If we have subtyping of 71 and 75, which uses selection subtyping only in one direction, in an
inert context, and if we reduce the type on one side by replacing method types by T or L in the same
direction, then we can reduce the other type so that we have subtyping between the reduced types,
which does not use method subtyping. (Occurrences in recursive types are overlooked.) v

Proof. Induction on Fi;p 5 T <: T5:

Case (ST -Top): To = T. Choose Ty = T. By (TR™-Top), T> —— Tj. By (ST-Top), Fip bg T3 <:
Ty. By inversion of (TR™-Top), Ts = T. By 5.102(TRedEXx), exists T5, such that T} ——& T5. By
(ST;Z—Top), Fip 38 Ts <: Tg.
Case (ST-Bot): T = L. Choose T5 = L. By (TR™-Bot), 71 — T5. By (ST;-Bot), Fip 8 T5 <:
Ts. By inversion of (TR™-Bot), 75 = L. By 5.102(TRedEx), exists T, such that T ——3 T4. By
(ST-Bot), Fip g Ts <: T,
Case (ST;&—Reﬂ): Ty = T,. Choose Ty = T3. By (ST;—Reﬂ), Fip bg T3 <: Ty. Choose T5 = Ts. By
(ST;’;—Reﬂ), Fip 8 Ty <: Tg.
Case (ST;E—N-Rec): Ty =N, and Ts = u(s : Tr).

- If § = @, then by inversion of (TR™-N), T3 = N. Choose T = T5. By (TR™-Rec), T5 ——§ Tj.

By (ST%-N-Rec), Fip bg T <: T}

— Otherwise, 6 = ©, then by inversion of (TR™-Rec), Ty = p(s : Tr). Choose T5 = L. By
(TR™-N-Bot), T1 =3 T5s. By (ST;-Bot), Fip F5 T <: Tg.

Case (ST,-N-M): T1 = N A {M(ro) : L..L}, and Tp = L.

88

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

- If 6 = @, then by inversion of (TR™-And), and by inversion of (TR™-N) and 5.100(TRedMut),
T3 = T. Choose Ty = T». By (TR™-Bot), To —g Tu. By (ST-N-M), Fip g T <: Ty.

— Otherwise, § = &, then by inversion of (TR™-Bot), T = T». Choose T5 = L A {M(rg) : L..L}.
By (TR™-Bot) and (TR™-Typ) and (TR™-N-Bot) and (TR™-And), T —Z T5. By (ST;-N-M),
Fip B8 N A {M(r) : L.} <: Tg. By (ST%-Bot) and (ST%-Refl) and 5.90(AndSubM), F;
pF2Ts <:NA{M(rg) : L..L}. By (ST -Trans), Fip H8 15 <: Ts.

e Case (ST;—Andl): Ty =To NTx.

- If § = @. By inversion of (TR™-And), T5 = T3 A Ty, such that 75 ——§* T, and T ——§" To.
Choose Ty = T;. By (ST;—Andl), Fip 5t T3 <: Ty.

— Otherwise, 6 = ©. By 5.102(TRedEXx), exists Ts, such that T ——§* T3. Choose T5 = T A T3.
By (TR™-And), T +—§' T5. By (ST}-And1), Fip B§' T5 <: Ts.

e Case (ST;&—AndZ) T, =T7 NTs.

- If § = @. By inversion of (TR™-And), T3 = Ty A T3, such that T, ——§* Ty, and Ty —3* Tp.
Choose T, = Ts. By (ST#—AndZ), Fip 9 Ts <: Ty.

— Otherwise, 6 = ©. By 5.102(TRedEXx), exists Tg, such that 77 ——§* Ts. Choose T5 = Tg A T§.
By (TR™-And), T1 +——§' T5. By (ST}-And2), F;p 5 T5 <: Ts.

e Case (ST;—And): Ty =T; NTg,and F;p H; Ty <: Ty, and F;p 5 T <: T3.

- If 6 = @. By induction, exists Ty, such that 77 —3" Ty, and F;p F§* T3 <: Ty. By induction,
exists T, such that Ty —5* T, and F;p 5" T3 <: Tig. Choose T = Ty ATio. By (TR™-And),
T P—>g1 Ty. By (ST;E—And), Fip }_gn Ts <: Ty.

— Otherwise, 6 = ©. By inversion of (TR™-And), exist Ty, T1¢, such that Tg = Ty A T19, and
T7 —§ Ty, and Ty — 3 Tio. By induction, exist T, 111, such that F;p F* T5 <: Ty, and
F,p an T <: Tho, and T ’_%n Ts, and T }_>gn Ti1. By 5104(TRedU), T = Ts. By
(ST;—And), Fip }_gn T5 <: Tg.

e Case (ST;-OI‘l) T =T, V1Tx.

- If § = ©. By inversion of (TR™-Or), Ts = T3 V Ty, such that T —§* Ty, and T —5* Ty.
Choose T = Ts. By (ST%-Orl), Fip 5 T <: Ts.

— Otherwise, 6 = @. By 5.102(TRedEXx), exists Ts, such that 77 ——§* Ts. Choose Ty = T3 V Tg.
By (TR™-Or), T —3* Ty. By (ST%-Orl), Fip it T <: Tu.

e Case (ST;&—OrZ): T =T7 VvV Ty.

- If 0 = ©. By inversion of (TR™-Or), Ts = Ty V Ty, such that T +—§* T, and T +—3 To.
Choose T5 = T;. By (ST;—OrZ), Fip B3t T5 <: Tg.

— Otherwise, 6 = @. By 5.102(TRedEXx), exists Ts, such that T ——§* T3. Choose T, = T3 V T3.
By (TR™-Or), T 4" Ty. By (ST}-Or2), Fip B3 T3 <: Ty.

e Case (ST;&-OI') T, =17 V1T, and F,,D F% T <: 15, and F,p Ff; Tg <:T5.

- If § = ©. By induction, exists Ty, such that 77 —3* Ty, and F;p F3* Ty <: Ts. By induction,
exists T, such that Ty ——§" To, and F;p F* T <: Ts. Choose T5 = Ty A T1¢. By (TR™-Or),
T1 ’—>§n T5. By (ST;—OI‘), F,p Fgﬂ T5 <: T@.

— Otherwise, 6 = @. By inversion of (TR™-Or), exist Ty, 119, such that T3 = Ty V 1o, and
T7 —§" Ty, and Ty —§" T1o. By induction, exist Ty, 111, such that F;p H§* Ty <: Ty, and F;
p 5 T <: Ti1, and Tp ——3' Ty, and Ty —§" T1;. By 5.104(TRedU), T, = Ty. By (ST%-Or),
F;p l_gn T3 <: Ty.

e Case (ST;—Trans): Fipt5 Ty <: Ty, and Fip 5 Ty <: 1.

- If § = @. By induction, exists T, such that 77 —3* T3, and F;p F5* T3 <: Tg. By induction,
exists Ty, such that 75 —5" Ty, and Fi;p F9* T3 <: Ty. By (ST;—Trans), Fip 5t T3 <: Ty.

89

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

— Otherwise, 6 = ©. By induction, exists Tg, such that 77 +—§" T, and F;p F5* Ty <: Tg.
By induction, exists 75, such that T} —§" T35, and F;p F§* 15 <: Tz. By (STQ-Trans), F;
p l—gl Ts <: Tg.

e Case (ST;&—SelL): Ty = v1.B(z2), and F Fy vy : {B(r) : T7..Ts}, and Th = [22/7]T7, and 6 = ©. By
inversion of (TR™-Sel), T, = Ts. By 5.102(TRedEx), exists T, such that 77 — T5. By (ST;@—SelL),
F;p }—rél Ts <: Tg.

e Case (ST;E-SGIU) Tl = ’Ul.B(l'Q), and F F! V1 {B(T) : T7..T8}, and TQ = [Z'Q/T]Tg, and 6 = @. By
inversion of (TR™-Sel), T = T3. By 5.102(TRedEXx), exists T4, such that 75 ——§ T4. By (ST;’;—SelU),
F;p }—g T3 <: Ty.

o Cas‘e (STy-Typ): Ty = {B(r) : T7..Ts}, and Ty = {B(r) : Ty..T10}, and F;p -° ; Ty <: Ty, and F;
P l_% Ts <: Thp.

- If § = @©. By inversion of (TR™-Typ), T3 = {B(r) : T11..T12}, where T7 ——% T1;, and
Ts '—>$ T12. By induction, exist T13, T14, such that Tg F—)g T13, and F,p Fg T13 < Tll/
and Tl() '_>$ T14, and F,p |_$ T12 < T14. Choose T4 = {B('I") : T13..T14}. By (TRm-Typ),
T2 P—>I€S T4. By (ST:;-TYP), F;p }—g T3 <: T4.

— Otherwise, 0 = ©. By inversion of (TR™-Typ), Ts = {B(r) : T11..Ti2}, where Ty +—3 T1,,
and T1g —3 T12. By induction, exist T13, T4, such that 77 ——7 T3, and Fip =3 Ty <: T3,
and Ty |—>Ien T4, and F,p Fg Ty <: Tho. Choose Ts = {B(?") : T13..T14}. By (TRm—Typ),
T ’—>g Ts. By (ST;—TYP), Fip Frél Ts <: Tg.

e Case (ST;L—Fld): Ty ={a:T7.Ts},and Ty, = {a : Ty..T1o}, and Fip F° ; Ty <: Ty, and Fip H Ty <:
Tho-

- If § = ®. By inversion of (TR™-FId), T3 = {a : T1,..Th2}, where T —2 T11, and T — 3 T1a.
By induction, exist T13, T14, such that Ty — T3, and F;p F8 T13 <: T11, and Thg —§ T14,
and F,p l_gB] Tio <: Tig. Choose T, = {0, : T13..T14}. By (TRm-Fld), 15 l—>$ Ty. By (ST;I-Fld),
Fipbg T3 <: Ty

— Otherwise, § = ©. By inversion of (TR™-FId), T = {a : T11..T12}, where Ty —3 T11, and
Tio =& Ti2. By induction, exist T3, T14, such that 7 ——& T3, and F;p =3 T11 <: T13, and
Ts '—>g Tha, and F,p "8 Ths <: Tho. Choose T = {a : T13..T14}. By (TRm-Fld), T |—>8 Ts.
By (ST;-Fld), Fip l—Ien Ts <: Tg.

e Case (STS#-Met) T = {m(z : T7, T Tg) : Tg}, and T = {m(z :Tho, 7 T12) : Tll}-

- If § = @. By inversion of (TR™-MetU), T3 = T. Choose T, = T. By (TR™-MetU), T> g Tj.
By (ST -Refl), Fip B8 T <: T}

— Otherwise, § = ©. By inversion of (TR™-MetL), Ts = L. Choose 175 = L. By (TR™-MetL),
T ’—>g Ts. By (ST;—RGH), F,p Fg T5 <: Tg.

e Case (ST;—TypAnd) T1 = {B(’I“)) T7..T8} A {B(’/‘) . Tg..Tlo}, and T2 = {B(?") : T7 vV Tg..Tg A TIO}-

- If § = @, then by inversion of (TR™-And), and by inversion of (TR™-Typ), T3 = {B(r) :
Tll--T12} A {B(T) : T13..T14}, where T '_>r_n5 Th1, where Ts |_>3n T, where Ty ’—>ril5 Tis,
where T1g —§" T14. Choose Ty = {B(r) : T11VT13..T12AT14}. By (TR™-Typ) and (TR™-And),
Ts ’—>$ Ty. By (ST;—TypAnd), F,p Fgﬁl T5 <: Ty.

— Otherwise, § = &, then by inversion of (TR™-Typ), and by inversion of (TR™-And), and by
inversion of (TR™-Or), Ty = {B(r) : T11 VT13..T12 AT14}, where T —™ 5 Th1, where Ty — 3
T12, where Tg ’—)Illé T13, where T10 '—)g‘ T14. Choose T5 = {B(’I’) : T11..T12} A {B(’f’) :
T13..Th4}. By (TR™-And) and (TR™-Or) and (TR™-Typ), 71 —2 T5. By (ST}-TypAnd), F;
pFET5 <: T.

e Case (STy-Eq): ptHTh = T>.

— If § = @. By 5.106(TRedEq), exists T}, such that p - T3 ~ T, and T —§* T4. By (STY#-Eq).
— Otherwise, § = ©. By 5.2(EqSymm), p + T ~ Ti. By 5.106(TRedEq), exists T3, such that
pt Ts = T5,and T1 —3' T5. By 5.2(EqSymm), p - T ~ Tg. By (ST%-Eq).

90

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

Case (STS#-N-Fld) T1 = N, and TQ = {(l : T7T8}

- If 0 = @, then by inversion of (TR™-N), 75 = N. By 5.102(TRedEXx), exist Ty, T1¢, such that
17 I—)g Ty, such that T3 }—>$ Tho- Choose T, = {a : Tg..Tlo}. By (TRm-Fld), 15 }—>$ Ty. By
(ST;-N-Fld), F,p }_gg T3 <:Ty.

— Otherwise, § = &, then by inversion of (TR™-FId), Ts = {a : Ty..Tho}. Choose T5 = L. By
(TRm-N-BOt), A '—)g Ts. By (ST:;-BO‘Z), F,p Fg T5 <: Tg.

Case (ST -N-Met): 1 = N, and T = {m(z : T7,r : Tp) : Tz}

- If = @, then by inversion of (TR™-N), 75 = N. Choose Ty = T. By (TR™-MetU), T, +— Tj.
By (ST;-Top), Fip b T <: Ty

— Otherwise, § = ©, then by inversion of (TR™-MetL), T = L. Choose T5 = L. By (TR™-N-
BOt), T '—>Ié1 Ts. By (STﬁ-Reﬂ), Fip l_g Ts <: T.

Case (ST-N-Typ): 71 = N, and T, = {A(r) : T7..T3}.

- If § = &, then by inversion of (TR™-N), 75 = N. By 5.102(TRedEx), exist Ty, T1¢, such that
T7 —8 Ty, such that Ty — % T1o. Choose Ty = {A(r) : Ty..To}. By (TR™-Typ), To — Tj.
By (ST}-N-Typ), Fip bg T <: T.

— Otherwise, § = ©, then by inversion of (TR™-Typ), Ts = {A(r) : Ty..T10}. Choose T = L. By
(TR™-N-Bot), T1 —3 T5. By (ST;;‘—Bot), Fip F& Ts <: Ts.

Case (ST:#-DISt) T =T N (Tg vV Tg) T = (T7 AN Tg) \Y (T7 A Tg)

— If 6 = @, then by inversion of (TR™-And), and by inversion of (TR™-Or), T5 = T1o AT11 V Ti2,
where T — 1 Ty, where Ty — 5 T11, where Ty ——5* T15. Choose Ty = (Tho AT11) V (Tig A
T12). By (TR™-And) and (TR™-Or), T5 ——§ T4. By (STQ-Dist), Fip g Tz <: Ty.

— Otherwise, § = ©, then by inversion of (TR™-Or), and by inversion of (TR™-And), Ts =
(Ti1 ANThs) V (Tha A Tia), where Ty —3* T1q, where T7 —§* Tio, where Ty —— 5" T'3, where
Tg ,_>gn T14. By 5104(TRedU), T11 = T12. Choose T5 = T11 A (T13 \Y T14). By (TRI“—And) and
(TR™-Or), Tt —3 T5s. By (ST} -Dist), Fip 8 T5 <: Ts.

O

Lemma 5.108 (ToTRed). If F;p 5, Ty <: 1%, then there exist T3, Ty, such that Ty ——7 T, and Ty ——§ Ty,
and Fip B Ty <: T}.

Proof. By 5.102(TRedEXx), exists T3, such that T} ——7 T3. By 5.107(TRedCom), exists T}, such that
Ty —g Ty, and Fip 3 T3 <: Ty. O

Lemma 5.109 (ERedEq). If p - T =~ T5, and Ty ——§ T3, then there exists Ty, such that Ty ——§ Ty, and
P - T3 =~ T4.

Idea. E reduction preserves equivalence v
Proof. Induction on p - T =~ T5:

* Case (TE-Refl): Ty = T5. Choose T = T3. By (TE-Refl).
e Case (TE-Sel): T1 = v1.A(z2), and T = vy.A(z2), where p - v; &~ ve. By inversion:

— Case (TER-Sel): T3 = T. Choose T = T5. By (TER-Sel).
— Case (TER-SelU): T5 = L. Choose T, = L. By (TER-SelU) and (TE-Refl).
— Case (TER-SelL): T3 = T. Choose Ty = T. By (TER-SelU) and (TE-Refl).

® Case (TE-And): Ty =15 AT, and T = T7 A Tg, and p - T5 = T7, and p - Ts = T3. By inversion of
(TER—And), exist Ty, Tho, such that T3 =Ty \NTio, and Ts l—)g Ty, and T ’—>g Tho- By il’ldUCtiOH,
exist T11, T12, such that Tg ’—>§ T11, and T10 '—>§ T12, and P F T7 ~ T11, and P F Tg ~ Tlg. Choose
T4 = T11 A T12. By (TE—And) and (TER—And)

91

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

® Case (TE-Or): 11 =15 V15, and T5 =17 vV 1y, and p - 15 = 1%, and p F Ts = T3. By inversion of
(TER-Or), exist Ty, T19, such that T3 = Ty V Tg, and 15 ——§ Ty, and Ts ——§ T1o. By induction,
exist Ty, Th2, such that Ty ——§ T'1, and Thg —§ T2, and p = T = T1q, and p F T = T12. Choose
T4 = T11 V T12. By (TE—OI’) and (TER—OI’)

e Case (TE-Rec): T1 = p(s : T5), and Tz = p(s : T7), and p - Ts ~ Tr. By inversion of (TER-Rec),
T5 = T1. Choose T, = T5. By (TER-Rec).

e Case (TE-Typ): T1 = {B(r) : T5.Ts}, and Tp, = {B(r) : Tr.. T3}, and p - T5 = T, and p - T =~ T.
By inversion of (TER-Typ), exist Ty, Tho, such that T3 = {B(r) : Ty..Tio}, and T5 —°; Ty,
and Ts —§ Tho. By induction, exist T, Th9, such that Ty —° 5 Ty1, and Ti9 —§ T2, and
pbFT7; =Ty, and p - Ty ~ T12. Choose Ty = {B(r) : T11..T12}. By (TE-Typ) and (TER-Typ).

e Case (TE-FId): Ty = {a : T5.Ts}, and Ts = {a : T7..T3},and p - T5 =~ T, and p - T ~ T5. By
inversion of (TER-FId), exist Ty, Ti¢, such that T3 = {a : Ty..Th0}, and T5 +—° 5 Ty, and T —§
Tio. By induction, exist T'1, T2, such that Ty ——° ; Th1, and T19 —§ T2, and p = T7 = T11, and
P [Tg =~ Tlg. Choose T4 = {a : Tll..Tlg}. By (TE-Fld) and (TER-Fld)

e Case (TE-Met): T = {m(z : T7,7" : T‘g) : Tg}, and T = {m(z : Tlo,T' : T12) : Tn}. Ifo = D, then
by inversion of (TER-MetU), 75 = T. Choose Ty = T. By (TER-MetU) and (TE-Refl). Otherwise,
0 = ©, then by inversion of (TER-MetL), 75 = L. Choose Ty = L. By (TER-MetL) and (TE-Refl).

O

92

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

5.2.8 Context shortening lemmata

This section states properties about typing relations that can be derived in a shorter context. They are
required for proving preservation of the mreach relation.

Lemma 5.110 (PrecCut). IfF =Fy,v:T1,Fo,and F v : T, then Fy,v : Th by v Th.

Idea. Precise typing of a variable is not affected by later variables. v
Proof idea. Straightforward induction on precise typing. v
Proof. Induction on precise typing:

e Case (VT\-Var): By (VTi-Var), with Fy,v : T3.
® Case (VTi-Rec): By induction and (VT)-Rec).
¢ Case (VTi-Andl): By induction and (VT:-And1).
¢ Case (VTi-And2): By induction and (VT:-And2).

O
Lemma 5.111 (PrecFV). IfF =Fy,v: T1,Fy, and F by v : Ty, then fv T, N dom Fy = (.
Idea. Precise type of a variable only contains variables from the context. v
Proof idea. Straightforward induction on precise typing. v
Proof. Induction on precise typing:
e Case (VTi-Var): By inertness of F.
¢ Case (VTi-Rec): By induction. By v ¢ dom F5 and (VTi-Rec).
® Case (VTi-And1): By induction and (VT:-And1).
¢ Case (VIi-And2): By induction and (VT:-And2).
O
Lemma 5.112 (NoselFV). Ifv ¢ fv Ty, then T1 nosel v.
Idea. Non-occurring variables are nosel. v
Proof idea. Straightforward induction on type syntax. v

Proof. e If T} = T. Directly by (TN-Top).
e If Ty = L. Directly by (TN-Bot).
¢ If Ty = N. Directly by (TN-N).
o If T\ = u(s : Ty). Directly by (TN-Rec).
o If Ty = x1.B(x2). Because v ¢ fv T1, 1 # v, and x5 # v. By (TN-Sel).
o If Tt =Ty A T5. By induction, T4 nosel v, and T5 nosel v. By (TN-And).
e If T4 =Ty V T5. By induction, T4 nosel v, and T5 nosel v. By (TN-Or).
e If Ty = {a : T4..T5}. By induction, T} nosel v, and T5 nosel v. By (TN-Fld).
o If Ty = {B(r) : T4..T5 }. By induction, T, nosel v, and T5 nosel v. By (TN-Typ).
o If Th = {m(z : Ty,r : Ts) : Ts}. By induction, Ty nosel v, and T nosel v, and T nosel v. By

(TN-Met).
O
Lemma 5.113 (NoselSub). If T} nosel v, and © # v, then [z/r|T; nosel v.
Idea. Substitution preserves nosel. v
Proof idea. Straightforward induction on type syntax. v

Proof. Induction on 7 nosel v:

93

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

¢ Case (TN-Top): Directly by (TN-Top).

¢ Case (TN-Bot): Directly by (TN-Bot).

¢ Case (TN-N): Directly by (TN-N).

e Case (IN-And): T1 = T, A T3, where T nosel v, where T3 nosel v. By induction, [z/r]T> nosel v,
[z/r]T5 nosel v. By (TX-And) and (TN-And).

e Case (TN-Or): T1 = Ty V T3, where T5 nosel v, where T5 nosel v. By induction, [z/r]T; nosel v,
[z/r]T5 nosel v. By (TX-Or) and (TN-Or).

e Case (ITN-Sel): 71 = z1.B(x2), where x1 # v, and z3 # v. By (VX-VarN), [z/r]x1 # v, and
[z/r]z2 # v. By (TX-Sel) and (TN-Sel).

¢ Case (TN-Rec): Directly by (TN-Rec).

e Case (IN-Typ): T1 = {B(r2) : T>..T3}, where T; nosel v, where T3 nosel v. By induction,
[z/r]T> nosel v, [x/r]T3 nosel v. By (TX-Typ) and (TN-Typ).

e Case (TN-FId): T1 = {a : T»..T5}, where T, nosel v, where T3 nosel v. By induction, [z/r]T2 nosel v,
[z/r]T5 nosel v. By (TX-FId) and (TN-Fld).

e Case (TN-Met): T} = {m(z : Ty,r : Ty) : T3}, where T> nosel v, where T3 nosel v, where
Ty nosel v. By induction, [x/r|T: nosel v, [z/r]T5 nosel v, [x/r]Ty nosel v. By (TX-Met) and
(TN-Met).

O

Lemma 5.114 (TRedCut). If T} nosel ys, and Ty ——3 Ty, then Fi;p = T <: Ty, and Ty nosel y,, and
TQ >—>(é TQ. Ile nosel Y2, and T1 l—)g TQ, then Fl,p = T2 <: Tl, and T2 nosel Y2, and Tg '—>Ce Tg.

Proof. Induction on T ——§" T5:

* Case (TR™-Top): T4 = T> = T. By (ST-Refl), F1;p - T <: T, and Fy;p - 1> <: T;. By (TER-Top),
T2 P—)g TQ.

e Case (TR™-Bot): T} = T5 = L. By (ST-Refl), F1;p - T1 <: Ty, and Fy;p - Ty <: Ty. By (TER-Bot),
TQ '—>§ TQ.

e Case (TR™-N): 71 =T5 = N, and 6 = &. By (ST-Refl), F1;p - T1 <: Tb. By (TER-N), T, —§ To.

e Case (TRm—Sel): T =15 = Jfl.B(Zg). By (ST—Reﬂ), Fl,p F T, <: Ty, and Fl,p F Ty < Ty By
(TER—SGI), T2 '—>§ TQ.

e Case (TR™-Rec): Ty = Ty = pu(s : T3). By (ST-Refl), F1;p F T1 <: Ty, and Fy;p - Ty <: Ty. By
(TER—RQC), TQ l—)g TQ.

® Case (TR™-N-Bot): 71 = N,and 7> = L, and = &. By (STx-Bot), F1;p - T» <: T1. By (TN-Bot),
T, nosel y3. By (TR™-Bot), T, ——¢ Ts.

¢ Case (TIR™-And): 71 = T35 ATy, and 15 = T5 A Tg, and T3 —5* T5, and Ty ——§" Ts. By inversion
of (TN-And), T35 nosel y5, and T nosel y».

- If 6 = @, then by induction, Fy;p F T3 <: T5, and Fy;p F Ty <: T, and T5 nosel y,, and
Tt nosel Y2, and T '_>§ Ts, and Ts ’—)g Ts. By 518(AndSub), Fl;p FTy <:Ts.

— Otherwise, 6 = ©. By induction, Fy;p - 15 <: T3, and Fy;p F Ts <: Ty, and T5 nosel y,, and
Tt nosel Y2, and T5 '—>§ Ts, and Ts ’—)g Ts. By 518(AndSub), Fl;p Ty <:Ty.

By (TN-And), 75 nosel y2. By (TER-And), T5 ——§ T5.
® Case (TR™-Or): Ty = T3 V Ty, and Ty = T5 V T, and T3 —F T5, and Ty —3* Tg. By inversion of
(TN-Or), T3 nosel y,, and Ty nosel y,.
- If 6 = @, then by induction, Fy;p F T35 <: T5, and Fy;p F Ty <: T, and T5 nosel y,, and
Ts nosel yo, and 15 —§ T5, and Ts —§ Ts. By 5.19(0OrSub), Fi;p - T3 <: 1.
— Otherwise, 6 = ©. By induction, Fy;p - T5 <: T3, and Fy;p F T <: Ty, and T5 nosel y,, and
Ts nosel yo, and T5 —§ T5, and Ts —§ Ts. By 5.19(0OrSub), Fi;p - To <: 1.

By (ITN-Or), T nosel y,. By (TER-Or), 15 —§ To.

94

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

e Case (TRm-Fld) Tl = {(1 : T3..T4}, and T2 = {(1 : T5..T6}, and T3 F—)T6 T5, and T4 l—)gn T@. By
inversion of (TN-Fld), 73 nosel y5, and T4 nosel ..

- If 6 = @, then by induction, Fy;p - T5 <: T3, and Fy;p F Ty <: T, and T5 nosel y,, and
Ts nosel yo, and T5 —° 5 T5, and T —§ T. By (ST-FId), Fi;p F T <: To.

— Otherwise, § = . By induction, Fy;p - T3 <: T5, and F1;p - Ty <: Ty, and 15 nosel y,, and
Ts nosel yy, and T5 —° 5 T, and T —§ Ts. By (ST-FId), F1;0 = T <: Ty

By (TN-Fld), 7> nosel ys. By (TER-FId), T5 ——§ T5.
e Case (TR™-Typ): Ty = {B(r) : T5..T4},and Ty = {B(r) : T5..Ts}, and T3 —™; T5,and Ty — 3" Tp.
By inversion of (TN-Typ), 15 nosel y», and T4 nosel ys,.
- If 6 = @, then by induction, Fy;p F T5 <: T3, and Fy;p F Ty <: T, and T5 nosel yo, and
Ts nosel yy, and Ts —° 5 Ts, and Ts —§ T. By (ST-Typ), Fi;p = T <: To.
— Otherwise, 6 = ©. By induction, Fy;p - T3 <: T5, and Fy;p F T <: Ty, and T5 nosel y,, and
Tt nosel Y2, and T '—)6_6 Ts, and Ts }—>§ Ts. By (ST-Typ), Fl,p Ty <:Ty.
By (TN-Typ), 15 nosel y,. By (TER-Typ), 15 ——§ T5.
* Case (TR™-MetU): T, = T, and § = @. By (ST-Top), F1;p - 11 <: T>. By (TN-Top), T2 nosel y2. By
(TER-TOP), T2 '—>§ TQ.
* Case (TR™-MetL): 75 = 1, and § = ©. By (ST-Bot), Fy;p - 15> <: T1. By (TN-Bot), 75 nosel y,. By
(TER-BOt), TQ ’—>§ TQ.
O

Lemma 5.115 (TSubCut). If T1 ——¢, T3, and T3 nosel yy, and Fo = F1,y, : T, and Fo;p 3 Ty <: T, and
yo ¢ fv Fy, then there exists Ty, such that F1;p = T3 <: Ty, and T ——¢, Ty, and Ty nosel yy. If To ——¢, T,
and Tg nosel yy, and ¥y = Fy1,yo : T, and y & fv Fy, and Fo;p BE T <: T>, then there exists Ts, such that
Fup b Ts <: Ty, and Ty —§, Ts, and Th nosel ys.

Idea. Method-free subtyping does not use variables which are not in the type. v
Proof idea. Induction on method-free subtyping. v
Proof. Induction on Fo;p F* T <: T5:

* Case (ST-Top): Io = T.

- If 6 = @, then choose T, = T. By (TN-Top), T; nosel y,. By (TER-Top), 7> g Ty. By
(ST-TOp), Fl;p Ty <: Ty

— Otherwise, 0 = ©. By inversion of (TER-Top), Tg = T. By 5.103(ERedEXx), exists T3, such that
Ty ¢ Ts, and T5 nosel yo. By (ST-Top), F1;p = T5 <: Tg.

e Case (ST;I-BOt) T =41, Fl,p F1 < Ts.

- If § = ©, then choose 75 = L. By (TN-Bot), 75 nosel y,. By (TER-Bot), T ——¢§ T5. By
(ST-Bot), Fy;p F T <: Tg.

— Otherwise, 6 = @. By inversion of (TER-Bot), 75 = L. By 5.103(ERedEXx), exists T4, such that
Ty —§ Ty, and Ty nosel y. By (ST-Bot), F1;p = T3 <: Tj.

¢ Case (ST -Refl): 77 = Ts.

- If § = @. Choose Ty = T3. By (ST-Refl), F1;p - T35 <: Ty. Trivially, T, nosel y,.
— Otherwise, 0 = ©. Choose T5 = Tg. By (ST-Refl), F1;p - T5 <: Tg. Trivially, 75 nosel ys.

e Case (ST;;;I-N—RGC)Z Ty =N,and Ts = u(s : Ty).

- If § = @, then by inversion of (TER-N), 75 = N. Choose T = T5. By (TER-Rec), T5 +——§, Tj.
By (ST-N-Rec), Fy;p - T3 <: T);. By (TN-Rec), T nosel y,.

— Otherwise, 6 = ©, then by inversion of (TER-Rec), Ts = u(s : Tr7). Choose T5 = L. By
(TER-N-Bot), T1 =3 T5. By (ST-Bot), F;p =& T5 <: Ts. By (TN-Bot), T nosel ys.

95

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

e Case (ST%I-N-M) T =NA {M(T’Q) : J_J_}, and T = 1.

- If § = @, then by inversion of (TER-And), and by inversion of (TER-N) and 5.101(ERedMut),
T3 = T;. Choose Ty = T,. By (TER-Bot), To ——§ Tj4. By (SI-N-M), Fy;p = T3 <: Ty. By
(TN-Bot), T4 nosel ys.

— Otherwise, § = &, then by inversion of (TER-Bot), Ts = T>. Choose T5 = L A {M(rg) : L..L}.
By (TER-Bot) and (TER-Typ) and (TER-N-Bot) and (TER-And), Ty ——& T5. By (ST-N-M), Fy;
pH NA{M(r) : L..1} <: Ts. By (ST-Bot) and (ST-Refl) and 5.18(AndSub), F1;p F T <:
NA{M(ro) : L..L}. By (ST-Trans), F1;p F T5 <: Tp.

e Case (ST‘;;—Andl): T =T NT7.

- If 6 = @. By inversion of (TER-And), T5 = Tz A Ty, such that T, —§ Ty, and T7 —§ Ty. By
inversion of (TN-And), 75 nosel y,. Choose Ty = Tg. By (ST-And1), Fi;p - T <: Ty.

— Otherwise, § = ©. By 5.103(ERedEx), exists Tg, such that 77 —§ T3, and T3 nosel ys.
Choose T5 = T6 A Tg. By (TN-AHd), T5 nosel Y. By (TER—And), T1 ’—>§ T5. By (ST-Al’Idl),
Fisp FTs < Tg.

e Case (ST;I—AndZ): Ty =T7 NTs.

- If § = @. By inversion of (TER-And), T3 = Ty A T3, such that T5 —§ T3, and T ——§ Ty. By
inversion of (TN-And), T5 nosel y;. Choose Ty = Tg. By (ST-And2), Fy;p F T3 <: Ty.

— Otherwise, § = ©. By 5.103(ERedEx), exists Tg, such that 77 ——§ Ty, and T35 nosel ys.
Choose T5 = T3 A Ts. By (TN-And), T5 nosel y,. By (TER-And), 71 —§ T5. By (ST-And2),
Fip b T5 < Tg.

e Case (ST}-And): Tb =Ty ATy, and Fip b5 Ty <: Ty, and Fip H§' Th <: 1.

- If § = @. By induction, exists Ty, such that 77 ——§ Ty, and Fy;p - T3 <: Ty, and Ty nosel ys.
By induction, exists T, such that Ty ——§ 11, and Fi;p = T3 <: Tig, and Tio nosel ys.
Choose T, = Ty N Tho. By (TER—And), 15 '_>§ Ty. By (ST—And), Fl,p F Ty < Ty By
(TN-And), T, nosel ys.

— Otherwise, 6 = ©. By inversion of (TER-And), exist Ty, T, such that Ty = Ty A T19, and
T7 —§ Ty, and Ty —§ T1o. By inversion of (TN-And), Ty nosel y», and T nosel y,. By
induction, exist 171, T12, such that Fl,p T < Ty, and Fl,p F 1o <: Tho, and T '—)g 111,
and 77 ——§ Ti, and T1; nosel y,, and 112 nosel y». By 5.105(ERedCom), exists 75, such
that 75 nosel yo, and Ty —§ T5, and Fi;p - T5 <: Ty, and Fi;p F T5 <: Tho. By (ST-Trans),
Fi;p FTs <: Ty, and Fisp F Ty <: Tio. By (ST—And), FiphbTs < Tg.

e Case (ST;Q—Orl): Ty =T,V Ty

- If § = ©. By inversion of (TER-Or), Ts = Ts V Ty, such that T} —§ Ty, and Ty —§ Ty. By
inversion of (TN-Or), T5 nosel y,. Choose 15 = Tg. By (ST-Orl), Fi;p - T <: T.

— Otherwise, § = @®. By 5.103(ERedEXx), exists T3, such that 77 ——§ T3, and T3 nosel ys.
Choose Ty = 13 V Tg. By (TN-Or), T nosel y,. By (TER-Or), 175 ——§ Ty. By (ST-Orl), Fy;
pHTs < Ts.

e Case (ST;};—OrZ): T =T7 VvV Ty.

- If 6 = ©. By inversion of (TER-Or), Ts = Ty V Ty, such that T} +—§ Ty, and T7 —§ Ty. By
inversion of (TN-Or), Ts nosel y,. Choose T5 = Tg. By (ST-Or2), Fy;p - T5 <: T.

— Otherwise, § = @®. By 5.103(ERedEx), exists T3, such that 77 —§ T3, and T3 nosel ys.
Choose T4 = Tg vV Tg. By (TN-OI‘), T4 nosel Y2. By (TER—OI'), T2 l—)g T4. By (ST—OI‘Z), Fl;
P FT5 < Ts.

e Case (ST‘;;—Or): Ty =Ty VvIg,and Fip F9 T7 <: Ty, and Fip B3 Tz <: 1.

- If 6 = ©. By induction, exists Ty, such that 77 ——§ Ty, and F1;p F Ty <: T, and Ty nosel ys.
By induction, exists T, such that Ty —§ Tio, and Fy;p = Tho <: Tg, and Tio9 nosel ys.
Choose T5 = Ty V Tho. By (TER-Or), 71 ——§ Ts. By (ST-Or), Fy;p = T5 <: Ts. By (TN-Or),
T nosel ys.

96

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

— Otherwise, § = @. By inversion of (TER-Or), exist Ty, Th9, such that 73 = Ty V T1o, and
T7 —$ Ty, and Ty —§ Ti9. By inversion of (TN-Or), Ty nosel y,, and Ty nosel y,. By
induction, exist 111, Th2, such that Fy;p = Ty <: Ty, and Fy;p F T <: T, and Ty —§ Th4,
and T, ——§ Tio, and T%; nosel y,, and 712 nosel yo. By 5.105(ERedCom), exists T4, such
that T4 nosel y,, and 75 —§ Ty, and Fy;p - 111 <: Ty, and Fy;p - T2 <: Ty. By (ST-Trans),
Fi;pb Ty <: Ty, and Fi;p = Thg <: Ty. By (ST-Or), Fy;0 = T3 <: Ty.

e Case (STg—Trans): Fo;p F* Ty <: Ty, and Fo;p F* T7 <: 1. If § = @, then by induction, exists
Ts, such that Fy;p F T3 <: Ty, and T7 ——§ T3, and T nosel y». By induction, exists T}, such that
Fl;p Ty <: Ty, and T5 }—>§ T4, and T, nosel Y2. By (ST—Trans), Fl,p Ty < Ty If6 =5,
then by induction, exists Tk, such that Fi;p = Ty <: T, and T7 ——§ T3, and T3 nosel y,. By
induction, exists T3, such that Fi;p - T5 <: Ty, and Ty +—§ T5, and T5 nosel y,. By (ST-Trans),
FipbTs < Tg.

* Case (ST-Sell): 6 = ©. Fa by v : {B(r) : T7..13}, and T = v.B(w2), and [z2/r]T7 —& T1.
By inversion of (TN-Sel), v # y2, and z2 # yo. By 5.110(PrecCut), F1 F v : {B(r) : Tr..T5}. By
5.78(VTEgB), F1;p - v : {B(r) : T7..Ts}. By inversion:

— Case (TER-Sel): T, = Ts. By (ST-SellL), Fi;p b [x2/r]T7 <: Ts. Choose T5 = Ti. By
5.111(PrecFV), y2 ¢ fv T7. By 5.112(NoselFV), T7 nosel y2. By 5.113(NoselSub), [z2/7|T7 nosel y..
By 5.114(TRedCut), F1;p - T5 <: [x2/7]T7, and Ty —§ T5, and T5 nosel yo. By (ST-Trans),
FipbFT5 < Tg.

— Case (TER-SelL): Ts = T. By 5.103(ERedEx), exists T}, such that T1 ——¢, T5, and T5 nosel ys.

By (ST-Top), F1;p - T5 <: T¢.

e Case (ST;#“—SelU): d =@ Fy v {B(r): T7. T3}, and T} = v.B(x2), and [z2/r]Ty — T.
By inversion of (TN-Sel), v # y2, and z2 # ys. By 5.110(PrecCut), F1 k1 v : {B(r) : Tr..Ts}. By
5.78(VTEqB), F1;p - v : {B(r) : T5..T3}. By inversion:

— Case (TER-Sel): T3 = T5. By (ST-SelU), Fi;p = Ty <: [z2/r]Ts. Choose T, = T,. By
5.111(PrecFV), yo ¢ fv Tg. By 5.112(NoselFV), Tg nosel y. By 5.113(NoselSub), [z2/7]Ts nosel ys.
By 5.114(TRedCut), F1;p & [z2/r]Ts <: Ty, and T —§ T4, and T, nosel yo. By (ST-Trans),
Fl;p F Ty <:Ty.

— Case (TER-SelU): T3 = L. By 5.103(ERedEx), exists T}, such that T, ——¢, T}y, and T nosel ys.

By (ST-Bot), Fip F, T <: F.

e Case (ST;;-TYP) T = {B(’I‘) : T7..T8}, and T, = {B(’I‘) : Tg..Tlo}, and F,p Frfé Ty <: 17, and F;
P l_gn Ts <: Tho.

- If 6 = @®. By inversion of (TER-Typ), T3 = {B(r) : T11..T12}, where T7 +—¢ Ti1, and
Ty ——g Tio. By inversion of (TN-Typ), T1: nosel y3, and T2 nosel y,. By induction,
exist T3, T4, such that Ty }_>ee Tis, and Fl,p F Ty <: 114, and Tio ’—)?B T4, and Fl;
P F Ty <: Ti4, and Ti3 nosel Y2, and T4 nosel Y2. Choose T, = {B(T) : T13..T14}. By
(TER-Typ), Ty —§, T4. By (ST-Typ), F1;p = T3 <: Ty. By (TN-Typ), T4 nosel ys.

— Otherwise, 6 = ©. By inversion of (TER-Typ), Ts = {B(r) : T11..T12}, where Ty —¢, T1,,
and Ty9 —¢ Ti2. By inversion of (TN-Typ), 71, nosel y,, and 71, nosel y;. By induction,
exist T3, Th4, such that T l—)gé T3, and Fl;p H T <: Tis, and Ty I—>Ce T4, and Fl;
P F T14 <: T12, and T13 nosel Y2, and T14 nosel Ya. Choose T5 = {B(T) : T13..T14}. By
(TER-Typ), T} ¢ T5. By (ST-Typ), F1;p = T5 <: Ts. By (TN-Typ), T5 nosel y,.

* Case (ST-FId): Th = {a : T7.. T3}, and Ty = {a : Ty..T1o}, and F;p F5 Ty <: 17, and Fip 5t T <:
Tho-

- If § = ®. By inversion of (TER-FId), T3 = {a : T1;..T12}, where T +—¢ T11, and Ty ——¢, Tio.
By inversion of (TN-FId), Ti; nosel y», and T%2 nosel y». By induction, exist 713, T14, such
that Ty F—)e@ T3, and th F Tz <: Tiq, and Tho l—)gB T4, and Fl,p F Tio <: Thg, and
T13 nosel y;, and T14 nosel yo. Choose T = {a : Th3..T14}. By (TER-FId), 5 —¢, T4. By
(ST-F1d), Fy;p - T5 <: Ty. By (TN-Fld), T nosel y,.

97

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

— Otherwise, 0 = ©. By inversion of (TER-FId), Ts = {a : T11..T12}, where Ty +—§ T11, and

Tyo +——g Th2. By inversion of (TN-Fld), T7; nosel y3, and Ti2 nosel y,. By induction,
exist T3, Ti4, such that Ty ——§ Ti3, and Fi5p = 11y <: T13, and Tz ——¢ Thg, and Fy;
p F Ty <: Ty2, and T13 nosel yo, and T14 nosel y,. Choose Ts = {a : T13..T14}. By (TER-FId),
T ’—>Ce Ts. By (ST—Fld), Fl,p - Ts <: Tg. By (TN-Fld), Ts nosel Y2.

e Case (STr;-TypAnd) T] = {B(T) : T7..T8} VAN {B(T) : Tg..Tlo}, and T2 = {B(?") : T7 \Y Tg..Tg AN TIO}-

- If § = @, then by inversion of (TER-And), and by inversion of (TER-Typ), T5 = {B(r) :

Ti1. T} A{B(r) : Tis..Tia}, where T7 —© 5 T11, where Ty —§ T2, where Ty —° 5 T3,
where T1o —§ T14. By inversion of (TN-And), and by inversion of (TN-Typ), Vi € 11, ..., 14:
T; nosel y,. Choose Ty = {B(r) : T11 V T13..T12 A T14}. By (TN-And) and (TN-Or) and (TN-
Typ), T4 nosel y,. By (ST-TypAnd), Fi;p F T3 <: Ty. By (TER-And) and (TER-Or) and
(TER-Typ), T2 l—)% T4.

Otherwise, § = ©, then by inversion of (TER-Typ), and by inversion of (TER-And), and
by inversion of (TER-Or), Tg = {B(r) : Ti1 V Ti3..Th2 A Tha}, where T; —° 5 T11, where
Ts —§ T2, where Ty —° 5 T3, where Ty —§ Ti4. By inversion of (TN-Typ), and by
inversion of (TN-And), and by inversion of (TN-Or), Vi € 11,...,14:T; nosel y,. Choose
T5 = {B(T) : T11..T12} A\ {B(T) : T13..T14}. By (TN—And) and (TN-Typ), T5 nosel Y. By
(ST-TypAnd), F1;p - T5 <: Tg. By (TER-And) and (TER-Typ), Ty ¢ Ts.

Case (ST;-Eq): p =T = T>.

- If 6 = &@. By 5.109(ERedEq), exists Ty, such that p - T3 ~ Ty, and T, —§ T4. By (ST-Eq).
— Otherwise, 0 = ©. By 5.2(EqSymm), p - 1> =~ T;. By 5.109(ERedEq), exists 75, such that

pF1Ts =15, and T —§ T5. By 5.2(EqSymm), p - T5 = Tg. By (ST-Eq).

Case (ST%I-N—Fld) T1 = N, and TQ = {a : T7T8}

- If § = @, then by inversion of (TER-N), 75 = N. By 5.103(ERedEXx), exists Ty, such that

Tr; +——¢ Ty, and Ty nosel yo. By 5.103(ERedEXx), exists T1g, such that Ty ——§ Tio, and
T10 nosel Ya. Choose T4 = {a : Tg..Tlo}. By (TER—Fld), TQ }—)ZB T4. By (ST—N-Fld), Fl;
p T3 <: Ty. By (IN-Fld), T, nosel ys,.

— Otherwise, § = &, then by inversion of (TER-FId), T = {a : Ty..T19}. Choose T; = L. By

(TER-N-Bot), T} —™ T5. By (ST-Bot), Fy;p - Ts <: Ti. By (TN-Bot), T nosel y,.

Case (ST;I-N—TYP) T1 = N, and TQ = {A(T’) : T7T8}

- If § = &, then by inversion of (TER-N), 75 = N. By 5.103(ERedEXx), exists Ty, such that

T7; +——¢ Ty, and Ty nosel yo. By 5.103(ERedEXx), exists T1g, such that Ty ——§ Tio, and
Ty nosel y,. Choose Ty = {A(r) : Ty..T10}. By (TER-Typ), T +——§, Ty. By (ST-N-Typ), F1;
p T35 <: Ty. By (IN-Typ), T4 nosel ys.

— Otherwise, § = &, then by inversion of (TER-Typ), Ts = {A(r) : Ty..T10}. Choose T5 = L. By

(TER-N-Bot), T} —™ T5. By (ST-Bot), Fy;p - T5 <: Ti. By (TN-Bot), T nosel y,.

Case (STI#-DISIE) T1 = T7 A (Tg \% Tg) T2 = (T7 A Tg) V (T7 N Tg)

- If § = @, then by inversion of (TER-And), and by inversion of (TER-Or), T3 = T19A(T11VT12),

where T7 —§ To, where Ty ——§ 111, where Ty —§ Ti2. By inversion of (TN-And), and
by inversion of (TN-Or), Vi € 10, ceey 12: T‘l nosel Ya. Choose T4 = (TlO A Tll) \Y (Tlo AN Tlg).
By (TN-And) and (TN-Or), T4 nosel y,. By (ST-Dist), F1;p F T3 <: Ty. By (TER-And) and
(TER-Or), Ty ——¢, Ty.

Otherwise, § = &, then by inversion of (TER-Or), and by inversion of (TER-And), Ts = (171 A
Ti3) V (Ti2 A Tha), where T; —§ Ty, where T; ——§ Tio, where Ty ——§ T3, where Ty —§
T14. By inversion of (TN-Or), and by inversion of (TN-And), Vi € 11,...,14: T; nosel y,. By
5.105(ERedCom), exists T, such that T nosel yo, and T7 —§ Tho, and Fq;p = To <: Th1,
and Fl;p = T10 < T12. Choose T5 = T10 A (Tlg \/T14). By (TN—OI') and (TN—And), T5 nosel Ya2.
By (ST—TypAnd), Fl;p F T5 < (Tl() A T13) V (T10 AN T14). By 518(AndSub) and 519(OrSub)
and (ST-Trans), Fy;p = Ts <: Ts. By (TER-Or) and (TER-And), T ——¢, T5.

98

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

Lemma 5.116 (FromSSub). If F;p 5 T1 <: Ty, then Fip =T <: Tb.

Proof. Induction on F;p -5 T <: Ta:

Case (ST-Top): T> = T. Directly by (ST-Top).

Case (ST%-Bot): Ty = L. Directly by (ST-Bot).

Case (ST%-Refl): Ty = T5. Directly by (ST-Refl).

Case (STj#—Andl): Ty =T5 ANTy. By (ST-Andl), Fip =Ty AT <: To.
Case (ST;—AndZ): Ty =Ty NT. By (ST-And2), Fip = Ty AT <: To.

Case (ST;E-And): T =Ty ANTs, and Fip H5 Ty <: Ty, and F;p H; 17 <: T5. By induction on
subtyping, F,p Ty < Ty, F,p Ty <:Ts. By (ST—And), F,p Ty <: Ty NTs.

Case (STS#-OI‘l) To =TV Ty By (ST-OI‘l), F,p FTy <11V Ty
Case (ST;&-OI‘Z) Ty =Ty VT By (ST—Or2), F,p Ty <: Ty VT,

Case (ST;E—Or): Ty =TyVTs,and Fip 5 Ty <: 15, and F;p 5 Ts <: T5. By induction on subtyping,
F;p Ty <: Ty, F,p 15 <:Ts. By (ST—OI'), F,p T,V Ty <:Ts.

Case (ST;—Trans): Fip 5Ty <: Ty, and Fip 5§ Ty <: Ts.

By induction on subtyping, F;p - T <: Ty, and F;p = Ty <: T5. By (ST-Trans), F;p = T <: T5.
Case (ST%-SelL): By (ST4-SelL) and 5.78(VTEqB).

Case (ST, -SelU): By (STx-SelU) and 5.78(VTEqgB).

Case (ST;-TypAnd) T1 = {B(’I‘) : T4..T5} A\ {B(T) : TG..T7}, and T2 = {B(T) : T4 V T6..T5 A T7}
By (ST-TypAnd).

Case (STS#-DISt) T1 = T4 A (T5 \Y Tg) T2 = (T4 A T5) \Y (T4 A Tﬁ) By (ST—DISt)

Case (ST3-Typ): T = {B(r) : T4..15}, and 1> = {B(r) : Ts..17}, where Fip - ; Ts <: Ty, and F;
p 5Ty < Tr.

By induction on subtyping, F;p - Ts <: Ty, and F;p - T5 <: T7. By (ST-Typ).

Case (ST;E—Fld): T, = {a: Ty.T5}, and To = {a : Ts..T7}, where F;p F° 5 Ts <: Ty, and F;
p=5 T <:T7.

By induction on subtyping, F;p - Ty <: Ty, and F;p - T5 <: T7. By (ST-F1d).

Case (STy-Met): T1 = {m(z : Ty,r : Tg) : T5}, and To = {m(z : Tr,7 : Ty) : Ts}, where F;
phae Ty < Tyand F,z : Typ Ty <: T, and F, 2 : Ty, r : To;p = Ts <: T.

By 5.78(VIEqB), F;p - 17 <: Ty. By (ST-Met).

Case (ST%-Eq): By (ST-Eq).

Case (ST3,-N-M): 71 = N A {M(ro) : L.. 1}, and T = L. By (ST-N-M).

Case (ST%-N-Rec): T3 = N, and T3 = u(s : Ty). By (ST-N-Rec).

Case (ST;-N-Fld): T, =N,and Ty = {a : Ts.. 17 }. By (ST-N-F1d).

Case (ST;—N—Met): T =N,and Ty = {m(z : Ty, 7 : Ty) : Tg}. By (ST-N-Met).
Case (ST3-N-Typ): 71 = N, and 75 = {B(r) : T..T7}. By (ST-N-Typ).

O

Lemma 5.117 (StnMRef). If vy # wq, and Fy = F1,wy : T, and p2 = p1,ws — ya, and Fa ~ po, and Fy;
P2 F (N {M(T’Q) : J_J_}, then Fl;pl H vyt {M(T()) : J_J_}

Idea. Adding a new reference to the context and environment cannot cause existing references to be-
come mutable. v

Proof idea. Substitute y, for ws. v

Proof. Because references in ps are unique, we ¢ p1. By 5.32(SubW), F1;p01 F [y2/we]v1 : [y2/w2]{M(ro) :
L..1}. By (VX-VarN), [y2/ws]vi = v1. By (TX-Bot) and (TX-Typ), [y2/w2]{M(r¢) : L..L} = {M(ro) :
1.1} O

99

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

Lemma 5.118 (StnSubBot). IfFy =F1,ys : T, and Fa;p 4 Ty <: L, and Ty nosel yo, then Fi;p Ty <: L.

Proof. By 5.99(ToSRed), exist T5, Ts, such that Fy - Ty 3, T5, and Fo = L %, Tg, and Fo3p 5, T <:
Ts. By 5.93(SRedInv), T = L. By 5.92(SRedSub), Fa;p 5 Ty <: Ts. By (ST%,-Trans), Fo;p b5 Ty <: L.
By 5.108(ToTRed), exist T7, Ty, such that T, +——§ T7, and L ~—§ Tk, and Fo;p Fg Tr <: Tz. By
inversion of (TR™-Bot), Tg = L. By 5.114(TRedCut), F1;p - Ty <: T%, and 17 nosel y3, and T7 ——¢, T7.
By 5.115(TSubCut), exists Ty, such that L ——§ Ty, and Fy;p = T7 <: Ty. By inversion of (TER-Bot),
Ty = L. By (ST-Trans), Fi;p - Ty <: L. O]

Lemma 5.119 (StnMLoc). If vy # yo, and Fo = Fi,y2 : T, and Fa;p F vy : {M(rg) : L..1}, then Fy;
pFwv i {M(ro): L..L}.

Idea. Adding a new location to the context cannot cause existing references to become mutable. v
Proof idea. The mutability must come from the context type of v;. v

Proof. By 5.77(VTEQ), Fa;p2 Fage v1 : {M(ro) : L..1L}. By 5.60(InvT), Fa -y vy : {M(r¢) : T1..T5}, and Fo;
P2 }_# 1 <: Ty, and FQ;[)Q l_# Ty <: L. By 5.110(PreCCut), FihHv: {M(To) : T1T2} By 5111(PrecFV),
y2 ¢ fv Th. By 5.112(NoselFV), T> nosel y,. By 5.118(StnSubBot), Fy;p - Tz <: L. By (ST-Typ), Fy;
pEA{M(rg) : Ty.. To} <: {M(ro) : L..L}. By 5.78(VIEgB), F1;p - v1 : {M(rg) : T1..T2}. By (VI-Sub), Fy;
pFwvr :{M(rg): L.. L} O

Lemma 5.120 (StnMFRef). Ifyl 75 wa, and Fy = Fl,’wg : T, and P2 = p1,W2 — Y2, and Fy ~ P2, and Fg;
pabyri{a: LL{M(rg) : L. L}}, thenFi;pr Fyr i {a: L.{M(rg) : L..1}}.

Idea. Adding a new reference to the context and environment cannot cause existing fields to become
mutable. \Y

Proof idea. Substitute y, for ws. v

Proof. Because references in p, are unique, we ¢ p1. By 5.32(SubW), F1;01 F [y2/we]yr : [y2/w2l{a :
L. {M(r) : L..L}}. By (VX-VarN), [y2/w2]y1 = y1. By (TX-Bot) and (TX-Typ) and (TX-FId), [y2/w2]{a :
L.AM(ro): L1} ={a: L.{M(rg) : L..L}}. O

Lemma 5.121 (StnSub). Ing = thg 2T, and Fg,p "# T <: {M(T‘o) : J_J_}, and T5 nosel Y2, then Fl;
pFE Ty < {M(rg): L..L}.

Proof. By 5.99(ToSRed), exist T5, Tg, such that Fy = T +—%, T5, and Fo = {M(rg) : L. L} +—% T,
and Fy;p F Ts <: Ts. By 5.94(SRedMut), Ts = {M(ro) : L..L}. By 5.92(SRedSub), Fa:;p 3, T <: Ts.
By (ST;E—Trans), Fosp 5 Ty <: {M(ro) : L..L}. By 5.108(ToTRed), exist T, T, such that T —7 17,
and {M(To) : J_J_} '—>1619] Ts, and Fg,p l_g T7 <: Tg. By 5100(TRedMut), Ty = {M(To) : J_J_} By
5.114(TRedCut), F1;p = T5 <: T7, and T7 nosel yo, and 17 ——§, T7. By 5.115(TSubCut), exists Ty, such
that {M(To) : J_J_} |—)gB Tg, and Fl;p F T7 < Tg. By 5101(ERedMut), Tg = {M(To) : J_J_} By
(ST-Trans), Fy;p - Ty <: {M(r¢) : L..L}. O

Lemma 5.122 (StnMFLoc). If y; # y2, and Fo = F1,yo : T, and Fa;p b y1 : {a : L.{M(r¢) : L..1L}}, then
Fl;p = Y1 : {a : J_..{M(’I"()) : J_J_}}

Idea. Adding a new location to the context cannot cause existing fields to become mutable. v

Proof idea. By typing equivalence in inert context and field typing inversion, y; has a field type, where
the upper bound is a tight subtype of {M(r¢) : L..L}. To show that this subtyping also holds without
y2 in the context, we take the subtyping derivation and remove unnecessary (ST4-SelL)) and (ST4-SelU)
applications, so that if we take the subtyping from left to right, type selection is only eliminated, not
introduced. An exception to that is in applications of (ST4-Met) rule. Next, we eliminate method types
by replacing them by T in covariant positions and by L in contravariant positions. Now the subtyping
derivation never uses variables which are in F; after 1, and does not depend on subtyping in a different
context. Therefore, the same derivation works in F;. v

Proof. By 5.77(VTEQq), Fa;p by 1 : {a : L.{M(ro) : L..L}}. By 5.60(InvT), exist T5, Ty, such that
Fobryr 2 {a: T5. 1y}, and Fosp By Ty <: {M(ro) : L..L}. By 5.110(PrecCut), Fy F y1 : {a : T5..T4}.
By 5.111(PrecFV), yo ¢ fv T,. By 5.112(NoselFV), T4 nosel y,. By 5.121(StnSub), F1;p F Ty <: {M(ro) :
1.1} By (ST-FId), Fisp F {a : T3. T4} <: {a : L.{M(r¢) : L..L}}. By 5.78(VTEqB), F1;p - y1 : {a :
T3. T4} By (VI-Sub), Fisp b yq : {a: L.{M(ro) : L..L}}. O

100

D3S, Technical Report no. D35-TR-2020-01 52 Runtime lemmata

5.2.9 Mutation lemmata
This section contains lemmata about mutable objects and mutability.

Lemma 5.123 (ObjW). If Fi F (t1;01;01581) 1 T — Fo b (to;09; p2;22), and y — d € X, then either
y—dedXsort; =w.a:=x,andw — y € p1.

Idea. If a reduction step modifies an object, then it was a reduction of a write term referring to that
object. v

Proof. By cases on typed reduction:

¢ Cases (TR-Read), (TR-Apply), (TR-LetLoc), (TR-LetPush): heap is not changed (X; =), there-
forey — d € X.

¢ Case (TR-LetNew): existing objects are not changed (X2 = X1, y2 — d2), therefore y — d € X».

e Case (TR-Write): t; = w.a := z, and Yo = Yi[y; — dy], where w — y; € p;. If y1 = y, then
w — y € p1. Otherwise, the object is not changed, therefore y — d € X,.

[
Lemma 5.124 (MTS). IfT;pF T <: L, thenT;p = {M(ro) : T1. To} <: {M(ro) : L..L}.
Proof. By (ST-Bot), I';p = L <: Ty. By (ST-Typ), I';p = {M(ro) : T1. 75} <: {M(ro) : L..L}. O

Lemma 5.125 (MMR). IfFl [<t1;0’1;p1;21> T — F2 = <t2;0’2;p2;22>, and Yy — d e 21, then either
y —d € XgorFi F (t1;01; p1; X1) mreach y.

Idea. If an object is mutated in a reduction step, then it must have been mutably reachable. v

Proof idea. Only reduction of write statements can modify objects. The reduction rule for write state-
ments requires the target to be mutably reachable. v

Proof. By 5.123(ObjW), t1 = w.a := ¢, and w — y € p. By (TF-Writel), ¢; tfree w. By inversion of
(TR-Write), F;p - w : {M(rg) : L..L}. By (Rea-Term), F I (t1; 01; p1; £1) mreach y. O

Lemma 5.126 (MPres). IfF |- (t3; 09; p; X) mreach y, and Vx: (t2 tfree z V oq tfree z) = (t; tfree x v
o1 tfree), then F F (t1;01; p; ¥) mreach y.

Idea. If the heap and environment do not change, and the term and stack contain the same variables,
then mutable reachability is preserved. v

Proof idea. Straightforward induction on mutable reachability. v
Proof. Induction on F | (t2; 02; p; £) mreach y:

e Case (Rea-Fld): F F (to;09;p;X) mreach y1, and y; — ... {a=y}..2 € X, and FipF 41 : {a:
L.{M(ro) : L..L}}. By induction, F F (t1;01; p;) mreach y; and (Rea-Fld).

e Case (Rea-Term): w — y € p,and Fip - w : {M(rg) : L..L}. (¢2 tfree z V oy tfree z), therefore
(t1 tfree x V o7 tfree). By (Rea-Term).

O

101

D3S, Technical Report no. D35-TR-2020-01 5.3 Reduction lemmata

5.3 Reduction lemmata

This section contains lemmata about the typed reduction relation defined in Section 4.1.

The progress lemmata, for each reduction rule, show that if the term of a configuration has a partic-
ular form, then the reduction rule can be applied. That may include proving that an involved object on
the heap has a requested member. But note that because the typed reduction rules also involve types,
the progress lemmata must reason about types too.

The progress lemmata are 5.135(PgRead), 5.142(PgWrite), 5.147(PgApply), 5.153(PgLetNew), 5.160(PgLetPush),
and 5.165(PgLetLoc).

Type preservation lemmata, for each reduction rule, show that reduction preserves the type of the
configuration. Because some of the reasoning about types is already part of the progress lemmata, the
preservation lemmata can be a bit simpler than if they were defined for untyped reduction.

In each lemma, it has to be shown that the typing context remains inert, that the runtime environ-
ment and the heap correspond to the context, that the term has the type of the top of the stack, and that
the type of the bottom of the stack does not change.

The type preservation lemmata are 5.136(TPRead), 5.143(TPWrite), 5.148(TPApply), 5.156(TPLetNew),
5.161(TPLetPush), and 5.166(TPLetLoc).

The mreach preservation lemmata, for each reduction rule, show that reduction does not make
mutably reachable any existing object which is not mutably reachable.

The mreach preservation lemmata are mreach5.141(MPRead), 5.144(MPWrite), 5.150(MPApply), 5.159(MPLetNew),
5.163(MPLetPush), and 5.168(MPLetLoc).

5.3.1 Helper lemmata for progress and preservation
Lemma 5.127 (HeapDP). IfF = Fy1,y; : pu(s : R) A {M(ro) : L..L},Fy, and F;p1 = Fy ~ X4, then there
exists d, such that Fo,y1/s: Ryp1 Fd : [y1/s]|R, and y1 — d € ¥y.
Proof. Induction on heap correspondence:
¢ Case (CT-EmptyH): not possible.
e Case (CT-ObjH): F = Fs3,y0 : pu(so : Ro) A {M(r) : L. Tp}, and £y = ¥3,y0 — dp, and Fs;

P1 H F() ~ 23, and F07y0/80 : RO;pl - d() : [yo/S()]Ro. If Yo = Y1, then d() = d, and So = S, and
Ry = R, therefore Fo,y1/s: R;p1 - d : [y1/s]R, and y1 — d € £;. Otherwise by induction.

* Case (CT-RefH): F = F3,w : T, and F3;p; F Fo ~ ;. By induction.
O

Lemma 5.128 (HeapD). IfF = F1,y1 : pu(s : R) A{M(ro) : L..L},Fo, and F;py ~ Xy, then there exists d,
such that ¥,y /s : Rypr B d : [y1/s|R, and y; — d € X;.
Proof. By inversion of (CT-CorrH), F;p; - F ~ ¥;. By 5.127(HeapDP). O
Lemma 5.129 (DSub). If R = ...3Ry...4, and F,y/s : R;p - d : R, then there exists dy, such that d =
coady..o,and Fly/s: Ripkd; : Ry.
Proof. InductiononF,y/s: R;pFd: R:

* Cases (HT-Typ), (HT-TypB), (HT-FId), (HT-Met): R = R;. Choose d = d;.

e Case (HT-And): d = ds Ads. R = Re ARs. Fyy/s: Rppt da : Ra. Fly/s : Rip + ds : Rs.

If R» = ...3R;y...5 then by induction, d» = ...1d;...¢. Otherwise, R3 = ...5 Ry ...4, then by
induction, d3 =...6 d1 Cee2.

O

Lemma 5.130 (DSubB). Ifd = ...1dy...o, and F,s : R;p - d : R, then there exists Ry, such that R =

3Ry ..y, and F s: Riptdy : Ry.
Proof. InductiononF,s: R;ptd: R:
* Cases (DT-Typ), (DT-TypB), (DT-F1d), (DT-Met): R = R;. Choose d = d;.
e Case (DT-And): d = dos ANd3. R= Ry ANR3. F,s: Ripkdy: Ry. F,s: Ript ds : Rs. If dy =
...1d1 ..., then by induction, Ry = ...3 Ry ...5. Otherwise, d3 = .. .¢d; .. .2, then by induction,
R3=..5R1...4.

O

102

D3S, Technical Report no. D35-TR-2020-01 5.3 Reduction lemmata

5.3.2 Read lemmata

In the (TR-Read) case, progress depends on existence of the field in the object on the heap, which is
shown by 5.131(HeapF). The result type involves splitting the type of the field and adding the mutability
of the receiver.

Lemma 5.131 (HeapF). IfR=...3{a:T5.T5}.. .4, and F =F1,y1 : pp(s : R) A{M(ro) : L..L},Fo, and F;
p1 ~ X1, then there exists yo, such that y1 — .1 {a =ya2}...2 € X1, and Fi;p b ya : [y1/5]T5.

Idea. If an inert context gives a certain type to a field of an object, then in the corresponding heap, the
object exists and the value of the field has that type. v

Proof. By 5.128(HeapD), there exists d, such that F,y;/s : Rip - d : [y1/s]R, and y1» — d € ¥;. By
5.129(DSub), there exists di, such thatd = ...1dy...o, and F,y1/s : Rip - dy : [y1/s){a : T5..T5}. By
inversion of (HT-FId), di = {a = z}, and F;p F x : [y1/s|Ts. Because heap correspondence requires
fields to be locations, then we can choose yo = . O]

Lemma 5.132 (Mulnv). IfFa;ps F we : {M(rg) : L..L}, where Fo = F,wy : p(sa : Re) A{M(ro) : L..T13},
then Fg;pg F# Tis <: L.

Idea. If a reference is mutable, then its mutability in the contextis L. v

Proof. By 5.77(VTEQ), Fa;p2 Fas wa : {M(ro) : L..L}. By (VTi-Var) and (VTi-And2), Fs -y we : {M(r9) :
1.Ty3}. By 5.60(InvT), exists 114, such that Fy by we : {M(rg) : L..T14}, and pe;p Fu T14 <: Fo. By
5.52(UPrecTyp), p2 F T14 = T3, therefore Fa;po by Thg <: L. O

Lemma 5.133 (MAdapt). If Fo;p2 = wo @ {M(rg) : L..L}, where Fo = F,wy : p(s2 @ Ra) A {M(ro) :
J_(T7 \Y T13)}, then Fa;p2 |_# T; <: 1, and Faspo |—# T3 <: L.

Proof. By 5.132(Mulnv), Fa;ps by T7 vV T13 <: L. By (5Tx-Orl) and (ST4-Or2) and (STx-Trans), Fs;
P2 F# T <: 1, and Fg;pg F# T3 <: L. O

Lemma 5.134 (RoVar). If F;p1 - yo : T3, where F = F3,y2 : p(s1 : R1) A {M(rg) : L..L},Fy, and F;
P1 = T3 ro TG/ then F,’LUQ : /.L(Sl : Rl) A {M(To) : J_..Tlg};pl,’UJQ — Y2 = wa TG-

Proof. F,wa : p(s1 : R1) A{M(ro) : L..T13} is an inert context, because the added type is based on a type
in the context, and wy is not used in F. By (CT-RefE), F,wq : p(s1 : R1) A {M(ro) : L..Th3} ~ ps. By
5.5(Wkn), F,ws : pi(s1 : R1) A{M(ro) : L. Tus};p1 F yo : Ts. By 5.7(WknE), F,ws : (s : R1) A {M(ro) :
L. Tig}ipe b yo - T5. By 5.87(RefT), F,wa : pi(s1: Ri) A{M(ro) : L.Th3};p0 F wo : Ts. O

Lemma 5.135 (PgRead). If F F (wy.a;01;p1;21) : To, then there exists wo, such that F & (wi.a;01; p1;
21) 1 To — FLwg : Ty = (vws; 013 p2; 31).

Proof idea. By configuration and term typing inversion, 5.68(DerefT), typing equivalence, invertible typ-
ing inversion, inversion of precise typing and heap correspondence and 5.131(HeapF). v

Proof. By inversion of configuration typing, F;p1 F wy.a : Th, and F;p; + o1 @ T31,Tp. By inversion
of (TT-Read), F;p1 - w1 : {a : T4..T3}. By 5.68(DerefT), F;p1 F y1 : {a : Ty..T5}. By 5.77(VTEq), F;
p1 Fas y1: {a: Ty..T3}. By 5.61(InvF), exist Ty, Ty, such that F -y y1 : {a : To..Ts}, and Fip F Ty <: T3,
and F;p - Ty <: Ty. By 5.58(CtxF), exists T5, such that F = Fq,y; : T,Fy, where T' = u(s : R) A
{M(T‘Q) : J_J_}, and R = .. .3 {a : T5..T5} c .4y and Tg = [yl/S]Tg;, and Tg = [yl/S]T5 By 5131(HeapF),
Y — ...1 {a = y2} ...0 €Y, and F,pl = Yo : [yl/S]Tg) Choose fresh ws. O]

Lemma 5.136 (TPRead). IfF F (wy.a;01;p1; 1) : To — F,wq : To b (vws; 01; p2; X1), then FLwg : T
(Vwa; 013 p2; £1) « To.

Proof idea. Heap, stack and does not change, typing is preserved by weakening. The type of the new
reference is a subtype of the term type and supertype of the location type. v

Proof. By inversion of typed reduction, F;p; F wyi.a : T1, and Fp1 F yo : [y1/s]T5, where To = p(sy :
Ri) AM(r) © L.(T7 VwiM(r)}, and F = Fs,y2 : u(s1 : R1) A{M(ro) : L..L}, Fy. By inversion of
(CT—COI‘I‘), F,pl ~ 21, and F ~ P1, and F,pl = [Tl,TQ.

¢ Inertness: Because R; comes from an inert context, 75 is an inert type, and we ¢ F, so F,wy : Ty is
inert.

103

D3S, Technical Report no. D35-TR-2020-01 5.3 Reduction lemmata

¢ Environment: By (CT-RefE), F,wy : T5 ~ pa.
* Heap: By 5.12(WknH), F, ws : Ta;p2 ~ 5.

e Term: By (TT-Sub), F;p -y : T3. By 5.134(RoVar), F, ws : Ty;ps = we : Tg. By (VI-Var), F,ws : Tb;
p2 F ws t p(s1 : Ri) A{M(r) : L.(T7 V w1.M(7))}. By (ST-And2) and (VI-Sub), F,ws : Ty;
p2 B wy : {M(r) : L.(T7 Vwi.M(7))}. By (VI-Andl), F,wy : T;pe F we : Ty. By (TT-Var), F;
P2 H Vwsg Tl.

e Stack: By 5.6(WknS) and 5.9(EWknS), F, ws : Ta;p2 & o1 : 11, Tp.
By (CT-Corr), F,ws : To F (vws; 01; p2; £1) : To. O

For preservation of mreach, we must show that if the resulting reference is mutable, then both the
reference read from and the field read must have been mutable.

Lemma 5.137 (WMu). If wy # we, and F,wy : Toipa by wi M(r) <: L, and ps = p1,ws — yo, and
F,’wg : T2 ~ P2, then F;pl - w1y - {M(Tg) : J_L}

Idea. If a read resulted in a mutable reference, then the source reference was mutable. v

Proof. By (VI-MutTop), F,wy : To;pe F wi @ {M(rg) : L..T}. By 5.60(InvT), exist T5g, T>1, such that
F,UJQ : TQ F! wi - {M(T‘Q) : Tgo..Tgl}. By (TRS-SGIU), F,U)Q : T2 F wl.M(r) l—>% [T‘/TQ}TQl. By (TRS—Reﬂ),
F,wg Ty - L >—)%9 1. By 598(SRedSubC0m), exist 1o, Ths, such that F,’LUQ Ty - [T/Tg]TQl |—>EB Tho,
and F,wy : To = L +——=§ To3, and F,wy : Ty;pe F Toz <: Th3. By inversion of (TR®-Refl), To3 = L. By
5.92(SRedSub), F, wy : To;ps F [1/r2]Te1 <: Tae. By (ST3-Trans), F,ws : Ta;pz F3 [r/ro]To1 <: Tas. By
5.116(FromSSub), F,wy : Ta;pa b [r/ra]Te1 <: L. By 5.33(SubR) and (TX-Bot), F,ws : Th;pa F To1 <: L.
By 578(VTEqB), F,’LUQ : Tg;pg H wy {M(TQ) : Tgo..Tgl}. By (ST—BOt) and (ST—Typ) and (VT—Sub),
F,’U.)Q : Tg;pg = w1 {M(Tg) : J_J_} By 5117(StnMRef), F;pl H wy - {M(TQ) : J_J_} O]

Lemma 5.138 (MPReadObj). IfF F (wy.a;01;p1;21) : To —> F,wq : To F (vwsy;o1; p2; Z1), and F,ws -
Tospo Fg w1 M(r) <: L, and ps = p1,ws — yo, and F,wy : Tp ~ pa, and w1 — y1 € p1, then F = (w1.a; 01;
p1; X1) mreach y;.

Idea. If a read resulted in a mutable reference, then the source reference was mutable. v
Proof. By 5.137(WMu), F;p1 - wy : {M(r2) : L..L}. By (Rea-Term), F - (w;.a;01;p1;%1) mreach ;. O

Lemma 5.139 (MPReadFld) IfF F <’Ll)1.a;0'1; P15 21> : T() — F,U)Q : T2 = <VU}2;0'1; P25 21>,117’ld F,U}Q : TQ;
P2 l—# T, <: 1, and wy — Y1 € p1, and F;pl Fowy o {CL : T4T3}, and F;pl T3 mu(r) T, and
Fowg : Ty ~ po, then Fipr Fyy i {a: L.{M(ro) : L..1}}.

Idea. If a read resulted in a mutable reference, then the field was mutable. v

Proof idea. T is an upper bound of the mutability of the field, therefore the field is mutable. Then we
show that it also means it was mutable seen from a location in the original context and environment. v

Proof. By 5.35(MUSub), F,ws : To;pe - T3 <: {M(r) : L..T7}. By 5.78(VTEqB), F,ws : To;po F T7 <: L.
By (ST-Refl) and (ST-Typ), F, wo : Ta;p2 - T3 <: {M(r) : L..1}. By (ST-FId) and (VI-Sub), F, ws : T5;p2
wy : {a: L.{M(r): L..1}}. By 5.120(StnMFRef), F;p1 - w; : {a : L.{M(r) : L..L}}. By 5.68(DerefT), F;
p1Fyr:{a: L.{M(r) : L..1}}. Using alpha equivalence, F;p1 - y1 : {a: L.{M(ro) : L..L}}. O

Lemma 5.140 (MPReadVal). IfF = <w1.a;01;p1;21> : TO — F,’LUQ : TQ F <V’U.)2;O'1;p2;21>, and p2 =
1, Wa = Yo, and F wsy : To;po b we : {M(rg) : L..L}, then F - (wy.a;01; p1; X1) mreach ys.

Idea. This is the case where we need to show that the object pointed to by the resulting reference was
mutable before. v

Proof idea. We need to show that its location was stored in a mutable field of y; and that w; was mutable.
\Y

Proof. By inversion of (TR-Read), y1 — ...1 {a =y2}...2 € X1, wherew; — y1 € p1,and F;p1 - wy : {a:
Ty.. 15}, and Fipy = T5 mu(r) Tr, and T = pu(s1 : Ri) A{M(r) : L..(T7 V w1.M(r))}. By 5.136(TPRead),
F,’wg : T2 F <VU)2; 0135 P23 21> : To. By inversion of (CT—COI’I‘), F,’U)Q : T2 ~ p2.

By 5.133(MAdapt), F,wq : To;p2 F4 T7 <: L,and F, ws : To;p by w1 . M(r) <: L. By 5.138(MPReadObj),
F F (wy.a;01; p1;X1) mreach y;. By 5.139(MPReadFld), F;p1 F y1 : {a : L.{M(rg) : L..L}}. By (Rea-
Fld), F F (wy.a;01; p1; ¥1) mreach ys. O

104

D3S, Technical Report no. D35-TR-2020-01 5.3 Reduction lemmata

Lemma 5.141 (MPRead) IfF - <w1.a;01;p1;21> : TO — F,’U)Q : T2 = <V’lU2;O'1;p2; 21>, and F,’U.)Q : TQ -
(vwa; 01; p2; 1) mreach y, then F + (w;.a;01; p1; X1) mreach y.

Proof idea. Stack and heap did not change, so the only new paths are starting from y,. The new paths
start with F;p; b yo : T3. If wy makes y, mutably reachable, then it must be mutable in F. That happens
only if both w; and the field a in it were mutable, so y, was already mutably reachable. v

Proof. Induction on F,wy : Ty = (vws; 01; p2; ¥1) mreach y:

e Case (Rea-Fld): F,wq : Ty b (vws;o1; pe; X1) mreach yo, yo — ...1{a0 = y}...2 € X1, Fwsy :
Toip2 F yo : {ao : L.{M(r¢) : L..L}}. By induction, F F (wj.a;01;p1;X1) mreach yo. By
5.120(StnMFRef), F, wo : To;p2 F yo : {ao : L.{M(r¢) : L..L}}. By (Rea-Fld), F - (w1.a;01;p1;
Y1) mreach y.

e Case (Rea-Term): vw, tfree w V oy tfree w, w — y € pa, F,wy : Tojpa b w : {M(rg) : L..L}.

— If w # wy, then o7 tfree w. By 5.117(StnMRef), F;p1 = w : {M(ro) : L..L}. By (Rea-Term).
— Otherwise, w = ws, therefore y = y2. By 5.140(MPRead Val).

105

D3S, Technical Report no. D35-TR-2020-01 5.3 Reduction lemmata

5.3.3 Write lemmata

In the (TR-Write) case, progress requires existence of the field on the heap. The variable written must
have the correct type.

Lemma 5.142 (PgWrite). IfF b= (wy.a := w3;01; p1; X1) : To, then there exists g, such that F = (wy.a := ws;
o1;p1:81) : To — F = (vws; 015 pr; Ba2).

Proof idea. By configuration typing and term typing inversion, the reference has a type compatible with
the field type. By dereference typing, the location also has the type. By equivalence of typing in inert
context, by inversion of invertible typing, by inversion of precise typing and heap correspondence, the
type is compatible with the heap type of the field. Choose the new heap as a copy of the old heap with
the value of y;.a changed to ys. v

Proof. By inversion of (TR-Write), F;p1 F wy.a := ws : Ty, and F;p; F oy : T1,Tp. By inversion of
(TT—Write), F;pl - wy - {a : T,STQ}, and F;pl = ws T3. By 5.68(DerefT), F;pl F Y1 {a : TgTQ} By
equivalence of typing in inert context 5.77(VTEq), F;p1 Fx4 y1 : {a : T3..T5}. By 5.61(InvF), exist Ty, Tk,
such that F k1 31 : {a: Ty..T5}, and Fip - Ty <: Ty, and F;p - T3 <: Ty. By inversion of precise typing
and heap correspondence 5.58(CtxF), exists Ty, such that F = Fy,y; : pu(s : R) A{M(ro) : L..1},Fo,
where T = u(s: R)AN{M(ro) : L..L},and R = .. .3{a : Ty.. Ty} ...4,and Tg = [y1/s]T4, and Ty = [y1/5|T4.
By 5.131(HeapF), y1 — ...1 {a =92} ...2 € ¥1. Choose X5 = X1[y1 — ...1 {a = y3} .. o). O

Lemma 5.143 (TPWrite). IfF b (wy.a := ws;01;p1;21) : To — F F (vws; 015 p1; Ba), then F = (vws; o1;
P15 22> : To.

Proof idea. Context, environment and stack are preserved. Heap correspondence is the same for objects
other than y;. For the object y, it is the same for members other than the field a. v

Proof. By inversion of (TR-Write), F;p1 F ws : T3, and F;p1 F T3 <: [y1/s]Ty, and F;pq & [y1/s]Ty <: To.
By inversion of (CT-Corr), F;p1 ~ X1, and F ~ py, and F;p; F o1 : T, To.

For a in y;, we need to show that F,s : R;p I y3 : T4. By 5.68(DerefT), F;p F y3 : T3. Because F;
p1 =T <: [y1/5]Ts, by (VI-Sub), Fip & ys : [y1/s]Ty.

For the term: Because F;p1 F [y1/s]Ty <: T», by (ST-Trans), F;p + T3 <: Ty. By (VI-Sub), F;
pFws : Ty. By (TT-Var), Fip F vws : T5. O

Lemma 5.144 (MPWrite). IfF F (wq.a := ws;01;p1;21) : Top — F F (vws; 015 p1; 82), and F = (vws; o1;
p1; Xo) mreach y, then F - (w;.a := ws; 01; p1; X1) mreach y.

Proof idea. Stack and term do not contain any new variables. If a location is mutably reachable through
a field, then either it was reachable previously through the same field, or it is the field that was written
to. In that case, the field written must have a mutable type, so the new value written must have already
been mutable, and it was in the term. v

Proof. By inversion of (TR-Write), 3 = Z1[y1 — ...1{a = ys}...2], and F;p1 F wy @ {a : T5..T2}.
Induction on mreach:

¢ Case (Rea-Term): vws tfree wV oy tfree w, w — y € p1, F;p1 Fw : {M(rg) : L..L}. If vws tfree w,
then by inversion of (TF-Var) and (TF-Write2), wi.a := w3 tfree w. Otherwise, o1 tfree w. By
(Rea-Term).

e Case (Rea-Fld): F F (vws;01; p1;22) mreach yo, yo — ...1{ao = y}...2 € X3, Fip1 F yo : {ao :
L. AM(rg) : L. L}}.

- If y # y3, where ws — y3 € p1, then yo # y1,50 Yo — ...1{ap = y}...2 € ¥1. By induction,
F F (wi.a := ws; 01; p1; ¥1) mreach yo. By (Rea-Fld).

-Ify=ys, and yo # ¥1- Yo — -..1{a0 = y}...2 € 1. By induction, F F (w;.a := ws;01; p1;
¥;) mreach yy. By (Rea-FId).

— Otherwise, y = y3, and yo = y1. Ro = R = ...3{a : Ty..T4}...4. By 5.61(InvF) and
5.52(UPrecTyp), F;p1 by [y1/s]Tu <: {M(ro) : L..L}. By (ST-Trans), I';p = T3 <: {M(r) :
1..1}. By (VI-Sub), F;p1 F w3 : {M(ro) : L..L}. By (TF-Write2), we have w.a := ws tfree ws.
By (Rea-Term).

O

106

D3S, Technical Report no. D35-TR-2020-01 5.3 Reduction lemmata

5.3.4 Apply lemmata

In the (TR-Apply) case, progress requires existence of the method on the heap. The receiver and the
argument must have the expected types.

mreach is preserved, because thanks to variable visibility, the only references in the resulting term
can be the argument and the receiver.

Lemma 5.145 (HeapM) IfR = ...3 {m(z : T977’ : Tll) : TIO} .. 4, and F = F1,y1 : /J,(S : R) A {M(?"()) :
L..1},Fy, and F;py ~ X, then there exists t, such that yy — ...1 {m(z,r) =t}..2 € X1, and F, !,z : Tg, 7 :
[yl/S}R AN [’I“/S]R NTg;pr Ft:1T7, where Tg = [yl/S]Tg, Tg = [yl/s]Tll, T; = [yl/S]TIO/ and r % fv R.

Idea. If the context gives a type with a method to a location, than that object has a method of that type
in the heap. v

Proof. By 5.128(HeapD), there exists d, such that F,y1/s : R;p - d : [y1/s]R, and y1 — d € ¥;. By
5.129(DSub), there exists di, such thatd = ...1dy...o,and F,y1/s : Rip b dy : [y /s]{m(z : To,r : T11) :
T10}. By inversion of (HT-Met), d; = {m(z,7) =t},and F, !,z : Ts,r : [y1/s]R A [r/s|R AN Tg;p1 bt : T,
and r ¢ fv R. O

Lemma 5.146 (SubApply). IfF,!,z : Ts,r : [y1/sJR A [r/sJR AN Tg;p1 & ¢ : Tr, and F;p1 & we : Ts, and
Fip1 b wy @ [we/2|Ts, where Fipy b T3 <: Tg, Foz : Tsp1 B T <o T, Fyz 2 Ta,r 2 Taspr B T <o Ty,
and Ty = [wy/r]|[we/z|Ty, and R indep s, and r ¢ tv R, and F ~ py, and F;p1 + wy : [wi/s]|R, and
w1 — Y1 € p1, then Fipy F [wy /r|[we/2]t : Ty.

Proof. First, we substitute the argument wy, for the parameter z. By 5.14(Unhide), F, z : T, r : [y1/s]R A
[r/s]R A Tg;p1 b t : Tr. By (VI-Sub), F;p1 F wy : Ts. Because z ¢ dom F, then by 5.33(SubR), F;
p1 b wa : [we/z]Ts. By 5.5(Wkn), F,r : [wa/z][y1/s]R A [we/z][r/s]R A [wa/z]Ts;p1 F we : [we/z]Ts. By
5.28(SubT), F,r : [wa/z][y1/s]R A [wa/z][r/s|R A [wa/z]Ts;p1 b [wa/2]t : [we/z]T7. Because z ¢ fv R,
For:[yi/sJRA[r/s]R A [wa/z]Ts;p1 b [wa/z]t : [we/z]T7.

Second, we substitute the receiver w; for the parameter . Because z ¢ dom F, then by 5.33(SubR),
Fip1 F wa @ [we/2]T5. By 5.27(SubV), Fip1 F [wa/2]T5 <: [we/2]Ts. By (VI-Sub), Fip1 F wy : [wa/2|Ts.
Because r ¢ dom F, then by 5.33(SubR), F;p1 b wy : [w1/7][we/2]Ts.

By 5.67(IndepEq), p1 F [w1/s]R = [y1/s]R. By (ST-Eq) and (VI-Sub), F;p1 F w; : [y1/s]R. Because
r ¢ dom F, then by 5.33(SubR), F;p1 - w1 : [w1/7][y1/s]R.

Because r ¢ fv R, [w1/s]R = [wi/s][w1/r]R. By 5.21(SubSwap) and (VX-VarE), [w1/s][wi/T]R =
[wy/7][r/s]| R, therefore F;py = wy : [wy/7][r/s]R.

By (VI-Andl), Fip1 b wy : [wi/r][y1/s]R A [wi/r][r/s]R. By (VI-Andl), F;p1 = wy : [wi/r][y:/s]R A
[wi/r][r/s]R A [wi/r][wz/z]Ts. By (IX-And), Fip1 = wy : [wi/r]([y1/s]R A [r/s]R A [wa/2]T5). By
5.28(SubT), F;p1 b (w1 /r][we/z]t : [w1/7][we/2]T7.

Finally, we adjust the result type. By 5.27(SubV), F, r : [wa/2]T5;p1 F [we/2]T7 <: [we/z]Ty. Because
r ¢ dom F, then by 5.33(SubR), F;p1 F w1 : [wq/r][we/2]T5. By 527(SubV), Fipq F [w1/r][we/2]T7 <:
[wy /r][wa/z]Ty. By (TT-Sub), F;py = [wy /r][we/z]t : T. O

Lemma 5.147 (PgApply). IfF b (wi.mwa;01; p1;21) : To, then there exists to, such that F F (w1.mwe; 01;
p1; 1) : To — F = (t2;01; p1; X1).

Proof. By inversion of configuration typing F;p; - wy.mwsy : Ty, and F;py &+ oy @ Ty, Tp. By inversion
of term typing (TT-Apply), F;p1 - w1 : {m(z : T5,7 : T5) : T4}, and F;pq F wy : T5. By 5.68(DerefT), F;
p1Fy1 o {m(z: Ts,r : Ts) : T4}. By equivalence of typing in inert context 5.77(VTEQ), F;p1 Fxx y1 :
{m(z : Ts,r : T5) : Ty}. By inversion of invertible typing 5.62(InvM), F 1 y1 : {m(z : Ts,r : Tg) : T%},
F;pl FT5 <:Tg F,z: 13501 FTs <:Tg,F,z:T5,1: Ts;p1 FT; <:Ty. Choose T = /J,(S : R) A {M(To) :
1.1} By557(CtxM), F =Fy1,y1 : (s : R)A{M(rg) : L..L}, Fo. By 5.145(HeapM), y1 — ...1 {m(z,r) =
t}..o€X,and F ! z: Tg, 7 : [y1/s]RA [r/s|R AN Tg;p1 Ft: T O

Lemma 5.148 (TPApply). If F & (wi.mwa;01;p1;21) : To — F F ([wi/r][wa/z]t; 015 p1; 21), then F +
<[’U.)1/7’} [U)Q/Z]t;()'l; P1; El> : T().
Proof idea. Context, environment, heap and stack do not change. The new term has the expected type

thanks to term typing and heap correspondence. v

Proof. By inversion of (TR-Apply), F F (w1.mwe; 015 p1;%1) : To, and F, 1, 2 : Tg, 7 : [y1/s]RA[r/s]RATs;
p1Ft:T7,and Fip; - oy : T4, Tp. By inversion of (CT-Corr), F;p1 ~ 31, F ~ p;. By 5.146(SubApply), F;
p1 (w1 /r][we/z]t : Th. By (CT-Corr), F F ([w1/r][ws/2]t; 015 p1; 1) = Tp. O

107

D3S, Technical Report no. D35-TR-2020-01 5.3 Reduction lemmata

Lemma 5.149 (TFApply). If F - (wi.mws;o1;01;21) @ To, and y1 — ... {m(z,7) = t}...2 € ¥y, and
[wy /r][wa/ 2]t tfree w V oy tfree w, then wi.mw, tfree w V oy tfree w.

Idea. Reducing method application does not make any variables t-free. v

Proof. If o, tfree w, then trivially. Otherwise, [wy/r|[wse/z]t tfree w. By 547(TFSub), w = w; V
[we/z]t tfree w. If w = wi, then by (TE-Applyl), wi.mwy tfree w. Otherwise, by 5.47(TFSub),
w = wy Vt tfree w. If w = wo, then by (TF-Apply2), wi.mwy tfree w. Otherwise, ¢t tfree w. Not
possible by 5.46(MLoc). O

Lemma 5.150 (MPApply). If F F (wi.mws;o1;p1;%1) : To —> F = {{wi/r][we/z]t; 015 p1; 1), and
F F ([wy/r][wa/z]t; 015 p1; 21) mreach y, then F - (wy.mws;o1; p1; 21) mreach y.

Proof idea. By 5.46(MLoc), t does not contain any locations. Therefore all variables in the term or on
stack were there also before. Heap and context didn’t change. Therefore everything mreach had to be
mreach before by the same path. v

Proof. For each wy, we show that if [wq/7][we/z]t tfree wy V o1 tfree wy, then by 5.167(TFLetLoc),
wy.mws tfree wo V o1 tfree wy. By 5.126(MPres), F F (w1.mwe; 01; p1; X1) mreach y. O

108

D3S, Technical Report no. D35-TR-2020-01 5.3 Reduction lemmata

5.3.5 LetNew lemmata

In the (TR-LetNew) case, we must show that the heap and the typing contex have the correct form.
For mreach preservation, we show that mutable fields of the new object must have been initialized by
mutable references appearing in the term.

Lemma 5.151 (DefTypRecord). If F,s : T;pt d : T, then T is a record type.
Proof idea. By induction on definition typing. v
Proof. InductiononF,s:Ti;ptd:T:
e Case (DT-Typ): T = {A(r) : T1..T1 }.
Case (DT-TypB): T' = {A(r) : L.T1}.
Case (DT-FId): T = {a : Ty..T1 }.
Case (DT-Met): T'= {m(z : T1,r : Tz) : T5}.

Case (DT-And): T' = T} A 15, and d; and dy have distinct member names. By induction, T} and
T are record types. Within d; and ds, member names are unique, so they are also unique across
di Ndsy .

O

Lemma 5.152 (SubLetNew). IfF,z : u(s: R) A{M(rg) : L..L};p ¢ :Th, then Fyyp @ u(s : R) A {M(ro) :
LoLlhpb /2]t : Ty

Proof. By 5.5(Wkn), F,y; : u(s: R)YA{M(ro) : L..L},z:pu(s: R)A{M(rg) : L..L};ptt:Ty. By (VI-Var)
and 5.27(SubV), F,y1 : (s : R)A{M(ro) : L..L};p b 1 [yr/2]p(s : R) A{M(ro) : L..L}. By 5.27(SubV),
Foyp :pu(s: R)A{M(rg) : L..L};p b [ya/2]t - Th. O

Lemma 5.153 (PgLetNew). IfF |- (let z = v(s : R)d in t;o1;p1;21) : To, then there exist y1, T, o, such
that F - (let z=v(s: R)dint;o1;p1;51) : To — Foyn : Tywy « T F ([wy/2]t; 015 p2; Ta).

Proof. By inversion of configuration typing F;p, F let z = v(s: R)d int : Ty, and F;p1 + o1 : 11, Ty. By
inversion of term typing (TT-New), F,s: R;p1 Fd: R, and F,z : u(s: R) A{M(rg) : L..L};p1 H ¢ T,
Choose fresh w; and y;. Choose T' = p(s : R) A {M(rg) : L..L}. Choose £o = X1,y1 — [y1/s][p1]d. O

Lemma 5.154 (CorrNewLoc). IfF;p1 ~ X1, and F,s: Ripy Fd : R, and T = p(s : R) A{M(ro) : L..L},
and Yo = Elvyl — [yl/S][pl]d, then F,yl : T;pl ~ Y.

Idea. Adding a typed object to the heap and context preserves heap correspondence. v

Proof idea. Old objects are not changed and adding new variables to the context does not change their
typing. The new object has the correct type thanks to term typing. v

Proof. By 5.69(DeD), F, s : R;p1 F [p1]d : R. By 5.5(Wkn), F,y; : T, s : R;p1 F [p1]d : R. By (VT-Var)
and (VTi-Andl) and (VTi-Rec), F,y1 : T b1 y1 : [y1/s]R. By 5.78(VTEqB), F,y1 : T;p w1 : [y1/s]R. By
5.29(SubD), F,y1 : T,y1/s : R;p1 & [y1/s][p1ld : [y1/s]R. By inversion of (CT-CorrH), F;p; - F ~ X;.
By 5.100WknHL), F,y; : T;p1 - F ~ 3. By (CT-ObjH), F,y1 : T;p1 b F,y1 : T ~ Es. By (CT-CorrH),
F,y1 : Thp1 ~ Xa. O

Lemma 5.155 (CorrNew). If Fip1 ~ X1, and F s : Ryp1 - d: R, and T = p(s : R) A{M(ro) : L..1}, and
Yo =X1,y1 = [y1/s]lp1]d, and py = pr, w1 — y1, then Fyy - T, wy : Tipp ~ o

Idea. Adding a typed object to the heap and context and a reference to the environment preserves heap
correspondence. v

Proof idea. Old objects are not changed and adding new variables to the context does not change their
typing. The new object has the correct type thanks to term typing. v

Proof. By 5.154(CorrNewLoc), F,y; : T;p1 ~ ¥o. By 5.12(WknH), F, y; : T, wq : T;p3 ~ Xo. O

Lemma 5.156 (TPLetNew). IfF - (let z = v(s: R)d int;o1;p1;%1) : To — Foyn : Towq - T F ([wi /2]t
o1; p2; Ya), then Foyy - Tywy : T F ([wy /2]t 015 pa; ¥2) + To.

109

D3S, Technical Report no. D35-TR-2020-01 5.3 Reduction lemmata

Proof idea. Objects on the heap except y; are typed the same. By typing of the term, the new object has
the specified type. Context is extended, typing is preserved by weakening. v

Proof. By inversion of (TR-LetNew), F F (let z = v(s : R)d in t;01;p1;21) : To, and T = p(s :
R) A{M(r¢) : L..L}. By inversion of (CT-Corr), F;p1 ~ X1, and F ~ p1, and F;p; F o1 : T1, Tp.

¢ Inertness: By 5.151(DefTypRecord), R is a record type, therefore T is inert, and y; and w; are fresh,
so T does not refer to them, therefore F,y; : T, wy : T is inert.

¢ Environment correspondence: By (CT-RefE), F,y; : T',wy : T ~ pa.

e Heap correspondence: By 5.155(CorrNew), F,y; : T, wy : T;pg ~ 3s.

e Term typing: By 5.152(SubLetNew), F,y1 : T, w1 : Tsp & [wq /2]t : T1.

Stack typing: By 5.6(WknS), F,y, : T, wy : Tp2 F o1 : Th, Tp.

By (CT-Corr), F,y1 : T,wy : T F ([w1/z]t; 015 p2; Ba) = Tp. O

Lemma 5.157 (MPLetNewVal). If F = (let z = v(s : R)d in t;01;01;81) : To — Foyn : Tywy : T F
([wi/2]t; 015 p2;82), and Fyyy : Tywy - Tipa b yr : {ao s L.AM(rg) : L. L}}, and T = p(s: R) A {M(ro) :
L.l},andF,s: Riprbd:Randd=...7{ap =w}...s,and F yy : T,wy : T ~ po, and ps = p1,w1 — y1,
then F;pr B w : {M(rg) : L..L}.

Proof. By 5.77(VTEQ), F,y1 : T, w1 : T;p2 by y1 : {ao : L.{M(r¢) : L..L}}. By 5.61(InvF), F,y; : T, wy :
Tk oy :{a:Tia..Tho}, where F,y; : T, wy : Tipa by Tho <: {M(rg) : L..L}.

By 5.130(DSubB), R = ...3Ry...4, such that F,s : R;p; - {ap = w} : Ry. By inversion of (DT-
Fid), Ry = {a : T11..T11}, and F,s : R;p1 F w : T1;. By (VI-Var) and (ST-And1) and (VI-Sub) and
(VI-RecE), F,y1 : T, w1 : Tip2 = y1 : [y1/s]R. By 5.5(Wkn) and 5.27(SubV), F,y; : T,wy : Ti;pa b w :
[y1/s]T11. By 5.58(CtxF), and because declarations in R have unique names, [y1/s]T11 = Tho, therefore
Foyn : Towr : Tipa by [y1/s]Tin <: {M(ro) : L..1L}. By 5.78(VTEgB) and (VI-Sub), F,y: : T,w; : T;
pa - w: {M(ro) : L..L}. By 5.117(StnMRef) and 5.119(StaMLoc), Fipy - w : {M(rg) : L..L}. O

Lemma 5.158 (MPLetNewEFld). IfF - (let z = v(s : R)d in t;01;p1;%1) : To — Foyn : Tywy = T F
<[w1/z]t;01;p2;22>, and Y1 — ... {a() = y} .2 S 22, lli’ld F,yl : CZ—‘7 wy T;pg [Y1 - {CL() : J_..{M(’I’(]) .
L. 1}},andy # yy, then F + (let z = v(s: R)d in t;01; p1; X1) mreach y.

Idea. If an object with a mutable field was created, then its value was a mutable reference in the creation
term. \Y

Proof idea. Because the new object has the field a¢ in the heap, then the definition of the object must
contain definition of that field with some value w. This value is therefore t-free in the term. Because the
field is mutable, the value must also be mutable. v

Proof. By inversion of (TR-LetNew), X5 = ¥1,y1 — [y1/s][p1]d, and F,s : Rjp1 - d : R, and T = p(s :
R) A {M(r¢) : L..1}, and p2 = p1, w1 — y1. By 5.156(TPLetNew), F,y1 : T,w;y : T F ([wi/2]t; o1; p2;
Y9) : Tp. By inversion of (CT-Corr), F,y1 : T, wy : T ~ pa.

We know that [y1/s][p1]d = ...1 {ao = y}...2. Because y # yi, therefore [p1]d = ...5{a0 = y}.. 6.
By 5.70(Delnv), there is w, such that {ap = w} € d, and w — y € p;. By (TF-FId) and (TF-And1) or by
(TF-And2), d tfree w. By (TF-NewD), let z = v(s : R)d in t tfree w.

By 5.157(MPLetNewVal), F;p1 F w : {M(rg) : L..L}. By (Rea-Term), F I (let z = v(s : R)d in t; 01;
p1; X1) mreach y. O

Lemma 5.159 (MPLetNew). IfF I (let z = v(s: R)d in t;01;01;21) : To — Foy1 : Tywy : T F ([wi /2]t
o1; p2; L), and Foyy : Tywy : T+ ([wy/2]t; 015 p2; Ba) mreach y, theny ¢ For FE (let z = v(s: R)d in t;
o1; p1;21) mreach y.

Proof idea. If something is mreach from o1, then it was mreach by the same path. If something is mreach
from [w, /2]t starting from location other than y;, then it was mreach by the same path from ¢. If some-
thing is mreach from [w; /2]t starting from y,, then it is either y; itself, or the path continues through a
field, and the value of the field was occurring in the term. If the field is mutable, then the value must
have been a mutable reference. v

Proof. Inductionon F,y; : T, wy : T F ([w1/2]t; 01; p2; 2) mreach y:

110

D3S, Technical Report no. D35-TR-2020-01 5.3 Reduction lemmata

e Case (Rea-Fld): F,y; : T,wy : T F ([w1/z]t; 01; p2; X2) mreach yo, yo — ...1{ag = y}...2 € Xy,
Foy1 : T,wr : Tipa Fyo : {ao : L.{M(rg) : L..L}}. By induction, F F (let z = v(s : R)d in t; 01; p1;
%1) mreach yg.

~ Ifyo # y, then yo — ...1 {ag = y}...» € ¥1. By 5.122(StnMFLoc) and 5.120(StnMFRef), F;
p1Eyo:{ao: L.AM(rp) : L..L}}. By (Rea-Fld).

— Otherwise, yo = y1, then {ap = y} € [y1/8][p1]d. f y = y1, then y ¢ F. Otherwise, by
5.158(MPLetNewFld).

¢ Case (Rea-Term): [w;/z]t tfree w V o1 tfree w, w — y € po, Foy; : Tywy : Tipa b w : {M(r) :
L. L} If [wy /2]t tfree w, theny = y1, so y ¢ F. Otherwise, o7 tfree w. By 5.119(StnMLoc) and
5.117(StnMRef), F;p1 - w : {M(ro) : L..L}. By (Rea-Term).

O

111

D3S, Technical Report no. D35-TR-2020-01 5.3 Reduction lemmata

5.3.6 LetPush lemmata

The (TR-LetPush) and (TR-LetLoc) are simple cases only involving moving a term between the focus
and the stack.

Lemma 5.160 (PgLetPush). If F F (let z = 1 in to;01;p1;21) : To, then there exists oo, such that F
(let z =ty inta;015p1;51) : To — F F (t1;02; p1;21).

Proof. By inversion of configuration typing F;p; - let z = ¢; in t : Ty, and F;py + o1 : T1,To. By
inversion of term typing (TT-Let), F;py - t1 : T3, and F, z : T3;p1 - to : T1. Choose g = let z =0 in g =
g1. O

Lemma 5.161 (TPLetPush). IfF - (let z = ¢ in t3;01;p1;21) : To — F F (t1;09; p1;21), then F = (t1;
o9;p1;21) : Tp.

Proof idea. Context, environment and heap are the same. v
Proof. By inversion of (TR-LetPush), F F (let z = t1 in t3;01;p1;21) : To, and Fipq - t1 @ T3, and F;

p1 o1 - Th, Ty, By inversion of (CT-Corr), F;p1 ~ X1, and F ~ p;. By (CT-LetS), F;p - 05 : 15, T. By
(CT-Corr), F F (15025 p1; 1) = To. O

Lemma 5.162 (TFLetPush). If o2 = let z = O in ty = 01, and t; tfree w V oy tfree w, then let z =
t1 in to tfree w V o tfree w.

Idea. Reducing a let term does not make any variables t-free. v

Proof. If t; tfree w, then by (TF-LetPush), let z = t; in t5 tfree w. Otherwise, o tfree w. By inversion:
Case (TF-LetST): to tfree w. By (TF-LetPop), let z = t; in t5 tfree w.
Case (TF-LetSS): o, tfree w. O

Lemma 5.163 (MPLetPush). IfF I (let z = ¢ in ta;01;p1;21) : To — F F (t1;092; p1;21), and F F (t1;
09; p1; X1) mreach y, then F = (let z = 1 in to; 01; p1; 21) mreach y.

Proof idea. Locations could only move from term to stack. All variables in ¢; or oy were also in o; or
let z = 1 in t5. Heap and context didn’t change. Therefore everything mreach had to be mreach before
by the same path. v

Proof. For each t; tfree wy V o, tfree wy. By 5.167(TFLetLoc), let z = t; in ty tfree wg V o1 tfree wy. By
5.126(MPres), F F (let z =t in t9; 01; p1; £1) mreach y. O

112

D3S, Technical Report no. D35-TR-2020-01 5.3 Reduction lemmata

5.3.7 LetLoc lemmata
Lemma 5.164 (SubLetLoc). IfF,z: Ty;pbt: T3, and Fip - wq : T, then Fip b [wy /2]t : Ts.
Proof. By 5.27(SubV). O

Lemma 5.165 (PgLetLoc). If F = (vwi;01;p1;51) : To, and o1 = let z = O in t :: o9, then there exists to,
such that F + (vwi; 01; p1;51) : To — F F (ta; 09; p1; 21).

Proof. By inversion of configuration typing, F;p1 F vw; : Ty, and F;p; = o1 : T1,Tp. Choose t2 =

[wy /2]t O
Lemma 5.166 (TPLetLoc). If F = (vwi;o1;p1;51) : To — F F ([wi/2]t; 02; p1; X1), then F = ([wy /2]t 02;
p1;21) = To.

Proof idea. Context, environment and heap are preserved. v

Proof. By inversion of (TR-LetLoc), F F (vws;01; p1; 1) : To, and Fip1 F v : T3, and Fip1 F o : 11, To.
By inversion of (CT-Corr), F;p; ~ X1, and F ~ p;. By inversion of (CT-LetS), there exists T3, such that
Fipb oo :T5,Tp,and F, z : Ty;p -t : T5. By inversion of (TT-Var), F;p F w : T3. By 5.164(SubLetLoc),
Fip b [wy /2]t : T3. By (CT-Corr), F = ([w1/2]t; 095 p1; 1) = Tp. O

Lemma 5.167 (TFLetLoc). Ifo1 = let z = O in t :: 09, and w1 /2]t tfree wV oy tfree w, then vw, tfree wVv
oy tfree w.

Idea. Reducing the stack does not make any variables t-free. v

Proof. If o tfree w, then by (TF-LetSS), o1 tfree w. If [wy/z]t tfree w, then by 5.47(TFSub), w =
wy V w tfree t. If w = w;, then by (TF-Var), vw; tfree w. Otherwise, ¢t tfree w. By (TF-LetSS),
o1 tfree w. O]

Lemma 5.168 (MPLetLoc). IfF & (vwy;o1;p1;21) : To — F F (Jw1/2]t; 090; p1; 21), and F = ([wy/2]t; 095
p1; 1) mreach y, then F + (vw;; o1; p1; 1) mreach y.

Proof idea. Locations could only move from the stack to the term. All variables in the term were in the
term or on the stack before. Heap and context didn’t change. Therefore everything mreach had to be
mreach before by the same path. v

Proof. For each w1 /2]t tfree wy V oy tfree wg, we have by 5.167(TFLetLoc), vw, tfree wy V o1 tfree wy.
By 5.126(MPres), F F (vw; 01; p1; £1) mreach y. O

113

D3S, Technical Report no. D35-TR-2020-01 5.3 Reduction lemmata

5.3.8 Reduction equivalence

Reduction rules are defined to be similar to kDOT [2] reduction rules. They do not use types of terms
or variables in any way. In order to prove preservation, typed reduction is defined to be similar to
reduction, but requires the configuration to be typed. This is most important for (TR-Read). Typed re-
duction is more complicated than reduction, so soundness theorems are stated for normal reduction. By
showing equivalence between typed and normal reduction, soundness is proven for normal reduction.

Lemma 5.169 (REq). IfF1 & (t1;01;p1;21) : T — F1,Fo F (to;00; p2; Xo), then (t1;01; p; X1) —> (t2;
02; p; X)-
Proof idea. Straightforward correspondence between cases of typed reduction and normal reduction.
\Y
Proof. By cases on typed reduction:
e Case (TR—Read): w1 — Y1 € p1, and Y — .1 {a = yg}‘..g € X, and p2 = pP1,W2 — Y2, and
t1 = wi.q, and to = vwso, and 01 = 09, and 21 = 22. By (R—Read).

e Case (TR-Write): w; — y1 € p1, and wy — y3 € p1, and y1 — ...1{a = y2}...2 € ¥y, and
22 = Zl[yl — .1 {a = yg} . .2], and t = wi.a 1= ws, and to = vVws, and g1 = 02. By (R—Write).

e Case (TR-Apply): w1 — 11 € p1,and y13 — ...1{m(z,r) =t}...2 € ¥y, and t; = w1.mws, and
to = [w1/r][wz/z]t, and o1 = 09, and ¥ = Xs. By (R-Apply).

e Case (TR-LetNew): ps = p1,w; — y1, and Xy = X1,y1 — [y1/9][p1]d, and t; = let z = v(s :
R)d int,and ty = [w1/2]t, and o1 = 0. By (R-LetNew).

® Case (TR-LetPush): t; = let z = t3 in t3, and o3 = let z = O in t3 : 01, and ¥; = 3. By
(R-LetPush).

e Case (TR-LetLoc): t; = vwy, and ¢t = [wi/z]t, and 01 = let z = O in ¢t :: 09, and ¥; = Xy. By
(R-LetLoc).

O

Lemma 5.170 (RJEq). IfFyi b (t1;015p1581) : T 7 Fi,Fo b (t2;09; po; Bo), then (t1; 015 p;51) —7 (to;
02; P3 22>-

Proof. Induction on number of steps using 5.169(REq). O

114

D3S, Technical Report no. D35-TR-2020-01 5.4 Theorems

5.4 Theorems

This section contains the main properties of the type system, notably the Type soundness Theorem
5.173(S) and the Immutability Gurantee 5.181(IG).

For soundness, Theorem 5.171(TPP) combines progress and preservation for a single step of typed
reduction. When applied to an arbitrary number of steps, Theorem 5.172(TyS) is a type soundness
theorem for typed reduction.

Theorem 5.171 (TPP). If Fy + (t1;015p1;21) : T, then either (t1;01;p1;21) = (vws;-; p1;21), or exists
to, 02, Xo, p2, Fo, such that By & (t1;015p1581) : T —— F1,Fo b (ta;09; p2; 32), and F1,Fy b (to; 093 po;
22> :T.

Proof. By cases on t;:

e Ift; = vay, then by 5.41(RFV), t; = vuw;.

e Ift; = vw;, and oy = -, then it is answer.

o Ift; =vwy, and oy = let z = O in t :: g9, then by 5.165(PgLetLoc) and 5.166(TPLetLoc).

e Ift; =let z =t; in ty, then by 5.160(PgLetPush) and 5.161(TPLetPush).

o Ift; =let z =v(s: R)d in t, then by 5.153(PgLetNew) and 5.156(TPLetNew).

e Ift; = x1.m x2, then by 5.41(RFV), t; = wi.mws. By 5.147(PgApply) and 5.148(TPApply).

e Ift; = z1.a := z3, then by 5.41(RFV), t; = w1.a := ws. By 5.142(PgWrite) and 5.143(TPWrite).
e Ift; = x1.a, then by 5.41(RFV), t; = w;.a. By 5.135(PgRead) and 5.136(TPRead).

O

Theorem 5.172 (TyS). If &= to : T, then either 3w, j, %, p,F:+ (to;-;5) : T == F {vw;-; p; X) or Vy:
Jtj, 05,85, p5, Fjrb (to;550) : T w7 Fy - (ty5053 055).

Proof. By configuration typing, ;p - (to;-;-;-) : T. For every j > 0, if (t;;0;; p;; X;) is an answer, then
first alternative holds. Otherwise, compute configuration (¢;1+1;0;4+1; pj+1; 2;+1) using 5.171(TPP), and
continue for j + 1. If no such j produces an answer, then the second alternative holds. O

Theorem S is a type soundness theorem based on kDOT [2], stating that typed contexts reduce to an
answer or diverge. Instead of using Progress and Preservation lemmata for untyped reduction, we use
the type safety theorem for typed reduction, and ignore the types.

Theorem 5.173 (S). Ift to : T, then either Jy, j, X, p: (to; -5 -) —7 {vy; 5 0, Z) or Vj: 3t5, 05,55, pj: (to; -5
) = (55055 053 55)-

Proof. By 5.172(TyS), either 3w, j, 3, p, Fit (to;;++) : T +—3 F = (vw; 5 p; X), or Vj: 3¢5, 05, i 05 Fy
F (to;;5-) : T V7 Fj b (tj;04;p5;%5). By 5.170(RjEq), either 3y, j, X, p, F: - (tos=5+5) : T —9 FE (vy;
503 X), 0r Vj: 3ty 05, 55, p5, Fyi b (tos 5 5) + T w7 Fy b (t55.055 pj; Xj)- a

We can also state the traditional Progress and Preservation lemmata of untyped reduction.

Lemma 5.174 (Pg). IfF1 F (t1;01;p1;21) = T, then either (t1;01; p1;X1) = (vwn; - p1; X1), OF exists tg, 09,
3o, p2, Fo, such that (t1;01;p1;X1) — (t2;09; p2; Ua).

Proof. By 5.171(TPP), either (t1;01; p1; X1) = (vws;-; p1; 1), Or exist to, 0g, Xg, p2, Fa, such that Fy F (¢3;
o1;01:81) : T — F1,Fy b (ta;02;p2:82), and F1, Fa b (t2;09; p2; 82) : T. By 5.169(REq), (t1;01;p1;
Y1) — (t2; 023 p2; Xa). O

Lemma 5.175 (TPEq). If (t1;01; p1;51) — (t2;02; p2; Xa), and Fy F (t1;01;p1;241) : T, then Fq = (815015
p1;21) : T+ F1,Fo b= (ta; 005 p2; Xa), and F1, Fo 1= (t2; 09; p2; Xa) : T.

Proof. By 5.171(TPP), either (t1;01; p1;21) = (vws;-; p1; 21), Or exist ¢3, 03, X3, ps, F3, such that F; +
(ti;o1:p1581) + T+ F1,F3 b (t3;03;p3;83), and F1, F3;p = (t3;03;p3; ¥3) : T. Because (t1;01;p1;
21) ¥ (to; 00; p2; Lo), therefore (t1;01; p1;21) # (vwn;-; p1;21). By 5.169(REq), t2 = t3, and o2 = o3,
and Y5 = X3, and py = p3. Choose Fy = Fs. O]

Lemma 5.176 (TP). IfF1 F (t1;01;p1;21) : T, and (t1;01; p1; 1) — (t2; 02; p2; La), then there exists Fa,
such that Fy,Fo b (to; 09; p2; o) : T.

115

D3S, Technical Report no. D35-TR-2020-01 5.4 Theorems

Proof. Directly by 5.175(TPEq). O

Lemma 5.177 (TPEqJ). If<t1;01;p1;21> l—>j <t2;02;p2;22>, and F1 H <t1;0’1;p1;21> : T, then F1 F <t1;
o1;p1381) : T'V——=7 Fi, Fa & (t2; 095 pa; Ya).

Proof. Induction on j:

e If j = 1. By 5.175(TPEq).

* Otherwise, j > 1, (ti;01;p1551) = (t3;03;p3;53), and (tz; 035 p3;53) =771 (t2; 095 p2; Xo).
By 5175(TPE(1), Fl - <t1;01;p1;21> T Fl,Fg F <t3;0’3;p3;23>. By induction, F1 - <t1;
01;p1;21> T '—)jil Fl,Fg,F4 = <t2;0’2;p2;22>, and Fl,Fg,F4 [<t2;0’2;p2;22> T Choose
Fy = F3,Fy.

O

To prove the Immutability guarantee, we first in 5.178(MP) show that a reduction step does not
make any existing objects mutably reachable, then in 5.179(MPP) extend this to an arbitrary number
of steps. The theorem 5.180(TyIG) states the immutability guarantee for typed reduction, guaranteeing
that a object which is not mutably reachable will not be modified. The theorem 5.181(IG) states the
immutability guarantee for untyped reduction, shown from 5.180(TylG) by ignoring the types.

Theorem 5.178 (MP) IfFl F <t1;0’1;p1;21> T — F2 F <t2;02;p2;22>, Yy — de 21, and F2 H <t2;0’2;
p2; Yo) mreach y, then F1 & (t1;01; p1;21) mreach y.

Idea. A typed reduction step does not make existing objects mreach if they weren’t before. v
Proof. By cases on typed reduction:
e Case (TR-Apply): t1 = wi.mws, and to = [wy/r|[we/2]t, and Xy = X4, and o2 = 01, and ps = p1,
and Fy = Fy. By 5.150(MPApply), F1 I (t1;01; p1; £1) mreach y.
e Case (TR—Read): t1 = wi.q, and to = vwo, and 22 = 21, and o9 = 01, and FQ = Fhwg : T2. By
5.141(MPRead), F1 F (t1;01; p1; £1) mreach y.
* Case (TR-Write): t; = w;.a := w3, and t3 = vws, and 02 = o1, and p2 = p1, and Fy; = F;. By
5.144(MPWrite), Fy - (t1;01; p1; X1) mreach y.
e Case (TR-LetNew): t; = let z = v(s : R)d in t, and to = [w1/z]t, and 02 = 01, and Fy = Fy,y; :
Ty, wq : Ty, and Fq;p1 ~ 2. Because y — d € X1, we have y € Fy. By 5.159(MPLetNew), F1 F (¢1;
015 p1; X1) mreach y.
® Case (TR-LetPush): t; = let z = t3 in t4, and ¢t = t3, and ¥y = ¥y, and py = p;1, and Fy = Fy. By
5.163(MPLetPush), Fy I (t1;01; p1; 1) mreach y.
e Case (TR—LetLOC)I t1 = vwy, and to = [wl/z]tg, and Yo = Xy, and P2 = pP1, and Fy = Fq. By
5.168(MPLetLoc), F; + (t1;01; p1; 1) mreach y.

O

Theorem 5.179 (MPP). IfFy F (t1;01;p1;21) : T 8 Fo b= (to; 005 p2; Xa), y — d € Xy, and Fy I (to; 02
p2; 32) mreach y, then F1 F (t1;01; p1; X1) mreach y.

Idea. Typed reduction does not make existing objects mreach if they weren’t before. v

Proof. Induction on k. If k = 0, then trivially. Otherwise, there exists (t3; o3; p3; X3), such that F; - (t1;
o;p1381) T k"1 F3 b (t3;03;p3;53), and Fs - (t3;03;p3;03) : T — Fy b (t2;09; p2; X2). By
5.178(MP), F3 F (t3; 03; p3; £3) mreach y. By induction, Fy & (¢1;01; p1; X1) mreach y. O

Theorem 5.180 (TyIG). Ify — d € X1, and F1 F (t1;01;p1;51) : T —* Fa b (ta; 09; p2; $a), then either
y — d € XgorFy F (t1;01; p1; X1) mreach y.

Idea. If an object at location y is changed during reduction, then it must be mutably reachable from the
starting configuration. v

Proof idea. If an object y is mutated in a step, then it must be mutably reachable. Because of mreach
preservation, it must also be mreach in (¢1; 01; p1; X1). v

116

D3S, Technical Report no. D35-TR-2020-01 5.4 Theorems

Proof. Induction on number of steps k using 5.125(MMR) and 5.178(MP). If k£ = 0, then trivially ¥, = ¥;.
Otherwise, there exists (t3; 03; p3; ¥3), such that Fy F (t1;01;p1;51) : T —=F"1 F3 I (t3;03; p3; X3), and
F3 F <t3; g3; P35 E3> T — F2 - <t2; g2; P2; 22> By induction, either F1 H <t1;0‘1; P1; 21> mreach Yy, or
y — d € Y. In the second case. By 5.125(MMR), either F3 |- (t3; 03; p3; £3) mreach y, or y — d € Xo.
In the first case. By 5.179(MPP), F + (t1;01; p1; £1) mreach y. O

Theorem 5.181 (IG). Ify — d € £y, and F1 & (t1;01;p1;21) : T, and (t1;01; p1; X1) =k (to; 095 po; Ta),
then either y — d € ¥g or F1 b (t1;01; p1; X1) mreach y.

Idea. If an object at location y is changed during reduction, then it must be mutably reachable from the
starting configuration. v

Proof idea. By typed progress and preservation, show that typed reduction takes the same j steps. Fol-
lows by 5.180(TyIG). v

Proof. By 5.177(TPEqj), F1 b (t1;01:p1;51) : T — Fy, Fa b (t2;09; p; 52). By 5.180(TyIG). O

117

D3S, Technical Report no. D35-TR-2020-01 REFERENCES

References

[1] Vlastimil Dort and Ondfej Lhotdk. Reference mutability for DOT. In preparation.

[2] Ifaz Kabir. xkDOT: A DOT calculus with mutation and constructors. Master’s thesis, University of
Waterloo, 2018.

[3] Ifaz Kabir and Ondfej Lhotdk. xkDOT: scaling DOT with mutation and constructors. In Proceedings
of the 9th ACM SIGPLAN International Symposium on Scala, SCALA@ICFP 2018, St. Louis, MO, USA,
September 28, 2018, pages 40-50, 2018.

[4] Marianna Rapoport, Ifaz Kabir, Paul He, and Ondfej Lhotdk. A simple soundness proof for depen-
dent object types. PACMPL, 1(OOPSLA):46:1-46:27, 2017.

118

	1 Introduction
	2 Baseline DOT Definitions
	2.1 Baseline Syntax
	2.2 Baseline Typing
	2.3 Baseline Definition Typing
	2.4 Baseline Subtyping
	2.5 Baseline Runtime Syntax
	2.6 Baseline Inert Context
	2.7 Baseline Reduction
	2.8 Baseline Configuration Typing

	3 roDOT Definitions
	3.1 Syntax
	3.1.1 Receiver Parameter
	3.1.2 Kinds of Variables
	3.1.3 Alpha Equivalence

	3.2 Substitution
	3.3 Ellipsis
	3.4 Independence
	3.5 Dereferencing
	3.6 Typing
	3.7 Definition Typing
	3.8 Heap Definition Typing
	3.9 Subtyping
	3.10 Splitting
	3.11 Equivalence
	3.12 Runtime
	3.12.1 Inert Context

	3.13 T-Free variables
	3.14 Mutable Objects
	3.15 Reduction
	3.16 Configuration Typing

	4 Internal Definitions
	4.1 Typed Reduction
	4.2 Typed Reduction Inlined
	4.3 Precise Typing
	4.4 Simplified Precise Typing
	4.5 Tight Typing
	4.6 Tight Subtyping
	4.7 Invertible Typing
	4.8 Selection Inlining Reduction
	4.9 Method Type Approximation Reduction
	4.10 Selection Approximation Reduction
	4.11 One Way Tight Subtyping
	4.12 No Method Subtyping
	4.13 Type Without Selections

	5 Properties
	5.1 Typing lemmata
	5.1.1 Equivalence lemmata
	5.1.2 Typing context lemmata
	5.1.3 Environment correspondence lemmata
	5.1.4 Subtyping lemmata
	5.1.5 Substitution Lemmata
	5.1.6 Splitting lemmata

	5.2 Runtime lemmata
	5.2.1 T-Free Variables Lemmata
	5.2.2 Precise typing lemmata
	5.2.3 Invertible typing lemmata
	5.2.4 Dereference lemmata
	5.2.5 Typing equivalence lemmata
	5.2.6 Reference lemmata
	5.2.7 Restricted Subtyping Lemmata
	5.2.8 Context shortening lemmata
	5.2.9 Mutation lemmata

	5.3 Reduction lemmata
	5.3.1 Helper lemmata for progress and preservation
	5.3.2 Read lemmata
	5.3.3 Write lemmata
	5.3.4 Apply lemmata
	5.3.5 LetNew lemmata
	5.3.6 LetPush lemmata
	5.3.7 LetLoc lemmata
	5.3.8 Reduction equivalence

	5.4 Theorems

