
Hunting Bugs Inside Web Applications★

David Hauzar and Jan Kofroň

Department of Distributed and Dependable Systems
Faculty of Mathematics and Physics

Charles University in Prague, Czech Republic

Abstract. In recent years, focus of business world has been moved to-
wards the Internet. Web applications provide a generous interface non-
stop thus offering to malicious users a wide spectrum of possible attacks.
Consequently, the security of web applications has become a crucial issue.
The state-of-the-art tools for bug discovery in languages used for web
application development, such as PHP, suffer from a relatively high false-
positive rate and low coverage of real errors; this is caused mainly by the
dynamic nature of such languages and path-insensivity of the tools. In
this paper, we will demonstrate weaknesses of the tools and describe
our novel approach addressing these issues. It combines path-sensitive
static analysis, concrete and symbolic execution, literal analysis, taint
analysis and type analysis to handle the dynamism of PHP. We show
how our technique handles some of the situations where other tools fail
on examples.

1 Introduction

Recently, as business world has moved its focus towards the Internet, a num-
ber of applications have been moved on-line, and this trend is far from being
dropped. According to CENSUS [16], the US retail sales in 2010 realized on-line
are estimated to reach over 160 billion US$. Safety and security of the web ap-
plications involved in such transactions is therefore of highest interest of (not
only) business people.

A typical web application is available and running in the 24/7 mode, thus
not putting any time pressure on hackers and malicious users trying to exploit
security holes inside them; a quite generous interface these applications provide
further widens the hackers’ field. Amongst the 25 most common programming
errors, those specific to web applications form a significant part of this group [5];
the examples include improper neutralization of SQL commands, cross-site re-
quest forgery, and missing authorization.

The most common programming language used at the server side is PHP [12].
Although it is currently losing a bit of market share, there are a huge number of
applications written in this language that deserve attention and effort towards
their security [15]. While the current, fifth version of PHP was released already

★ This work was partially supported by Charles University Foundation grant 431011
and the grant SVV-2011-263312.

2 D. Hauzar and J. Kofroň

some time ago, it was the fourth version more than ten years ago that introduced
objects into the language making it more convenient for development of larger
projects. Despite this fact, however, PHP features many special attributes that
make it different from common programming languages, especially in the sense of
dynamism. The examples are inclusion of a file specified by a runtime-computed
filename and the eval construct allowing runtime construction of code that is
executed afterwards.This makes it hard or sometimes even impossible to apply
the same techniques and tools for finding bugs or for correctness verification as
in the case of “non-web” programming languages.

1.1 Problem statement and goals

Security issues related to web applications can have (and they do) significant
impact on the trustworthiness and reliability of on-line transactions, not only
in the business domain; consider, e.g., leakage of classified information from
a “secured” database. A lot of attention have been paid to the development
of methods and tools that would help in debugging of these applications or
establishing their correctness in some sense, since the methods for “non-web”
languages cannot be easily applied. The current state-of-the-art tools, however,
still suffer from low error coverage, a relatively high false-positive rate, and
often also from a weak support of language constructs, such as classes, dynamic
includes, and the eval statement [8, 17].

In this paper, we propose a method for identification of bugs inside web
applications written in PHP caused by data flow of unsanitized inputs from
the user to sinks (SQL queries, URL constructions, output in general, etc.).
We describe our method and demonstrate benefits of our approach over those
present in related tools on a simple example.

The rest of the paper is structured as follows: In Sect. 2, we describe the
most problematic errors inside of web applications written in PHP. In Sect. 3,
we discuss properties of the tools in this area and present the results of running
one of them on an example. Sect. 4 proposes our approach to analysis of PHP
source code, and demonstrates our approach on examples. Sect. 5 summarizes
the paper and proposes directions for future work.

2 Errors inside web applications

A huge number of security holes inside web applications can be grouped together
under common roof that is characterized by allowing data propagation from user
input (e.g. form fields on a web page) into database queries, URLs, JavaScript
code, etc. (sinks) without checking for being malicious. These can be prevented
by filtering user input, escaping the output, and by keeping track of the input
data. Filtering input is a process of preventing invalid data from entering the
application. Blacklist filtering excludes malicious data, while whitelist filtering
excludes all data except for that explicitly listed; thus it is distinctively safer

Hunting Bugs Inside Web Applications 3

than blacklist filtering due to the possibility of a missing item in the list. Escap-
ing or encoding special characters the application outputs prevents injection of
malicious code or data. Keeping track of the input data comprises of identifying
those data that the input can influence, identifying the influence points, and
determining the extent of the influence.

2.1 Improper flow of data

To track the flow of data in an application, taint analysis can be used to find the
data paths from sources to sinks. Taint analysis marks data representing sources
as tainted and then propagates the taint markings. Data is tainted if it can be
influenced by the user and it is not sanitized.

Sources are program points through which data enters a program. An at-
tacker can provide malicious data as user input encoded in URL and HTTP
headers, data stored in cookies, and elements of the $ SERVER array. It is also
appropriate to track data obtained from a filesystem, session data store, and
output of database queries. Even though in theory this data should be safe, in
practice there are security exploits giving the attacker control over this data. It
is clear that some sources represent larger security threat than others and it is
necessary not only to “taint” data but also to distinguish between different taint
sources.

Sinks represent the program points (commands) where inappropriate input
can cause a security threat. Examples of the sinks include commands for sending
data to a browser, sending data to a database, executing data, names of dynam-
ically included files, opening files, and executing arbitrary system commands.

The process of sanitization is specific for each kind of sources and sinks.
Moreover, the extent of sanitization depends on the level of required protection
and also on the application logic.

Basic level of protection can be achieved by escaping the output. Escap-
ing the data that can be manipulated by an attacker using a built-in function
htmlentities prior to sending them to a browser prevents cross site script-
ing (XSS) attacks while SQL injection attacks can be prevented by escaping
the data before sending them to a database—e.g., by using a built-in function
mysql real escape string in case of MySQL database.

Escaping the output does not protect against sensitive information leakage,
though. Consider an application that lets a user to choose among multiple topics
and then displays messages related to selected topic. Consider that some topics
are available only for registered users. If the application does not filter the topics
for non-registered users, even a non-registered user can manipulate the input and
see messages available only for registered users. Filtering the input should be
employed for example whenever input data reaches a database query, dynamic
include, operations that executes the input, or open a file. Next, filtering the
input prevents inserting invalid data into a database. The user input going from
a source to a sink is considered as sanitized with respect to whitelist filtering
if the data in source have a finite number of possible values. It is considered
as sanitized with respect to blacklist filtering if there are some restrictions over

4 D. Hauzar and J. Kofroň

possible values in the source. Note that the range of possible values in the source
and restrictions over possible values depends on the specification of a particular
application and should be inspected by a developer or a security auditor. Also
note that symbolic execution is necessary to determine this information.

Filtering itself does not assure the absolute security of the application. Con-
sider an application that tracks the user name of a user that is logged in via a
URL (or a hidden form field, or a cookie), reads an e-mail address from a form
and then associates the e-mail with the user name in the database. The fact that
the user name is tracked in the URL means that it is a part of the input, the
attacker can manipulate it and change the e-mail of another user. Note that es-
caping or filtering the user name does not prevent this vulnerability. This kind of
attacks is called semantic URL attacks, spoofed form submissions, and spoofed
HTTP requests. An indicator of vulnerabilities that can lead to such attacks is
updating information that is identified by the data that can be manipulated by
the user. In these cases, the developer should thoroughly check whether it is not
a security issue.

A common fix to the vulnerabilities mentioned above is to use a session
mechanism (via URL or cookie). However, even this protection can be broken
by so called Cross-Site Request Forgeries (CSRF) attacks. These vulnerabilities
are indicated by use of data that can be manipulated by the user in a critical
command that can be executed only under certain privileges. The fix of the
example is to generate a random token prior to requesting data from the user,
store the token on the server, embed it to the URL or the form and then to
check whether the request contains the token.

3 State of the art

Huang et al. [9] developed intraprocedural static analysis for PHP applications
in WebSSARI tool. Xie [20] discusses the limitations of his approach, in partic-
ular that it is interprocedural and it does not model dynamic features such as
dynamic arrays, objects, dynamic variables, and dynamic includes. To identify
vulnerabilities, the approach performs taint analysis. Their approach does not
consider a custom sanitization, the data are considered to be sanitized if they
are processed with a specified sanitization function.

The approach of Xie et al. [20] uses inter-procedural analysis to find SQL in-
jection vulnerabilities in PHP applications. They model automatic conversion of
particular scalar types, uninitialized variables, simple tables, and include state-
ments. However, they leave important parts of PHP unmodeled. In particular,
they do not model references, object oriented features of PHP, and they ignore
recursive function calls. To model sanitization process, the approach performs
taint analysis. Sanitization can occur via calls to specified sanitization functions,
casting to safe types, and regular expression match. That is, the approach keeps
a database of sanitizing regular expressions.

Wasserman et al. [18, 19] use grammar-based string analysis following Mi-
namide [11] to find the set of possible string values of a given variable at a given

Hunting Bugs Inside Web Applications 5

program point and gains this information to detect SQL injections. However, the
employed analysis has an incomplete support for references and does not track
type conversions.

Pixy [10] performs taint analysis of PHP programs and it provides infor-
mation about the flow of tainted data using dependence graphs. It uses literal
analysis to resolve include statements and perform alias analysis. However, it
does not model aliases between variables and members of an array. Next, Pixy
lacks type inference, does not model variable-variables and variable-indices and
provides only a very limited support of object oriented features. Moreover, simi-
larly to WebSSARI it performs only simple taint analysis and does not consider
custom sanitization routines.

Balzarotti et al. [3] extended Pixy to perform the analysis of the sanitization
process and thus are able to deal with a custom sanitization. They combine static
and dynamic analysis techniques to verify PHP programs. They perform string
analysis through language-based replacement and represent values of variables
in concrete program points using finite state automata. They also track what
parts of strings are tainted. Static analysis that they employ is based on Pixy
thus has the same limitations. Moreover, the database of attack strings may not
be complete, it can miss vulnerabilities, and can cause false alarms.

Yu et al. [21] developed an automata-based approach for verification of string
operations in PHP programs and incorporate the widening operator to tackle the
problem of handling variables updated in loops. Similarly as [3], they extended
Pixy to perform the analysis of the sanitization process; however, they do not
employ the dynamic phase.

Biggar et al. [4] perform context sensitive, flow sensitive, interprocedural
static analysis of PHP in order to gain information usable for code optimizatons
in their PHP compiler. They combine alias analysis, type inference and literal
analysis, model arrays, variable variables, objects, references, scalar operations,
casts, and weak type conversions. However, their analysis is closely tailored with
their intent—to gain information usable for code optimizations. They gather in-
formation that must hold and track information that can hold only in a very
limited way. In most cases they approximate information that can hold as un-
known. This is not appropriate when the intent is to explore all possible behavior
of the code.

The approach of Artzi et al. [1] generates test inputs automatically, monitors
web applications for crashes, and validates that the output conforms to the
HTML specification. The approach utilizes symbolic execution to capture logical
constraints on inputs, based on these constraints, it creates new inputs that
would increase the code coverage. By running an application on concrete inputs
and using PHP runtime, they avoid the problem of modeling dynamic statements
of PHP, undefined semantics of PHP, and their approach is naturally path-
sensitive.

Up to our knowledge, a path-sensitive approach to static analysis for PHP
has not been yet published. A completely path-sensitive analysis is expensive,
however, there has been a lot of research done in the context of other languages,

6 D. Hauzar and J. Kofroň

especially C language to tackle this problem. ESP [6] involves light-weight path-
sensitive analysis that selectively joins or separate the contributions according to
the different paths based on a heuristics that conditional tests resulting in differ-
ent property-related behavior should be tracked separately, while other branches
should be merged. Note that in the context of taint analysis, property-related
behavior would be given by taint statuses of variables. Unfortunately, this heuris-
tics sometimes fail. Dhurjati et al. [7] tackle this problem by iteratively adjust-
ing the merge criterion with new path predicates that are selected using several
heuristics. Balakrishnan et al. [2] improve path-insensitive analysis to obtain
the effects of path-sensitive analyses by a detection of semantically unfeasible
paths using path-insensitive abstract interpreter and performing a sequence of
backward and forward runs. Next, they use a technique of syntactic language re-
finement to exclude semantically unfeasible paths from a program during static
analysis. Snelting et al. [13] use program slicing and constraint solving to con-
struct and analyze path conditions—conditions that are defined on program’s
input variables and must hold for information flow between two program points.
Their approach is not complete. The solution of the conditions that they con-
struct can be false witness. That is, it may not lead to intended information flow.
Taghdiri et al. [14] tackle this problem by employing counterexample-guided ab-
straction refinement (CEGAR). They recognize false witness by executing them
and monitoring their executions, and eliminating them by automatically refining
path conditions in an iterative way.

3.1 Demonstrating existing tool on examples

In this section, we show the limits and weaknesses of the Pixy tool [10] on a
few PHP code fragments. We decided to demonstrate just the Pixy tool, since
its analysis engine represents, as to our best knowledge, the best analysis engine
available for finding vulnerabilities in PHP code. The Stranger [21] tool employs
more sophisticated techniques such as string analysis and thus provides more
information for vulnerabilities detection; however it is built on the same analysis
engine and shares the same limitations.

Due to the fact that Pixy does not model array aliasing correctly, a possible
XSS attack is reported at line 6 in Fig. 1. Another issue connected with arrays
is the representation of indices. That is, it does not handle variable indices.
A different source of false-positives is path-insensitivity; the $name variable is
sanitized by the routine htmlspecialchars in all cases, however, Pixy reports
a possible XSS attack at line 15. The last type of a code fragment that causes a
false positive alarm and that we present here inheres in omitting the semantics
of string operations. The code fragment starting at line 17, simplified for the
sake of explanation, includes a file named “included.php” (note that the body
of the while cycle is not executed at all, since the string $filename does not
contain the “..” substring). Pixy, at this point, since it is not able to evaluate
the $filename value, simply ignores the include statement and reports error
at line 24 independently of the content of the included file, which can cause a
false positive, as well as a false negative alarm.

Hunting Bugs Inside Web Applications 7

1 $users[1] = ’fred’;
2 $users[2] = $ GET[’from user’];
3
4 $t users = & $users;
5 // Pixy reports the XSS vulnerability
6 echo $t users[1];
7
8 $tainted = true;
9 if (tainted) {

10 $name = $ GET[’name’];
11 } else {
12 $name = ’bob’;
13 }
14 // Pixy reports the XSS vulnerability here
15 echo $tainted ? htmlspecialchars($name) : $name;
16
17 $ext = ”.php”;
18 $filename = ’included’ . $ext;

19 while (strpos($filename, ’..’)) {
20 $filename = preg replace(’..’, ’.’, $filename);
21 }
22 include($filename);
23 // Pixy reports the XSS vulnerability
24 echo $users[2];
25
26 // Pixy misses the XSS vulnerability here
27 printFirstIndex(’tainted’, $users[1], $users[2]);
28 function printFirstIndex($varName, $untainted, $tainted) {
29 echo $$varName;
30 }
31
32 $user ids = 2;
33 // because $user ids is scalar, the following line does nothing
34 $user ids[2] = $ GET[’user id’];
35 // Pixy reports the XSS vulnerability here
36 echo $user ids[2];

Fig. 1. Dynamic features of PHP causing false alarms and missed vulnerabilities in
Pixy tool.

Besides false positives, Pixy also reports several cases in the false-negative
manner. The first PHP construct that is not correctly handled by Pixy are
variable variables, represented by the $$varName at line 29. Another type of
false negative stems from insufficient modeling of the type system. The fragment
starting at line 32 demonstrates this issue.

The last limitation of Pixy we mention here is that Pixy does not model
attributes of objects, so, according to the use of the objects, both false negative
and false positive alarms can arise.

At the end of Sect. 4, we demonstrate how these situations are handled when
following the approach proposed in this paper.

4 Our approach

In Sect. 2 we claim that most of security errors inside web applications can
be prevented by sanitizing data paths from sources of untrusted data to criti-
cal commands—sinks. Our approach is to provide the developer with sufficient
information so that he/she can assure a correct sanitization. In our case, this
means employing an analysis that computes data flow information using depen-
dence graphs [3], identify sources of sensitive data, sinks, and at each program
point tracking:

– the taint status for each variable at this program point,
– the set of possible values of each variable at this program point,
– the set of conditions defined on program’s variables that hold at this program

point, and
– the set of possible types of each variable at this program point.

In this section, we describe how we gain this information, how we use it to
detect vulnerabilities, and demonstrate it on examples.

8 D. Hauzar and J. Kofroň

4.1 Outline

The main challenge of the analysis is the combination of an arbitrary user input
and the dynamism of PHP. To address this problem, we propose the analysis
that consists of the following steps:

1. Construction of the control-flow graph (CFG).
2. Static analysis of constructed CFG.
3. Detection of vulnerabilities.
4. A path-sensitive validation of vulnerabilities.

Particular dynamic statements such as dynamic includes, eval statements,
and polymorphic calls to methods make a precise construction of CFG impos-
sible. To face this problem, the analysis first resolves only such dynamic state-
ments that are directly given by literals and leaves the remaining statements
unresolved. Then, it performs static analysis of obtained CFG. Static analysis
gains information about possible values of variables and about possible types and
aliases. This information is used to construct more precise CFG that is analyzed
again. This can lead to resolution of additional dynamic statements, and this
process is iteratively repeated as long as new dynamic statements are resolved.

Next, vulnerabilities are detected based on gained information from static
analysis. The employed static analysis is path-insensitive. However, it tracks the
fact whether the given information holds on all paths from an entry point of the
application to a given program point—are certain or only on some paths—are
uncertain. If there is some information that is uncertain and it is needed to mark
a vulnerability, the feasibility of the information is validated path-sensitively.

To improve the precision of CFG construction, each literal value in dynamic
statement that is uncertain can be also validated path-sensitively. However, be-
cause this validation can be expensive, this is optional.

4.2 Modeling of PHP data structures

Correct modeling PHP data structures constitutes the basis of static analysis. We
use a points-to graph similar to that introduced in [4] to model variables, array
indices, and object fields. The points-to graph contains three types of nodes. A
storage node represents a symbol-table, an array, or an object. An index node
represents a variable, an array index, or an object field. Each index node is a child
of a single storage node. Next, a value node represents a scalar value and it is a
child of a single index node. The points-to graph contains directed edges from a
storage node to each index node that belongs to the storage node, directed edges
from each index node to the value or the storage nodes representing possible
values of the index node. Finally, in the case of aliases, there is a reference edge
between two storage or two index nodes.

There is one storage node for each array or object, one storage node for each
class holding static fields of the class, one storage node for each called function
local symbol table, and one additional storage node for the global symbol table.

Hunting Bugs Inside Web Applications 9

Uncertainty is captured in this model as follows: each edge has the certainty
information—it represents either certain or uncertain information. Next, each
storage node contains an unknown field representing index nodes that have stat-
ically unknown indices, e.g., $a[$dyn] or $$dyn where the value of the variable
$dyn is statically unknown. Note that in the latter case, the corresponding stor-
age node can be local or global symbol table. The analysis propagates the un-
certainty information through assignments and performs strong updates when
possible. A strong update occurs when it is known that an assignment completely
overwrites a reference relation or a previous value of a given variable, weak up-
date occurs if the information about the target of the assignment is uncertain.
That is, the assignment has more possible targets.

The same way as in [4], the value of an uninitialized node takes its value from
the unknown field of the appropriate storage node. If the node does not exist,
the uninitialized value is set to null.

4.3 Static analysis

We use context sensitive, control-flow sensitive inter-procedural path-insensitive
static analysis. For each program variable and each program point, we track
information about its possible literal values, its types, its taint status, and the
set of conditions over variables that must hold in this program poin tand the
certainty of this information. At joint points, the combining operation for both
literal values of variables and types is union; if some information is not present
in all branches, it is uncertain.

Information about the taint status is tracked in the following way. We use
different taint markings for different sources of data—i.e., we use different taint
marking for an input from http headers, user cookies, a database, session, etc.
Note that contrary to other approaches, we do not remove taint status after
processing data with any operation. This has two reasons: (1) A correct escaping
operation is identified not only by the source of data but also by the sink—the
critical command in which data is used. (2) We use the taint information to
detect data that can be manipulated by the user. Then, we use this information
to detect additional vulnerabilites to those caused by improper escaping. Instead
of removing the taint status, we track also the sanitization status. That is, for
each sanitization routine and for each taint marking, we track whether the data
with the taint marking are sanitized using a sanitization routine. The taint status
is propagated through an operation if there exists an input of the operation that
is tainted, sanitization status is propagated if all inputs of an operation that are
tainted are sanitized.

We use a combination of concrete and symbolic execution to handle oper-
ations with literals. For each operation, we use two versions of instructions—
explicit and symbolic. If all inputs of an operation are concrete, an explicit
version of the operation is used, if some input of the operation is symbolic, the
symbolic version of the operation is used. By using concrete operations, we re-
duce the imprecision caused by modeling of such operations. We face the problem
of undefined semantics of PHP in the same way as in [4] and [1] by using the

10 D. Hauzar and J. Kofroň

reference PHP implementation instead of reimplementing the concrete versions
of instructions.

As to modeling of the symbolic versions of instructions, we model arithmetic
operations as well as operations with strings. For modeling string operations, we
use automata-based approach presented in [21]. It makes it possible to handle
string concatenation, string replacement, and string restriction. We use string
restriction to restrict the value of a string variable based on the branch condition.

4.4 Identifying vulnerabilities

After CFG is constructed and static analysis is completed, we use CFG and
alias information to construct the static single assignment form (SSA) of the
program. Then, we infer the set of conditions that must hold at each program
point using conditional statements (e.g., if and while statements). That is, at the
start of a positive branch corresponding to a given conditional statement, the
condition corresponding to this statement is added and at the start of a negative
branch, negation of this condition is added. At the joint point corresponding to
the conditional statement, the condition is removed.

Now, we have all data necessary to identify potential vulnerabilities in the
analyzed application. We divide the vulnerabilities into several categories and
introduce filters to display security warnings of selected categories only.

To identify vulnerabilities, we have to find all critical commands that input
suspicious data. That is, tainted data—those which can be influenced by the
user of the web application and null values, which can arise due to the bugs
in filtering. Next, we analyze the taint and sanitization statuses of this data
and identify those that are not properly escaped. For each taint marking and
critical command there is a list of escaping operations. The list is stored in the
configuration of the program.

We handle custom sanitization routines in the following way. First, by em-
ploying literal analysis we are able to prove the absence of given attack patterns
in the same way as in [21]. Then, we track sanitization status also for string re-
placement operations. These operations are potential sanitizers. When the anal-
ysis detects a vulnerability, it supplies a list of such potential sanitizers to the
developer. Inspection of potential sanitizers can help the developer to reveal false
alarms.

Next, we mark all data that are used in critical commands and are tainted or
contain null values as potentially not filtered. We mark the critical commands
that update data identified (e.g., the where clause in SQL queries) by tainted
data with the highest importance and the critical commands that use tainted
data in other way with a lower importance. The developer can then analyze a
filtering status of such data by inspecting their possible values. We also make it
possible to inspect the restrictions on data by showing the conditions that must
hold at a given program point. This way, the developer can discover errors in
the blacklist filtering.

Next category of potential vulnerabilites consists of those that can make the
CSRF attacks possible. We identify the critical commands that update data and

Hunting Bugs Inside Web Applications 11

use data related to the current session and are not guarded by any condition
comparing the token in the request with some data stored at the server, e.g.,
using a session mechanism.

Finally, for vulnerabilities that are caused by the flow of data from a source
to a sink through some data path, we construct dependence graphs using the
technique of slicing. We reduce this graph to contain only those parts that are
relevant for the checked vulnerability. Dependence graphs can be manually in-
spected by the developer and used to identify vulnerable influence points in the
data flow and thus to reveal the cause of the detected vulnerability.

4.5 Path-sensitivity

The analysis described in the previous section is path-insensitive. This is one
of the reasons why the vulnerabilities reported by the analysis may not be real
(false positives). That is, all paths leading to a given vulnerability can be unfea-
sible. To deal with this problem, we use certainty information gained during the
analysis to identify vulnerabilities that do not depend on path-sensitivity. We
report these vulnarebilities immediately together with the reduced dependency
graph to the user. Next, for each vulnerability that is uncertain we try to prove
the unfeasibility of paths leading to the vulnerability and report only the vul-
nerabilities corresponding to paths that were not proven to be unfeasible, again,
together with the reduced dependency graphs.

To prove the unfeasibility of paths leading to a vulnerability, we identify
program points that contribute to the uncertainty of the vulnerability. These
program points correspond to (1) join points of branching statements where
some branches do not lead to the vulnerability or causes of the vulnerability
is different and (2) assignments of data that cannot be certainly identified and
that can lead to the vulnerability. An example of the case (1) is at line 7 of
Figure 2. The fact whether the variable $message is tainted is uncertain and it
depends on the condition $input = 1. An example of the case (2) is in the line
9 of Figure 2. Again, the fact whether the variable is tainted is uncertain and it
depends on the same condition.

We collect the conditions that must hold in order that these program points
lead to a vulnerability and the conditions that must hold to reach the critical
command corresponding to the vulnerability. Then we use a theorem prover to
prove the conjunction of these conditions. If the theorem prover finds a contra-
diction in these conditions, the vulnerability is unfeasible. If the theorem prover
proves the conditions, the vulnerability can be still unfeasible, because of de-
pendencies between variables in the conditions. Using the information from the
dependence graph, the information about the solution of the conditions, and
symbolic execution, we try to find these dependencies and add the conditions
corresponding to these dependencies.

Note that we do not model all operations precisely, hence the approach cannot
be complete. That is, false positives can still appear even after the path-sensitive
analysis.

12 D. Hauzar and J. Kofroň

1 $message = ””;
2 $value = ””;
3 if ($input == 3) {
4 $message = $GET[’message’];

5 } // $input == 3 => $message is tainted
6 $a = array(’1’, ’2’, $ GET[’user value’]);
7 $value = a[$input]; // $input == 3 => $value is tainted
8 echo $message . $value;

Fig. 2. Program points that contribute to the uncertainty of a vulnerability and con-
ditions that must hold for the vulnerability to be feasible.

4.6 Demonstration of our approach—Evaluation

We demonstrate our approach on two examples. First, we show that our approach
is capable to handle the code fragments in Fig. 1 correctly. These code fragments
contain dynamic statements. Then, we show how our approach can detect more
complex vulnerabilities present in the code in Fig. 3.

Handling dynamic features. Using the code fragments in Fig. 1 we show,
how our approach models PHP data structures, references, operations, and how
it resolves dynamic statements. We also show how it is capable to prove the un-
feasibility of a vulnerability detected by the path-insensitive step of the analysis.

If Fig. 1, the statement at line 1 creates an index node representing the
variable $users and makes it a child of the storage node that represents the
global symbol table. Because it is the first use of this variable, the presence of
the square brackets means that the variable is of the array type. Hence, the
statement creates a storage node representing the array and a directed edge
from the index node representing the variable $users to this storage node. The
statement also creates an index node representing the index 1 in the array,
an edge from the node representing the array to the value node, a value node
representing the literal ′fred′ and an edge between the index node and the value
node. The statement at line 2 creates another index node representing the index
2 and a value node, appropriate edges and associates a taint status with the
value node. Next, the statement at line 4 creates an index node representing the
variable t users, makes it a child of the storage node that represents the global
symbol table and then creates a reference edge between this node and the index
node representing the variable $users. This reference is then used at line 6 to
find out the appropriate storage node. The index node representing the index 1
in this storage node is not tainted, thus no vulnerability is reported—contrary
to Pixy that reports a false alarm.

In the same way as Pixy, path-insensitive phase of our approach detects a
potential vulnerability at line 15. However, the information about the taint status
is uncertain. The condition that must hold to make the variable name tainted
is tainted = true, the condition that must hold to reach the appropriate critical
command is tainted = false. The conjunction of these conditions is unfeasible,
thus no vulnerability is reported.

All inputs to the operation of concatenation at line 18 are concrete, hence
the analysis can use the concrete version of the instruction which results in a

Hunting Bugs Inside Web Applications 13

concrete, precise value. Similarly, the analysis uses the concrete version in the
case of the operation strpos at line 19. Consequently, the value of the variable
$filename is known at line 22, the dynamic include can be resolved. Then, more
precise CFG is constructed and the static analysis step is performed with this
refined CFG. Note that because we model the important operations symbolically,
our analysis is able to handle even more complex cases where inputs of operations
are not concrete.

The analysis correctly handles variable variable at line 29. The literal analysis
determines that the value of variable $varName is ′tainted′; the index node
corresponding to this value is then searched in the storage node corresponding
to the local symbol table of the function and then also in the storage node
corresponding to the global symbol table. Here, the node corresponding to the
variable $tainted is found in the former one and a vulnerability is reported.

The analysis performs type inference, hence, it is known that the variable
$user ids is scalar at line 34, and does not perform the assignment. Clearly, this
statement is likely a bug, so the analysis reports a warning in such cases.

Discovering more complex vulnerabilities. Now we demonstrate how our
approach handles the code in Fig. 3 and how it helps to find vulnerabilities
within it. The presented code can be a part of an application that provides
an interface for viewing messages of selected topics. Every user has associated
one topic that he/she is not allowed to view and has to pay if he/she wants to
change this topic. The user can also update his/her email address and under
certain circumstances, tracked in the session, insert a message. We will describe
all steps of the analysis:

(1) Construction of CFG and static analysis

First, the analysis constructs CFG of the analyzed program. Here, it encoun-
ters a problem at line 16. The method to be called depends on the type of the
object and it is not known yet. Hence, this call is ignored and since it is the last
statement of the “main” part, the construction of CFG is complete. Constructed
CFG contains the nodes corresponding to the switch statement and the calls to
constructors.

Next, the static analysis phase is performed on constructed CFG. This anal-
ysis determines a set of possible types of the object $action and thus the set
of possible methods that could be called at line 16. Using this information, the
analysis constructs new CFG. For each possible type, there will be one call to
the method exec action in the context of this type. This method contains a
dynamic include at line 22. From the first pass of the static analysis phase, a
set of possible values of the variable $ GET [′action′] is known. The set equals
to {′view message′, ′update topic′, ′update email′, ′insert message′, ∗}. Note
that ∗ represents an arbitrary value. Moreover, because there is no additional
node in new CFG that manipulates this variable, this information would not be
refined by performing the static analysis phase on new CFG. Clearly, the precise
value of the variable $ GET [′action′] is tied with the type of the object that
calls the method exec action in the switcℎ statement; however this informa-

14 D. Hauzar and J. Kofroň

tion is lost at the joint point of the switch statement. There are several options
how to proceed: (1) The analysis can employ a path-sensitive step and try to
prove unfeasibility of the values in the set. Alternatively, (2) it can resolve the
include statement for all values in the set. Finally, (3) it can keep the include
unresolved and report a warning to the developer. In the former two cases, the
value ∗ corresponds to a vulnerability. It is uncertain, thus it will be validated
in the path-sensitive step. Note that if files corresponding to infeasible values
would be included and if there would be any vulnerabilites in the included files,
the analysis would employ the path-sensitive phase for these vulnerabilities and
prove unfeasibility of these values on demand. Also note that such an indirect
relation between the type of the object and the value of a global variable not only
complicates the analysis but also readability of the code and should be avoided
in the first place. We will investigate all these strategies and possibly make the
strategy selection configurable. Then, the version of the method do action corre-
sponding to the type of the object action is processed. Now, there is no dynamic
statement present and hence the construction of CFG is straightforward.

(2) Identifying vulnerabilities

Based on the information gained from the static analysis step, the analysis
detects vulnerabilities and divides them into several categories. The first category
of vulnerabilities is formed by unescaped data in critical commands. The analysis
detects that the variable $topic used in the critical command mysql query has
the taint status from the $ GET array and has not sanitization status necessary
for this command—mysql real escape string. This information is certain, thus
this vulnerability is reported to the user together with reduced dependence graph
showing the propagation of the taint status. Next, the variable $message used in
the critical command ecℎo has the same taint status and again has not sanitiza-
tion status necessary for this command—ℎtmlentities in this case. However, the
taint status is uncertain, thus this vulnerability is passed to the path-sensitive
phase of the analysis.

The second category of vulnerabilities is formed by those that are present due
to improper (custom) sanitization routines. We detect that the tainted variable
$new email used in the critical command mysql query at line 66 is not sanitized
with any standard sanitizing function. However, it has the sanitization status
preg replace. Moreover, the analysis models this function and the intersection
of the symbolical value of the variable with the attack patterns is empty. Because
the list of the attack patterns is not complete, this does not imply that data are
properly sanitized. However, the importance of this potential vulnerability is
relatively low, hence, only a warning pointing to the preg replace function is
reported.

Another category is formed by the vulnerabilities that are caused by an unfil-
tered input of critical commands that update data. The variable $ GET [′user′]
in the critical command mysql query at line 54 is not filtered, thus a vulner-
ability is reported. Note that updating data of an arbitrary user is suspicious,
however, it could be intended. Next, a vulnerability is reported due to a usage of
the variable $ban topic in the same command. At first sight, this variable seems

Hunting Bugs Inside Web Applications 15

to be properly filtered, however, there is the null value present in the set of
its possible values. The absence of the default branch in the switcℎ statement
starting at line 46 causes the variable $ban topic to be uninitialized and thus
produces the null value that is then inserted into the database. Note that this
enables a user to view messages of an arbitrary topic—see the command that
selects messages from the database at line 34. Note that this vulnerability is
uncertain and it is thus passed to the path sensitive phase.

The next category of potential vulnerabilities is the use of unfiltered data in
other (not data-updating) critical commands. The variable $topic in the critical
command that selects data from the database at line 34 is not filtered and
thus reported. Note that in this case, the filtering is done via the condition
message.topic ! = users.ban topic in the database query; this report is therefore
a false alarm. Next, the variable $user in the same command is not filtered.
This is a real vulnerability, because it enables an attacker to view messages as
a different user. Note that the variable $importance in the same command is
filtered, and not reported. All these vulnerabilities are certain, and, therefore,
immediately reported. Finally, the variable $message used in the ecℎo command
at line 89 is also detected not to be filtered. However, in this case the information
is uncertain and thus passed to the path-sensitive phase.

The last category consists of vulnerabilities that make CSRF attacks possible.
CSRF vulnerability can arise when a critical command that updates some data
uses data tainted with a session status and this command is not guarded by any
condition comparing the token in the request with the token stored at the server.
This is the case of the command mysql query at line 65, thus a vulnerability is
reported.

(3) Path-sensitive validation of vulnerabilities

Uncertain vulnerability corresponds to use of unescaped and unfiltered data
in the critical command at line 89. At this program point, the condition
$insert = false holds. We conjoin this condition with conditions gained us-
ing program points that contribute to the uncertainty of the vulnerability. The
only such program point is the joint point of the switcℎ statement starting at
line 80. To expose the vulnerability, the variable $message must be tainted. It
gains an uncertain taint status at this program point. That is, it is tainted only
if the control flow goes with the first or second branch. This corresponds to the
condition ($message = 1∨ $message = 2). The conjunction of these two condi-
tions is passed to the theorem prover. Since it is satisfiable, the unfeasibility of
the vulnerability is not detected. However, there is a dependency between the
variable $user status and the variable $insert captured using the if statement
starting at line 76. This dependency corresponds to the condition:

(($user status = 1 ∨ user status = 2)⇒ $insert = true)∧

(($user status ∕= 1 ∧ user status ∕= 2)⇒ $insert = false)

16 D. Hauzar and J. Kofroň

This condition is conjoined with the previous (conjoined) condition and again
passed to the theorem prover. Now the theorem prover proves the unfeasibility1

of the vulnerability.
Next, a vulnerability that is uncertain is the vulnerability corresponding to

the presence of the null value in the set of values of the variable $ban topic
at the line 54. The critical command is not guarded by any condition. The
variable keeps the value null, if the condition ($ GET [′ban topic′] ∕=′ world′ ∧
$ GET [′ban topic′] ∕=′ science′) holds. This condition is satisfiable and there
are no data dependencies between any variables in the condition and thus the
vulnerability is feasible and it is passed to the user together with the solution of
the condition.

1 <?php
2 switch ($ GET[’action’]) {
3 case ’view message’:
4 $action = new ViewMessageAction();
5 break;
6 case ’update topic’:
7 $action = new UpdateBannedTopicAction();
8 break;
9 case ’update email’:

10 $action = new UpdateEmailAction();
11 break;
12 case ’insert message’:
13 $action = new InsertMessageAction();
14 break;
15 }
16 $action−>exec action();
17
18 abstract class Action {
19 abstract protected function do action();
20 public function exec action() {
21 include $ GET[’action’] . ”.inc”;
22 $this−>do action();
23 }
24 }
25
26 class ViewMessageAction extends Action {
27 protected function do action() {
28 $topic = $ GET[’topic’];
29 $user = $ GET[’user’];
30 $importance = $ GET[’importance’];
31 if ($importance < MIN IMPORTANCE ∣∣ $importance >=

MAX IMPORTANCE) {
32 exit();
33 }
34 $result = mysql query(”SELECT ∗ FROM messages, users
35 WHERE messages.topic = ’” . $topic . ”’ AND
36 messages.topic != users.ban topic AND
37 messages.importance <= ’” . $importance . ”’ AND
38 users.name = ’” . mysql real escape string($user) . ”’”);
39 // a code that displays messages follows
40 }
41 }
42
43 class UpdateBannedTopicAction extends Action {
44 protected function do action() {
45 if (payment successfull()) {
46 switch($ GET[’ban topic’]) {
47 case ’world’:
48 case ’science’:

49 $ban topic = $ GET[’ban topic’];
50 break;
51 }
52 $result = mysql query(”UPDATE users SET
53 ban topic = ’” . $ban topic . ”’
54 WHERE user = ’” . mysql real escape string($ GET

[’user’]) . ”’”);
55 }
56 }
57 }
58
59 class UpdateEmailAction extends Action {
60 protected function do action() {
61 session start();
62 $user = $ SESSION[’user’];
63 $new email = $ GET[’email’];
64 $new emaill = preg replace(”/[ˆA−Za−z0−9.∖−@]/”,””,

$new email);
65 $result = mysql query(”UPDATE users SET
66 email = ’” .$new emaill . ”’
67 WHERE user = ’” . $user . ”’”);
68 }
69 }
70
71 class InsertMessageAction extends Action {
72 protected function do action() {
73 session start();
74 $user status = $ SESSION[’user status’];
75 if ($user status == 1 ∣∣ $user status == 2) {
76 $insert = true;
77 } else {
78 $insert = false;
79 }
80 switch ($user status) {
81 case 1:
82 $message = $ GET[’message’];
83 case 2:
84 $message = substr(0, 15, $ GET[’message’]);
85 case 3:
86 $message = ”You cannot insert messages.”;
87 }
88 if ($insert == false) {
89 echo $message;
90 exit();
91 }
92 // a code that inserts the message follows
93 }
94 }
95 ?>

Fig. 3. Code fragment that contains several vulnerabilities.

1 user status has to be 1 or 2 AND insert has to be false which contradicts the first
part of the last formula.

Hunting Bugs Inside Web Applications 17

5 Conclusion and future work

While symbolic execution, literal analysis, taint analysis, and type analysis for
PHP applications have been already developed, to our best knowledge, this is the
first approach of combining them into a single analysis. The combination of these
features is powerful and open doors for precise analysis of dynamic languages
such as PHP. The novel contribution of our approach is its path-sensitivity.
Even though false alarms caused by path-insensitivity of existing tools were
reported, to our best knowledge, no approach that addresses this issue has been
published. Last but not least, our approach detects most of vulnerabilities that
can be present in web applications by checking whether the user input is properly
filtered, output of the application is escaped, and keeping track of the input data.
This is done by employing advanced taint analysis, analyzing possible literal
values of variables in critical commands, and using dependence graphs to keep
track of the data.

We believe that the analysis is scalable, expensive path-sensitive step of the
analysis is performed only when it is necessary, e.g. to confirm vulnerabilities
that can be false alarms. This is possible because the path-insensitive step of
the analysis tracks whether the collected information is precise or can be refined
by the path-sensitive step. Moreover, the path-sensitive step can be completely
disabled or performed on demand, e.g., to confirm vulnerabilities of particular
category. Our approach is not complete. That is, false positives can still appear
even after the path-sensitive step. However, precise analysis combined with path-
sensitive step and employed vulnerability detection promise both a lower false-
positive rate and higher error coverage than related approaches.

Once a prototype implementation is completed, we will evaluate its scalability
on real web applications. Future work will also investigate and evaluate existing
techniques to analyze and refine path-conditions and possibly adapt them to be
usable in the context of PHP applications.

References

1. S. Artzi, a. Kiezun, J. Dolby, F. Tip, D. Dig, a. Paradkar, and M. D. Ernst.
Finding Bugs in Web Applications Using Dynamic Test Generation and Explicit-
State Model Checking. IEEE Transactions on Software Engineering, 36(4):474–
494, July 2010.

2. G. Balakrishnan, S. Sankaranarayanan, F. Ivancic, O. Wei, and A. Gupta. Slr:
Path-sensitive analysis through infeasible-path detection and syntactic language
refinement. In M. Alpuente and G. Vidal, editors, Static Analysis, volume 5079 of
Lecture Notes in Computer Science, pages 238–254. Springer Berlin / Heidelberg,
2008.

3. D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna. Saner: Composing Static and Dynamic Analysis to Validate Sanitization
in Web Applications. 2008 IEEE Symposium on Security and Privacy (sp 2008),
pages 387–401, May 2008.

4. P. Biggar and D. Gregg. Static analysis of dynamic scripting languages, 2009.

18 D. Hauzar and J. Kofroň

5. Common weakness enumeration. http://cwe.mitre.org/top25/.
6. M. Das, S. Lerner, and M. Seigle. Esp: path-sensitive program verification in

polynomial time. In Proceedings of the ACM SIGPLAN 2002 Conference on Pro-
gramming language design and implementation, PLDI ’02, pages 57–68, New York,
NY, USA, 2002. ACM.

7. D. Dhurjati, M. Das, and Y. Yang. Path-sensitive dataflow analysis with iterative
refinement. In K. Yi, editor, Static Analysis, volume 4134 of Lecture Notes in
Computer Science, pages 425–442. Springer Berlin / Heidelberg, 2006.

8. J. Fonseca, M. Vieira, and H. Madeira. Testing and comparing web vulnerabil-
ity scanning tools for sql injection and xss attacks. In Proceedings of the 13th
Pacific Rim International Symposium on Dependable Computing, pages 365–372,
Washington, DC, USA, 2007. IEEE Computer Society.

9. Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo. Securing
web application code by static analysis and runtime protection. In Proceedings of
the 13th international conference on World Wide Web, WWW ’04, pages 40–52,
New York, NY, USA, 2004. ACM.

10. N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: a static analysis tool for detecting
Web application vulnerabilities. In 2006 IEEE Symposium on Security and Privacy
(S&P’06), pages 6 pp.–263. Ieee, 2006.

11. Y. Minamide. Static approximation of dynamically generated web pages. In Pro-
ceedings of the 14th international conference on World Wide Web, WWW ’05,
pages 432–441, New York, NY, USA, 2005. ACM.

12. PHP—Personal Home Pages. http://www.php.net.
13. G. Snelting, T. Robschink, and J. Krinke. Efficient path conditions in dependence

graphs for software safety analysis. ACM Trans. Softw. Eng. Methodol., 15:410–
457, October 2006.

14. M. Taghdiri, G. Snelting, and C. Sinz. Information flow analysis via path condition
refinement. In Proceedings of the 7th International conference on Formal aspects
of security and trust, FAST’10, pages 65–79, Berlin, Heidelberg, 2011. Springer-
Verlag.

15. Tiobe Software. Tiobe programming community index for june 2011. http://www.
tiobe.com/index.php/content/paperinfo/tpci/index.html.

16. U.S. Census Bureau News, May 2011. http://www.census.gov/retail/mrts/www/
data/pdf/ec_current.pdf.

17. M. Vieira, N. Antunes, and H. Madeira. Using web security scanners to detect
vulnerabilities in web services. In Dependable Systems Networks, 2009. DSN ’09.
IEEE/IFIP International Conference on, pages 566 –571, 29 2009-july 2 2009.

18. G. Wassermann and Z. Su. Sound and precise analysis of web applications for
injection vulnerabilities. In Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’07, pages 32–41, New
York, NY, USA, 2007. ACM.

19. G. Wassermann and Z. Su. Static detection of cross-site scripting vulnerabilities.
Proceedings of the 13th international conference on Software engineering - ICSE
’08, page 171, 2008.

20. Y. Xie and A. Aiken. 11. static detection of security vulnerabilities in scripting
languages. In 15th USENIX Security Symposium,, pages 179–192, July 2006.

21. F. Yu, M. Alkhalaf, and T. Bultan. Stranger: An automata-based string analysis
tool for php. Tools and Algorithms for the Construction and Analysis of Systems,
pages 154–157, 2010.

