
What We Are Missing in the CORBA
Persistent Object Service Specification

Jan Kleindienst2, František Plášil1,2, Petr Tůma1

1 Charles University
Faculty of Mathematics and Physics,
Department of Software Engineering
Malostranské námeˇstí 25, 118 00 Prague 1,
Czech Republic
phone: (42 2) 2191 4266
fax: (42 2) 532 742
e-mail:{plasil, tuma}@kki.ms.mff.cuni.cz

2 Institute of Computer Science
Czech Academy of Sciences
Pod vodárenskou veˇží
180 00 Prague 8
Czech Republic
phone: (42 2) 6605 3291
fax: (42 2) 858 5789
e-mail: {kleindie, plasil}@uivt.cas.cz

Abstract. In the paper we try to summarize the weaknesses of the CORBA Persistent
Object Service standard we felt were most significant while designing and
implementing a Persistent Object Service compliant with the standard. The issues
discussed in detail include: underspecified semantics of operations, underspecified
functionality of POM, lack of "compound persistence", reusability of other services
(relationship, externalization, compound externalization, and naming).

1 Introduction

At OOPSLA’96, we will present the paper "Lessons Learned from Implementing the CORBA
Persistent Object Service" [KPT96b]. Compared to that paper, this contribution is more focused on the
CORBA Persistent Object Service (POS) standard itself ([OMG94b]). It also tries to summarize the
weaknesses of the standard we felt were most significant while designing and implementing a
Persistent Object Service compliant with the Standard.

2 Overview of the POS Architecture

2.1 Goals

According to [Sess96], the Persistent Object Service (POS) specification (the Standardfor short) was
prepared as a trade-off based on the original IBM and SunSoft submissions to the OMG Request for
Proposal (RFP) issued in 1992 ([OMG92b]). In addition to the requirements stated by the RFP, the
POS specification was designed to meet the following goals [Sess96]: support for corporate-centric
datastores(including databases of all types, filesystem based datastores, etc.), datastore independence
(a single client API independent of a particular datastore; a single mechanism for storing/restoring
objects to be used on the object server side), open architecture(new datastores to be plugged in at any
time).

2.2 What the Standard says

As defined in the Standard, the POS architecture is based upon instances of the following components.
A Datastoreis an actual data repository with no predefined interface. The location of a persistent
object in a datastore is determined by a Persistent Identifier(PID). A Persistent Data Serviceprovides
an uniform access to a datastore, and at the same time supports a mechanism called a protocol (also



���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

Figure 1 OMG Persistent Object Service
structure

Figure 2 A possible OMG Persistent
Object Service configuration

viewed as a POS component) for storing/restoring the persistent attributes of a persistent object.
Another component, the Persistent Object Manager (POM), provides uniform access to different
Persistent Data Service instances/types. The relationship of these components is summarized on Fig.
1 (basically taken from [OMG94b]). The goal of making the POS architecture open is achieved by
allowing almost all meaningful n:m combination of these components (both instances and types). So
an object and a PDS can support more protocols, a PDS can work with many datastores, more PDSs
can have access to a particular datastore etc. (Fig. 2). Unfortunately, these options have to be read
"between the lines" in the Standard.

3 The weaknesses we see

While otherwise commendable, the effort of the designers to make the Persistent Object Service
specification as open as possible may, in the final effect, somewhat limit the compatibility of
compliant implementations. In certain conditions, these implementations may need to precisely define
or otherwise specialize some aspects of the service and thus potentially render themselves incompatible
with others facing the same problems. In the following, we mention those parts of the specification
we consider most prone to such modifications.

3.1 Underspecified semantics of operations

Throughout the specification, the interfaces are designed "for a straightforward use". Handling of
exceptional situations is missing. In our view, the important cases in this respect particularly include
requests such as disconnecting() an object from a datastore location to which it has not been previously
connected, connecting() several objects to one datastore location, or trying to restore() a state which is
not compatible with the target object. Even if an actual implementation resolves these issues (most
likely by considering at least some of such request as erroneous), it cannot report an exceptional
situation back to its client through the standardized interfaces. Consequently, the implementation will
introduce a proprietary solution to handling the situations not treated in the Standard.



3.2 Underspecified functionality of POM

Unjustifiably, the Standard does not delve into details of the Persistent Object Manager functionality.
Contrary to the technical requirements of [OMG92b], the criteria used by POM to dispatch calls to
attached PDSs are outlined very briefly. Again, vendors can be expected to introduce proprietary
mechanisms for dispatching requests. For example, a potential dispatching mechanism might be based
upon introducing user objects capable of providing the information necessary to route the request to
the appropriate PDS (similar to the TraversalCriteria object defined in the Relationship Service
[OMG94c]). In our opinion, this mechanism would have very little or no impact on the service
flexibility. Moreover, a mechanism for dynamically registering available PDSs could be analogously
introduced. Another dispatching mechanism might be for example based on making the identification
of a target datastore a standardized public attribute of PID (in addition to datastore type).

In a more general view, it is not clear why POM and PDS are separate interfaces even though they
provide syntactically identical operations. A more flexible approach could be based upon allowing for
arranging PDSs into hierarchies (replacing thus POM by the root PDS). In fact, this would be similar
to the concept of GenericFactory in the LifeCycle Service [OMG94a] which also benefits from such
a recursive architecture.

3.3 Lack of "Compound Persistent Object Service"

One of the classical key issues of object persistency is the handling of inter-object references. The
Standard, however, is mute in this respect. Furthermore, the POS architecture associates a persistent
object only loosely with its PID, thus making the processing of inter-object references even more
difficult. At the same time, we have found it surprising that there is no Compound Persistent Object
Service as an analogy to the Compound Externalization Service and the Compound LifeCycle Service
which define the cooperation of these two services with the Relationship Service.

3.4 Reusability of other Object Services

Another tricky issue in the Standard is the coexistence of the POS with other Object Services and
reusability of other Object Services in the POS. Except for mentioning such an option, the Standard
does not go into any details in this respect. In this section, we briefly analyze the prospects of reusing
the Relationship, Externalization, and Naming Services. For details we refer the reader to [KPT96b].

3.4.1 Relationship

To handle relations among CORBA objects in a unified way, the Standard recommends using the
Relationship Service. In the article [KPT96b], we showed that combining the Relationship Service with
the POS raises several issues that must be solved, such as providing the client with a way to specify
a TraversalCriteria object used for traversing a persistent object graph, or specifying the semantics of
merging subgraphs when storing/restoring parts of a given graph. The necessity of resolving such
issues makes reusing of the Relationship Service by the POS less straightforward than it might seem
at first glance.

3.4.2 Externalization

Even though the Standard suggests the Externalization Service as a possible protocol, it does not go
any further in specifying how the Externalization Service might actually be reused in the POS. In fact,
as shown in [KPT96b], the Externalization Service can support the POS, inherently based on random
access to individual objects, only in a very special case - when a POS implementation does not support
fine-grained updating of parts of an externalized transitive closure of dependencies. As we also
showed in [KPT96b], it would be possible to implement a specialized StreamIO interface such that the



Streamable interface could be used to access the persistent state of an object without using the
remaining parts of the Externalization Service, thus not imposing the limit of not supporting fine-
grained updating of parts of an externalized transitive closure of dependencies. (Such a protocol is also
proposed in [Sess96] as we have found out recently).

3.4.3 Compound Externalization

As described in [KPT96b], combining the Compound Externalization Service with the POS introduces
an unexpected conceptual mismatch. Basically, the Compound Externalization Service uses the
externalize_node() method for externalizing a node together with all its roles. There may be cases when
only a subset of all roles adjacent to the node needs to be saved, such as storing a subgraph. For such
cases, the standard implementation of externalize_node(), which stores all adjacent roles, must be
modified appropriately to avoid externalizing roles that have been left out by the TraversalCriteria
object. The modification of externalize_node() logically demands changes in the implementation of its
counterpart method internalize_node(). This method, which is according to the Compound
Externalization Service specification responsible for loading all roles belonging to a node, would have
to cope with internalizing subgraphs, choose a subgraph merging semantics, and also solve the problem
of checking whether a particular role has already been internalized or not. The latter problem is
especially hard since CORBA lacks means for checking an object identity (this functionality should
have originally been provided by the LifeCycle Service, but has been omitted in the final version of
its OMG specification [OMG94a]).

3.4.4 Naming

The Standard suggests using the Naming Service for translating human-readable names of PDSs into
CORBA references. In our opinion, the Naming Service can also be used to provide mapping from
human-readable names to PIDs. The level of indirection introduced by such a mapping may be
beneficial for hiding the datastore-dependence of PIDs.

4 Conclusion

This contribution is based upon a thorough study of the Standard (originally without knowing the
motivations published in [Sess96]) and our experience gained during an implementation of the POS
for Orbix [ORBIXa, ORBIXb]. The main weaknesses we have identified include: underspecified
semantics of the POS operations, underspecified functionality of POM, and very weak specification
of how other Object Services may be reused in the POS. In addition, the Standard also lacks a section
that would suggest means (by specifying additional interfaces or providing a corresponding semantics)
for resolving the issues raised by combining the POS with other CORBA Object Services.

References

[Ben95] R. Ben-Nathar: CORBA: A guide to Common Object Request Broker Architecture. McGraw-
Hill. 1995.

[IBM94a] IBM Corp. SOMobjects Developer Toolkit Users Guide, Version 2.1, 1994.
[IBM94b] IBM Corp. SOMobjects Developer Toolkit Programmers Reference Manual Version 2.1,

1994.
[KPT96a] J. Kleindienst, F. Plášil, P. Tůma: CORBA and its Object Services. Invited Paper,

SOFSEM’96, Springer LNCS, 1996, to appear.
[KPT96b] J. Kleindienst, F. Plášil, P. Tůma: Lessons Learned from Implementing the CORBA

Persistence Service, In Proceedings of OOPSLA’96, San Jose, Oct 1996
[MoZa95] T. J. Mowbray, R. Zahavi: The Essential CORBA, J. Wiley & Sons, 1995.



[OHE96] R. Orfali, D. Harkey, J. Edwards: The Essential Distributed Objects. Survival Guide. John
Wiley & Sons, 1996

[OMG92a] Object Service Architecture, OMG 92-8-4, 1992.
[OMG92b] Object Services Request for Proposal 1, OMG 92-8-6, 1992
[OMG94a] Common Object Services Volume I, OMG 94-1-1, 1994.
[OMG94b] Persistent Object Service Specification, OMG 94-10-7, 1994.
[OMG94c] Relationship Service Specification, Joint Object Services Submission, OMG 94-5-5, 1994.
[OMG94d] Compound LifeCycle Addendum. Joint Object Services Submission. OMG 94-5-6, 1994.
[OMG94e] Object Externalization Service. OMG 94-9-15, 1995.
[OMG95a] Common Object Request Broker Architecture and Specification Revision 2.0, OMG 96-3-4,

1995.
[OMG95b] Object Management Architecture Guide, 3rd Edition, R. M. Soley (Editor), John Wiley &

Sons, 1990.
[ORBIXa] Orbix, Programmer’s Guide. IONA Technologies Ltd. Dublin, 1994
[ORBIXb] Orbix, Advanced Programmer’s Guide. IONA Technologies Ltd. Dublin, 1994.
[Sess96] R. Sessions: Object Persistence, Beyond Object-Oriented Databases. Prentice-Hall 1996
[Sie96] J. Siegel: CORBA. Fundamentals and Programming. J. Wiley & Sons, 1996


