
Using Component Ensembles for Modeling Autonomic
Component Collaboration in Smart Farming

Petr Hnetynka
Charles University, Prague, Czech Republic

hnetynka@d3s.mff.cuni.cz

Tomas Bures
Charles University, Prague, Czech Republic

bures@d3s.mff.cuni.cz

Ilias Gerostathopoulos
Vrije Universiteit Amsterdam, Netherlands
Charles University, Prague, Czech Republic

i.g.gerostathopoulos@vu.nl

Jan Pacovsky
Charles University, Prague, Czech Republic

pacovsky@d3s.mff.cuni.cz

ABSTRACT
Smart systems have become key solutions for many application
areas including autonomous farming. The trend we can see now
in the smart systems is that they shift from single isolated auto-
nomic and self-adaptive components to larger ecosystems of heavily
cooperating components. This increases the reliability and often
the cost-effectiveness of the system by replacing one big costly
device with a number of smaller and cheaper ones. In this paper,
we demonstrate the effect of synergistic collaboration among auto-
nomic components in the domain of smart farming—in particular,
the use-case we employ in the demonstration stems from the AFar-
Cloud EU project. We exploit the concept of autonomic component
ensembles to describe situation-dependent collaboration groups
(so called ensembles). The paper shows how the autonomic com-
ponent ensembles can easily capture complex collaboration rules
and how they can include both controllable autonomic components
(i.e. drones) and non-controllable environment agents (flocks of
birds in our case). As part of the demonstration, we provide an
open-source implementation that covers both the specification of
the autonomic components and ensembles of the use case, and the
discrete event simulation and real-time visualization of the use case.
We believe this is useful not only to demonstrate the effectiveness
of architectures of collaborative autonomic components for dealing
with real-life tasks, but also to build further experiments in the
domain.

CCS CONCEPTS
• Computer systems organization → Self-organizing auto-
nomic computing; • Software and its engineering→Domain
specific languages; • Applied computing→ Agriculture.

KEYWORDS
autonomic systems, self-adaptive architecture, smart farming, dy-
namic adaptation

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7962-5/20/05.
https://doi.org/10.1145/3387939.3391599

ACM Reference Format:
Petr Hnetynka, Tomas Bures, Ilias Gerostathopoulos, and Jan Pacovsky.
2020. Using Component Ensembles for Modeling Autonomic Component
Collaboration in Smart Farming. In IEEE/ACM 15th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS
’20), October 7–8, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3387939.3391599

1 INTRODUCTION
Smart systems can nowadays be found in almost any application
domain. They have become the key technologies in achieving higher
efficiency and lowering costs. One such an application, where smart
systems offer great impact, is smart farming. Examples include
agriculture vehicles like tractors and harvesting machines that,
while at a field, continuously monitor their status (telemetry data,
etc.) and upload it to a cloud services, where these data are analyzed
and potential issues discovered. Another example is during the
harvest, when these machines continuously measure the amount
of crop and connect this with planning on how much fertilizer is
to be applied on specific segments of the field for the next year. Yet
another example, which we focus on in this paper, is the use of
small and relatively inexpensive UAVs (drones) to monitor fields.

The important characteristic of these smart systems is the ability
to perform relatively coarse-grained tasks autonomously – typically
by means of self-adaptation. Another important and recent trend in
these systems is that there is a shift from single isolated autonomic
and self-adaptive components to larger ecosystems of components
that heavily cooperate together to achieve a given common goal.
This increases the reliability and often the cost-effectiveness of the
whole system by substituting a big costly device by a number of
smaller and cheaper ones.

The increased level of collaboration among components (e.g.
drones monitoring fields) brings however issues in how to model
and specify such collaboration at an architectural level. This is even
more a complex task as the collaboration is invariably situation-
dependent – e.g. in the smart-farming domain, the situation com-
prises things such as the position and energy level of all drones,
vehicles, etc., data from their cameras and environment sensors, but
also inference of the state of environment entities, which cannot
be directly controlled but only observed, like fields, animals, etc.

In this paper, we describe an approach of autonomically compos-
able and context-dependent rules for describing cooperation among
autonomic components a system is composed of. The approach

https://doi.org/10.1145/3387939.3391599
https://doi.org/10.1145/3387939.3391599

SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea Petr Hnetynka, et al.

is based on our ongoing work on autonomic component ensem-
bles [16], which are situation-dependent collaboration groups. In
particular, we use the Trait-based COmponent Ensemble Language
(TCOEL) and the Trait-based COmponent Ensemble Framework
(TCOEF), which allow for specifying ensembles in more complex
hierarchical situations. Our approach allows for describing coop-
eration between both directly controllable and non-controllable
components.

We demonstrate the approach on a specific smart farming sce-
nario. The aim here is to provide a more comprehensive case that is
accompanied with an an open-source implementation that covers
both the specification of the autonomic components and ensembles,
and also the discrete event simulation and real-time visualization.
The overall value to the community lies in having a concrete show-
case that can be used, explored and experimented with to gain
in-depth understanding on the intricacies of systems of collabo-
rating components and their specification using the concept of
autonomic component ensembles.

Though simplified, the used example is also not a completely
synthetic one but it is based on an actual cooperation with industrial
and agricultural partners within the ongoing international project
AFarCloud (ECSEL EU project).

The paper is structured as follows. In Section 2, the running
example is described. Section 3 presents our approach to coopera-
tion specification through autonomic component ensembles, while
Section 4 provides details about experimentation with the imple-
mentation. In Section 5, related work is discussed and Section 6
concludes the paper.

2 RUNNING EXAMPLE
To illustrate our approach, we use the following example in the
rest of the paper. The example is an actual scenario taken from
our ECSEL JU project AFarCloud1, which focuses on holistic and
systematic integration of cyber-physical systems and cloud-based
systems in farming to increase agriculture efficiency, productivity,
animal health, and food quality and reduce farm labor costs. In the
example, we focus on coordination of cyber-physical devices used
for crop management.

The particular situation is depicted in Figure 1 (the figure is an
actual screenshot from our simulator we developed to demonstrate
the scenario). A farm area in the figure consists of several fields.
The yellow ones still contain crop, while the brown ones have been
already harvested and are empty. The darker green ones contain
forage crops.

The whole farm area is continuously monitored by a fleet of au-
tonomous drones. In addition to environment monitoring (moisture,
etc.) and security monitoring (unauthorized access to fields, etc.),
the drones also monitor for occurrence of flocks of birds, which
can quickly make a serious damage to the crops. In a case a flock
of birds is discovered over the crop fields, the drones are used to
scare the birds and drive them away from the farm area or, at least,
to already harvested fields or fields with crop “insensitive” to birds
(e.g., forage crop), where they cannot do damage.

For the system to be effective, sufficient amount of drones needs
to be assigned for the particular task (monitoring, scaring of birds).

1https://www.ecsel.eu/projects/afarcloud

Figure 1: Running example.

Plus, the drones have only a limited amount of energy and need to
recharge their batteries at the charger (the rounded arrows icons in
the center). The charger can charge only a limited number (three
actually) of the drones at the same time.

If a patrolling drone detects a flock of birds, based on a size of the
flock, a sufficient number of other drones should be alarmed and
redirected to the particular field. As the primary selection criterion,
the distance of the drone to the flock is used. After the flock threat
is removed, the drones returns to their previous activity.

To sum up, the system has to concurrently ensure several condi-
tions: (i) a sufficient number of drones has to be assigned for a task
(patrolling the area, scaring the birds), (ii) the best drones have to
be assigned (the closest ones, with a sufficient amount of energy),
(iii) drones with low level of energy have to be recharged.

3 DESCRIPTION OF AUTONOMOUS
OPERATIONS

To describe and run autonomous systems like the running exam-
ple, we employ our approach of autonomic component ensem-
bles [16]. Via this approach, entities of a system (drones, chargers,
but also persons, animals, etc.) are represented as components and
cooperation among entities is modeled via ensembles, which are
context-dependent groups of components. Ensembles are dynamic
– typically bound to time and space.

In particular, components and ensembles are defined as follows
(a complete formal semantics of components and ensembles is
available in [4]). A component represents an autonomic entity,
which has a state (called component’s knowledge). Components
periodically perform actions in which they can sense their context
(environment), perform computation and actuation, and update
their knowledge.

An ensemble is a group of components that is formed in order
to perform a required group-level activity (e.g. moving drones in
a formation). Importantly, the members of the ensemble are not
prescribed statically but they are determined dynamically at run-
time via evaluation of the membership condition. The condition is
a predicate over component types and knowledge. An ensemble
can be nested in another ensemble. The semantics of the nesting is
that members of the ensemble must be also members of the parent

https://www.ecsel.eu/projects/afarcloud

Using Component Ensembles for Modeling Autonomic Component Collaboration in Smart Farming SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea

1 case class DroneComponent(
2 id: String, mode: DroneMode.DroneMode, position: Position,energy: Double,
3 chargingInChargerId: Option[ChargerId], observedFields: Map[String, ObservedFieldId]
4) extends Component {
5 name(id) /∗ ... ∗/
6 }
7 case class FieldComponent(idx: Int, fieldObservations: List[FieldObservation]) extends

Component {
8 name(s"Field ${idx}") /∗ ... ∗/
9 }

10 case class ChargerComponent(idx: Int, isFree: Boolean) extends Component {
11 name(s"Charger ${idx}")
12 val chargerId = ChargerId(idx)
13 val position = chargerId.position
14 /∗...∗/
15 }
16 case class FlockComponent(position: Position) extends Component {
17 name(s"Flock ${position}") /∗ ... ∗/
18 }
19
20 class DroneProtectionSystem extends Ensemble {
21 name(s"Root ensemble of the protection system")
22 val operationalDrones = allDrones.filter(drone => drone.mode != DroneMode.DEAD &&

drone.mode != DroneMode.CHARGING && drone.energy >
Drone.chargingThreshold)

23 val dronesInNeedOfCharging = allDrones.filter(drone => drone.mode !=
DroneMode.DEAD && drone.mode != DroneMode.CHARGING && drone.energy
< Drone.chargingThreshold)

24 val fieldsWithUnknownStatus = allFields.filter(_.isUnknown)
25 val fieldsUnderThreat = allFields.filter(_.isUnderThreat)
26 val freeChargers = allChargers.filter(_.isFree)
27
28 class ApproachFieldUnderThreat(field: FieldComponent) extends Ensemble {
29 name(s"ApproachFieldUnderThreat ensemble for field ${field.idx}")
30 val flocksInField = allFlocks.filter(x => field.area.contains(x.position))
31 val dronesInField = operationalDrones.filter(x => field.area.contains(x.position))
32 val droneCount = field.requiredDroneCountForProtection
33 val center = field.center
34 val drones = subsetOfComponents(operationalDrones, _ <= droneCount)
35
36 situation { dronesInField.size < droneCount }
37 utility {
38 drones.sum(x => if (field.area.contains(x.position)) 10 else dist2Utility(x.position,

center))
39 }
40 tasks {
41 if (flocksInField.isEmpty) {
42 for (drone <− drones.selectedMembers) moveTask(drone, center)
43 } else {
44 val selectedDronesInFieldCount = drones.selectedMembers.count(x =>

field.area.contains(x.position))
45 val flockPos = flocksInField.head.position
46 val step = Flock.disturbRadius ∗ 2
47 var x = flockPos.x − (selectedDronesInFieldCount − 1) ∗ Flock.disturbRadius
48
49 for (drone <− drones.selectedMembers) {
50 if (field.area.contains(drone.position)) {
51 moveTask(drone, Position(x, flockPos.y))
52 x += step
53 } else {
54 moveTask(drone, center)
55 }
56 }
57 }
58 }

59 }
60
61 class ScareFormation(field: FieldComponent) extends Ensemble {
62 name(s"ScareFormation ensemble for field ${field.idx}")
63 val dronesInField = operationalDrones.filter(x => field.area.contains(x.position))
64 val droneCount = field.requiredDroneCountForProtection
65 val segmentCenters = field.protectionCenters
66
67 situation { dronesInField.size >= droneCount }
68
69 class SegmentAssignment(segmentCenter: Position) extends Ensemble {
70 name(s"SegmentProtectionAssignment for field ${field.idx} @

${segmentCenter.x},${segmentCenter.y}")
71 val drone = oneOf(operationalDrones)
72
73 utility { drone.sum(x => dist2Utility(x.position, segmentCenter)) }
74 tasks { moveTask(drone, segmentCenter) }
75 }
76
77 val protectionSegmentAssignments = rules(segmentCenters.map(new

SegmentAssignment(_)))
78 val drones = unionOf(protectionSegmentAssignments.map(_.drone))
79
80 utility {
81 protectionSegmentAssignments.sum(assignment => assignment.utility) / droneCount
82 }
83 constraint(protectionSegmentAssignments.map(_.drone).allDisjoint)
84 }
85
86 class PatrolUnknown(field: FieldComponent) extends Ensemble {
87 name(s"PatrolUnknown ensemble for field ${field.idx}")
88 val drone = oneOf(operationalDrones)
89 val fieldCenter = field.center
90
91 utility { drone.sum(x => dist2Utility(x.position, fieldCenter)) }
92 tasks { moveTask(drone, fieldCenter) }
93 }
94
95 class ChargerAssignment(charger: ChargerComponent) extends Ensemble {
96 name(s"ChargerAssignment for charger ${charger.idx}")
97 val drone = oneOf(dronesInNeedOfCharging)
98
99 utility { drone.sum(drone => dist2Utility(drone.position, charger.position) +

(Drone.chargingThreshold − drone.energy).round.toInt)
100 }
101 tasks { chargeTask(drone, charger.chargerId) }
102 }
103 val patrolUnknown = ensembles(fieldsWithUnknownStatus.map(new PatrolUnknown(_)))
104 val chargerAssignments = ensembles(freeChargers.map(new ChargerAssignment(_)))
105 val approachFieldsUnderThreat =

ensembles(fieldsUnderThreat.filter(ApproachFieldUnderThreat.map(new
ApproachFieldUnderThreat(_)))

106 val scareFormations = ensembles(fieldsUnderThreat.map(new ScareFormation(_)))
107
108 utility {
109 approachFieldsUnderThreat.sum(assignment => assignment.utility) +
110 scareFormations.sum(assignment => assignment.utility) +
111 patrolUnknown.sum(assignment => assignment.utility) / 4 +
112 chargerAssignments.sum(assignment => assignment.utility)
113 }
114 constraint(
115 (patrolUnknown.map(_.drone) ++ approachFieldsUnderThreat.map(_.drones) ++

scareFormations.map(_.drones)).allDisjoint &&
116 chargerAssignments.map(_.drone).allDisjoint)
117 }

Figure 2: Running example in DSL.

ensemble (in which it is nested). This way, the top-level ensemble
(which is not nested in another one) defines the overall goal of the
system while nested sub-ensembles represent individual sub-goals.

In the rest of this section, we model the example shown in
Section 2 in ensembles and provide details about the implemen-
tation. For simple and easy development and experimentation
with ensembles, we have created a Scala-based internal domain-
specific language (DSL) to specify components and ensembles called
TCOEL [16]. Creating the DSL as an internal one allowed for its
rapid development (there is no need to create a full toolchain for
it), however the small downside is that its users need to have at
least partial knowledge of the Scala language. On the other side,

the required knowledge is rather minimal and basic familiarity
with modern program language concepts (classes, etc.) is sufficient.
Specifications in the DSL are at runtime processed by a CSP solver
(the Choco solver [10] in particular), which resolves ensembles, i.e.,
determines which ensemble instances need to be created and which
components need to be assigned to particular ensemble instances.

Figure 2 shows an excerpt of the specification in our DSL that
models the farm example (its full version is available in the demon-
stration implementation).

In our DSL, both the types of components and ensembles are
modeled via classes. The actual components and ensembles are
then instances of these classes (every component and ensemble can

SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea Petr Hnetynka, et al.

be instantiated multiple times). In the example, there are four com-
ponent types: DroneComponent, ChargerComponent, FieldComponent
and FlockComponent (lines 1–18). The component knowledge is mod-
eled via the class fields. FieldComponent and FlockComponent are non-
controllable components, i.e., they cannot be controlled and their
state is only observed. The FieldComponent is statically instantiated
per field while the FlockComponent is instantiated dynamically per
detected flock of birds.

Regarding the ensemble types, there are six of them – a top-level
one, DroneProtectionSystem, and five nested ones. Figure 3 shows
the ensembles hierarchy.

«Ensemble»
ChargerAssignment

«Ensemble»
SegmentAssignment

«Ensemble»
PatrolUnknown

«Ensemble»
ScareFormation

«Ensemble»
ApproachFieldUnderThreat

«Ensemble»
DroneProtectionSystem

Figure 3: Ensembles hierarchy in the running example.

The top-level ensemble (starting at line 20) divides drones into
two groups – ready-for-operation drones (line 22) and need-to-be-
charged drones (line 23). The selection to these groups is based on
the drone’s current mode and energy level and is performed via
functional-style operations. Similarly, the fields are divided to those
under a threat (line 25) and fields with unknown status (line 24). As
the fields are non-controllable components, they do not change their
state actively; instead, the drones monitor them during patrolling
for occurrences of flocks and the fields’ state is updated accordingly.
Finally, the unoccupied chargers are selected (line 26).

The sub-ensembles ApproachFieldUnderThreat and ScareFormation
work in unison to protect a field under threat. First the ApproachFiel-
dUnderThreat is instantiated and used to bring the necessary number
of drones to the field. While the rest of the drones are arriving, the
drones already present in the field are used to pursue the flock.

This is expressed by the situation construct, which expresses the
situation in which the ensemble should be formed. The selection of
drones is determined by lines 31 and 37 which select operational
drones that are close to the field. Specifically, the utility construct
specified the optimization function for the ensemble.

The tasks construct then provides instructions for the components-
members of the ensemble instance (but only to the controlled com-
ponents). In this case, as the ensemble is formed when there are not
yet enough drones to scare away the flock, the task of its members
is to move towards the birds to at least disturb them. If more then
one drone is already present over the field, the drones disperse to
approach the flock in a wider formation.

The ScareFormation ensemble (starting at line 61) replaces the
previous ensemble when a necessary number of drones is present
over the field. (The situation – line 67 – is an opposite condition to
the one in ApproachFieldUnderThreat ensemble.) The ScareFormation
ensemble disperses the drones over the field so that they fully cover
it and the flock has no other place to move over on the field. To do
so, the ensemble identifies the target coordinates over the field and

assigns drones to them in such a way that the sum of distances of
the drones to the target positions is minimized.

To simplify the definition, the ensemble contains the sub-ensembles
SegmentAssignment (line 69), each of which pairs one drone with one
target position. The rules function (line 77) in the ScareFormation
ensemble registers the SegmentAssignment sub-ensemble instances
to be created and used in the ensemble resolution process. The
constraint construct (line 83) defines additional conditions that
have to hold – in this case the fact that no drone can be assigned to
two field segments.

The PatrolUnknown ensemble (line 86) is used to guide a drone
to a field that has unknown status. Technically, it groups a drone
with a field with unknown status, while Its utility makes sure that
the closest drone is selected.

The ChargerAssignment ensemble (line 95) is instantiated per
charger place and assigns a drone that has a low energy level to
the charger. The utility selects the drone that is the closest to the
charger and has the energy level closer to the threshold.

The ensemble construct on lines 103–106 registers the sub-ensembles
of the top-level ensemble and prescribes that the PatrolUnknown en-
semble is instantiated per field with unknown threat status, the
ChargerAssignment instantiated per free charger, and ApproachField-
UnderThreat and ScareFormation ensembles per a field under threat.

The utility of the top-level ensemble (line 108) ensures that the
scaring the flocks and charging have higher priority than assigning
a drone for a field with unknown threat level (the value divided by
4 at line 111).

Finally, the top-level ensemble constraint ensures that drones
assigned for chargers are different ones (i.e., a single drone is not
assigned to two chargers) and similarly drones assigned for scaring
are different ones (i.e., the ScareFormation ensemble instance groups
different drones).

4 IMPLEMENTATION AND LESSONS
LEARNED

We have implemented the scenario as a demo which comprises (a)
the ensemble-based specification (as shown and described in Sec-
tion 3); (b) the solver for ensembles that implements all the ensem-
ble constructs and employs a constraint-solver to determine which
ensembles should be instantiated in a given situation and what com-
ponents should play which roles in them; (c) implementation and
simulation of components (drones, flocks, fields, chargers); and (d)
animated web-based visualization. The code to this whole package
is available as open-source at https://github.com/smartarch/afcens.

The visual part is implemented as a Javascript web-based client
and a NodeJS server, the simulation and ensemble-resolution part
is implemented in Scala using the Akka agent framework2. The
choice of Scala allows us to construct the internal DSL that is
used to specify the ensembles. The choice of Akka as the runtime
framework allows us to run the simulation as multithreaded and
also to run multiple simulations concurrently.

The simulation can be run in two modes – one in which ensem-
bles are not used and the drones are configured to take decisions

2https://akka.io/

https://github.com/smartarch/afcens
https://akka.io/

Using Component Ensembles for Modeling Autonomic Component Collaboration in Smart Farming SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea

independently of one another (we call this baseline implementa-
tion, and another, which relies on group-behavior specified via
ensembles (we call this ensemble-based implementation).

The behavior of a drone in the baseline mode is such that if
it sees flock within its observation radius that is above a field, it
follows it. If it sees no flock (or all flocks it sees are above some
non-field area), it starts patrolling – that it is goes from one field
to another in a pre-defined order. If its energy drops below a given
threshold, it moves to the charging station. If all charging stations
are occupied, it hovers above them until any gets available, then it
charges itself. Once fully charged, it returns to the behavior already
described.

The ensemble-based mode works as described in Section 3. The
constants used as observation radius, threshold for charging, etc.,
are the same for both the modes.

We have conducted several experimental runs with the demon-
strator in which we varied the number of flocks (3 to 5), the number
of drones (3 to 4), and the constants governing the behavior of the
flocks and strategies used to control and coordinate the drones. As
a metrics to compare different runs of the simulation, we use the
total amount of time the different flocks spend undisturbed on a
field.

We have not tried not try to draw systematic and generalizable
results of these experiments. Since we have ourselves provided
the implementation of the system without ensembles that we use
for comparison, even though we have tried to make it sufficiently
smart, it would pose a serious threat to the construct validity of
any experimental result. Thus, instead, we present in the rest of the
Section a few lessons learned that give more intuitive understand-
ing of these systems. We also invite everyone to experiment with
the demonstrator and get the feel for these collaborative systems
her/himself.

4.1 Lessons Learned
1) Probably the biggest lessons learned for us was that the difference
between the baseline case and the version with ensembles was
not overly dramatic – only about one third (i.e., in the baseline
implementation, the flock could spent by about 30% more time
on the field than in the ensemble-based implementation). Bigger
difference however was in the variance across different simulations.
The ensemble-based implementation seems to provide more stable
results.

On the other hand, the baseline implementation, which does
not coordinate among components, tends to easily fall into certain
highly inefficient situations. Even in this relatively simple scenario,
it sometimes happens that drones get aligned and all pursue the
same flock. As they are aligned, they do not cover large enough
area of the field to scare the flock away completely, they only push
it from one corner of the field to another. Meanwhile, the other
flocks just undisturbed consume the other fields. This situation is
broken only once the drones start running out of battery, which
brings them in the middle to recharge, spatially separates them
(because the chargers are located apart) and effectively resets their
behavior.

This kind of singular behavior emerges because they all pursue
the same goal and they do not distribute tasks among themselves

(which is done by ensembles). The overall performance of the drones
thus highly depends on how long the systems can work before
falling into the singular behavior, which is also the reason for
the higher variance. On the contrary, by coordinating the drones,
the ensembles effectively counteract the singular behaviors in the
system.

We see this as one of the biggest benefits in explicitly specifying
the coordination among components – the specification allows us
to bound and avoid certain emergent behavior (i.e., the one that
contradicts the logical specification of ensembles).

2) Another observation we made in creating the demo is that it
is surprisingly hard to design the coordination. It is all natural that
in the ensemble-based implementation, the ensemble takes some
of the component’s logic, which leaves the component relatively
lightweight and the emphasis lies on the ensembles. This was indeed
our case too. In the ensemble-based implementation the drone’s
behavior is limited mostly to low-level control/simulation of the
movement, while the ensemble sets the destinations to move to.

Nevertheless, thinking about the coordinated behavior felt qual-
itatively more difficult than designing a single agent. A part of it
was also that we tried to stick with the principle that the state of the
ensemble (and also the condition whether to create it or not) should
be fully based on the state of the components. We designed the
ensembles such that they do not have any internal state themselves
and, in particular, do not depend on history of previous states of the
ensemble. This creates a challenge upfront because we (as software
engineers and developers) are trained to think in state-machines
rather than in invariants. However, once designed, this type of a
system has simpler specification and is more robust. This is because
all rules governing the establishment of an ensemble relate to the
current situation, rather than on the pair of <previous state, current
situation> which yield many more options that have to be handled
and are prone to over/underspecification.

3) An interesting phenomenon that we also observed is that the
system that is specified in the declarative way using ensembles
exhibits self-optimizing/self-stabilizing behavior. In particular, we
observed this in the case of patrolling. If not interrupted by situation
when some flock is in the field or battery would be running out, the
drones relatively equally spread over the map and stop at positions
which allow them to see the fields. The dronewould typically find its
spot among two adjacent fields, so that one drone can monitor both
the fields. If two fields that are further apart are to be covered by a
single drone, the drone would just identify the shortest line between
the fields and would move on this line from one end to another,
just far enough to see the whole field. This yields very efficient
movement – minimal enough to gather all necessary observations.
The placement of the drones is not globally optimal, however, it is
still good enough. As we did not include any randomness factor
that would push the system out of such local minimum, the system
would stay there until recharging is needed or some field is attacked
by the flock. After such a disturbance ceases, the drones return to
similar near-optimal formation.

It is necessary to note that this exact kind of behavior is not
directly specified in the ensembles. The patrolling ensemble only
states that (i) a drone should fly to the closest field which needs
observation (observations are remembered for 500 seconds of the
simulated time), and (ii) two drones should not patrol the same field.

SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea Petr Hnetynka, et al.

The formation of the drones and the fact that they find an optimal
vantage point where they stop is behavior that emerges from the
specification. Similar to what we described in #1, the ensembles
regulate the emergent behavior. In this case, the emergent behav-
ior is formally compliant with the specification of the patrolling
ensemble.

5 RELATEDWORK
Software engineering for collaborative software systems has been
a topic of active research fueled by European projects such as AS-
CENS3. The research line that focuses on autonomic component
ensembles has two characteristics. First, it assumes that such col-
laborations are dynamic and depend on the runtime state of the
system and its environment. In other words, the uncertainty re-
lated to which members to group together in ensembles, when,
and for how long, has to be resolved at runtime, which makes
such systems inherently self-adaptive. Indeed, forming and absolv-
ing ensembles at runtime can be seen as the planning function of
a high-level Monitor-Analyse-Planning-Execute over Knowledge
(MAPE-K) loop [11], whereas each autonomic component can be
seen as a lower-level MAPE-K loop. Second, it focuses on architec-
ture abstractions and corresponding architecture and specification
languages that can be used for handling the challenge of designing
and implementing such systems.

In particular, in our previous work we have introduced the
DEECo component model [2, 3] for the specification and deploy-
ment of ensemble-based systems. Similar to the approach of this
paper, DEECo employs the notion of components with state and
periodically triggered methods. Ensembles in DEECo also have a
membership condition that is specified based on the components
types and knowledge. Although ensembles can overlap in DEECo,
allowing a component to belong to more than one ensembles, there
is no ensemble hierarchy. We have seen though that in many real-
life collaborative systems, it is beneficial to be able to specify collab-
oration hierarchies, which is possible in our approach. Helena [8]
is another framework for building ensemble-based systems. In He-
lena, an ensemble is a set of roles, where a role is specified by its
attributes and operations, and a set of role connectors. The main
difference between Helena and our approach or DEECo is that
in Helena, a component explicitly indicates which ensembles it
belongs to. jRESP [15] is another ensemble-based framework. It
implements the Software Component Ensemble Language (SCEL)
language [14]. In jRESP, components, called nodes, dynamically
form ensembles by relying on the attribute-based communication
paradigm. While not strictly ensemble-based, AbaCuS [1] can be
also considered here as it employs opportunistic and attribute-based
communication among components and it is based on the AbC cal-
culus. Another implementation of this calculus is ABEL [5], which
is also a DSL for specifying attribute-based communication among
components. In contrast to our approach for DSL creation, ABEL is
rather only a set of API calls for the Erlang programming language.

The core features of ensemble-based systems are modeled in [9]
where a formal semantics of communication within ensembles is
proposed and it is based on dynamic logic and bi-simulation.

3http://www.ascens-ist.eu/

Apart from smart farming, autonomic component ensembles
have been employed in other application domains where collabo-
ration is important. In particular, they have been used in mobility
scenarios, e.g., in modeling vehicles collaborating to achieve smart
parking functionality [12]. Another class of applications is emer-
gency collaboration scenarios, e.g., collaboration between firefight-
ers [6] or agents in the Robocup Rescue Simulation4 [7].

Finally, in the robotics domain, collaborations between robots
that need to move (similar to drones flying together) or push an
object in synchrony are naturally modeled via autonomic compo-
nent ensembles. In our previous work, we have provided a testbed
for experimenting with ensembles in the robotic domain [13]. In
particular, the testbed combines ROS (Robotic Operating System),
the corresponding Stage simulator, OMNET++ (a network simulator
supporting ad-hoc networks), and jDEECo (our Java framework
for developing and running DEECo-based systems). It allows the
simulation of a number of robots (Turtlebots in particular) that need
to coordinate in cleaning an indoor space consisting of corridors
and office rooms. This robotic testbed focuses on issues stemming
from sensing and environment uncertainty, featured mainly via
imprecise localization and deadlock situations in the navigation of
the robots. Ensemble-based coordination is meant to deal with these
issues, e.g., via having an ensemble of two robots that exchange
their destinations in order to avoid a deadlock. On the contrary,
our smart farming use case focuses on increasing the efficiency of
coordinated drone operations via building complex ensembles. Also,
in the work presented here, we extended our DSL for ensembles
with several constructs that allow for easier specification and faster
ensemble formation.

6 CONCLUSION
In this paper, we have presented an approach of autonomically com-
posable and context-dependent constructs for describing coopera-
tion among autonomic components together with a demonstration
implementation of the approach in the domain of smart farming.
For defining the cooperation constructs, an internal Scala-based
DSL has been developed and also a system for evaluation of the
dynamic groups at runtime. The implementation is available as
an open-source and ready for further experiments. The proposed
approach has been already applied in an ongoing international
project and discussed with industrial partners within the project.

As a near-futurework, we plan to further enhance the capabilities
of our approach in modeling and resolving ensembles and extend
accordingly our DSL. Also, we plan to further use the approach
within the AFarCloud project and other projects and deploy it in
an actual environment.

ACKNOWLEDGMENT
The research leading to these results has received funding from the
ECSEL Joint Undertaking (JU) under grant agreement No 783221.
Also, this work has been partially supported by Charles University
institutional funding SVV 260451 and partially supported by by the
Czech Science Foundation project 20-24814J.

4http://roborescue.sourceforge.net

http://www.ascens-ist.eu/
http://roborescue.sourceforge.net

Using Component Ensembles for Modeling Autonomic Component Collaboration in Smart Farming SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea

REFERENCES
[1] Yehia Abd Alrahman, Rocco De Nicola, and Michele Loreti. 2016. Programming

of CAS Systems by Relying on Attribute-Based Communication. In Proceedings
of ISOLA 2016, Corfu, Greece (LNCS), Vol. 9952. Springer, 539–553. https://doi.
org/10.1007/978-3-319-47166-2_38

[2] Tomas Bures, Ilias Gerostathopoulos, Petr Hnetynka, Jaroslav Keznikl, Michal
Kit, and Frantisek Plasil. 2013. DEECo: An ensemble-based component system.
In Proceedings of CBSE 2013, Vancouver, Canada. ACM, 81–90. https://doi.org/10.
1145/2465449.2465462

[3] Tomas Bures, Frantisek Plasil, Michal Kit, Petr Tuma, and Nicklas Hoch. 2016.
Software Abstractions for Component Interaction in the Internet of Things.
Computer 49, 12 (2016), 50–59.

[4] Tomáš Bureš and Petr Hnětynka. 2019. Formal Semantics of Component Ensembles.
Technical Report D3S-TR-2019-01. Charles University, Faculty of Mathematics
and Physics, Department of Distributed and Dependable Systems. https://d3s.
mff.cuni.cz/sites/default/files/publications/bures_formal_2019.pdf

[5] Rocco De Nicola, Tan Duong, and Michele Loreti. 2019. ABEL - A Domain
Specific Framework for Programming with Attribute-Based Communication.
In Proceedings of COORDINATION 2019, Lyngby, Denmark (LNCS), Vol. 11533.
Springer, 111–128. https://doi.org/10.1007/978-3-030-22397-7_7

[6] Ilias Gerostathopoulos, Tomas Bures, Petr Hnetynka, Adam Hujecek, Frantisek
Plasil, and Dominik Skoda. 2017. Strengthening Adaptation in Cyber-Physical
Systems via Meta-Adaptation Strategies. ACM Transactions on Cyber-Physical
Systems 1, 3 (July 2017), Article No. 13.

[7] Ilias Gerostathopoulos, Dominik Škoda, František Plášil, Tomáš Bureš, and Alessia
Knauss. 2019. Tuning Self-Adaptation in Cyber-Physical Systems through Ar-
chitectural Homeostasis. Journal of Systems and Software 148 (2019), 37–55.
https://doi.org/10.1016/j.jss.2018.10.051

[8] Rolf Hennicker and Annabelle Klarl. 2014. Foundations for Ensemble Modeling
– The Helena Approach. In Specification, Algebra, and Software. Number 8373 in

LNCS. Springer, 359–381. https://doi.org/10.1007/978-3-642-54624-2_1
[9] Rolf Hennicker and Martin Wirsing. 2018. Dynamic Logic for Ensembles. In

Leveraging Applications of Formal Methods, Verification and Validation. Distributed
Systems. LNCS, Vol. 11246. Springer, 32–47. https://doi.org/10.1007/978-3-030-
03424-5_3

[10] Narendra Jussien, Guillaume Rochart, and Xavier Lorca. 2008. Choco: an Open
Source Java Constraint Programming Library. In CPAIOR’08 Workshop on Open-
Source Software for Integer and Contraint Programming (OSSICP’08). Paris, France,
1–10. https://hal.archives-ouvertes.fr/hal-00483090

[11] Jeffrey Kephart and David Chess. 2003. The Vision of Autonomic Computing.
Computer 36, 1 (2003), 41–50.

[12] Michal Kit, Ilias Gerostathopoulos, Tomas Bures, Petr Hnetynka, and Frantisek
Plasil. 2015. AnArchitecture Framework for Experimentations with Self-Adaptive
Cyber-physical Systems. In Proceedings of SEAMS 2015, Florence, Italy. 93–96.
https://doi.org/10.1109/SEAMS.2015.28

[13] Vladimir Matena, Tomas Bures, Ilias Gerostathopoulos, and Petr Hnetynka. 2016.
Model Problem and Testbed for Experiments with Adaptation in Smart Cyber-
physical Systems. In Proceedings of SEAMS 2016, Austin, USA. ACM, 82–88. https:
//doi.org/10.1145/2897053.2897065

[14] Rocco De Nicola, Gianluigi Ferrari, Michele Loreti, and Rosario Pugliese. 2013.
A Language-Based Approach to Autonomic Computing. In Formal Methods
for Components and Objects. Number 7542 in LNCS. Springer, 25–48. https:
//doi.org/10.1007/978-3-642-35887-6_2

[15] Rocco De Nicola, Michele Loreti, Rosario Pugliese, and Francesco Tiezzi. 2014.
A Formal Approach to Autonomic Systems Programming: The SCEL Language.
ACM Transactions on Autonomous and Adaptive Systems 9, 2 (July 2014), 7:1–7:29.
https://doi.org/10.1145/2619998

[16] Tomas Bures, Ilias Gerostathopoulos, Petr Hnetynka, Frantisek Plasil, Filip Krijt,
Jiri Vinarek, and Jan Kofron. 2020. A Language and Framework for Dynamic
Component Ensembles in Smart Systems. International Journal on Software Tools
for Technology Transfer (STTT)), in press (2020).

https://doi.org/10.1007/978-3-319-47166-2_38
https://doi.org/10.1007/978-3-319-47166-2_38
https://doi.org/10.1145/2465449.2465462
https://doi.org/10.1145/2465449.2465462
https://d3s.mff.cuni.cz/sites/default/files/publications/bures_formal_2019.pdf
https://d3s.mff.cuni.cz/sites/default/files/publications/bures_formal_2019.pdf
https://doi.org/10.1007/978-3-030-22397-7_7
https://doi.org/10.1016/j.jss.2018.10.051
https://doi.org/10.1007/978-3-642-54624-2_1
https://doi.org/10.1007/978-3-030-03424-5_3
https://doi.org/10.1007/978-3-030-03424-5_3
https://hal.archives-ouvertes.fr/hal-00483090
https://doi.org/10.1109/SEAMS.2015.28
https://doi.org/10.1145/2897053.2897065
https://doi.org/10.1145/2897053.2897065
https://doi.org/10.1007/978-3-642-35887-6_2
https://doi.org/10.1007/978-3-642-35887-6_2
https://doi.org/10.1145/2619998

