
Guaranteed Latency Applications in Edge-Cloud Environment

Petr Hnetynka
Charles University,

Faculty of Mathematics and Physics
hnetynka@d3s.mf.cuni.cz

Petr Kubat
Charles University,

Faculty of Mathematics and Physics
kubat@d3s.mf.cuni.cz

Rima Al-Ali
Charles University,

Faculty of Mathematics and Physics
alali@d3s.mf.cuni.cz

 Ilias Gerostathopoulos
Fakultät für Informatik,

Technische Universität München
gerostat@in.tum.de

Danylo Khalyeyev
Charles University,

Faculty of Mathematics and Physics
khalyeyev@d3s.mf.cuni.cz

ABSTRACT

Modern Cyber-Physical Systems combine distributed embedded

devices with computation in cloud. The inclusion of cloud in-

creases the smartness of the systems by allowing computationally-

and data-intensive tasks such as complex data analytics, optimiza-

tion and decision making, learning and predictions. However, an

important implication of interacting with the physical world is the

presence of real-time requirements. It puts the cloud in the loop

and requires the cloud to participate in the overall real-time guar-

antees, which poses a difficult problem. In this paper, we address

the problem of providing real-time guarantees (in particular statis-

tical guarantees on response time) by combining edge-cloud pro-

cessing with runtime performance awareness and adaptation.1

CCS CONCEPTS

• Computer systems organization → Architectures → Distributed

architectures → Cloud computing

KEYWORDS

CPS, edge-cloud, guaranteed latency, adaptation

1 INTRODUCTION

Modern Cyber-Physical Systems (CPS) combine distributed em-

bedded devices with computation in cloud. This creates an inte-

grated computation, sensing and control fabric that crosses the

boundary between physical and virtual worlds. Such systems in-

clude applications of smart traffic, smart agriculture, smart power

grid, etc. The extent of these systems typically spans large areas

(countries, continents) and includes thousands or millions of de-

vices (sensors, smartphones, machines, etc.). The inclusion of

cloud increases the systems’ smartness by allowing computation-

ally- and data-intensive tasks such as complex data analytics, op-

timization and decision making, learning and predictions.

An important implication of interacting with the physical

world is the presence of real-time requirements. These come in

the form of end-to-end response time requirements for control,

decision making and visualization. The increasingly strong pres-

sure on providing smart behavior means that even the real-time

tasks, which have been traditionally performed only locally on

embedded devices, need to include computation on the cloud.

This, however, puts the cloud in the loop and requires the cloud to

participate in the overall real-time guarantees, which poses a diffi-

cult problem.

Related work in this area addresses the general unsuitability of

a cloud to give any real-time guarantees by reducing communica-

tion latencies by bringing the cloud closer to user. These tech-

niques come in the form of cloudlets [12], fog-cloud [3], edge-

cloud [13], and cyber-foraging [9]. The approaches have been fur-

ther elaborated in multiple directions. Cachier [4] is a system that

inserts a specialized cache on the edge-cloud and thus minimizes

the communication latency with the cloud. While the approach is

functional (3 times increased responsiveness), it is suitable only

for applications where data can be cached. The PreCog [5] system

further extends the Cachier idea and uses prediction (based on

Markov chains) to prefetch data onto the devices and thus further

reducing latency (up to 5 times). Both approaches, however, work

on best effort, i.e., they do not provide any real-time guarantees.

An approach to reduce latency in cloud-enabled IoT systems (that

are commonly considered as a special case of CPS) is Fog Com-

puting Architecture Network (FOCAN) [10]. It reduces latency

primarily by splitting the system into multiple regions and tiers

and introducing multiple types of communications in order to

avoid unnecessary data transfer. Primary intent of the system is to

optimize energy consumption of mobile services. While FOCAN

targets primarily smart-city scenarios, the authors extended the

approach into Fog of Everything (FoE) [1], targeting energy opti-

mizations.

This is the authors’ version of the paper: Petr Hnetynka, Petr Kubat, Rima Al-Ali, Ilias Gerostathopoulos, Danylo Khalyeyev.
2018. Guaranteed Latency Applications in Edge-Cloud Environment. In 12th European Conference on Software Architecture:
Companion Proceedings (ECSA ’18), September 24–28, 2018, Madrid, Spain.
The final published version can be found at https://doi.org/10.1145/3241403.3241448

https://doi.org/10.1145/3241403.3241448

ECSA ’18, September 24–28, 2018, Madrid, Spain P. Hnetynka et al.

A completely different approach to reduce latency is de-

scribed in [6] and employs traffic offloading from cellular to other

types of networks, e.g., WiFi. The core element of the approach is

Mobile Cloud Offloading Helper that resides in mobile operator

network and uses feedback from the network, application re-

quirements and user behavior to provide decisions for traffic of-

floading. The approach targets guarantees in communication (as

our approach), however it needs multiple available networks. A

similar approach is described in [11], where based on analyses of

context, parts of the application are offloaded. However, the ap-

proach does not provide real-time guarantees.

Goal: In this position paper, we address the problem of

providing response time guarantees by combining edge-cloud

processing with runtime performance awareness and adaptation.

The key idea is that by automatically pre-assessing an application,

continuously monitoring its performance and combining that with

prediction based on historical performance observations, we can

control service (re-)deployment in an edge-cloud such that we can

give statistical guarantees on end-to-end response time.

Contrary to cyber-foraging and related approaches, which typ-

ically work in a rather decentralized and client-driven manner, we

specifically emphasize the cloud-centric control and deployment

of services. This allows us to provide a solution that remains as

close as possible to the traditional declarative way of deploying

and orchestrating services in the cloud, which is already familiar

to cloud developers. Essentially, we only extend the cloud de-

ployment specification by timing requirements and description of

how to validate the timing.

We showcase our approach on an augmented reality applica-

tion and describe its integration with Kubernetes (K8S) PaaS. We

provide indicative evaluation based on the individual pieces of the

solution we have created so far.

2 RUNNING EXAMPLE

As a real-life example of an application benefiting from the guar-

anteed communication latencies with a cloud, we consider a sim-

ple yet realistic augmented reality application, which is one of the

use-cases in the ECSEL JU project FItOptiVis2 in which we par-

ticipate and whose main objective is to develop a distributed im-

age- and video-processing pipeline for CPS.

The user-interface part of the application runs on a mobile

phone and captures a video stream (via the phone camera), which

is not only displayed on the screen but also sent to the video pro-

cessing part running in the cloud. The processing part analyzes the

video and sends back to the client “augmentation” information

that is drawn by the client to the displayed stream. For such a sce-

nario, the guaranteed communication latency is crucial as it is

necessary to augment the displayed stream without any significant

delay. Thus, in ideal case, the processing part should be as close

to the client as possible, i.e., in the edge cloud.

Namely, our application analyzes the video stream for human

faces and tries to identify particular persons using a trained face

2 https://www.ecsel.eu/projects/fitoptivis

recognizer. From the user point of view, the application draws

rectangles around the faces and displays a name of the particular

person—the rectangles and names are computed by the processing

part in the cloud.

3 STRUCTURE AND REQUIREMENTS

We structure our approach, which provides probabilistic real-time

guarantees for edge-cloud applications, in three main parts. These

parts also respectively address the three principal research ques-

tions tackled by our approach:

1. How to specify the probabilistic real-time guarantees for

cloud applications? The main concerns here are that: (a)

such specification should be in line with the existing way of

specifying deployment of microservice architectures in

cloud settings; (b) such specification should establish an au-

tomatically verifiable and guaranteeable contract between

the application developer and cloud provider.

2. How to assess that the cloud can guarantee the real-time re-

sponse? Before deploying the application to the cloud, we

assess if the requested real-time guarantees can be provided.

If so, we admit the application to the cloud. The main con-

cern here is that this assessment procedure should be per-

formed automatically by the cloud without human interven-

tion. Ideally, this should also build knowledge of how the

application behaves from timing perspective and establish

strategies for providing the guarantees.

3. How to guarantee the end-to-end response time at runtime?

The main concerns here are that (i) we need to pool re-

sources among tenants such that the cloud is well utilized

and that (ii) the load in the cloud changes over the time de-

pending on the applications deployed in the cloud and mo-

bility of users. (In edge-cloud settings we assume communi-

cation with an edge-cloud datacenter close by.)

3.1 Specifying the real-time guarantees

In our approach, we use declarative specification of an auto-

scaling microservice architecture. We extend this specification by

the specification of measurement probes and real-time require-

ments over the probes.

The measurement probes are specific functions provided by

the application developer that perform a performance test. In case

of our running example, this test consists of recognizing faces in a

pre-defined image. The important features of the probe are that:

(a) it does not take any inputs, (b) it can be measured anytime

(even at runtime), and (c) it measures an operation which is in

strong correlation to what needs to be guaranteed. Thanks to (a)

and (b), the cloud can execute the performance measurements by

itself at any time it needs to assess the application or check if the

guarantee is still upheld. Thanks to (c) the application developer

can reliably express the real-time requirements over the probes

rather than the real operations.

The fact that we express the real-time requirements over the

probes instead over the real operations constitutes one of the key

novelties of our work. This allows us to form a contract between

the developer and the cloud that can be assessed before runtime

This is the authors’ version of the paper: Petr Hnetynka, Petr Kubat, Rima Al-Ali, Ilias Gerostathopoulos, Danylo Khalyeyev.
2018. Guaranteed Latency Applications in Edge-Cloud Environment. In 12th European Conference on Software Architecture:
Companion Proceedings (ECSA ’18), September 24–28, 2018, Madrid, Spain.
The final published version can be found at https://doi.org/10.1145/3241403.3241448

https://doi.org/10.1145/3241403.3241448

Guaranteed Latency Applications in Edge-Cloud Environment ECSA ’18, September 24–28, 2018, Madrid, Spain

and then proactively and speculatively checked at runtime without

affecting the functionality of the application. In this way, we

move the responsibility of understanding the application to the

developer and avoid having a human inspect the application on

the side of the cloud.

To invoke the probes, we expect each microservice to inte-

grate a special library (called application agent) that is a part of

our approach. The application agent is intended to execute the

probes locally and provide the measured data to our infrastructure.

The application agent exposes a remote interface (REST or

gRPC3), which allows the rest of our orchestration infrastructure

request and collect measurements when required.

To give technical grounding to our approach, we use K8S

PaaS. Figure 1 shows a fragment of the deployment descriptor in

YAML data format of the running example. The specification de-

fines the architecture in terms of (a) microservices, which are fur-

ther specified using K8S DeploymentSpec4, (b) probes that can be

executed inside a microservice, and (c) timing requirements.

3.2 Assessment of a cloud application

Compared to the traditional deployment procedure in the cloud,

we insert an extra step before the actual deployment as typically

done in real-time scenarios. This step assesses the application to

check the feasibility of real-time requirements specified in its de-

ployment descriptor. The deployment procedure thus looks as fol-

lows: (1) the application developer packages the application (in

our case creates Docker images of individual microservices and

writes the deployment descriptor as described in Section 3.1), (2)

the developer submits the application to the cloud, (3) the cloud

assesses the application (as described below), (4) the cloud in-

forms the developer whether the application can be admitted and

optionally informs the developer about the price of the deploy-

ment (we assume that the price depends on how stringent the real-

time requirements are and hence on how much resources have to

be reserved as opposed to shared), and (5) the developer accepts

the price and confirms the deployment.

3 https://grpc.io/
4 https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

The assessment phase consists of running the application in a

staging environment and repeatedly measuring the probes. Here

we exploit the performance benchmarking methodology devel-

oped in our department [2], in which we execute multiple runs,

each consisting of performing warmup and then collecting a num-

ber of observations (i.e., invocation of a probe). Each run starts

with a restart of the computing node. This addresses the variabil-

ity caused by probabilistic decisions in the underlying operating

system and system libraries.

We measure the application in isolation and with pre-defined

typified background workload (i.e., IO-bound, CPU-bound work-

load). This gives us rough estimate of how the application should

work when sharing resources with other applications. We further

refine these results by collecting system counters (e.g., instruction

count, cache miss count, input/output operations per second, VM

utilization) during the run of each probe. This allows us to catego-

rize what kind of computation (from resource utilization perspec-

tive) a particular probe does.

We use all the measured data to build a statistical regression

model similar to our previous work [7], where we exploited facto-

rial ANOVA to give statistical guarantees in controlling system

experimentation. In this context, the execution time we measure

for a probe constitutes a dependent variable. The presence of a

typified workload constitutes qualitative independent variables.

The observation of system counters constitutes quantitative inde-

pendent variables.

The regression model allows us to gradually build knowledge

about the performance of applications from data collected in the

assessment phase and at runtime—Section 3.3. The regression

over the collected data then allows performing what-if analysis on

how an application is likely to behave in presence of other appli-

cations. This is important (a) for making the decision about admit-

ting the application, and (b) for controlling redeployment/scaling

at runtime. Thanks to use of the regression model, we can gradu-

ally improve precision of the what-if analysis as more observa-

tions in different situations are collected.

3.3 Providing guarantees at runtime

The principal problem of providing the real-time guarantees is

that all the software stack we use provides no real-time guarantees

at all. Consequently, our guarantees are probabilistic—e.g., “be-

low 50ms in 99.9% and below 30ms in 99%”. This allows us to

tolerate uncontrollable lags in software stack as long as we in the

long-term stay within the limits. To do so, we exploit self-

adaptation architecture and the MAPE-K loop [8] for controlling

the deployment and redeployment in the cloud.

From the architectural perspective, we treat the existing cloud

infrastructure (K8S in our case) as the system under control and

we provide a controller which controls the redeployment in the

cloud using the REST API it provides. Technically, we assign a

distinct label to each node in the cloud to have a relatively fine-

grained control over the placement of microservices to nodes. We

place a dedicated node agent on each node to collect system coun-

ters and to set scheduling parameters and control CPU reservation,

which are all actions we cannot observe and control directly via

kind: Deployment
metadata:
 name: recognizer-deployment
 labels:
 app: recognizer
spec: # micoservices specification
 template:
 metadata:
 labels:
 app: recognizer
 spec:
 containers:
 - name: recog
 image: d3srepo/recog
 ports:
 - containerPort: 7777

probes: # probes
- name: recognize
timingRequirements: # timing require-
ments
- name: recognize limit
 probe: recognize
 limits:
 - probability: 0.999
 time: 50 # Max. 50ms in 99.99% cases
 - probability: 0.99
 time: 30 # Max. 30ms in 99.9% cases

Figure 1 Deployment descriptor.

This is the authors’ version of the paper: Petr Hnetynka, Petr Kubat, Rima Al-Ali, Ilias Gerostathopoulos, Danylo Khalyeyev.
2018. Guaranteed Latency Applications in Edge-Cloud Environment. In 12th European Conference on Software Architecture:
Companion Proceedings (ECSA ’18), September 24–28, 2018, Madrid, Spain.
The final published version can be found at https://doi.org/10.1145/3241403.3241448

https://doi.org/10.1145/3241403.3241448

ECSA ’18, September 24–28, 2018, Madrid, Spain P. Hnetynka et al.

K8S API. Additionally, as already mentioned in Section 3.1, we

place an application agent, in each microservice to collect data

from the probes. Figure 2 shows the high-level architecture of our

approach.

From the MAPE-K perspective, we perform the following steps:

1. Monitoring—The controller collects data about the current

deployment (from K8S) and about the node utilization (via

node agents). Further, it regularly collects measurements from

probes (via application agents) and follows the mobility of us-

ers, which determines which microservices will have to be

deployed at which cloud edges.

2. Analysis—The controller builds a constraint optimization

problem describing on which particular nodes microservices

could be placed and if and which resources should be reserved

for them (e.g., dedicated CPU core or dedicated IO band-

width). The what-if analysis over the regression model (de-

scribed in Section 3.2) is used to assign costs to respective al-

ternatives. The model also incorporates cost of reallocation to

provide a certain level of affinity in decisions. Technically, we

are experimenting with a Constraint Satisfaction Problem

solver for this step, however the scalability issues suggest that

some variant of linear programming might be a better choice.

3. Planning—Application of the new configuration selected in

analysis is transformed to a flow of tasks similar to UML ac-

tivity diagram. Each of these tasks describes a particular ac-

tion on K8S or node agent API and captures synchronization

among these tasks.

4. Execution—This step executes the tasks planned in the Plan-

ning phase. The result of this is a redeployment of micro-

services in the cloud to satisfy the probabilistic real-time con-

straints.

4 EVALUATION AND CONCLUSION

In this position paper we overviewed our approach to providing

statistical guarantees on response time of (edge-)cloud applica-

tions. Our solution extends the typical cloud deployment specifi-

cation with real-time constraints. Contrary to the practice nowa-

days, this allows a developer to express real-time constraints di-

rectly instead of having to figure out how much CPU and IOPS

they have to reserve (as it is common for instance in Amazon

AWS). Further, it gives the cloud more leeway in deciding where

to place the workload and which resources to reserve (e.g., CPU

core, IO/network bandwidth, etc.). In our approach, we combine

the performance awareness with statistical methods to give guar-

antees and with adaptation methods to ensure that guarantees are

kept in face of changing conditions. The key idea of our approach

is automatic pre-assessment of an application, which allows au-

tomatic decision if guarantees can be given, and builds a

knowledge model that is used by the adaptation loop at runtime to

make adaptation decisions.

Being this a position paper, we do not have a complete

framework yet. However, we build our indicative evaluation of

feasibility of the approach on our previous work and on several

experiments and prototypes that we have already built for our ap-

proach. In particular, in the statistical area and performance

awareness we build on our previous experiments that suggest that

an application can be at least to a certain extent categorized based

on how it utilizes resources and that factorial ANOVA can be

successfully used to provide such categorization. We also did ex-

periments with real-time augmented reality computed in applica-

tion containers, where we observed that such computation is per-

formance-wise stable enough to easily provide 99.9% statistical

guarantees on response time even with background load. Though

our approach is general, we grounded it technologically in K8S (a

container-based cloud). We have already created a control archi-

tecture over K8S and prototypes of modules for orchestrating and

performing the performance assessment.

ACKNOWLEDGMENTS

The research leading to these results has received funding from

the ECSEL Joint Undertaking (JU) under grant agreement No

783162. Also, this work has been partly funded by the Bavarian

Ministry of Economic Affairs, Energy and Technology as part of

the TUM Living Lab Connected Mobility project.

REFERENCES
[1] Baccarelli, E. et al. 2017. Fog of Everything: Energy-Efficient Networked

Computing Architectures, Research Challenges, and a Case Study. IEEE

Access. 5, (2017), 9882–9910.

[2] Bulej, L. et al. 2017. Unit testing performance with Stochastic Performance

Logic. Automated Software Engineering. 24, 1 (Mar. 2017), 139–187.

[3] Dastjerdi, A.V. and Buyya, R. 2016. Fog Computing: Helping the Internet

of Things Realize Its Potential. Computer. 49, 8 (Aug. 2016), 112–116.

[4] Drolia, U. et al. 2017. Cachier: Edge-Caching for Recognition Applications.

Proceedings of ICDCS 2017, Atlanta, USA (Jun. 2017), 276–286.

[5] Drolia, U. et al. 2017. Precog: PRefetching for Image RecogNition Applica-

tions at the Edge. Proc. of SEC ’17, San Jose, USA (2017), 17:1–17:13.

[6] Fiandrino, C. et al. 2015. Network-assisted offloading for mobile cloud

applications. Proc. of ICC 2015, London, UK (2015), 5833–5838.

[7] Gerostathopoulos, I. et al. 2018. Adapting a System with Noisy Outputs

with Statistical Guarantees. Proceedings of SEAMS 2018, Gothenburg,

Sweden (May 2018).

[8] Kephart, J. and Chess, D. 2003. The Vision of Autonomic Computing.

Computer. 36, 1 (2003), 41–50.

[9] Lewis, G.A. and Lago, P. 2015. A Catalog of Architectural Tactics for

Cyber-Foraging. Proc. of QoSA 2015, Montreal, Canada (2015), 53–62.

[10] Naranjo, P.G.V. et al. 2017. FOCAN: A Fog-supported Smart City Network

Architecture for Management of Applications in the Internet of Everything

Environments. arXiv preprint arXiv:1710.01801. (Oct. 2017).

[11] Orsini, G. et al. 2018. Generic context adaptation for mobile cloud compu-

ting environments. J. of Ambient Intelligence and Humanized Computing. 9,

1 (2018), 61–71.

[12] Satyanarayanan, M. et al. 2009. The Case for VM-Based Cloudlets in Mo-

bile Computing. IEEE Pervasive Computing. 8, 4 (Oct. 2009), 14–23.

[13] Satyanarayanan, M. 2017. The Emergence of Edge Computing. Computer.

50, 1 (Jan. 2017), 30–39.

Figure 2 High level architecture.

This is the authors’ version of the paper: Petr Hnetynka, Petr Kubat, Rima Al-Ali, Ilias Gerostathopoulos, Danylo Khalyeyev.
2018. Guaranteed Latency Applications in Edge-Cloud Environment. In 12th European Conference on Software Architecture:
Companion Proceedings (ECSA ’18), September 24–28, 2018, Madrid, Spain.
The final published version can be found at https://doi.org/10.1145/3241403.3241448

https://doi.org/10.1145/3241403.3241448

