
Charles University in Prague
Faculty of Mathematics and Physics

DOCTORAL THESIS

Jan Kofroň

Behavior Protocols Extensions

Department of Software Engineering
Advisor: Prof. Ing. Frantǐsek Plášil, DrSc.

Abstract

Title: Behavior Protocols Extensions
Author: Jan Kofroň

e-mail: jan.kofron@dsrg.mff.cuni.cz
phone: +420 2 2191 4285

Department: Department of Software Engineering
Faculty of Mathematics and Physics
Charles University in Prague, Czech Republic

Advisor: Prof. Frantǐsek Plášil
e-mail: frantisek.plasil@dsrg.mff.cuni.cz
phone: +420 2 2191 4266

Mailing address (both Author and Advisor):
Dept. of SW Engineering, Charles University in Prague
Malostranské náměst́ı 25
118 00 Prague, Czech Republic

WWW: http://dsrg.mff.cuni.cz

This thesis: http://dsrg.mff.cuni.cz/∼kofron/phd-thesis

Abstract
Formal verification of behavior of a component application requires a suitable specifi-
cation language. It is necessary that the specification language captures all important
aspects of the future implementation with respect to desired properties. Behavior Proto-
cols have been proven to be a suitable component behavior specification platform if one
is interested in absence of communication errors.

In this thesis, we (1) propose a new specification language based on Behavior Protocols

and (2) address the issue of insufficient performance of BPChecker—a proprietary tool

for verification of absence of communication errors in Behavior Protocols. Motivated by

issues raised during specification of a real-life-sized case study aiming at providing wire-

less Internet access at airports, we extended the original Behavior Protocols with support

for method parameters, local variables, synchronization of more than two components,

and specification of variable-controlled loops. To address the second issue, we propose a

method for verification of Behavior Protocols via their transformation to Promela—the

input language of the Spin model checker.

Keywords

Software components, behavior specification, model checking, behavior verification, be-

havior composition

Acknowledgement

I would like to thank all those who supported me in my doctoral study and the work
on my thesis. I very appreciate the help and counseling received from my advisor Prof.
Frantǐsek Plášil. For the various help they provided me, I also thank my colleagues; a
particular thank goes to (in alphabetical order): Jǐŕı Adámek, Petr Hnětynka, Pavel Ježek,
Pavel Paŕızek, Tomáš Poch, and Ondřej Šerý.

My thanks also go to the institutions that provided financial support for my research
work. Through my doctoral study, my work was partially supported by the Grant Agency
of the Czech Republic projects GD201/05/H014 and 201/06/0770.

Last but not least, I am in debt to my parents and Eddie, whose support and patience
made this work possible.

Contents

1 Introduction 9
1.1 Software components . 9
1.2 Verification of software component properties 10
1.3 Behavior Protocols . 10
1.4 Problem statement . 11
1.5 Goals of the thesis . 11
1.6 Structure of the thesis . 12
1.7 Contributions and publications . 12
1.8 Note on conventions . 13

2 Background 15
2.1 Component models considered . 15

2.1.1 SOFA 2.0 . 15
2.1.2 Fractal . 16

2.2 Modeling component behavior . 19
2.2.1 Process Algebras . 19
2.2.2 Languages . 26

2.3 Tools . 47
2.3.1 Spin . 48
2.3.2 Symbolic Model Verifier . 49
2.3.3 CADP . 49
2.3.4 Behavior Protocols Checker . 51

2.4 Problem elaborated . 57
2.5 Goals revisited . 59

3 Proposed specification language (EBP) 61
3.1 State variables and method parameters . 63
3.2 Multisynchronization . 64
3.3 While loops . 67
3.4 Syntax and semantics . 68

3.4.1 Syntax of EBP . 68
3.4.2 Semantics of EBP . 71
3.4.3 Consent composition of EBP . 74

7

8 CONTENTS

3.4.4 EBP inversion . 75

4 Transformation into Promela 77
4.1 Basic approach . 77
4.2 Modeling composition . 78
4.3 Modeling data . 79

4.3.1 State variables . 79
4.3.2 Method parameters . 79

4.4 Modeling multisynchronization . 79
4.5 Example . 80

5 Evaluation 83
5.1 BP vs. EBP comparison . 83
5.2 Comparison to other approaches . 88

6 Conclusion and future work 91
6.1 Conclusion . 91
6.2 Future work . 92

References 93

Appendices 99

A Syntax of Extended Behavior Protocols 99

B IpAddressManager specification 103

C CashDeskApplication in BP 109

D CashDeskApplication in EBP 115

Chapter 1

Introduction

1.1 Software components

Construction of software applications by assembling reusable pieces together belongs to
modern trends of software development. Reusable software pieces, usually referred to
as software components, from various vendors may be combined to build an application
featuring the desired functionality. This approach both speeds up the development process
and lowers the development costs. Furthermore, with support of an underlying layer (i.e.,
a middleware and an operating system), a component application can be executed in a
distributed way thus allowing for exploitation of the power of multiple computer if the
performance of the application becomes important.

A component is a piece of software (implementation) with well-defined functionality
and interface providing access to it. Often, a component is viewed as a black box with
provided and required parts called ports or interfaces. Using these parts, components
can be connected with each other thus forming an application or a composite component
providing some more complex functionality.

A component model is a set of rules defining abstractions for components and rela-
tions between those abstractions. A component system is a realization of a component
model. From one point of view, there are two groups of component models differing on
whether they allow component nesting—flat component models (e.g. COM/DCOM [65],
Corba Component Model [63], and EJB [67]) disallow component nesting, while hierarchi-
cal component models (e.g. Darwin [43], Wright [3], SOFA [71], SOFA 2.0 [12, 30], and
Fractal [11]) allow for it. In the latter case, the components directly implemented in a
programming language (e.g. Java, and C++) are denoted as primitive components, while
the components created by composing other ones are referred to as composite components.
The hierarchical component models are more general, as the flat ones can be seen as a
special case of hierarchical component models exhibiting no component nesting; thus, in
this work, we will focus on hierarchical component models only.

9

10 CHAPTER 1. INTRODUCTION

1.2 Verification of software component properties

Verifying various properties of software applications may be important regardless of the fact
whether the application is built of components or not. However, there is a special prop-
erty addressing component applications only—behavior compliance [54]. This property
describes a compatibility relation between two components. A component being behav-
iorally compliant to another one can replace this component safely, i.e., the communication
of the new component after the update will not yield any communication errors as long
as the communication of the original component with other components has not yield any
communication errors. In hierarchical component models, supposing that behavior of each
component (primitive or composite) is specified, the notion of behavior compliance can be
extended in the sense of communication correctness between a composite component and
its subcomponents. To assure no communication errors will appear during an execution of
a component application, the behavior compliance between all components as well as the
compliance between each composite component and its subcomponents should be verified.

When building a component application, properties of particular components have to be
formally specified and verified to assure that the component application will not yield errors
during execution; this is especially true when combining components from various vendors.
Our experience shows that comparison at a syntactic level (e.g. the types of exported
interfaces that our bound to each other) is not sufficient; a more thorough specification is
actually needed.

As the implementation of a software component is usually too complex to be handled
by automated verification tools, a model of the component behavior is needed. Behavior
of a software component is typically modeled as a labeled transition system (LTS)—a
(possibly infinite) graph with nodes representing the states of the software being modeled,
and transitions between the nodes labeled by events performed by the component when
changing its state. The model becomes an abstraction of the component—states and
transitions not relevant to verification of properties under consideration (e.g. the behavior
compliance) may be omitted to reduce the size of the model. Moreover, in most cases, to
keep the verification of properties feasible, we often have to stick with finite state models
making the model construction even more difficult.

The main problem of the verification of software components properties (and software in
general) is the state space explosion problem. This problems denotes an enormous number
of states of a model being verified and is usually caused by parallel composition of several
software components (or parts of a software application).

1.3 Behavior Protocols

Behavior protocols (BP) are a platform for component behavior specification. They are
used in several component models, e.g. SOFA [71], SOFA 2.0 [12, 30], and Fractal [11].
They model the component behavior at the level of abstraction allowing evaluation of
behavior compliance.

1.4. PROBLEM STATEMENT 11

With each component of an application, a behavior protocol is associated defining
the allowed sequences of events that may occur on the component provided and required
interfaces. A behavior protocol takes the form of an expression consisting of events (emits
and accepts of method calls requests and responses) combined via regular and special
operators. It does not contain any notion of data. Hence, BP provide a reasonable level
of abstraction able to be handled by tools in a reasonable time.

For evaluation of the compliance relation, the behavior protocols associated with com-
municating components are combined via a special composition operator consent [2]. This
operator is basically a parallel composition operator able to capture, besides the traces cor-
responding to correct communication, also traces containing communication errors. The
most important types of errors are bad activity, denoting a situation when an emitted event
cannot be accepted, and no activity, denoting the deadlock. The compliance relation is
evaluated in an automated way using a proprietary tool BPChecker [42].

1.4 Problem statement

We used BP for the specification of a component based application aimed at providing
access to the Internet at airports [1] consisting of approximately twenty components. We
have identified several problems, which can be divided into two main groups:

1. Behavior protocols provide expressive power that is too weak to model several com-
mon pattern used in implementation. Moreover, in some cases where the expression
power is sufficient, the resulting specification is unreadable and not easy to under-
stand. This is a crucial property of a specification when error fixing takes place.

2. The memory and time requirements of the BPChecker [42] are too high in some cases;
therefore, a simplification of the specification have to be done to make the verification
feasible. This, of course, lowers the practical applicability of BP.

On the other hand, behavior protocols provide a suitable specification platform if a
component-application designer is interested in behavior compliance

1.5 Goals of the thesis

There are two general goals of the thesis reflecting the aforementioned issues:

1. To extend the behavior protocols formalism to be able to model commonly used
programming construct in a simple way thus providing an easy-to-use behavior spec-
ification platform.

2. To solve the performance issues of the proprietary BPChecker [42] either by (1)
employing optimization and other approaches than the ones currently used or (2)
using another (model-checking) tool to evaluate the behavior compliance relation.

12 CHAPTER 1. INTRODUCTION

1.6 Structure of the thesis

The rest of the thesis is structured in the following way: Chapter 2 provides the reader with
information about component models considered in this thesis as well as with semantics of
process algebras used for component behavior specification. Moreover, several languages
aiming at modeling and description of component behavior are discussed. Finally, the
tools verifying specification written in these languages are briefly described. Chapter 3
focuses at description of Extended Behavior Protocols—a new way of component behavior
specification proposed in this thesis. In Chapter 4, we present the details on translation
of EBP specification into Promela [32]. Chapter 5 compares the proposed formalism of
EBP with original BP and discusses the properties of the proposed specification language.
Finally, Chapter 6 concludes the thesis and proposes direction for future research.

1.7 Contributions and publications

The approach to implementation of an algorithm for evaluation of behavior compliance
as well as the architecture of BPChecker along with performance comparison of a Python
and Java implementations was published in the International Journal of Computer and
Information Science, Vol. 6, Number 1 [42].

The experience with modeling a real-life component application being the primary mo-
tivation for this thesis was published in Electronic Notes in Theoretical Computer Science,
Vol. 160 [34].

Extensions to Behavior Protocols proposed in this thesis were published in Tech. Report
No. 2006/2, Dep. of SW Engineering, Charles University [36].

A transformation of behavior protocols to the Promela [32] modeling language and using
the Spin model checker [32] for evaluating the behavior compliance relation was described
in and published in the proceedings of the SAC’07 conference [38]. Technical details are
described in Tech. Report No. 2006/11, Dep. of SW Engineering, Charles University in
Prague [37]. This version expects the Behavior Protocols to be deterministic, which is
rather restrictive. Therefore, in this thesis, we propose a more general algorithm being
able to correctly translate also nondeterministic BPs, i.e., those ones corresponding to a
general NFA.

Reviewed papers

[42] M. Mach, F. Plasil, and J. Kofron. Behavior protocol verification: Fighting state
explosion. International Journal of Computer and Information Science, 6(1):22-30, The
International Association for Computer and Information Science (ACIS), ISSN: 1525-9293,
2005.

[34] P. Jezek, J. Kofron, and F. Plasil. Model checking of component behavior specification:
A real life experience. In Electronic Notes in Theoretical Computer Science, volume 160,
pages 197–210, Elsevier, ISSN: 1571-0661, 2006.

1.8. NOTE ON CONVENTIONS 13

[38] J. Kofron. Checking software component behavior using Behavior Protocols and Spin.
In Proceedings of Applied Computing 2007, pages 1513–1517, ACM Press, ISBN: 1-59593-
480-4, 2007.

[53] P. Parizek, F. Plasil, and J. Kofron. Model Checking of Software Components: Com-
bining Java PathFinder and Behavior Protocol Model Checker. In Proceedings of 30th
Annual IEEE/NASA Software Engineering Workshop SEW-30 (SEW’06), pages 133–141,
Los Alamitos, CA, USA, IEEE Computer Society, ISSN: 1550-6215, ISBN: 0-7695-2624-1,
2006.

Technical Reports

[36] J. Kofron. Extending Behavior Protocols With Data and Multisynchronization. Tech-
nical Report 2006/10, Dep. of SW Engineering, Charles University in Prague, October
2006.

[37] J. Kofron. Software Component Verification: On Translating Behavior Protocols to
Promela. Technical Report 2006/11, Dep. of SW Engineering, Charles University in
Prague, October 2006.

Presentations

J. Kofron, J. Adamek, T. Bures, P. Jezek, V. Mencl, P. Parizek, and F. Plasil. Checking
Fractal component behavior using Behavior Protocols, presented at the Fractal Workshop
(part of ECOOP’06) in Nantes, France, July 2006.

1.8 Note on conventions

The text of this work is partially based on the papers mentioned in the previous section. To
denote the parts that were taken from the papers, corresponding paragraphs are marked
with a vertical bar:

This is an example of a paragraph that was copied verbatim from a paper, therefore it
is marked by a vertical side bar.

In some cases, the leading sentences of parts taken from the papers were slightly modi-
fied to fit into the rest of the text, and, due to obvious reasons, the phrase “in this paper”
was replaced by the phrase “in this thesis”.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter, we take a closer look at the component models considered in this the-
sis. As mentioned in Chapter 1, flat component models (CCM [63], EJB[67]) not allowing
component nesting can be treated as a special case of hierarchical component models (Frac-
tal [11], SOFA 2.0 [12]). The hierarchical component models are almost exclusively used
in academia, while flat models mostly in industry. We focus on hierarchical component
models in this thesis—in particular, we take the SOFA 2.0 and Fractal component models
into account. Nonetheless, the results are not limited to these ones, but can be general-
ized and applied to any hierarchical component models where components communicate
synchronously using provided and required interfaces.

2.1 Component models considered

2.1.1 SOFA 2.0

SOFA 2.0 (SOFtware Appliances) [12, 30] is a project providing a developer with a plat-
form for designing and running software component applications. SOFA 2.0 provides a
hierarchical component model, i.e., there are both primitive components (implemented
in the Java programming language) and composite ones consisting of other components.
The components can communicate using their exported—provided (server) and required
(client) interfaces.

A component frame denotes the boundary of a component, i.e., the set of exported
interfaces. There are two views on a component—a black-box view and a grey-box view. In
the black-box view, only the component frame is considered and no internal structure of
the component is taken into account, while the grey-box view reflects the frames of first-
level-of-nesting subcomponents of the composite component and interface interconnections
(ties) between them. This is referred to as the component architecture.

There are three kinds of ties between interfaces of distinct components:

• Binding connects a required interface of a component to a provided interface of
another component. The connected components have to be (1) subcomponents of

15

16 CHAPTER 2. BACKGROUND

the same composite component and both at the same level of nesting or (2) both
components at the top level of nesting.

• Delegation is a tie between a provided interface of a composite component CC and a
provided interface of one of its subcomponents CS. The calls on the interface of the
CC component are delegated to the interface of the subcomponent CS.

• Subsumption denotes a connection between a required interface of a subcomponent
CS and a required interface of its parent component CC (the parent component is
the composite component CC , whose subcomponent the component CS is).

The terms dynamic architecture and architecture reconfiguration refer to changes of the
application architecture at runtime. SOFA 2.0 provides a way to change the structure
of the architecture. This is possible via the factory pattern creating new components.
However, the factory pattern is limited in the following way: Only the component that
requests creation of a new component can establish a binding with it. This factory pattern
is to be extended in the future.

To be able to reason about compliance of components’ behavior, a behavior protocol [54,
2] is associated with each component frame. A behavior protocol is an expression describing
the behavior of a component in terms of sequences of events appearing on the component
frame. Via application of the consent [2] composition operator onto behavior protocols, it
is possible to detect incompatibility between behavior of components. The evaluation of
behavior compliance is done automatically using a proprietary tool—BPChecker [42].

2.1.2 Fractal

Fractal component technology [11] provides, as well as SOFA 2.0, a component model with
hierarchically nested components. It is similar to the SOFA 2.0 component model in many
aspects, therefore we focus on the features not present in SOFA 2.0. In addition to standard
(business) interfaces providing access to the component functionality, there are controller
interfaces, shortly controllers, allowing for managing the component lifecycle (starting /
stopping the component, setting attributes) as well as changing its internal structure in
the sense of adding and removing subcomponents and bindings between them. Depending
on the type of the component and its execution environment, there may be different count
and types of controllers.

A Fractal component is composed of two parts—controller (membrane) and content.
The membrane encapsulates the content and controls the incoming requests processed by
the content. All request addressed to the component are queued in a buffer inside the
membrane and processed in a FIFO manner.

For each exported interface (provided or required) there is its internal counterpart used
for connection of the component with its subcomponent. The internal interface counterpart
is of opposite type than the external interface is—for a provided interface, there is a required
internal counterpart connected to a provided interface of a subcomponent (in the case of
delegation) and vice versa (subsumption).

2.1. COMPONENT MODELS CONSIDERED 17

In addition to primitive bindings (connections) appearing also in SOFA 2.0, there are
also composite bindings in Fractal. Primitive bindings serve for interconnection of two
components together, while the composite bindings allow for communication of an arbitrary
number of components regardless of the types (provided/required) of their interfaces. A
composite binding is realized as a set of binding components and primitive bindings. A
binding component, also called a connector, is, however, not a first-class entity of the Fractal
component model.

An interface of a Fractal component can be declared as optional. An optional interface
does not have to be bound to another interface. An interface can be also marked as multiple
thus declaring an array of interfaces in fact.

Furthermore, the components in Fractal may be shared, i.e., several components may
share a component as their subcomponent. This eases the reference passing and, generally,
management of dynamic applications. On the other hand, however, it complicates the
component model by making the architecture of Fractal applications harder to read and
understand.

The Fractal specification defines four levels of conformance. Each level defines the
requirements put on the application that have to be satisfied:

• Level 0 : This level defines no requirements; thus, every software artifact is a Fractal
component.

• Level 1 : Component on this level has to provide the component introspection, i.e., a
mechanism to discover all component interfaces.

• Level 2 : On this level, additionally to the level 1, a component has to provide inter-
face introspection, i.e., the information about interface cardinality, method names,
parameter types, etc. has to be provided.

• Level 3 : This level extends the level 2 by a type system, in particular by a subtyping
relation.

Moreover, for each compliance level x, there is the x.1 sublevel defined requiring that
each component provides a standard set of controllers.

Architecture reconfiguration in Fractal is possible using the control interfaces used to
change the bindings and add new components (created using the bootstrap component) to
add/remove components to/from the application architecture.

However, according to some people from the software components community, the
architecture have been always treated as not only a set of bindings among particular parts,
but also a prescription to which the structure of the application should obey. Allowing any
changes of the application structure has to be therefore preceded by definition of changes
that are allowed. As there is not, according to our knowledge, a common consensus on what
is the set of changes that should be allowed, we omit the issue of dynamic reconfiguration
in the rest of the work.

18 CHAPTER 2. BACKGROUND

Julia

Julia is one of the Fractal implementation. It is implemented in Java and still being de-
veloped. As a result of the project Component Reliability Extension for Fractal [1], speci-
fication of Fractal components in Julia was extended with an option to specify component
behavior using Behavior Protocols [2].

Fractive/ProActive

Fractive [7] is an implementation of the Fractal specification using ProActive [14] middle-
ware for distribution. Features characterizing ProActive are asynchronous method calls,
absence of shared memory, and transparency of distribution and migration.

ProActive is a Java implementation of distributed object with asynchronous method
calls exploiting future references. A future reference is a reference to a result of a method
call that is not yet ready but will be eventually evaluated; the future reference will be
then updated with the result. The ProActive system is composed of several activities—
active entities. Each activity has defined its entry point—the active object, which can be
referenced (called) from outside, having its own execution thread. On the other hand,
passive objects cannot be referenced directly from outside the component and they do not
own a thread. To get an idea how a method call is processed, consider the following brief
sequence of steps:

1. If a method call is performed on an active object, say y = Ifc.m(x), the request
(including a deep copy of all parameters—due to the absence of data sharing) is
stored within the queue of the callee and a future reference y is immediately returned
to the caller. The future reference is the promise of the asynchronous method call.

2. As soon as the callee decides to serve a request, it picks up the first item of the
request queue and executes the requested method.

3. After finishing the method, the future reference previously returned to the caller is
replaced with the result (value of y).

In case the caller tries to use the future reference before it has been replaced by the real
result, the execution is blocked until the result is ready (wait-by-necessity). The ProActive
computation model is defined by the ASP calculus [13].

In Fractive, the start and stop methods of the control interface are recursively propa-
gated to subcomponents.

A primitive component in Fractive is composed of one activity, whose object implements
the functionality provided by its interfaces. If a primitive component is stopped, the
membrane ignores all request targeting the content (implementing the business logic of the
component)—it filters such requests out, while processing only the controlling requests.
Starting a Fractive component means running the thread of its active object while stopping
the components means setting its active flag to false. The stopping of the active object

2.2. MODELING COMPONENT BEHAVIOR 19

execution is implemented in a non-preemptive way, i.e., the active object should check the
flag and behave accordingly.

In the case of a composite component, the membrane is an active object having its
own request queue. Normally, if a component is started, requests from the outer world are
propagated to the subcomponents along the bindings and the request from the subcompo-
nents are similarly transfered to the membrane. If a composite component is stopped, it
does not emit any functional (i.e., none-control) method calls.

The behavior of a Fractive system is modeled as a set of synchronised transition sys-
tems (LTSs). The information about bindings taken from ADL is used for determining the
information about synchronization of particular events and lifecycle of each component.
The synchronised product of all parts (control part, functional part, behavior of subcompo-
nents) modeling the component behavior is called controller automaton. The construction
of the controller automata is done in a bottom-up manner through the component hierar-
chy.

2.2 Modeling component behavior

In this section, we describe several approaches to specification of component behavior used
in different component models and aiming at verification of different behavior properties.
We are not going to describe all of them, however, we focus on the ones we believe are
the most used/important for the rest of this thesis. Moreover, several tools supporting
checking properties of the models will be discussed in the second part of this section.

2.2.1 Process Algebras

Process algebras focus on providing a high-level view on modeling of communication among
parallel processes. In recent years, this approach was applied several times and several
formalisms have evolved. In a process algebra, the basic entity is a process being able to
perform various actions thus resulting in another process. Then, a system is described by
a set of equation defining the behavior in the sense of observable actions of the particular
parts of the system. The best known and most important members of process algebra
family are CCS [49], CSP [31], ACP [9], and π-calculus extending the CCS by support for
mobile processes. In the following paragraphs, we will briefly describe the most important
ones.

CCS

CCS (stands for Calculus of Communicating Systems) was developed by Robin Milner
around 1980 and published in [49]. It contains only few constructs, whose meaning is
defined using operational semantics. In CCS, the basic entity is an agent able to perform
actions. An action is an indivisible activity performed by an agent. Furthermore, there is
a special action τ called the silent or perfect action.

20 CHAPTER 2. BACKGROUND

Let us now describe the syntax of CCS as stated in [49]. Let A be a set of names, A a
set of co-names, and L = A∪A set of labels. Here, a, b, c, ... range over A, a, b, c, ... range
over A, and l, l′ range over L. Let Act = L ∪ {τ} be the set of actions ; α, β, ... range over
Act. We use K, L to denote subsets of L, and L to denote the set of complements of labels
in L. A relabeling function f is a function from L to L such that f(l) = f(l); moreover,
f(τ) = τ .

Further, let X be a set of agents variables, while K a set of agent constants ; we let
X, Y, ... range over X and A, B, ... range over K. In some cases, when necessary, we use I
and J to denote a set of indices (e.g. {Ei :∈ I}. Finally, let E be a set of agent expressions,
and let E, F, ... range over E , E is then the smallest set including X and K containing the
following expressions, where E, Ei are already in E :

(1) α.E—a Prefix
(2)

∑
i∈I Ei—a Summation

(3) E1 | E2—a Composition
(4) E\L—a Restriction
(5) E[f]—a Relabeling

Of the expressions above, only the expression (2) needs our further attention. It denotes
the sum of all expressions Ei, i ∈ I; in the case I = {i, j} we can write Ei + Ej . In cases
when I is understood, the summation can be abbreviated to

∑
i Ei. If the set I is empty,

the expression
∑

i Ei denotes an inactive agent—an agent unable to perform any actions.
As this agent is important, a special name 0 was introduced representing this agent; i.e.,
0 =

∑
i∈∅ Ei.

To decrease the number of parentheses and thus improve the readability of the expres-
sions, a convention of different binding power of combinators was adopted. The order from
the tightest to the lowest binding power follows: Restriction, Relabeling, Prefix, Compo-
sition, and Summation. To demonstrate this fact, consider the following example:

R + a.P | b.Q\L stands for R + ((a.P) | (b.(Q\L)))

The meaning to the language is given using well-known formalism of labeled transition
system

(S, T, { t→: t ∈ T}),

where S is a set of states, T a set of transition labels, and
t→⊆ S × S, t ∈ T a transition

relation.
In our case, we take S to be ǫ (the agent expressions) and T to be Act (the actions).

The semantics is defined via a set of transition rules, which take the following form:

E
α→E′

E|F α→E′|F

This is to express the following:

2.2. MODELING COMPONENT BEHAVIOR 21

From E
α→ E ′ infer E | F

α→ E ′ | F

The set of transition rules follows:

Act
α.E

α→E
Sumj

Ej
α→E′

j
∑

i∈I Ei
α→E′

j

(j ∈ I)

Com1
E

α→E′

E|F α→E′|F Com2
F

α→F ′

E|F α→E|F ′

Com3
E

l→E′ F
l̄→F ′

E|F τ→E′|F ′
Res E

α→E′

E\L α→E′\L (α, ᾱ /∈ L)

Rel E
α→E′

E[f]
f(α)→ E′[f]

Con P
α→P ′

A
α→P ′

(A
def
= P)

The rule Sumj can be also expressed in its simpler form if we consider the I set to be
finite, which is enough for most practical purposes:

Sum1
E1

α→E′

1

E1+E2
α→E′

1

Sum2
E2

α→E′

2

E1+E2
α→E′

2

As we assume there are no other transitions except for those inferable from these rules,
we say that the set of rules is complete. Furthermore, using of Restriction and Composition
together, the internal communication can be easily modeled.

Let us now describe, how values can be incorporated into expressions inferred from
the rules above. First, consider the following agent constants Prod and Cons modeling
producer-consumer situation:

Prod = out(x).P rod
Cons = in(x).((process.in(y).process) + (in(y).process.process)).Cons

Agent Prod—Producer—is able to send a value x to its output port out after which it
becomes agent Prod again (and is able to send further values). Agent Cons—Consumer—
is able to receive at most two values without processing them. If only a single value
is received, it can be processed before the other one is received and processed. After
processing both values, it becomes agent Cons again (and is able to receive further values).
The behavior of the Cons agent can be also seen as if there would be a buffer able to keep
two values at a time.

To capture the meaning of these agent expressions formally in the sense of the definitions
above, consider the x and y range over V . Prod and Cons agent constants can be then
considered as families of constants: i.e., out(x) becomes a family outx, one for each value
x ∈ V , in(y) becomes a family iny for y ∈ V , etc. Then, the producer agent constant
becomes a family of constants:

22 CHAPTER 2. BACKGROUND

Prod =
∑

x∈V outx.P rod

Similar approach may be applied in the case of the consumer agent.

In [49], Milner discusses several equivalence relations based on behavior of agents and
their derivation trees. The basic requirement put on the relations is that two agents P and
Q should be equivalent if the distinction between them cannot be detected by an external
agent interacting with P and Q. Depending on whether the internal action τ is considered
as observable or not, the equivalence relation varies. Milner argues that the equivalence
relation should not be too restrictive (e.g. to make equivalent agents with isomorphic
derivation trees only), on the other hand, equivalence based on the possible sequences of
action taken from the automata theory is denoted to be too weak—e.g. agents A and B
defined as following:

A
def
= a.A1 B

def
= a.B1 + a.B′

1

A1
def
= b.Aa + c.A3 B1

def
= b.B2 B′

1

def
= c.B3

A2
def
= 0 B2

def
= 0

A3
def
= d.A B3

def
= d.B

are equivalent in this relation, although we would like them not to be. After performing
the action a, the A agent becomes A1 and is able to perform either action b or action c.
The agent B, however, according to something (that is not known nor important for our
argumentation) chooses a branch at the beginning and after performing the action a, it is
able to perform either the b or the c action, but cannot choose an action at this point any
more—the executable action has been already determined in the first step.

To satisfy this feeling of what properties should the equivalence relation have, Milner
defines a relation referred to as strong bisimulation ∼ as follows:

P ∼ Q iff, for all α ∈ Act:

(i) Whenever P
α→ P ′ then, for some Q′, Q

α→ Q′ and P ′ ∼ Q′, and

(ii) Whenever Q
α→ Q′ then, for some P ′, P

α→ P ′ and P ′ ∼ Q′

Further, Milner shows that this relation is also a strong congruence, i.e., it is substitutive
under all combinators, and recursive definition:

Let P1 ∼ P2. Then

(1) α.P1 ∼ α.P2

(2) P1 + Q ∼ P2 + Q
(3) P1 | Q ∼ P2 | Q

(4) P1\L ∼ P2\L
(5) P1[f] ∼ P2[f]

2.2. MODELING COMPONENT BEHAVIOR 23

π-calculus

The π-calculus [50] is an extension of CCS supporting dynamic reconfiguration of the
agents. The reconfiguration means changing the structure of the system dynamically. The
information about new structure of (linkage among) agents can be even carried by the
communication among agents. As dynamic reconfiguration is not addressed by this thesis,
we omit the details about it and refer the reader to e.g. [50].

ACP

A basic issue in theory of concurrency is the modeling of communication. Apart from the
basic entities similar to CCS, the Algebra of Communicating Processes (ACP) [9] defines
the communication in the following way: Let γ is an associative and commutative partial
binary function. If γ(a, b) = c is defined, in a composition of processes A and B, the process
A performing the action a is able to communicate with the process B performing the action
b resulting in the action c (observed from outside). In CCS [49], the communication can
be seen as a special case of this, in particular that γ(a, a) = τ is defined for each a. On
the contrary, in CSP [31], the communication can be described as γ(a, a) = a for all a.

Networks of communicating automata

Networks of communicating automata were introduced by Maurice Nivat in 1979 in [52] at
a seminar of the French company Thomsom-CSF. The formalism describes communicating
processes as interacting finite automata. Each process is modeled as a finite automaton
with labels associated with particular transitions.

To talk about communication and synchronization, first, Arnold and Nivat defined
synchronization constraints in [5] in the following way: Let A1, . . . , An be alphabets rep-
resenting actions or events. A synchronization constraint is then a subset of the Cartesian
product A1 × . . . × An.

Next, they propose a notion of free product of transition systems being a parallel com-
position of several finite automata without any constraints.

Finally, they defined synchronous product of finite automata as free product, whose
global transitions are limited to those allowed by (i.e., contained in) a given synchronization
constraint.

Symbolic transition graphs

The formalism of Symbolic transition graphs [27] is due to M. Hennessy and H. Lin. They
focused on description of interprocess communication where value passing of data of un-
limited domains takes place [27]. Although a value-passing version of CCS can be used
for description of such situations, the resulting transition systems may be infinite when
using infinite data domains; consider Fig. 2.1 as an example. Such transition systems can-
not be then processed by tools performing bisimulation checking [49]. Symbolic transition

24 CHAPTER 2. BACKGROUND

graphs aim at description of such models using only finite structures to enable automated
reasoning about bisimilarity of such processes.

c?0d!0

d!0

c?1

c?2
...

Figure 2.1: A standard transition graph for the CCS process S = c?x . τ . d!⌊x/2⌋ . τ . S
where x ranges over natural numbers. Note that the graph is infinite (for each natural
number value there is a distinct cycle within the graph).

A symbolic transition graph (STG) is more abstract description of processes than clas-
sical LTS; symbolic transition graph uses symbolic actions as the transition labels. As an
example of such a description, consider the graph in Fig. 2.2 modeling the same situation
as the one in Fig. 2.1. The problem of infinite number of values of variable x is solved by
using this variable directly in the transition graph.

c?xd! x/2

Figure 2.2: A symbolic transition graph for the CCS process S = c?x . τ . d!⌊x/2⌋ . τ . S
where x ranges over any arbitrary countable domain.

To describe STG in a formal way, several notations have to be defined first. First, let
V ar be a countable set of variables, V ar = {x0, x1, . . .} and V a countable set of values.
Let ρ be an evaluation function, i.e., a total function from V ar to V . The expression
ρ[v/x] denotes the evaluation ρ′ differing from ρ only in the mapping of variable x to v. σ
denotes a substitution function, while σ[x 7→ y] denotes the substitution differing from σ
in an obvious way. The expression new(W) denotes a new variable not present in W , i.e.,
the variable vi+1 where vi is the last variable (with respect to the ordering of the set V ar)
in W .

2.2. MODELING COMPONENT BEHAVIOR 25

Further, the set of expression Exp, ranged over by e, includes both V ar and V . Each
expression e has associated a set fv(e) denoting the set of free variables of the expression.
Evaluation and substitution behave with respect to fv in an expected manner, i.e. for
e ∈ Exp : fv(eσ) = σ(fv(e)). BExp denotes a set of boolean expressions ranged over by
b.

Having the field prepared by the definitions above, Hennessy and Lin define the class
of graphs forming the desired set of interest. They are arbitrary directed graphs where
each node is labeled by a set of variables—the free variables, and each edge is labeled by
a guarded action, being a pair of a boolean expression and an action. The action may
be either an input action, c?x, where c ∈ Chan is a channel, an output action, c!e, or a
neutral action from NAct, e.g. τ . Let SyAct denotes the set of symbolic actions:

SyAct = {c?x, c!e | c ∈ Chan} ∪ NAct

The sets of free and bound variables are defined naturally: fv(c!e) = fv(e), bv(c?x) =
{x}, and otherwise both fv(α), bv(α) are empty. The set guarded actions GuAct is the
defines as follows:

GuAct = {(b, α) | b ∈ BExp, α ∈ SyAct}

With respect to the facts denotations and definitions above, Hennessy and Lin define
the STG in the following way:

A symbolic transition graph is a directed graph in which every node n is labeled by a set
of variables fv(n) and every edge is labeled by a guarded action such that if a branch labeled

by (b, α) goes from node m to n, which we write as m
b,α−→ n, then fv(b)∪ fv(α) ⊆ fv(m),

and fv(n) ⊆ fv(m) ∪ bv(α).
Hennessy and Lin proposed definitions for both early and late symbolic operational

semantics where symbolic actions such as c?x and c!e and their residuals are associated
with open terms. After assigning values to all the free variables, concrete operational
semantics is determined which results in a concrete bisimulation equivalence. They also
provide algorithm for checking both types (i.e., early and late) of bisimulation equivalence
of two processes.

In [40], the formalism of symbolic transition graphs is further extended with assignments
as parts of transition labels. To explain the motivation behind this, first consider the
following process definition:

P (x)
def
= c!x . P (x + 1)

Assuming that x is of the integer type, this defines an infinite (countable) set of processes
P (x) that cannot be described via a finite STG. The purpose of Lin’s work is to enable
description of such sets of processes using finite structures. He achieves this goal via

extending the transition labels to the form n
b, x:=e, α−→ n′; this denotes a transition from the

state n to the state n′, where if b is evaluated to true, the action α is fired and in n′ the free

26 CHAPTER 2. BACKGROUND

variable x will have the value e. The author denotes these transition graphs as symbolic
transition graphs with assignment (STGA). Using STGA, the process in the example above
will be associated with a transition graph having only one state and one (cyclic) transition.
STG can be viewed as a special case of STGA where the assignment is identity mapping.
To reason about similarity of processes, Lin defined bisimulation equivalence between STG
and STGA processes for both early and late bisimulation semantics.

2.2.2 Languages

Process algebras provide a suitable semantics for modeling behavior of computational sys-
tems. However, to be practically usable, one also needs a suitable way for expressing this
semantics. In this section, we present several specification languages aimed at description
of communication among computational entities.

Promela

Promela [32] is an acronym for PROcess MEta-LAnguage. It was developed around 1980
by G. J. Holzmann. It combines the C programming language with some CSP features. It
is much more like a programming language in comparison with process algebras described
in Sect. 2.2.1; nonetheless, using it as a programming language usually results in models
of enormous size that cannot be verified due to their time and memory requirements.

A Promela model consist of type, variable, channel, and process type declarations.
Type declarations are used for defining user types using keyword mtype followed by an

explicit enumeration of the new-type members.
Variables can be of a built-in or an user type; the built-in types include integer, short,

byte, bit, and boolean; moreover, arrays and records can be used as in common program-
ming languages.

A process is the active entity of a Promela model; it is an instance of a process type.
The process type consists of a name, formal parameters, local variable declarations and a
sequence of statements called message body. The statements of an instantiated process are
executed sequentially and statements of arbitrary processes are interleaved. Furthermore,
Promela contains constructs for creating atomic (non-interruptible) sequences that are very
useful for decreasing the size of models and allowing implementation of synchronization
primitives.

Channels are intended to be used for interprocess communication. With each channel,
a message buffer is associated that holds all the not-yet-received messages sent through
this channel. The size of the buffer (i.e., the count of messages it can hold at a time) is
specified at the beginning and cannot be modified during the computation. The size of the
associated buffer can be zero; in such a case, a message can be sent through this channel if
and only if there is process waiting for a message from this channel. For each channel, as a
part of its declaration, a structure of the messages intended to be sent through this channel
is defined; it is usually a tuple of built-in or user types. Unless a channel has declared an
exclusive-sender, an arbitrary process may send a message to the channel. Similarly, if a

2.2. MODELING COMPONENT BEHAVIOR 27

channel has not its exclusive receiver, any process (even the sending one) may receive the
messages from the channel. A Promela model can be executed in two modes regarding the
behavior of message channels—in the first mode, a sending statement within a process is
blocked in case the buffer (associated with the channel to whoch the process is sending a
message) becomes full, while in the second mode, the sending statement does not block
but, conversely, the message is lost. Depending on the area on which the model is targeted,
the proper mode can be selected.

For illustration consider the following simple Promela code modeling the typical produ-
cer-consumer situation:

chan c = [2] of {byte, bit};

active proctype producer()

{

bit parity = 0;

byte data = 0;

do

:: c!data, parity ->

data++;

parity++;

printf("Produce\n");

od

}

active proctype consumer()

{

bit parity = 0;

bit recv_bit;

byte data;

do

:: c?data, recv_bit ->

assert(recv_bit == parity);

parity++;

printf("Consume\n");

od

}

In this model, the producer process uses the channel c to send messages (numbers 0 -
255) to the receiver process. The messages are augmented with a parity bit, whose

28 CHAPTER 2. BACKGROUND

value is checked at the receiver side via the assert statement. The channel c has a buffer
associated, whose capacity is 2 messages.

Parallel Assignment Language

The parallel assignment language is the input language of one of the best symbolic model
checkers—Symbolic Model Verifier [47]. Using a set of equation, it directly describes a
transition system where each state is characterized by values of several variables. The
set of equation can be divided into several parts called modules thus modeling several
“independent” (up to communication) entities.

To provide an example, we present the following piece of code modeling the same
situation as in the Promela example above:

MODULE main

VAR

channel1 : {0, 1, 2, 3, 4, 5};

channel2 : {0, 1, 2, 3, 4, 5};

prod : process producer(channel1, channel2);

cons : process consumer(channel1, channel2);

ASSIGN

init(channel1) := 0;

init(channel2) := 0;

SPEC

-- properties to check expressed in CTL

MODULE producer(chan1, chan2)

VAR

state : {nothing, moving};

data : {0, 1, 2, 3, 4, 5};

ASSIGN

init(data) := 0;

next(data) :=

case

(data = 5) : 1;

1 : data + 1;

esac;

init(state) := nothing;

next(state) :=

2.2. MODELING COMPONENT BEHAVIOR 29

case

((chan1 = 0) & (!chan2 = 0)) : moving;

1 : nothing;

esac;

next(chan1) :=

case

(state = moving) : chan2;

1 : {data, 0};

esac;

next(chan2) :=

case

(state = moving) : 0;

((state = nothing) & (!chan1 = 0)) : {data, 0};

esac;

MODULE consumer(chan1, chan2)

ASSIGN

next(chan1) := 0;

next(chan2) := {0, chan2};

In this model, three modules are defined: producer, consumer, and main. The producer

and consumer modules are instantiated in the main module via the process statement;
defined this way, in each step, a module is nondeterministically chosen for execution. With
each module, a set of variable is associated—in the case of producer, data and state.
Furthermore, the modules can access variables provided as parameters during instantiation
(chan1 and chan2). Initial values of variables (not parameters, of course) are determined
by the init statement. The execution of the entire model is divided into steps executed
atomically. Within a step, only one module is executed. The execution inheres in assigning
new values to the variables according to the equation defined by the next statement.

In our example, the producer process is responsible for consistency of the buffer—i.e.,
it avoids the state that there are some data at position 2 (channel2) and none at position 1
(channel1). As the SMV input language does not employ any numerical types as integer or
byte, to model similar data domains as in e.g. Promela, we have to define them explicitly—
the data and channelx variables in this model—which may become inconvenient in some
cases.

Although the aforementioned modeling languages all succeeded in the task of modeling
behavior, none of them focuses on software components. Even though almost either can
be used for specification of software component behavior, there is no direct support for
expressing or verification of behavior compliance (Sect. 1)—if verification of this property

30 CHAPTER 2. BACKGROUND

is needed, the application designer has to be aware of this fact from the very beginning; a
try to achieve this in Promela has led into a hard-to-read and large model.

A specification language aimed at behavior specification of software components needs
to be built upon primitives forming a suitable level of abstraction both straightly usable and
easily readable and maintainable. Depending on the properties the designer is interested
in, the primitives may differ a lot—from byte-code instruction through method calls to e.g.
sending messages or taking some high level actions.

Wright

Wright [3] is an architecture description language (ADL) developed by Robert Allen and
David Garlan at Carnegie Mellon University, USA in 1997. It aims at description of the
architecture of a component application. Wright introduces two basic abstractions—a
component and a connector. Components are entities that are connected (communicates)
using connectors. A component is defined by a component type that provides and requests
ports (communication points). A connector is similarly described by a connector type that
is defined by a set of roles and a glue specification. While instantiating a component system,
bindings between components’ ports and connectors’ roles are declared thus connecting
the parts together. As an example, consider the following skeleton of an ADL specification
describing a simple client-server system (the example was taken from [3]):

System SimpleExample

component Server =

port provide [provide protocol]

spec [Server specification]

component Client =

port request [request protocol]

spec [Client specification]

connector C-S-connector =

role client [client protocol]

role server [server protocol]

glue [glue protocol]

Instances

s: Server

c: Client

cs: C-S-connector

2.2. MODELING COMPONENT BEHAVIOR 31

Attachments

s.provide as cs.server

c.request as cs.client

end SimpleExample.

The behavior is described using the interacting protocols—a subset of CSP [31]. From
the large set of constructs provided by CSP [31], only few of them are allowed in Wright.
Besides processes and events the following constructs are included in Wright:

• Prefixing: The notation e → P denotes a process that can perform the event e and
then behaves as P .

• Alternative: P �Q denotes a process that behaves as P or Q, where the choice is
made by the “environment”, i.e., by a process interacting with P �Q. This is also
referred to as the external choice.

• Decision: P ⊓ Q denotes a process that behaves as P or Q, but the choice is made
by the process itself. This is also denoted as the internal choice.

• Named processes: A process name can be associated with a process expression,
however, unlike CSP, Wright does not allow an infinite number of processes.

• Parallel composition: The notation P ‖ Q denotes a process that behaves in the
following way: It can perform events lying in the alphabet of either P or Q, however,
the events lying in the intersection of the alphabets can be performed only if both
processes can perform the event. This operator is not used in behavior specification
of processes nor ports, however, it is used when combining their behaviors.

Furthermore, there are three special terms: STOP denotes a process unable to perform
any event,

√
denotes the “success” event, and § represents successfully terminating process,

i.e, § def
=

√ → STOP .
Next, process-scope expressions can be defined: let Q = expr in R defines a process

Q that behaves like expr in the scope of R.
Finally, labeling of events and processes is provided; the event e labeled with l is denoted

by l.e. The operator “:” is used to label all of the process events: l : P . Then, Σ represents
the set of all unlabeled events.

Formally, in CSP, a process P is defined as a triple (A, F, D), where A is the alphabet
of P , F is a set of “failures”, and D is a set of “divergences”. The set of failures is a
set of pairs, each pair is formed by a trace and a set of events the process can “refuse”
to participate in after executing this trace. The divergences are the set of traces of P ,
after execution of which the process can exhibit any arbitrary behavior (i.e., perform any
events).

32 CHAPTER 2. BACKGROUND

As an example, consider the full specification [3] of the C-S-connector from the afore-
mentioned example:

connector C-S-connector =
role Client = (request!x → result?y → Client) ⊓ §
role Server = (invoke?x → return!y → Server) � §
glue = (Client.request?x → Server.invoke!x → Server.return?y → Client.result!y

→ glue) � §
This declaration defines the expected behavior on both server and client sides (the role
statements) as well as the way these behaviors should be combined (the glue statement).
Let us now describe this specification in more detail.

The communication behavior of the client is defined as a process that first requests a
service and then obtains a result. Since the internal choice operator is used, it is up to the
client process to decide whether to emit a request or to terminate successfully (§).

The communication behavior of the server can be denoted as “dual”—first, a request
is invoked on the server, after which a computed value is returned. Unlike the previous
case, the definition of server behavior takes advantage of the external choice operator thus
modeling the fact that the server should offer its service as long as its environment (a client
connected through a glue) uses it.

The glue combines the server and client behaviors together—first a request with a
value x is accepted from a client, which is used to invoke the server. After that, the server
returns a value y that is as a result sent to the client. The entire sequence of events may
be performed again because of the use of recursion. Again, the external choice operator
says us that the glue will not decide on termination on its own, but this decision is left to
its environment (again, a client connected to this glue).

Having informally explained the simple example above, we are ready to define the
connector description formally.

The meaning of a connector description with roles R1, R2, . . . , Rn and glue Glue is the
process:

Glue ‖ (R1 : R1 ‖ R2 : R2 ‖ . . . ‖ Rn : Rn)

where Ri is the name of role Ri, and the alphabet of Glue is:

αGlue =
⋃

i(Ri : Σ) ∪ {√}.
Similarly, the behavior of a port can be also described as an protocol:

component DataUser =
port DataRead = get → DataRead ⊓ §

After associating with roles, port protocols take the place of the role protocols in
resulting system. The main reason for separation of ports and roles is enabling of connector
reuse in a wider field of cases. Putting the things down like this, indeed, the question “when
is a port compatible with a role?” arises.

2.2. MODELING COMPONENT BEHAVIOR 33

Wright defines the compatibility between ports and roles in the following way: A port
is compatible with a role if its process is substitutable for the role process, i.e, the rest of
the connector is not able to detect such a replacement. In CSP, this notion is formally
captured by the refinement relationship—a process P is refined by a process Q, written
P ⊑ Q, if the following three conditions are satisfied:

1. alphabets of P and Q are the same,

2. the set of failures of P is a superset of the failures of Q, and

3. the set of divergences of P is a superset of the divergences of Q.

This definition is actually too restrictive for practical purposes for two reasons: First,
the alphabet of a role process differs in most cases from the alphabet of a port process.
Second, from the methodological point of view, we want to make a port able to fill as
broad set of roles as possible. In some cases, a port and a role having the same alphabet
are incompatible, because an incompatible behavior is possible in general, but would never
arise in the context in which the port is used. Thus, in Wright, the compatibility relation
is based on traces described by the role. For more details, we refer the reader to [3].

Now, we are ready to present how the compatibility relation can be used in practice in
Wright. A situation we want to avoid in a system composed of parts is that some parts are
waiting for interaction but no part is able/wants to perform it. This situation is denoted as
deadlock. However, usually, we want to allow all the parts (and glue) to agree on success,
i.e., end up with the

√
event. Furthermore, the authors define the conditions under which

two components can be considered as compatible; the deadlock-freedom is preserved after
replacing a port with a compatible one.

As to automatic compatibility checking, the authors use FDR [68], a commercial tool
for checking of refinement conditions for finite CSP processes. As the FDR tool accepts
CSP processes as input, the authors of Wright provide a tool translating specifications in
Wright into the CSP [31] language.

Wright does not support dynamic reconfiguration (e.g. adding a new process) of the
system architecture nor passing process names via messages; however, a dynamic update
of a component is supported through the compatibility checks of the new component and
the role to which it should be attached.

Darwin (Tracta)

Darwin [43] is another language used for specification of hierarchical component-based sys-
tems. It is a general-purpose declarative language with support for description of dynamic
structures evolving during the execution. The basic primitives upon which the semantics
of Darwin is built are components and services.

The components in Darwin are viewed as basic building blocks both providing and
requiring services. A component is defined in a context independent way, i.e., regardless
of other components (its environment) with which the component is going to interact.

34 CHAPTER 2. BACKGROUND

This simplifies both reuse of the component and replacement with another one during
maintenance. The basic purpose of the Darwin language is to describe composition of
components (i.e. how instances of various types are connected together) in a declarative
way resulting in composite components that can be composed again. As an example of
specification of composite component consider the following example:

component pipeline(int n) {

provide output;

require input;

array F[n]: filter;

forall k:0..n-1 {

inst F[k] @ k+1;

when k < n-1;

bind F[k+1].input -- F[k].output;

}

bind

F[0].input -- input;

output -- F[n-1].output;

}

A component defined this way is a pipeline, where the number of subcomponents is passed
as an argument n. Output of each but the last subcomponent of type filter is bound to the
input of the following subcomponent (bind F[k+1].input -- F[k].output)1. The input
of the first subcomponent is bound to the input of the composite component (F[0].input
-- input); similarly the output of the last subcomponent is bound to the output of the
composite component (output -- F[n-1].output). This way, architecture of composite
components is defined.

To reason about evolving architectures, Darwin uses the π-calculus. The π-calculus
is a process algebra built upon the Milner’s CCS [49] extending it by support for mobile
agents—thus, dynamic reconfiguration of a running system can be described. The authors
of Darwin have chosen the simple monadic form of the calculus. The system is modeled as
a collection of independent processes communicating via channels. Channels are referred
to by name. Processes are built from the names via application of the following rules:

1Note that this is possible due to the declarative nature of Darwin.

2.2. MODELING COMPONENT BEHAVIOR 35

action terms ::= xz.P Output the name z along the link named x; then
execute process P .

x(y).P Input a name, call it y, along the link x and then
execute P (binds all free occurrences of y in P).

terms::= A1 + . . . + An Alternative of actions n ≥ 0, execute one of Ai.
P1 | P2 Composition—P1 and P2 are executed

concurrently.
(ν y)P Restriction—introduces a new name y with scope

P (binds all free occurrences of y in P).
!P Replication—provide any number of copies of P .

It satisfied the equation !P = P | !P .

Computation in the π-calculus is then expressed by the following reduction rule:

(. . . + x(y).P1 . . .) | (. . . + xz.P2 + . . .) → P1{z/y} | P2

Sending z along channel x reduces the left hand side to P1 | P2 and replaces all free
occurrences of y in P1 with z.

A declaration of a provided service provide p is then modeled as the agent Prov(p, s)
def
=

!(p(x).xs), where s is a reference to the service provided by the component that has to be
implemented, x is a location at which s is required, and p is the access name. Note that the
use of ! at the beginning of the expression assures availability for several clients. Similarly,

a required service require r is modeled as Req(r, l)
def
= r(y).yl, where l is a location of

the service provision, y is the name of the service provider, and r is the access name.

Finally, a binding bind r − p is modeled as Bind(r, p)
def
= rp. The result of composition is

ls | Prov(p, s)—the name of the service s is sent to the place l where it is required.
In Darwin, the behavioral description is provided using the Tracta [26] approach. Tracta

is based on the formalism of Labeled Transition Systems (LTS) with specifications ex-
pressed in FSP [44] (finite state processes). This way, a specification is provided for each
primitive component described in Darwin; behavior of a composite component is then de-
rived from the behavior of its subcomponents by application of parallel composition on
particular LTSs. This composition is defined by the following set of derivation rules:

P
a→P ′

P‖Q a→P ′‖Q a /∈ αQ
Q

a→Q′

P‖Q a→P‖Q′
a /∈ αP

P
a→P ′ Q

a→Q′

P‖Q a→P ′‖Q′
a 6= τ

where αX denotes the alphabet of the process X. The order in which the component
are composed is not important as the composition operator ‖ is both associative and
commutative. The composed components synchronize on shared actions; since the actions
are not “internalized” (transformed to τ), more than two components may be synchronized
on an action. The private (i.e., not shared) actions from various components are interleaved

36 CHAPTER 2. BACKGROUND

in the same way as in common parallel composition. Sometimes, however, it is convenient
to hide “internal” actions (those not taking part in external communication) from being
visible at a higher level of component composition. Therefore, Tracta defines hiding and
relabeling operators similar to those in CCS [49]. On each level of component composition,
the actions on bindings are relabeled and “internalized” in order to be hidden for higher
composition levels—the LTS describing behavior of a composite component is minimized
with respect to weak semantic equivalence defined in [49].

Tracta supports verification of both safety and liveness properties. Safety properties
are expressed as deterministic LTS without τ actions modeling the expected behavior. A
component system S satisfies a property P if:

traces(S)\αP ⊆ traces(P)

Informally, the behavior (all traces) of a component restricted to the actions contained in
the alphabet of P has to be also included in P .

As to the liveness properties, these are specified using Büchi automata. To cope with
the distinction between LTS (no information within particular states available) and Büchi
automata (information about accepting states stored within states), Büchi automata are
extended with special transitions from accepting states. There are several restrictions put
on the Büchi automaton B describing a liveness property:

• B has to be deterministic,

• B has to be complete, i.e., at each state there is a transition for each a ∈ αB, and

• the choices taken in the system S are assumed to be fair.

Again, the system S satisfies the property modeled by B if the automaton B accepts all
infinite executions of the system S.

To verify Tracta properties, the tool Labeled Transition Systems Analyser (LTSA) [44]
can be used.

LOTOS

LOTOS (Language of Temporal Ordering Specification2) [70] is one of the FDT (Formal
Definition techniques); it was developed within the International Standards Organization
(ISO) during the years 1981-1986.

LOTOS aims at description of a system viewed as a hierarchy of processes. A process
is an active entity that may perform both external (observable) and internal (hidden)
actions (atomic interactions, events); an external action may be a subject to interprocess
communication. Each external action is thought to appear at a gate—an interaction point.
When describing behavior of a process, the other processes (possibly interacting with this
process) are referred to as its environment. Additionally to the process and its environment,

2Despite its name, LOTOS has nothing to do with temporal logic—it is based on the formalism of
process algebras.

2.2. MODELING COMPONENT BEHAVIOR 37

there is a special process observer, which can always consume any external action the rest
of the system may perform, and does not exhibit any further external nor internal activity.

LOTOS specification has the following syntax assuming that B, B1, and B2 are be-
havior expressions:

(1) stop inaction
(2) i; B internal action
(3) g; B external action
(4) B1[]B2 choice

(5.1) B1 | [g1, . . . , gn] | B2 general parallel composition
(5.2) B1 ||| B2 pure interleaving
(5.3) B1 || B2 full synchronization

(6) hide g1, . . . , gn in B hiding
(7) p [g1, . . . , gn] instantiation of a process
(8) exit successful termination
(9) B1 >> B2 sequential composition

(10) B1 [> B2 disabling

The stop process denotes a process that is not able to perform any action; in some
process algebra (e.g. ACP), such a process is denoted as the deadlock process.

The internal action i is equivalent to the τ internal event from process algebras.
The expression B1[]B2 denotes a process that is able to behave as B1 or as B2. The

choice is made according to the process environment—if a process within the environment
is able to perform the initial action of B1, then B1 is chosen to be executed; similarly,
indeed, for B2. If there is an action of the environment common to both B1 and B2, one
of them is nondeterministically chosen for execution.

B1 | [S] | B2 denotes a process composed of expressions B1, B2 synchronized on the
set of gates S common to both B1 and B2; that is, the process may perform either an
action at a gate in S (both B1 and B2 perform this action) or an action at a gate not in
S that may be performed either by B1 or B2. In other words, if one of B1 and B2 is able
to perform an action at a gate in S, it has to wait for the other one until the other one
will be also able to perform the same action.

B1 || B2 is equivalent to B1 | [S] | B2 where S is the set of all gates common to B1
and B2 while B1 ||| B2 is equivalent to B1 | [S] | B2 with S being the empty set.

The hiding operator hide g1, . . . , gn in B is used to “internalize” the actions gi in B,
that is, it converts the gi actions in B into the internal action i.

Process p can be instantiated using the parameters g1, . . . , gn via the expression
p [g1, . . . , gn]; recursion can be achieved via instantiation of a process within its own be-
havior expression.

The expression exit denotes a nullary operator used for successful termination of a
process. After this termination, the process becomes the dead process stop.

In sequential composition B1 >> B2, B2 is enabled, i.e., executed, only after successful
termination of the process B1.

38 CHAPTER 2. BACKGROUND

Disabling B1 [> B2 denotes behavior where B1 is executed as long as the initial action
of B2 is not allowed to be executed; if it becomes to be executable, the execution of B1 is
interrupted and the control is transfered to B2. If the initial action of B2 is not executable
before B1 termination, B2 is disabled and never executed.

The LOTOS language exists in two variants—basic LOTOS, whose syntax and seman-
tics have been just described, and full LOTOS (or simply LOTOS), which is an extension
of basic LOTOS adding the ability of data representation. Unlike in basic LOTOS where
actions and gates, at which the actions happen, coincide, in full LOTOS, each action has
the form g < v1, . . . , vn > where g is a gate and vi are values. The values are of abstract data
types ; the data types are based on ACT ONE [19]—a specification language for abstract
data types.

Processes in full LOTOS can be parameterized not only by formal gates, but also via
a parameter list declaring new variables. As an example of a full LOTOS specification,
consider the following prescription taken from [70]:

process compare[in, out] (min, max: int) : noexit :=

in ?x:int;

([min < x < max] --> out !x; compare [in, out] (min, max)

[] [x <= min] --> out !min; compare [in, out] (x, max)

[] [x >= max] --> out !max; compare [in, out] (min, x)

)

endproc

This process models a filter parametrized by two values min and max. It accepts a value x

at the gate in and in case the value is between min and max, the value of x is sent to the
gate out and the filter continues working with the same parameter as before. If x is less
than min, min is sent to the output gate out and the filter lower limit is set to x. Similarly
with the upper limit. The keyword noexit expresses that this process is intended to never
successfully stop.

Parametrized contracts

Design-by-contract is a specification technique for software defined by Bertrand Meyer e.g.
in [48]. A contract between a client and a supplier of e.g. a service is composed of two
obligations:

(i) The client has to satisfy the supplier’s precondition and
(ii) the supplier has to fulfill its postcondition if its precondition has been satisfied by

the client.

Taking into account software components communicating through their provided and
required interfaces, we can look at the required interfaces of a component as at its require-
ments, i.e., as the precondition of the supplier, while the provided interfaces can be viewed
as its postcondition. Ralf Reussner et al. described this approach in e.g. in [55].

2.2. MODELING COMPONENT BEHAVIOR 39

The concept of parametrized contracts [55] exploits the fact that even though a given
environment E of a component C (i.e., the set of components communicating with the
component C) does not satisfy the precondition of the component C, i.e., not all required
interfaces of the component C are bound, the component may still provide a reasonable
subset of its functionality. This is especially true in cases of composite components offering
a service with a lot of variations (e.g. the DHCP server in [1]).

A parametrized contract is a mapping p : 2P → 2R where P is the set of provided
interfaces and R is the set of required interfaces. Informally, for each subset SP of provided
interfaces, the contract p defines a set of required interfaces necessary to be bound in order
that the component will be able to provide the functionality of SP . Similarly, the inverse
mapping p−1 : 2R → 2P makes sense and, then, for each subset SR of required interfaces
of a component being satisfied by (bound to) the environment we get the set of provided
interfaces of the component that can be used in this particular environment. The contract
p is denoted as the provides-parameterized contract while the contract p−1 as the requires-
parameterized contract.

To reason about behavior of a component, the authors use component protocols —
description of valid sequences of calls to services supported by the component. With each
provided interface, a provides protocol is associated, while a requires protocol defines the
valid sequences of each required interface. A protocol is modeled as a finite state machine
(P-FSM and R-FSM for provides and requires protocols, respectively). Further, each
method s provided by the component is associated with a finite state machine SE-FSMs

(Service Effect FSM) which describes all possible sequences of calls to other methods when
the method s is called.

Now, each edge (transition) of a P-FSM corresponding to a method s can be substituted
with the SE-FSMs resulting in a FSM containing all the SE-FSMs in the order they can
be called by a client after a provided method is called. If the substitution is marked within
the resulting FSM, we can obtain the original P-FSM by removing the substituted parts.
This way, a set of provided interfaces that can be used in a given environment can be
computed.

Provides-parameterized contracts are to be used when designing a new system. The
system designer selects components providing the desired functionality and using their
provides-parameterized contracts, he/she computes their requirements. Note here that
not the entire functionality of the selected components may be needed resulting in weaker
requirements of the selected components.

When inserting a new component into an existing system either due to an update (or
component replacement) or extending the current functionality of the system, requires-
parameterized contracts are to be used. In these situations, we can ask whether the re-
quirements of the update component are not higher than those provided by its environment
or what functionality will be provided by the newly inserted component in its environment.

The concept of parametrized contracts is general and, if extended, it can be used for
predicting reliability of component applications, which is of major interest in many cases.
Informally, the reliability of a component means the probability of returning correct results
after a method of the component is invoked. As there are usually several methods (services)

40 CHAPTER 2. BACKGROUND

provided by a component, the reliability of the component depends on the usage profile,
i.e., on the frequency particular methods are called. To capture this fact, the authors use
Markov chains [61]. The P-FSM is extended with the information about probabilities that
particular methods are called (the usage profile). Given that the reliabilities of the methods
required by a component are known, it is possible to compute the reliability of particular
methods provided by the component and the overall reliability of the component under a
given usage profile.

To illustrate this specification technique, consider the P-FSM in Fig. 2.3 taken from [55].

[0.79]

listAccounts

[1.0]

login

[0.2]

firstRetry

[0.1]

secondRetry
[0.4]

listAccounts

[0.01]

logout

[0.9]

listAccounts

[0.4]

logout

[0.05]

logout

[0.4]

logout [0.3]

logout

[0.6]

selectAccount

[0.95]

listTransactions

[0.3]

quitAccView

[0.05]

getTransDetails

[0.7]

quitDetailView

[0.25]

listTransactions

Figure 2.3: Example of P-FSM with a usage profile.

The P-FSM models behavior of an OnlineAccountManager component; the component is
able to accept several sequences of method calls, e.g. login, listAccounts, logout. The final
states, i.e., the states denoting successful completing of the service, are denoted by circles
with a thick border. The transitions are labeled not only with method names, but also
with a number denoting the probability that a particular transition is taken. The sum of
the probabilities associated with the transitions leading from each state has to be equal to
one (except for the final states where the probability sum has to be less or equal to one).

In case of a composite component, besides the usage profile, information about relia-
bility of particular ties (i.e., mappings and bindings) between interfaces of components is
needed to reason about reliability of the composite component. Details on evaluation of
the component reliability can be found in [55].

The idea of parametrized contracts is used and further extended in the Palladio Com-
ponent Model [8]. Here, SE-FSM is extended by information about loop iteration numbers,
resource usage, and parameter dependencies to allow more accurate performance predic-
tion.

Accepting the fact, that the usage profile of a component is known, the component
developer is not able to provide information about performance of the component as whole
in the sense of constant values. However, he/she may be able to provide such information

2.2. MODELING COMPONENT BEHAVIOR 41

as a function of parameters passed to component methods (provided services). Since it
is sometimes impossible to state e.g. the exact number of interations of a loop even as
a function of a parameter, Palladio uses random variables and provides also some basic
operation upon values of random parameters. As an example, consider the diagram in
Fig. 2.4 taken from [8], where a Resource Demanding Service-Effect Specification of a
shipping service of the online-store component is depicted. The shipping service calls
another service which depends on the order cost—if the order cost is below 100EUR, full
shipping fee is charged, if the cost is 100-200EUR, reduced fee is used, while the orders
above 200EUR are shipped free of charge. Given a usage profile, i.e., the distribution
function of orders’ costs, we can deduce the probabilities of particular branches. Similarly,
number of loop iterations and parameter dependencies are modeled.

<<ResourceDemandingSEFF>>

HandleShipping
<<Parameter>>

parameterName=“costs”

<<BranchTransition>>

branchCondition =
PrimitiveParameter(„costs“).
primitiveParameterValue(VALUE)<100

<<BranchTransition>>

branchCondition =
PrimitiveParameter(„costs“).
primitiveParameterValue(VALUE)>=100

<<BranchTransition>>

branchCondition =
PrimitiveParameter(„costs“).
primitiveParameterValue(VALUE)>=200

<<ResourceDemandingBehaviour>>

<<ExternalCallAction>>

ShipReducedCharges

<<ResourceDemandingBehaviour>>

<<ExternalCallAction>>

ShipWithoutCharges

<<ResourceDemandingBehaviour>>

<<ExternalCallAction>>

ShipFullCharges

<<BranchTransition>>

branchCondition =
PrimitiveParameter(„costs“).
primitiveParameterValue(VALUE)<200

Figure 2.4: Example of branch conditions.

As to the limitations of the model, Palladio expects the application architecture to be
static, it does not support dynamic architecture reconfiguration. Regarding the modeling
of data, Palladio does not model the return values of methods, which may be also a factor
influencing behavior (and consequently performance of the application, of course). The
component model has also a limited support for concurrency, since the performance of an
application run on a multiprocessor has hard to predict.

42 CHAPTER 2. BACKGROUND

Component-interaction automata

Component-interaction automata (CI automata) introduced by Brim et al. in [10] represent
an approach to specification and verification process of component-based systems. CI
automata are a specification language for modeling behavior of components in (hierarchical)
component models. The actions of the language are not a priori associated with any kind
of events as well as the composition of particular specifications is not predefined. This way,
the authors aim at applicability on a wide spectrum of component models.

Each component in a system is associated with an CI automaton. The components are
supposed to communicate with each other only through its interfaces (services, messages,
etc.). The communication is possible if two communicating components are able to perform
an action of the same name. Although only two components may synchronize their execu-
tion in this way (based on the client-server principle), more sophisticated synchronization
can be achieved using connectors. The primitive components in a system are identified
with natural numbers like (1) and (((1))), while the denotation of a composite may look
as (((1)), (2)) and (2, 1).

A hierarchy of component names is then an n-tuple H = (H1, . . . , Hn) where Hi are
either (pairwise distinct) component names (i.e. natural numbers) or also hierarchies of
component names. A set of hierarchies of component names is denoted by H, while SH

denotes the set of component names corresponding to H .

A component-interaction automaton is a 5-tuple C = (Q, Act, δ, I, H) where

• Q is a finite set of states,
• Act is a finite set of actions where the set of labels

Σ = ((SH ∪ {−}) × Act × (SH ∪ {−}))\({−} × Act × {−}),
• δ ⊆ Q × Σ × Q is a finite set of labeled transitions,
• I ⊆ Q is a nonempty set of initial states, and
• H ∈ H is a hierarchy of component names.

The particular parts of the labels have the following meaning: given a label (X, A, Y),
X denotes a name of the component that outputs the action A, while Y denotes a name
of the component that inputs the action A. Given a CI automaton C, a set of paths,
i.e. finite and infinite alternating sequences of states and transitions starting and ending
with a state, is denoted by Path(C). Although CI automata address synchronization of
(communication between) only two components, the formalism can be extended to Multi
CI automata with labels taking the form (C, A, D), where C and D are sets of components.

A set of CI automata can be composed thus forming a CI automaton modeling behavior
of this set. To do so, the automata have to be composable, i.e., they have to be denoted
with distinct natural numbers.

Now, we are ready to describe the composition of CI automata. Let I = {i1, . . . , in}
be a nonempty set of natural numbers and Qi for each i be a set. Then Πi∈IQi denotes
the set {(qi1, . . . , qin) | ∀j ∈ {1, . . . , n} : qij ∈ Qj}. The function projj : Πi∈IQi → Qj

returns the j-th item of the tuple. Let S = {(Qi, Acti, δi, Ii, Hi)}i∈I be a composable

2.2. MODELING COMPONENT BEHAVIOR 43

set of CI automata. The complete transition function for S is defined by the relation
∆S = ∆S,old ∪ ∆S,new where

• ∆S,old = {(q, x, q′) | q, q′ ∈ Πi∈IQi, ∃j ∈ I : [(projj(q), x, projj(q
′)) ∈ δj ∧ ∀i ∈

I\{j} : proji(q) = proji(q
′)]}

• ∆S,new = {(q, (n1, a, n2), q
′) | q, q′ ∈ Πi∈IQi ∧ ∃j1, j2 ∈ I, j1 6= j2 : [(projj1(q),

(n1, a,−), projji
(q′)) ∈ δj1 ∧ (projj2(q), (−, a, n2), projj2(q

′)) ∈ δj2 ∧ ∀i ∈ I\{j1, j2} :
proji(q) = proji(q

′)]}

The preceding definition is a rather general; it defines cartesian product of the au-
tomaton with possible (but not required) pairwise synchronization of automata on the
same actions. In practice, however, a more restrictive composition that e.g. hides internal
actions may be desired. Therefore, the authors define an unary composition operator re-
stricting the transition relation in the following way: Let T be a set of transitions. Then
⊗T denotes a unary composition operator applicable on a composable set of CI automata
such that if S = {(Qi, Acti, δi, Ii, Hi)}i∈I is a composable set of CI automata, then:

⊗T S = (Πi∈IQi,∪i∈IActi, ∆S ∩ T, Πi∈IIi, (Hi)i∈I).

The automaton ⊗T S is again a CI automaton and thus can be member of another set of CI
automata that are composed using the ⊗T ′ operator for some T ′. For illustration, consider
the component application (taken from [15]) depicted in Fig. 2.5.

WordProcessor

Document 1

Document 2

SpellChecker

WordDBTextTraversal

Figure 2.5: Architecture of the WordProcessor composite component.

The WordProcessor component is composed of three components—Document1, Docu-
ment2, and SpellChecker. The SpellChecker component is again a composite component
consisting of the TextTraversal and WordDB components. Let us denote the primitive
components Document1, Document2, TextTraversal, and WordDB as (1), (2), (3), and (4),
respectively. The behavior of (1), (2), and (3, 4) (i.e., the SpellChecker component) is
modeled as CI automata in Fig. 2.6.

44 CHAPTER 2. BACKGROUND

0 1

(1, check.req,

(, check.resp, 1

0 1

(2, check.req,

(, check.resp, 2

0 1

(, check.req, 3

(3, check.resp,

2

(3, find.req, 4

(4, find.resp, 3

(1) (2)

(3,4)

Figure 2.6: CI automata for the Document1 (1), Document2 (2), and SpellChecker (3, 4)
components.

Consider now the situation, when the WordProcessor is a closed system in the sense that
it does not offer any functionality to its environment. Therefore, we want to restrict the set
of transitions in the way that no other component may interact with any component inside
the WordProcessor component. This can be achieved via application of the composition op-
erator ⊗T to (1), (2), and (3,4) to the composable set of CI automata {(1), (2), (3, 4)} where
T = {(1, check.req, 3), (3, check.resp, 1), (2, check.req, 3), (3, check.resp, 2), (3, f ind.req,
4), (4, f ind.resp, 3)}. The CI automaton ⊗T{(1), (2), (3, 4)} is then depicted in Fig. 2.7. As
an aside, the complete transition space of the composite CI automaton has twelve states.

(3, check.resp, 1

000 101

(1, check.req, 3

102

(3, find.req, 4

(4, find.resp, 3

012 011

(3, find.req, 4

(4, find.resp, 3

(2, check.req, 3

(3, check.resp, 2

Figure 2.7: CI automaton modeling the composition ((1), (2), (3, 4)).

To touch a few particular aspects of this formalism, we mention the communication.
The formalism of CI automata allows for modeling several communication styles—in par-
ticular it allows modeling non-blocking method calls as well as blocking message passing,
in both synchronous and asynchronous ways. Since it does not specify any kind of com-
munication errors (whose detection is a subject of consecutive model checking), in this
sense, it does not limit the set of component models to which it can be applied. Further-
more, communication types not directly supported by the formalism (e.g. multicast) can
be modeled using connectors [15].

Unified Modeling Language

Unified Modeling Language [73], or UML for short, is probably the most used specification
platform in the industry. Featuring a variety of specification diagrams, it allows for de-
scribing almost all aspects of application design. It provides thirteen diagram types divided
into three groups:

2.2. MODELING COMPONENT BEHAVIOR 45

1. Structure diagrams
• Class Diagram
• Component Diagram
• Composite Structure Diagram
• Object Diagram
• Package Diagram
• Deployment Diagram

2. Behavior diagrams
• Activity Diagram
• State Machine Diagram
• Use Case Diagram

3. Interaction diagrams
• Communication Diagram
• Interaction Overview Diagram
• Sequence Diagram
• Timing Diagram

Since the meaning of the diagram types of the first group is well-known, we briefly describe
meaning of the diagram types from the second and third group.
Activity diagram aims at modeling of actions of a component/class from a start point
to a finish. Various options are modeled using decision points.
State machine diagram models behavior of a single object as an entity responding to
events issued by its environment, i.e., other parts of the system interacting with it.
Use case diagram aims at description of (several) execution scenarios in the form of
interaction sequences of particular system parts.
Communication diagram aims at capturing of communicating object relationships.
Interaction overview diagram is a special case of activity diagram where the basic
entities (nodes of the diagram) represent interaction diagrams (sequence, communication,
interaction overview and timing diagrams).
Sequence diagram is a special form of activity diagram where the lifelines of several
interacting objects are shown. It aims at visualization of the fact with which objects
each object interacts. Creation and destroying of components instances/objects can be
expressed.
Timing diagram describes changes of object states and variable values in time. It may
also describe interaction among objects with respect to the timing constraints put on the
system.

Despite its wide usage, the specification of arbitrary parts of UML is written in an informal
way. This makes adopting of UML as a platform for formal specification and verification
very hard [20] in general, speaking nothing of possible misunderstandings when sharing the
specification among several designers. On the other hand, it allows definition of meaning
of particular details for precise modeling in each specific case. Moreover, thanks to its
illustrative power, UML can be advantageously used as a communication platform between
a customer and a system designer.

46 CHAPTER 2. BACKGROUND

Behavior protocols

Behavior protocols [2] are an approach to specification of software component behavior
based on expressions corresponding to finite automata. They are used in several hierarchi-
cal component models (SOFA [71], SOFA 2.0 [12], Julia implementation of Fractal [11]).

Behavior protocols (BP) describe behavior of a software component by means of events
appearing on the component exported (i.e., server and client) interfaces. BP distinguish
four types of events appearing on the frame, which have the following syntax:

• !interface.methodˆ denotes emitting of a method request,

• ?interface.methodˆ denotes accepting of a method request,

• !interface.method$ denotes emitting of a method response, and

• ?interface.method$ denotes accepting of a method response.

These basic terms are combined using operators building up the expressions. The operators
allowed in BP include ‘;’ (sequencing), ‘+’ (alternative), ‘*’ (finite repetition), and ‘|’ (par-
allel composition). Furthermode, to make BP expressions more readable, three syntactic
abbreviations are defined:

• ?interface.method stands for ?interface.methodˆ; !interface.method$,

• !interface.method stands for !interface.methodˆ; ?interface.method$, and

• ?interface.method {expr} stands for ?interface.methodˆ; expr;
!interface.method$.

As an example, consider the behavior protocol in Fig. 2.8. This behavior protocol
defines behavior of a component providing access to files in the following way: first, the
component expects the open method call on its i interface. Then, an arbitrary but finite
number of times the methods read and write may be called; before returning the result of
the write method call, the method log on the interface lg is called. Eventually, the close
method is supposed to be called on the interface i. All the time, in parallel, the status
method on the interface ctrl may be called to retrieve information about a file. Note that
for the sake of simplicity, this specification allows to work with one file only.

(?i.open; (?i.read + ?i.write {!lg.log})∗; ?i.close) | ?ctrl.status

Figure 2.8: Example of a behavior protocol

As described in Sect. 2.1.1, the set of exported interfaces of a component forms the
component frame. With each frame, a frame protocol is associated defining the behavior
of the component. Further, the composition of the behavior protocols of all first-level-of-
nesting subcomponents of a component forms the architecture protocol.

2.3. TOOLS 47

Having specified behavior of all components, two kinds of compatibility relations can be
verified in a hierarchical component model: (1) horizontal compliance referring to the ab-
sence of communication errors in a composition of behavior specifications of the component
architecture (i.e., within the architecture protocol) and (2) vertical compliance3 denoting
the absence of communication errors between the frame and architecture protocols of a
(composite) component.

In the case of BP, the consent composition operator [2] is used to detect the com-
munication errors in a composition of BPs. Consent is basically a parallel composition
joining the complementary events into internal τ -events. It is able to detect four types of
communication errors:

• Bad activity refers to a state in the protocol composition when a request is being
emitted but it is not being accepted at this moment; in other words, the internal
τ -event could not be created.

• No activity refers to a deadlock, i.e., to a state where no further event may appear
but this state is not a final (accepting) one—not all BP in the composition have been
successfully accomplished.

• Divergence denotes a loop in a composition that cannot be exited and there is no
final (accepting) state among the states in the loop.

• Unbound-requires error denotes a situation when an event is emitted on an unbound
required (client) interface.

The main benefit of BP is that the correctness of communication can be verified at the
design stage of the development process, i.e., before an implementation is available.

Behavior protocols have been successfully used for specification of real-life applications
like in [1]. However, as BP disregard data at all, the behavior model is sometimes too
coarse thus hiding some important behavioral aspects; also, the set of properties that can
be verified is limited to the four types of communication errors mentioned above.

2.3 Tools

There are several tools supporting verification of various properties; however, only few
of them aim at verification of software component behavior, in particular on behavior
compliance. In this section, we discuss the ones that are with respect to our aims the most
important ones.

3Technically, in the case of vertical compliance, the frame protocol is “inverted” (the emitting and
accepting events are swapped, i.e., !e is replaced by ?e and vice versa) and composed together with the
architecture protocol. Then, vertical compliance is verified in the same way as the horizontal compliance.

48 CHAPTER 2. BACKGROUND

2.3.1 Spin

Spin was developed by Gerard J. Holzmann in Bell Labs around 1980. Eleven years later, in
1991, Spin has been made freely available and it is still being developed. Nowadays, it is a
state-of-the-art explicit state model checker and thus provides a very stable and convenient
verification platform for concurrent processes. It is written in the C language and does
not require any special libraries, therefore it is available on almost all platforms. To be
friendly to common users, Spin comes with a graphical user interface (in addition to the
command-line version) XSpin based on the Tcl/Tk [72] library that is again supported on
a wide variety of platforms—MS Windows, Linux, Mac OS, HPUX, SCO Unix, FreeBSD,
OS/390, and others.

The principle of Spin inheres in creating a C source file containing a verifier for the input
model written in Promela—a specification language close to C. Afterward, the verifier is
compiled and run. Spin offers a lot of options affecting the verification process. First, the
user can choose the correctness properties to be checked—either safety or liveness properties
can be chosen. The safety properties involve checking for absence of invalid end states and
assertion violation, while the liveness properties focus on non-progress and acceptance
cycles. Additionally, Spin is also able to verify properties expressed in LTL−X—Linear
Time Logic [39] without the X operator.

There are three modes of verification in Spin—exhaustive, hash-compact, and bit-state-
hashing:

• Exhaustive—in this mode, the entire reachable state space is traversed, i.e., each
reachable state of the model is visited.

• Bitstate hashing—the set of visited state in this mode is represented via a hashtable
containing only zeros and ones. If a state is visited, a hash function is applied to the
state vector representing the state and at the resulting position in the hashtable one is
stored. A state is considered visited, if and only if there is a one at the corresponding
table address. Hence for each state, only one bit of memory is needed; however,
as the hash collisions are not solved, the hashtable should be at least one hundred
times larger (in bits) than the size of the state space to keep a reasonable level of
reliability that there are no hash collisions (and thus all reachable states are visited).
For improving the reliability, two hash function are used in parallel and a state is
considered visited if and only if there are ones at both addresses in the hashtable.
The method is thoroughly described in [33].

• Hash-compact—to be able to have a hashtable a hundred times larger than the state
space and to fit such a table into the operational memory, this method used the
following approach: As the hashtable is sparse in ideal case (only about one percent
are ones, the rest are zeros), another hash function to a much smaller hashtable
can be applied to reduce the memory required. In this secondary hashing, the hash
collisions are solved to keep the reliability of the method at the same level as bitstate
hashing. Technically, using a hash function to e.g. 64-bits space as the hash function

2.3. TOOLS 49

in the “compacting” phase, the probability of undetected hash collision in this phase
is even for large state spaces negligible. The advantage of this approach is the low
probability of hash collisions and thus of omitting a part of the reachable state space
while allowing traversal of larger state spaces than in the case of an exhaustive
search. On the other hand, bitstate hashing can be applied on state spaces of an
arbitrary size, with, however, reliability decreasing with the size of the state space.
The hashcompact approach was introduced in [62].

In addition to verification, Spin also allows for simulation. This means that the model is
executed in a common way—in contrast to verification, only a single interleaving of various
processes’ statements is considered and only one branch at non-deterministic points is
taken. Together with visual representation of the channels, variable values, and execution
description, the simulation mode provides a nice insight into the model.

2.3.2 Symbolic Model Verifier

The SMV (Symbolic Model Verifier) tool [47] was developed by K. L. McMillan at Carnegie
Mellon University in 1992. It aims at traversal very large state spaces by using symbolic
state space representation, in particular ordered binary decisions diagrams [17]. It uses
a proprietary input language based on parallel assignment of variables’ values describing
almost directly a transition system via a set of equations. The SMV tool is due to the
symbolic state manipulation able to traverse very large state spaces, on the other side,
however, the input language provides almost no abstraction of the state space and there-
fore is not suitable (and probably not intended) to be used by designers of (component)
applications. As the input language, it uses the parallel assignment language described in
Sect. 2.2.2.

2.3.3 CADP

Cadp (Caesar/Aldébaran Development Package) [24] is a set of tools for protocol engi-
neering with wide variety of features—modeling, simulation, and verification of properties.
Cadp is able to accept three input languages:

1. high-level ISO specification language LOTOS [70],

2. low-level descriptions of protocols using Labeled Transition Systems in BCG graph
format [23], and

3. intermediate-level Networks of communicating automata [52].

The set of languages can be easily extended due to the open architecture of the toolset.
The central part of Cadp is the open, language-independent Open/Caesar application

programming interface providing the developer with simulation, execution, verification
(partial, on-the-fly, etc.), and test generation. The input of Cadp is first transformed into

50 CHAPTER 2. BACKGROUND

LTS represented by its initial state and a transition function. Such a representation is
then processed by a simulator, a model checker, etc. In the following sections, we briefly
describe the most important parts of the Cadp toolset.

Aldébaran

Aldébaran [21] was jointly developed by the Vasy team and the Verimag laboratory. It aims
at verification of communicating system represented as LTS. Its features include reduction
of LTS according to (modulo) a number of equivalence relations (e.g. strong bisimulation,
observation equivalence, and branching bisimulation). It uses several algorithm exploiting
various approaches to make the verification process more efficient, such as on-the-fly state
space generation and Ordered Binary Decision Diagrams [60].

The Caesar and Caesar.ADT compilers

Caesar [25] is a compiler translating the behavioral part of LOTOS specification into the
C language or into LTS. In case of the C-language, the output can be used for simulation
or verification. There are some minor restrictions (see [24] for details) put on the input
language; the restricted language is, however, expressive and powerful enough for most
real-life situations. The Caesar compiler works in several steps: first, it translates the
input model from LOTOS into simplified process algebra called SubLOTOS, from which a
Petri Net model is generated. Finally, after performing reachability analysis on the Petri
Net model, LTS is produced. As to the performance and scalability of the tool, Caesar is
able to process reasonable large models resulting in LTS of several millions od states.

The other Caesar compiler, Caesar.ADT [22], focuses on translation the data part of a
LOTOS specification into the C language. The data language enable very fast prototyping
directly in LOTOS. Again, Caesar.ADT has minor restrictions regarding the input language
(see [24] for details), on the other hand, it is again able to process reasonable sized models.

The XTL model checker

XTL (eXecutable Temporal Language) [45] is a programming language with functional
properties. It is intended for implementation of various temporal logic operators that are,
by the XLT model checker, evaluated over LTS encoded in the BCG format. Since there is
a working compiler for this language, a number of temporal logics have been implemented
and used, e.g. HML [28], CTL [16], and ACTL [51].

BCG MIN tool

BCG MIN tool is used for minimization of not only standard but also “probabilistic” and
“stochastic” LTSs. Although it implements only two bisimulations, namely the strong and
branching ones, it can handle at least an order of magnitude larger LTS than Aldebaran
can. Further, it is also more efficient regarding the memory requirements as it uses BCG

2.3. TOOLS 51

as its native format. Finally, BCG MIN is able to print results of equivalence checking in
a user friendly way by relating the nodes of the minimized graph to the original one.

Evaluator model checker

Evaluator [46], in Cadp present in version 3.0, is a model checker performing verification
of regular alternation-free µ-calculus formulas on LTS. The model checker first translates
the model checking problem into a boolean equation systems, which is afterward solved
using an efficient local algorithm [4, 58]. Details on the transformation process can be
found in [46].

The input language of Evaluator allows for definition of user temporal operators, which
turned to be very useful for writing a precise specification by ordinary users/system design-
ers. As to the performance of the Evaluator, its third version clearly outperforms previous
versions thanks to the incorporation of a new algorithm SOLVE for finding solutions of the
boolean equational system. With the most recent version, verification of several liveness
and safety properties of the well-known alternating-bit protocol model took from several
seconds to several minutes [46].

Eucalyptus user interface

All the Cadp tools are controlled by the user using the graphical user interface Eucalyptus.
The user interface is written in Tcl/Tk [72] and can be used on a wide variety of platforms.
Moreover, through Eucalyptus, the user may use the Autograph editor [56] for creation of
graphical representations of LTSs.

2.3.4 Behavior Protocols Checker

Behavior Protocol Checker (BPC) [42] is a tool for checking compliance of behavior spec-
ifications of communicating components. In this section, we briefly describe the basic
principles and the architecture of the tool.

Shortly, BPC is an explicit model checker using the on-the-fly state space generation.
It allows evaluation of both pragmatic and consensual compliance relations. To tackle
the state explosion problem in representation of behavior protocols, BPC uses parse tree
automata as a state space representation technique. In the following paragraphs, BPC is
referred to as the Java verifier and Java implementation of PTA.

Parse trees (also syntax or expression trees) are a common way to represent expres-
sions in memory. They are mainly used to represent mathematic formulas and program
source codes in compilers. Obviously, they are also capable to represent behavior proto-
cols (Fig.2.9).

A parse tree is a tree structure that describes a given expression unambiguously. When
representing behavior protocols, the parse tree features the following important properties:

52 CHAPTER 2. BACKGROUND

;

+ *

b ca

Figure 2.9: A parse tree representing (a+b); c*.

• Event symbols featuring in an expression appear only in the leaf nodes and operators
in inner nodes of the corresponding parse tree.

• The operator nodes representing the repetition and restriction operators are unary;
all others are binary.

• Every subtree describes an expression (valid behavior protocol).

The main advantage of parse trees is the size of representation, linearly dependent on the
expression length and having no direct relation to the number of states. Also the building
time is linear in the length of expression. Evaluation of access time and state identifiers’
space requirement will be discussed later after we present parse tree-based representation
technique (parse tree automata).

Parse tree automata (PTA). Construction of a PTA follows the idea of recursive
state space creation in the explicit representation technique. As PTA is a symbolic tech-
nique, the actual full state space of PTA is never represented as a single complex data
structure. On the contrary, the key idea is to (i) directly represent only the parse tree
(PT) of the expression and the primitive automata which accept the event symbols in the
leaves of the parse tree, (ii) introduce composed state identifiers allowing to denote the
current state and avoid unnecessary multiple traversals of PTA states, and (iii) define the
transition function of PTA via recursive rules determining the (direct) transitions from a
state, given its composed identifier. An example of PTA and its correspondence to a parse
tree is illustrated in Fig. 2.10.

We will demonstrate the idea on three simple examples: (1) representation of a primitive
automaton, (2) implementation of automata composition driven by the sequence operator,
and (3) implementation of automata composition driven by the parallel operator. Au-
tomata compositions driven by the other operators are implemented in a similar manner
(a detailed description is in [41]).

A primitive automaton has two states (initial and accepting) and a single transition
between them. The transition label is an event symbol (Fig. 2.11a).

The sequencing operator expresses concatenation of the languages accepted by the left-
and right-hand automata PTAL and PTAR. To create the respective composed automaton
PTA;, it is sufficient to establish implicit transitions (λ) from the accepting states of PTAL

2.3. TOOLS 53

; ;

b

aa b

+

[0,1] [0,2][0,0] [1,2][1,1]

Figure 2.10: Generating states and transitions of PTA. Circles represent states. Squares
represent nodes of PT; [0,0] denotes the initial state.

to the initial state of PTAR (Fig. 2.11b). The resulting set of accepting states in PTA;

consists of the accepting states of PTAR. The accepting states of PTAL are added only
if the initial state of PTAR is accepting. Obviously, modifications of PTAL and PTAR

are not necessary, since the implicit transitions λ are added in the implementation of the
sequencing operator in PTA;.

The parallel operator expresses arbitrary interleaving of all the words of the languages
accepted by the left- and right-hand automata PTAL and PTAR. In order to create the
respective product automaton, it is sufficient to establish a state space “grid” and corre-
sponding transitions as illustrated in Fig. 2.11c.

Composed state identifiers in PTA. To address the idea (ii) above, a state identifier
must reflect the structure of the subtree of PT it is associated with and capture the state
of the primitive automata within the subtree. For a specific PT, all the top-level identifiers
will be of the same size (linear in the size of PT). As a technicality, memory allocation
for state identifiers can cause substantial memory overhead. It is recommended to use an
allocator that is optimized for allocating small memory chunks of the same size.

Time requirements for generating PTA transitions. The average time required
is influenced by the number of PT nodes that have to be visited to calculate the list of
transitions associated with a particular state. In each of these nodes some computation is
necessary, as the potential transitions are determined on the fly. For each transition, also
the state identifier of the target state has to be evaluated for keeping track of the states
visited.

The number of visited PT nodes is greatly influenced by the actual operators encoun-
tered in PT. For example, for the standard regular expression operators only one subtree
has to be visited. On the contrary, encountering a parallel operator means visiting both
subtrees.

PTA optimizations. As discussed above, performance of PTA depends on the number
of nodes in PT. If the number of PT nodes were reduced, performance would greatly
improve. Therefore we experimented with several optimizations in PTA representation.

54 CHAPTER 2. BACKGROUND

a

b

a b

a)

b)

[0] [1]

[0] [1]

[0,0] [0,1] [1,0] [1,1]

c)

a

a

a

b

b

b

c c c

d d d

[0,0]

[1,0]

[2,0]

[0,1] [0,2]

[1,1] [1,2]

[2,1] [2,2]

Figure 2.11: a) Primitive automata for the ‘a’ and ‘b’ event symbols. b) PTA for ‘a; b’. c)
PTA for ‘(a; b) | (c; d)’. Legend: A dotted arrow represents an implicit transition λ. State
identifiers are in brackets (simplified).

Multinodes. The idea of multinodes is to collapse the nodes of PT featuring the same
operator into a single node. For example, in Fig. 2.12 collapsing means representing only
a single node for the sequence operator ‘;’ (associated with a list of PT subtrees a, b, c, d).

; M;

;

; d

dcba

ba

c

a) b)

Figure 2.12: a) Original parse tree. b) Parse tree with multinodes for the protocol a;b;c;d.

This way, access time is greatly improved since less computation is required.

Forward cutting (of primitive automata). Removal of the transitions from the
state space, which are discarded by a restriction operator, can be easily achieved by re-
moving the affected event symbols nodes from PT.

Again, such optimization can produce PTs with a smaller number of nodes what results
in a smaller state identifiers’ space and improved access time.

2.3. TOOLS 55

Explicit subtrees. Since performance of explicit representation is very good for state
spaces of “reasonable” size, it can be advantageous to combine both the PTA and explicit
representations techniques. It is feasible to select those PT subtrees that imply a small
state space (typically not featuring “many” parallel operators) and the states of which are
generated more than once (e.g. forced by a parallel operator in a higher level of PT) and
represent them via explicit automata embedded in PTA.

We implemented two verifiers based on the PTA representation technique (“Python
verifier” and “Java verifier”). These implementations provide a flexible framework that
allows simple addition of new parsers, optimizations, and verification backend alternatives.

As the architecture of both Python and Java verifiers is almost the same and we achieved
better results using the Java verifier, we will omit description of the Python version, but we
include a brief comparison of performance of both implementations. Additionally, we also
provide comparison of both implementation with the original implementation not using
PTAs but explicit in-memory deterministic finite automata as the state space representa-
tion.

The Java verifier uses the approach and techniques employed in the former Python
verifier, but it introduces new optimizations and backend features. By these optimizations,
both time and space requirements decreased and, therefore, the complexity of the protocols
that can be checked was pushed a bit further.

Optimizations. Besides the optimizations included in the Python verifier (explicit
subtrees and forward cutting), the multinodes optimization (Fig. 2.12) was implemented
and found very beneficial. This optimization is performed during the construction of a
parse tree in a straightforward, efficient way.

Backend alternatives. In the Java verifier we implemented only two backends: com-
pliance checking and visualization, since these two had been identified as the most fre-
quently needed.

For visualization, we decided to use the dot tool of the Graphviz package [69], since
it is freely distributed and its features greatly suffice for our purposes. The visualization
backend is able to provide both protocol parse tree and graph of the PTA state space.
Since the dot tool supports, among other types of output, the Virtual Reality Modeling
Language (VRML), this format can be advantageously used for complex protocols both to
get the whole picture of the automaton and zoom into its specific parts.

Implementation details. Because of the differences between Python and Java, we
had to cope with a lot of specific problems when rewriting the verifier from Python to
Java. A main problem was the state identifiers in Java (handled internally by Python): As
implied by the argumentation above, we needed state identifiers that could be computed
fast and consume as small amount of memory as possible. We could not use Java references,
because of the on-the-fly state generation (potentially repeated for a particular state).

Therefore, each state is represented by a state tree, where its leaves represent the states
of primitive automata, while inner nodes represent the state of the composed automata

56 CHAPTER 2. BACKGROUND

corresponding to the nodes’ subtree. The state identifier of a primitive automaton indicates
its active state (0 or 1) (Fig. 2.11a). The state identifier of a composed automaton is created
as concatenation of its children’s identifiers. Thus, the resulting state identifier reflects the
structure of PT, uniquely denotes a state within the state space, and its length is linear
in the size of PT. Obviously, the state identifier of the main automaton is determined at
the root of the state tree. The state identifiers are computed in a lazy way (only when
actually needed) and are stored in a cache. Traversal of the state space employs frequent
comparison of the identifiers (that is quite fast). Even though the computation of state
identifiers was optimized for speed, it is still the most time consuming operation in the
checking process (since it is performed for each state visit).

Benchmarks. We employed two types of benchmarks: the first type was focused
on the benefits of particular optimizations in the Java verifier and the second one on a
comparison of performance of the three verifier versions: the original verifier (written in
Java), and Python and Java PTA verifiers. Always we used protocols of various complexity;
both real-life and “academic” protocols inducing large state spaces were checked.

The real-life protocols included a set of database server protocols, while the “academic”
protocols involved only the parallel operator (such as a | b, a | b | c, . . .), which causes the
exponential growth of the state space. Using this enabled us both to generate large state
spaces and easily compute their sizes.

The optimization benchmarks have shown that disabling the forward cutting optimiza-
tion results in a very poor performance. This is caused by the complement operator
expanding the state space to an enormous size. Hence, forward cutting is used in each
of the benchmarks below. The benefits of the other types of optimization depend on the
concrete structure of the protocols being checked (Tab. 2.1). For example, in the case of
“academic” protocols using the parallel operator, the most worthwhile optimization are
multinodes; the explicit subtrees optimization cannot be used here, because the states of
the automaton represented by the only (multi-)node in the parse tree are used only once.
While checking the real-life protocols, the explicit subtrees optimization is most beneficial.

Since the most important parameter of the protocol verifier is the state processing speed,
in Tab. 2.2 we present the comparison of all verifiers based on checking the “academic”
protocols (the results of checking the real-life protocols are not so interesting).

A comparison of memory requirements is not involved, however, the PTA representation
requires a much smaller amount of memory than a corresponding explicit representation.
In all benchmarks considered below, all optimizations were applied.

In the case of “academic” protocols, the Java verifier is faster than the Python verifier
even if we turn off the multinodes optimization; the state processing is about two times
faster in the Java verifier, which is probably caused by the fact that the Java Virtual
Machine outperforms the Python Psyco compiler. On the other hand, the construction of
the explicit subtrees is much slower in Java because of the evaluation of the state identifiers;
the Python verifier is also able to keep more states (and larger explicit subautomata) in

2.4. PROBLEM ELABORATED 57

Forward All No No explicit
cutting only optimizations multinodes subtrees

Academic (parallel) 100% 76.2% 100.8% 75.7%
Real-life 100% 50.5% 67.7% 81.4%

Table 2.1: Average relative time the Java verifier spent by checking with various optimiza-
tions enabled.

Number of parallel Original verifier Python verifier Java verifier
operators used

6 100% 38.3% 22.3%
7 100% 16.5% 7.7%
8 100% 6.9% 2.3%
9 100% 2.7% 0.7%

Table 2.2: Relative time spent by checking the “academic” (parallel) protocols by all
verifiers.

memory, because its state identifiers are shorter. In any case, the PTA approach beats the
original explicit state representation.

BPC was used in [1] to verify compliance of communicating components of a real-life
application aimed at providing WiFi access to the Internet at airports. As a part of this
project, other two versions of BPC were developed—Runtime checker and Checker for
code analysis. The former version focuses on runtime monitoring of events (i.e., method
calls and returns) appearing at component frames and comparing it with behavior protocol
associated with this component. The latter one is used, together with Java PathFinder [59],
to statically compare the implementation of a component in Java with the associated frame
protocol [53]. Compliance of both cooperating components protocols and implementation
of each primitive components and a corresponding behavior protocol were evaluated using
a decent PC4 requiring several hours.

2.4 Problem elaborated

Apart from the CoCoME project [64], which is running at the time of writing this thesis,
according to our knowledge, none of the formalisms mentioned in this chapter has been
used for specification of a real-life-sized case study except for Behavior Protocols in [1].
Moreover, except for BP, majority of the aforementioned formalism used on even simple
examples demonstrate their substantial computational complexity, which is most probably
the reason why they have not been used for modeling of a larger application. On the

4Benchmarking PC configuration: 3 GHz Intel P4 processor with 2 GiB RAM running MS Windows
Server 2003 and Sun JDK 1.4.2 b10.

58 CHAPTER 2. BACKGROUND

other hand, it turned out that BP provide a reasonable level of abstraction and enable
verification of component compliance in the context of a real-life application.

Nonetheless, several issues making the specification hard to design were discovered [1];
we present some details within the following paragraphs.

The behavior specification of a component containing no notion of data often overspec-
ifies the actual behavior thus rising artificial incompatibilities. In other words, to avoid
too coarse overspecification and to model the behavior of a component, which is often
dependent on data values, at a reasonable level of abstraction, the data have to be present
also within the specification.

Data are used in a specification for two main purposes: (1) to pass method-specific
information to the “implementation” of a method, and (2) to store information across
multiple method calls to model the current component state (mode in [29]). The introduc-
tion of data to a modeling language must be done in a careful way, because they may be
a major cause of state space explosion.

Behavior protocols provide a natural mechanism for synchronizing events of two behav-
ior protocols, i.e., assuring that both components reach a certain computation point at the
same time. However, in case of hierarchical component initialization, this mechanism is not
sufficient—more than two components have to be synchronized. In ACP, such synchroniza-
tion can be achieved by defining the following rules: γ(s1, s2) = s4, γ(s3, s4) = s5. This way,
components C1, C2, C3 having in their alphabets s1, s2, s3, respectively, are synchronized
on these events resulting in the event s5.

Behavior protocols allow for checking for absence of composition errors and compliance.
In some cases, however, it might be beneficial to check for other properties. In [1], such
properties are eventual logout of each previously logged user and eventual destroying of
each Token component. Such properties are in classical model checking expressed in a
temporal logic, like LTL or CTL.

Last, but not least, BPChecker [42] used for verifying behavior protocol properties is
limited to state spaces of the size of 108 states, which turned out to be not sufficient in
some cases.

These issues can be summarized as follows:

1. Absence of data, namely method parameters and variables for storing component
states caused the specification to be imprecise and two coarse in several cases (arti-
ficial communication errors appeared),

2. synchronization of event from more than two behavior protocols became difficult and
resulted in incorporating of artificial BPs,

3. the properties were limited to the absence of the communication errors, i.e., no user
specific properties could be verified, and

4. the complexity and size of the specification of the Airport Internet Access appli-
cation [1] reached the limits of BPChecker; more complex protocol would not be
verifiable.

2.5. GOALS REVISITED 59

2.5 Goals revisited

Due to the reasons given in the previous section, we decided to use BP as a basis for a
formalism aimed at component behavior specification and to extend the formalism with
means solving the issues mentioned. In particular, our goals follow:

(G1) Extend the formalism of Behavior Protocols with the following constructs:

(G1a) Method call parameters—the behavior of a software component, i.e., the way it
process a specific method call, often depends on the parameters of the method
call issued to the component. Even if the behavior can be usually modeled
regardless of parameters, such behavior is usually nondeterministic and thus
may cause behavior incompatibility during composition with specification of
other components.

(G1b) Local variables—even though behavior of a stateful component (i.e., a compo-
nent “remembering” a piece of information across several method calls) can be
modeled via BP, due to the absence of data, the BP has to store the information
about the state implicitly as a position within the expression. This causes both
parts to be duplicated within the expression and legibility of such expression to
be bad.

(G1c) Multisynchronization events—in some cases of hierarchical component initial-
ization, it is necessary to first complete the initialization part of all BPs and
start the other parts of BP afterwards. This cannot be achieved in a simple way
in BP when more than two components are involved.

(G2) Enhance the readability of specification written in BP.

(G3) Provide a way of checking general properties described in a standard formalism (LTL,
CTL, etc).

(G4) Provide a more efficient (in the sense less time/memory demanding) way of verifica-
tion of extended BP.

With respect to the nature of the goals (G1) – (G4), the part of this thesis describing
the contribution is divided into two parts. First, we describe the extensions of Behavior
Protocols addressing the goals (G1) and (G2), which is followed by rather technical part
aiming at description of transformation of the extended Behavior Protocols into Promela
thus solving the goals (G3) and (G4).

60 CHAPTER 2. BACKGROUND

Chapter 3

Proposed specification language
(EBP)

In this chapter, we describe a new specification language aiming at description of software
component behavior. The language is based on Behavior Protocols (BP) [54]. It extends
the original language with new features to make the specification more precise and readable.
We refer to the proposed language as Extended Behavior Protocols or shortly EBP.

EBP take the form of expressions describing sequences of events appearing on compo-
nent frames and as well as BP, each EBP corresponds to a nondeterministic finite automa-
ton accepting the same language (i.e. set of traces) as the EBP generates.

To illustrate the basic idea, consider the example of EBP in Fig. 3.1. This specification
describes behavior of the FlyticketClassifier component from [1]. It consists of three parts:
(i) type definitions, (ii) local variables definition, and (iii) definition of behavior.

Within the part (i), the specification contains definition of enumeration types AIR-
LINES containing two possible values—AIRFRANCE and CZECHAIRLINES, and CON-
TROL containing the values EXEC and STOP.

The part (ii) defines a local variable ctrl of the type CONTROL; the variable is initial-
ized to the EXEC value.

The third part (iii) defines the behavior as a set of traces, i.e., sequences of events
appearing on the frame of the component with which this EBP is associated. In particular,
the component behaving according to this specification is able to accept the CreateToken
method call on its provided interface IFlyTicketAuth. According to the value of the al
parameter, the GetFlyTicketValidity method is called either on the IAfFlyTicketDb or
ICsaFlyTicketDb interface. Similarly with the IsEconomyFlyTicket method—this call is
optional (the reason is not visible in the specification), which is denoted by the “+ NULL”
part. The CreateToken method call is accepted several times, as long as the value of the ctrl
local variable is equal to EXEC. The value of the ctrl variable is changed after accepting
the stop method on the ICtrl interface. This method call can be accepted in parallel with
(during processing of) a CreateToken method call.

As apparent from the example, EBP extends the original language of BP with several
new constructs; in particular:

61

62 CHAPTER 3. PROPOSED SPECIFICATION LANGUAGE (EBP)

——↑
(i)

↓
——↑
(ii)
↓

——

↑

(iii)

↓

component FlyTicketClassifier {
types {

AIRLINES = { AIRFRANCE, CZECHAIRLINES }
CONTROL = { EXEC, STOP }

}
vars {

CONTROL ctrl = EXEC
}
behavior {

(while (ctrl == EXEC) {
?IFlyTicketAuth.CreateToken(AIRLINES al) {

switch (al) {
AIRFRANCE: {

!IAfFlyTicketDb.GetFlyTicketValidity ;
(!IAfFlyTicketDb.IsEconomyFlyTicket + NULL)

}
CZECHAIRLINES: {

!ICsaFlyTicketDb.GetFlyTicketValidity ;
(!ICsaFlyTicketDb.IsEconomyFlyTicket + NULL)

}
default: { NULL }

}
}

}
)
| ?ICtrl.stop { ctrl <– STOP }

}}

Figure 3.1: Example of EBP specification

• local variables of components of enumeration types,

• parameters of method call requests,

• switch statements on values of local variables and parameters to define multiple
behaviors,

• repetition of a specification part controlled by a value of a local variable, and

• synchronization of events from more than two EBP at a time.

In the following sections, we first present a motivation for each particular extension and
its informal description, which will later be made exact by a formal definition.

3.1. STATE VARIABLES AND METHOD PARAMETERS 63

3.1 State variables and method parameters

Data can be used in a software specification for two main purposes: (1) to pass method-
specific information to the method, and (2) to store information across multiple method
calls to model component states, e.g. component modes [29]. Introduction of data to a
modeling language must be done in a careful way, as data may be a major cause of the state
space explosion in model checking of the specification. To illustrate this claim, consider
the behavior protocol ?i.m1 | ?i.m2. A component that behaves according to this behavior
protocol is able to accept the m1 and m2 methods on the i interface in parallel. The state
space generated by this protocol consists of nine states1. Adding a parameter of the integer
type to each method that is used in the potential method bodies blows up the state space
to 9 × 2sizeof(integer) × 2sizeof(integer)2. Moreover, in almost all cases a data type of a much
smaller domain, e.g. byte, would be sufficient.

As an example consider a part of the BP specification of the FlyTicketClassifier compo-
nent from [1] in Fig. 3.2. It corresponds to the the specification in Fig. 3.1. After accepting
the CreateToken method request, the GetFlyTicketValidity method call request is emitted
either on the IAfFlyTicketDb or ICsaFlyTicketDb interface depending on the parameter
passed to the CreateToken method. In the case of a malformed or wrong parameter, no
event is emitted (expressed by the NULL subprotocol).

?IF lyT icketAuth.CreateToken {
(

!IAfF lyT icketDb.GetF lyT icketV alidity;
(!IAfF lyT icketDb.IsEconomyF lyT icket + NULL)

)
+
(

!ICsaF lyT icketDb.GetF lyT icketV alidity;
(!ICsaF lyT icketDb.IsEconomyF lyT icket + NULL)

)
+
NULL

}

Figure 3.2: A Part of the FlyTicketClassifier behavior protocol.

Because of the absence of parameters, the behavior protocol specifies a superset of the
potential (in the future) implemented component behavior. To illustrate this claim, con-
sider a situation in the potential implementation when the CreateToken method is called

1The protocol ?i.m1 is a syntactic abbreviation for ?i.m1 ˆ ; !i.m1$, which generates the state space
with three states. Hence, the parallel composition yields the state space of nine states.

2Assuming the integer size to be 4 bytes, the resulting state space consists of more than 1020 states.

64 CHAPTER 3. PROPOSED SPECIFICATION LANGUAGE (EBP)

with a parameter denoting an AirFrance fly ticket. In this situation, the GetFlyTicketVa-
lidity method on the IAfFlyTicketDb interface should be called. However, the specification
also allows the GetFlyTicketValidity method on the ICsaFlyTicketDb interface to be called.
Even if such imprecisions usually do not extend the state space size, a behavior incompat-
ibility among communicating components may be missed or an artificial one may appear.

As argued above, the behavior specification of a component containing no notion of
data often overspecifies the desired behavior—to avoid this, some notion of data has to be
present within the specification.

3.2 Multisynchronization

In the case of original Behavior Protocols, two protocols can be synchronized on an event.
This is achieved via application of the consent composition operator on two behavior
protocols which results in transformation of two complementary events into a single τ -
event. There are two issues regarding such a synchronization:

1. The synchronization is done in an one-directional way so in states when the accepting
side is not able to accept a particular event the bad-activity error appears.

2. Events from no more than two BPs may be synchronized in this way3.

Both the aforementioned issues become a problem in cases when synchronization of
events from more than two BPs is needed. As an example, consider the following situation
occurring also in [1]: There are three components A, B, and C, whose interfaces are bound
as shown in Fig. 3.3. The (simplified) corresponding behavior protocols for components B
and C are listed in Fig. 3.4.

The communication scenario is as follows: First, the A component creates the data
necessary for initialization of the B and C components and pass it to them. After the
B and C components complete their initialization, they are ready to start their business
functionality. A problem lies in the construction of the protocol for the component A. The
first option is to initialize the components in the order of B, C. In this case, however,
after initialization of the B component through its BPI1 interface, the component may
emit a request to the A component (using the BRI1 → API1 binding) before the C
component has finished its initialization. This would result in the bad-activity error—
the A component is not ready to accept the request at this point. Similarly, using the
initialization order of C, B may result in a call to the non-initialized component B using
the CRI1 → BPI1 binding. Generally, there are two ways to cope with this problem in
this particular situation:

3Of course, as the synchronization of events of a fixed number of BPs can be modeled by a finite
automaton, it can be also described by BP. However, in such a case, the protocol is quite complex and its
length grows with the number of components involved.

3.2. MULTISYNCHRONIZATION 65

ARI1 ARI2

BPI1

B
P
I2

C
R
I1

CPI1

BRI1
A
P
I1

Figure 3.3: Synchronization of three components.

B : ?BPI1.init; (!BRI1.m1 | ?BPI2.m2)
C : ?CPI1.init; !CRI1.m2

Figure 3.4: Behavior protocols corresponding to the B and C components in Fig. 3.3.

(i) to use the parallel operator; such a protocol models more than the desired behavior
and thus may cause problems with encapsulation of the components into a supercom-
ponent4, or

(ii) to use a software connector/helper component for synchronization.

!ARI1.init; (?API1.m1 | !ARI2.init)

Figure 3.5: Behavior protocol corresponding to the A component in Fig.3.3.

A solution via taking the first option is listed in Fig. 3.5, while a behavior protocol of
a software connector intercepting the communication among all components is listed in
Fig. 3.6. In the case of the option (ii), we suppose that the name of the interface of the
connector bound to an interface A is denoted as C A at the connector side. Furthermore,
we suppose that the order of the initialization is not important, while the order of business-
logic method calls is important, thus the connector respects and preserves the order of these
method calls.

4In cases the A component reacts to requests from B and C by interacting with other components or
the B component communicates with another component.

66 CHAPTER 3. PROPOSED SPECIFICATION LANGUAGE (EBP)

(
(((?C ARI1.init {!C BPI1.init} | ?C ARI2.init {!C CPI1.init}) |

(?C BRI1.m1ˆ; ?C CRI1.m2ˆ)); !C API1.m1ˆ; !C BPI2.m2ˆ)
+

(((?C ARI1.init {!C BPI1.init} | ?C ARI2.init {!C CPI1.init}) |
(?C BRI1.m1ˆ)); !C API1.m1ˆ; ?C CRI1.m2ˆ; !C BPI2.m2ˆ)

+
(((?C ARI1.init {!C BPI1.init} | ?C ARI2.init {!C CPI1.init}) |

(?C CRI1.m2ˆ; ?C BRI1.m1ˆ)); !C BPI2.m2ˆ; !C API1.m1ˆ)
+

(((?C ARI1.init {!C BPI1.init} | ?C ARI2.init {!C CPI1.init}) |
(?C CRI1.m2ˆ)); !C BPI2.m2ˆ; ?C BRI1.m1ˆ; !C API1.m1ˆ;)

)
|
(

?C API1.m1$; ?C BPI2.m2$; !C BRI1.m1$; !C CRI2.m2$
+

?C API1.m1$; !C BRI1.m1$; ?C BPI2.m2$; !C CRI2.m2$
+

?C BPI2.m2$; ?C API1.m1$; !C CRI1.m2$; !C BRI1.m1$
+

?C BPI2.m2$; !C CRI1.m2$; ?C API1.m1$; !C BRI1.m1$
)

Figure 3.6: Behavior protocol of a connector avoiding the bad activity error in the archi-
tecture in Fig.3.3.

As sketched above, there is no possible correct sequential order of initialization of
components B and C and even introducing artificial parallelism does not solve the problem
satisfactorily.

Therefore, an extension of BP is necessary aiming at a mechanism that would allow
for synchronization of events from more than two BP. In [1], this problem was addressed
by extending the semantics of Behavior Protocols by atomic actions [35]. An atomic
action is a special event consisting of other ordinary events (enclosed by ‘[’ and ‘]’). All
the events inside an atomic action are composed with their respective counterparts and
then appear at once as a single event. For illustration, consider the behavior protocols in
Fig. 3.7 addressing the situation in Fig. 3.3. Although this enabled behavior specification
of all components involved in the demo application [1], several issues arose. Violation
of associativity of the composition operator and much more complex formal system were
the most important ones. In each proposed solution of these issues, at least one of the
aforementioned problems persisted. Therefore, we do not consider the use of atomic actions
for synchronization of more BPs as a suitable approach.

3.3. WHILE LOOPS 67

A : (!ARI1.initˆ | !ARI2.initˆ); [?ARI1.init$, ?ARI2.init$]); ?API1.m1
B : ?BPI1.init; (!BRI1.m1 | ?BPI2.m2)
C : ?CPI1.init; !CRI1.m2

Figure 3.7: Behavior protocols corresponding to the situation in Fig. 3.3 using atomic
actions.

To cope with multisynchronization, we propose an extension of BP with special (neither
emit nor accept) events that are shared by the EBPs involved in a synchronization. These
events are blocking. Each of the multisynchronization events is allowed to occur if and only
if both EBPs being composed allow it to happen in the current state. After the consent
composition, both events appear as a single event of the same form in the resulting trace,
i.e., they are not converted into a τ -event. This way, another EBP can be synchronized on
the same event after it is composed with the composition of those two.

3.3 While loops

Another issue identified when using BP as a specification platform is the lack of expensive-
ness when specifying loops. A loop can be specified using the repetition operator, which
generates any arbitrary number of repetitions of its operand. This may become insufficient
if stopping the associated component is desirable under specific conditions.

As an example, consider the following situation: There is a component providing a
service via a provided interface (and in particular via two methods of this interface).
Behavior of such a component can be modeled by a behavior protocol in Fig. 3.8. In this
case, the component provides the svc1 and svc2 methods on the interface if. We cannot
stop the component in the sense that it would reject future method call requests. A way
to achieve interruption of the repetition is to use ‘;’ and to append the protocol ?if.stop()
to it. This way, however, the stop method call can be accepted only at the end of the loop,
which is definitely not sufficient in most cases.

((?if.service1{!r if.svc1}) + (?if.service2{!r if.svc2}))∗

Figure 3.8: Behavior protocol of a component providing the svc1 and svc2 methods.

A behavior protocol specifying behavior of a component that can be explicitly stopped
is listed in Fig. 3.9. The protocol expresses the fact that the if.stop method request may
be accepted any time; after accepting this event, the other method requests are no more
accepted. Although precisely describing the desired behavior, this protocol is not well
readable and hard to understand. Moreover, in many cases, it is desired that the loop
is controlled by a value of a local variable expressing the state of the component, which
is even more difficult to specify without a special construct. Therefore, a better way of
controlling loops than using the repetition operator would be beneficial.

68 CHAPTER 3. PROPOSED SPECIFICATION LANGUAGE (EBP)

((?if.service1{!r if.svc1}) + (?if.service2{!r if.svc2}))∗;
(?if.stop +
((

(?if.service1{?if.stopˆ; !r if.svc1}) +
(?if.service2{?if.stopˆ; !r if.svc2}) +
(?if.service1{!r if.svc1ˆ; ?if.stopˆ; ?r if.svc1$}) +
(?if.service2{!r if.svc2ˆ; ?if.stopˆ; ?r if.svc2$}) +

); !if.stop$)
)

Figure 3.9: Behavior protocol of a component providing the svc1 and svc2 that can be
stopped.

3.4 Syntax and semantics

In this section, we present a definition of the syntax and semantics of Extended Behavior
Protocols. Before coming up to the syntax, let us mention some basic facts regarding EBP
specifications. Each EBP specification yields an abstraction of the associated component
behavior in the form of a set of traces. Each trace consists of events—method call events,
assignment events, and synchronization events. The traces generated by an EBP specifica-
tion are finite, however, an infinite number of traces may be generated by a single EBP as
a consequence of using the repetition operator ‘∗’ or the while expression. Further, proto-
cols of communicating components can be composed using the extended consent operator ;
this way, communicating errors (bad activity and no activity) can be detected similarly to
original BP.

3.4.1 Syntax of EBP

The syntax of EBP defined in the Extended Backus–Naur form (EBNF) [57] can be found
in Appendix A; in this section, we provide a description along with explanation of basic
concepts of the EBP syntax.

An EBP specification starts with the component keyword followed by three main parts:
(i) type definitions, (ii) local variable definition, and (iii) behavior definition (Fig. 3.10).

Within the types section, enumeration types of local variables and parameters are de-
fined. The definition of a type takes the form:

type name = { value1, value2, ... }

This defines a type type name; variables of this type can hold only defined values—value1,
value2, There can be any arbitrary (but finite) number of values of a type and any
arbitrary but finite number of types defined within an EBP specification.

3.4. SYNTAX AND SEMANTICS 69

component component name {
types {

types definition
}
vars {

variable definition
}
behavior {

behavior definition
}

}

Figure 3.10: Structure of the EBP specification

The vars section contains definition of local variables. These variables are visible and
accessible only from the behavior specification part of this EBP. The variable definition is
of the following form:

type name var name = initial value

This way, a local variable var name of the type type name is defined; the initial value of
this variable is set to initial value. Again, there can be any finite number of local variables
defined within the vars section.

The behavior itself is defined inside the behavior section. This section contains an
expression defining the set of traces, i.e., sequences of events, occurring on the component
frame (the set of component provided and required interfaces). The basic entities of this
expression are event tokens. There exist seven event tokens with the following meaning:

1. !if.method(val1, val2 ...) ˆ — emitting a method call request with parameters val1,
val2,... ,

2. !if.method$ — emitting a method call response,
3. ?if.method(type1 par1, type2 par2, ...) ˆ — accepting a method call request and

assigning the values the caller used to par1, par2,...,
4. ?if.method(val1, val2, ...) ˆ — accepting a method call request only if the caller used

values val1, val2, ... as parameters,
5. ?if.method$ — accepting a method call response,
6. var <– val — assigning the value val to the local variable var,
7. @synchro — synchronization event.

Each of the event tokens (1)-(7) represents an event. An event is supposed to be atomic,
i.e, events are interleaved, but do not overlap.

70 CHAPTER 3. PROPOSED SPECIFICATION LANGUAGE (EBP)

The events are combined using the following operators: ‘+’ (alternative), ‘;’ (sequence),
‘|’ (parallel composition), and ‘∗’ (repetition). Furthermore, there are two special con-
structs: while and switch. The while expression is of the following form:

while (var == val) {
protocol

}

This expression denotes repetition of the protocol as long as the value of the var local
variable is equal to val. The value of the variable var is tested each time before the
protocol takes place.

The switch expression takes the following syntax:

switch (var) {
val1 : { protocol 1 }
val2 : { protocol 2 }
...
default: { protocol d }

}

According to the value of variable var (either a local variable or a method parameter), the
protocol i takes place. The protocol protocol d in the default branch, which is optional,
takes place if and only if the value of the var variable is distinct from all val1, val2, If
the default branch is not present, the meaning of such expression is the same as if there
would be a default branch of the form:

default: { NULL }

Further, a syntactic abbreviation referred to as method call processing is defined:

?if.method (type1 par1, type2 par2, ...) { protocol }
stands for:

?if.method (type1 par1, type2 par2, ...)ˆ; protocol; !if.method$.

Finally, we define two syntactic rules:

1. For each trace generated by the EBP and for each method call request event:
!if.method(...)̂, resp. ?if.method(...)̂
there must be a method call response event:
?if.method$, resp. !if.method$.

2. The method calls has to be well structured, i.e., they are allowed to be nested but
they cannot syntactically overlap. For instance, protocols like:
!if.method1(. . .)ˆ; !if.method2(. . .)ˆ; ?if.method1$; ?if.method2$
are not allowed.

3.4. SYNTAX AND SEMANTICS 71

3.4.2 Semantics of EBP

The semantics of the Extended Behavior Protocols will be defined using a formalism sim-
ilar to the Symbolic Transition Graphs with Assignment (STGA) [40]. We refer to our
formalism as Nondeterministic Finite Automata with Assignment or shortly NFAA.

Definition 3.4.1 Let V be a finite set of variables and H be a finite set of values. Let
Comp be a set of expressions of one of the following four forms: true, false, v = h, and
v 6= h where v ∈ V, h ∈ H. The BoolExp set is defined in the following way: Each a ∈
Comp is in BoolExp. If a, b ∈ BoolExp, then a ∧ b ∈ BoolExp and a ∨ b ∈ BoolExp.

Informally, the BoolExp is the set of finite boolean expressions over members of the sets
V and H , where the variables can be only tested for equality or inequality to a concrete
value. These comparisons can be combined using logical and and logical or. We use the
standard propositional logic for evaluation of boolean expressions.

Definition 3.4.2 (NFAA) Let Σ be a finite set of event tokens, V be a finite set of
variables with initial values defined, and H be a finite set of values. The Nondeterministic
Finite Automaton with Assignment NFAA A is a 7-tuple (S, Σ, T, s0, A, V, H) where

• S is a finite set of states,
• Σ is a finite set of symbols (event tokens),
• V is the finite set of variables, and
• H is the finite set of values.
• T is a transition function: T : S × BoolExp × Σ → 2S,
• s0 ∈ S is an initial state,
• A ⊆ S is a set of accepting (final) states,

Definition 3.4.3 A Computation of the NFAA A is a finite sequence p0, l0, p1, l1, . . . , ln−1,
pn such that l0 . . . ln−1 ∈ Σ, p0 . . . pn ∈ S, p0 = s0, and ∀i = 1 . . . n − 1 holds that ∃b ∈
BoolExp : T (pi, b, li) = Qi such that pi+1 ∈ Qi.

The transition function T defines transitions among states. Each transition is labeled
by a guard g ∈ BoolExp and a label l ∈ Σ, written (g, l).

Definition 3.4.4 For a given computation, the value of a variable v in the last state of the
computation is determined (v keeps the value h) by the last transition of the computation
with the label v <– h. If there is not such a transition in the computation, the value of v
is its initial value.

Definition 3.4.5 A transition is enabled if and only if the guard of the transition evaluates
in the starting state of the transition to true.

Definition 3.4.6 A computation of the NFAA A is enabled if and only if all transitions
of the computation are enabled.

72 CHAPTER 3. PROPOSED SPECIFICATION LANGUAGE (EBP)

Definition 3.4.7 The language accepted by the NFAA A is the set of finite sequences
l0; l1; . . . ln such that l0, l1, . . . ln ∈ Σ and there exists an enabled computation p0, l0, p1, . . . ln,
pn+1 such that p0 = s0 and pn+1 ∈ A.

Before definition of the EBP semantics, we suppose the EBP specification to take a
specific form; to achieve this, we transform the input behavior definition in the following
way:

Definition 3.4.8 (Parameter unwinding) Let all method call processings in the EBP
E be expressed as the syntactic abbreviation defined above. Each method call processing in
E of the form:

?if.method (type1 par1, type2 par2, . . . , typen parn) { protocol }
is then replaced by:

?if.method (type1
val1

, type2
val1

, . . . , typen
val1

) { protocol11...1 } +
?if.method (type1

val2
, type2

val1
, . . . , typen

val1
) { protocol21...1 } +

...
?if.method (type1

valn1

, type2
val1

, . . . , typen
val1

) { protocoln11...1 } +

?if.method (type1
val1

, type2
val2

, . . . , typen
val1

) { protocoln11...1 } +
...
?if.method (type1

valn1

, type2
valn2

, . . . , typen
valnn

) { protocoln1n2...nn
}

where typei
val1

. . . typei
valn1

are all values of the type typei for all i and protocoli1i2...in are
modifications of the expression protocol such that each switch expression inside the protocol
of the form:

switch (var) {
case1 : { prot1 }
case2 : { prot2 }
...
casem : { protm }
default : { protdefault }

}
is replaced in the protocoli1i2...in by the protl such that casel = typej

valij
where var is one

of parj for some j. If there is not such l, the default branch is used.

Informally, we first replace each subexpression of method processing containing pa-
rameters with the alternative of method processings where the parameters are replaced
with all possible combinations of values of corresponding types. Then, each switch expres-
sion, whose variable is one of the original parameters, is replaced with the branch that
corresponds to the value of the parameter accepted in the particular alternative branch.

We are now ready to define the language generated by an EBP specification; we show
how the EBP specification corresponds to a NFAA A. Recall that an EBP specification

3.4. SYNTAX AND SEMANTICS 73

consists of (i) definition of types, (ii) definition of local variables, and (iii) definition of
behavior. The parts (i) and (ii) are referenced in the part (iii)—they do not define any
behavior on their own. The language generated by an EBP is the same as the language
accepted by the NFAA A, whose construction is described in the following paragraphs.

First, each event e of the form of event tokens (1)-(7) is represented by a primitive
automaton having two states—an initial state and a final state. The transition from the
initial state to the final state is labeled by (true, e).

Having NFAA A and B for expressions PA and PB, respectively, the automaton repre-
senting A + B is created by joining the initial state of A with the initial state of B.

The automaton representing A; B is created by adding edges from each accepting state
of the automaton A to the initial state of the automaton B. These transitions are labeled
by (true, λ) denoting a silent (invisible) transition.

In the case of automaton representing A∗, for each transition t leading from the initial
state, a new transition for each final state is added from the final state to the target state
of t with the same label as t. As we want the automaton representing A∗ to accept the
empty word, the initial state is added to the set of accepting states.

The automaton representing A | B is created as a cartesian product of the automata
representing A and B. The automaton representing A | B accepts the language containing
any arbitrary interleaving of the traces generated by A with the traces generated by B.

In the case of the automaton representing the expression while (var == value) { expr },
let us denote the automaton representing the expr expression as A. Now, in A, the label
(b, l) of each transition leading from the initial state is modified to ((var == value)∧ b, l);
let us denote the modified automaton A′. Then, the automaton representing the entire
while expression is the automaton representing A′∗.

The last construct, for which we have to provide a representation, is the switch expres-
sion. The general form of this expression follows:

switch (var) {
value1 : {prot1}
value2 : {prot2}
...
valuen : {protn}
default : {protdefault}

}

Let us denote the automata for prot1, prot2,. . . ,protn, and protdefault by A1, A2,. . . ,An,
Adefault, respectively. For each i = 1 . . . n, let us denote A′

i the automaton that is created
from Ai by modifying the guard g of each transition (g, l) leading from the initial state to
(var == valuei) ∧ g. Next, let us denote A′

default the automaton created from Adefault by
modifying the guard of each transition leading from the initial state to (var 6= value1) ∧
(var 6= value2) ∧ · · · ∧ (var 6= valuen) ∧ g. Now, the automaton representing the entire
switch expression is the automaton representing A′

1 + A′
2 + · · ·+ A′

n + A′
default.

74 CHAPTER 3. PROPOSED SPECIFICATION LANGUAGE (EBP)

3.4.3 Consent composition of EBP

In this section, we describe the semantics of the composition of two EBP specifications via
the extended consent composition operator. Since for each EBP specification S there is a
NFAA AS accepting the same language as S generates, we define the consent composition
of two EBPs in terms of composition of two NFAAs.

Definition 3.4.9 (Extended consent operator) Given two EBP specifications X and
Y , let us denote NX = (SX , Σ, TX , s0X

, AX , VX , HX) an NFAA accepting the same language
as X generates, and NY = (SY , Σ, TY , s0Y

, AY , VY , HY) an NFAA accepting the same lan-
guage as Y generates. Let NX and NY are minimal in the number of states. Let us denote
ǫe and ǫ⊘ for each e new events that are not in Σ. Let us refer to the ǫ-events as the error
events. Let error be a new state not present in SX ∪SY . Let a transition t from a state a to
a state b being labeled by (g, l) where g is a guard and l is a label be denoted as (a, (g, l), b).
Let us denote by ?e(vars)ˆ an event token of the form ?it.m(val1, val2, . . . , valn)ˆ where
vars represents a parameter list val1, val2, . . . , valn. Further, let us denote by !e(vars) ˆ
an event token of the form !it.m(val1, val2, . . . , valn)ˆ where vars represents the same pa-
rameter list val1, val2, . . . , valn. Similarly, let ?e$ and !e$ denote the event tokens ?it.m$
and !it.m$, respectively. Let us denote τeˆ and τe$ the event created by the composition
of complementary events, i.e., either ?eˆ and !eˆ or ?e$ and !e$. The τeˆ and τe$ events
can be denoted as τe. Next, let us denote e and e two complementary event tokens, i.e.,
event tokens differing only in the emitting/accepting the event e—?e(vars)ˆ = !e(vars)ˆ
and vice versa and similarly for the other event tokens representing method call events.
Finally, let @s denote an event token @synchro. Let sig(e) denotes the method signature
of the event token e, i.e., sig(?it.method(vars)ˆ) = it.method(vars) and similarly for the
other event tokens associated with method call events.

Let J be the set of events of the form @s used for synchronization of NX and NY . Let
S be the set of events used for communication between NX and NY except for the events
in J .

The NFAA NC = (SC , Σ, TC , s0C
, AC , VC, HC) accepting the language of the composition

NX∇S,JNY using the extended consent operator is defined in the following way:

SC = SX × SY ∪ error
s0C

= (s0X
, s0Y

)
AC = AX × AY ∪ error
VC = VX ∪ VY

HC = HX ∪ HY

A transition is an element of TC if and only if it is deduced by one of the following rules,
in which f, g ∈ BoolExp:

((q1, q2), (f, ?e(vars)ˆ), (q′1, q2)) ∈ TC if (q1, (f, ?e(vars)ˆ), q′1) ∈ TX and e(vars) /∈ S

((q1, q2), (f, !e(vars)ˆ), (q′1, q2)) ∈ TC if (q1, (f, !e(vars)ˆ), q′1) ∈ TX and e(vars) /∈ S

((q1, q2), (f, ?e(vars)$), (q′1, q2)) ∈ TC if (q1, (f, ?e(vars)$), q′1) ∈ TX and e(vars) /∈ S

3.4. SYNTAX AND SEMANTICS 75

((q1, q2), (f, !e(vars)$), (q′1, q2)) ∈ TC if (q1, (f, !e(vars)$), q′1) ∈ TX and e(vars) /∈ S

((q1, q2), (f, @s), (q′1, q2)) ∈ TC if (q1, (f, @s), q′1) ∈ TX and @s /∈ J

((q1, q2), (f, ?e(vars)ˆ), (q1, q
′
2)) ∈ TC if (q2, (f, ?e(vars)ˆ), q′2) ∈ TY and e(vars) /∈ S

((q1, q2), (f, !e(vars)ˆ), (q1, q
′
2)) ∈ TC if (q2, (f, !e(vars)ˆ), q′2) ∈ TY and e(vars) /∈ S

((q1, q2), (f, ?e(vars)$), (q1, q
′
2)) ∈ TC if (q2, (f, ?e(vars)$), q′2) ∈ TY and e(vars) /∈ S

((q1, q2), (f, !e(vars)$), (q1, q
′
2)) ∈ TC if (q2, (f, !e(vars)$), q′2) ∈ TY and e(vars) /∈ S

((q1, q2), (f, @s), (q1, q
′
2)) ∈ TC if (q2, (f, @s), q′2) ∈ TY and @s /∈ J

((q1, q2), (f, t), (q′1, q2)) ∈ TC if (q1, (f, t), q′1) ∈ TX ,where t is either τe or an error token

((q1, q2), (f, t), (q1, q
′
2)) ∈ TC if (q2, (f, t), q′2) ∈ TY ,where t is either τe or an error token

((q1, q2), (f ∧ g, τe), (q′1, q
′
2)) ∈ TC if (q1, (f, e), q′1) ∈ TX and (q2, (g, e), q′2) ∈ TY and

sig(e) ∈ S

((q1, q2), (f, ǫe), error) ∈ TC if (q1, (f, !e(vars)ˆ), q′1) ∈ TX and there is no q′2 ∈ SY s.t.
(q2, (g, ?e(vars)ˆ), q′2) ∈ TY and e(vars) ∈ S

((q1, q2), (f, ǫe), error) ∈ TC if (q1, (f, !e(vars)$), q′1) ∈ TX and there is no q′2 ∈ SY s.t.
(q2, (g, ?e(vars)$), q′2) ∈ TY and e(vars) ∈ S

((q1, q2), (f, ǫe), error) ∈ TC if (q2, (f, !e(vars)ˆ), q′2) ∈ TY and there is no q′1 ∈ SX s.t.
(q1, (g, ?e(vars)ˆ), q′1) ∈ TX and e(vars) ∈ S

((q1, q2), (f, ǫe), error) ∈ TC if (q2, (f, !e(vars)$), q′2) ∈ TY and there is no q′1 ∈ SX s.t.
(q1, (g, ?e(vars)$), q′1) ∈ TX and e(vars) ∈ S

((q1, q2), (true, ǫ⊘), error) ∈ TC if
(there is no (q1, (f, t), q′1) /∈ TX s.t. t is !e(vars)ˆ, !e(vars)$, ?e(vars)ˆ, ?e(vars)$,
@s where @s /∈ J, or an error token) and
(there is no (q2, (g, t), q′2) /∈ TY s.t. t is !e(vars)ˆ, !e(vars)$, ?e(vars)ˆ, ?e(vars)$,
@s where @s /∈ J, or an error token) and
(q1 /∈ AX or q2 /∈ AY)

((q1, q2), (f ∧ g, @s), (q′1, q
′
2)) ∈ TC if (q1, (f, @s), q′1) ∈ TX and (q2, (g, @s), q′2) ∈ TY

and @s ∈ J

3.4.4 EBP inversion

As well as in the case of BP, the extended consent operator is used for verification of
both horizontal and vertical compliances. Since the principle of the vertical compliance
verification is the again based on composing the inverted frame protocol of the component
with its architecture protocol, we need to define the inversion of an EBP specification.

Definition 3.4.10 (Inverted EBP) Let A be an EBP specification and Ab its behavior
part. The inverted EBP A−1 is created from A by modification of the behavior part Ab in
the following way:

76 CHAPTER 3. PROPOSED SPECIFICATION LANGUAGE (EBP)

1. Ab is transformed according to Def. 3.4.8.

2. Each event of the form !e(vars)ˆ is replaced by ?e(vars)ˆ and vice versa. Similarly,
!e(vars)$ is replaced by ?e(vars)$ and vice versa.

Chapter 4

Transformation of EBP into Promela

The Behavior Protocol Checker described in Sect. 2.3.4 is our proprietary tool used for
checking compliance and absence of composition errors. It is able to handle state spaces
of the size in the order of magnitude of 108 states, which is not sufficient in all cases.

The Spin model checker [32] is a state-of-the-art explicit model checker featuring LTL
checking abilities, bit-state hashing, and quite friendly user interface. It allows traversal
of state spaces of several orders of magnitude higher sizes than behavior protocol checker
does. Additionally, there are a number of extensions of Spin, e.g. dSpin [18] extending
the Promela language by functions, exceptions, etc. Therefore, we decided to translate the
specification in EBP into Promela—the input language of the Spin model checker.

4.1 Basic approach

When choosing the basic approach for translation of the extended behavior protocols into
Promela, we had to face, above all, the problem of the different handling of nondeterminism
in EBP and Promela. In the case of nondeterminism in EBP, i.e., there are more alternative
branches with the same prefix allowed, their semantics allows each time all possible suffices.
Conversely, in Promela, in case of this kind of nondeterminism in a process, one executable
statement is selected and the statements following this one are sequentially executed. The
decision about the suffix is done at the beginning of the alternative branch. Mapping of
EBP into Promela cannot thus be done in a straightforward way.

A way to avoid the problem with nondeterminism described above is to use deterministic
EBP equivalent to original EBP, i.e., generating the same set of traces. Disallowing nonde-
terministic EBP at the side of user input is not a good idea as it restricts the language in
an inconvenient way; moreover, in cases of need for parallel operator, some behavior could
not have been specified.

According to these facts, we decided to:

1. Transform each EBP of the specification into a NFAA,

77

78 CHAPTER 4. TRANSFORMATION INTO PROMELA

2. transform this NFAA into an equivalent deterministic finite automaton with assign-
ments (DFAA),

3. transform the DFAA into a Promela model, and

4. use the Spin model checker to verify the absence of the communication errors within
the Promela model.

Even if the transformation of NFAA (built up according to EBP) to DFAA usually does
not raise the number of states in a significant way, application of a minimization algorithm
to DFAA can further improve performance of the consequent checking process.

4.2 Modeling composition

When modeling the composition of two behavior protocols (using the consent operator
in our case), we need to synchronize execution of complementary events to form a single
internal τ -event. Using the aforementioned approach where each EBP is represented by a
Promela process, this implies a kind of interprocess communication.

In Promela, the basic mean for interprocess communication are message channels. Mes-
sage channels are bidirectional; unless declared as exclusive, several processes may send
data to a channel and several processes may read the data sent earlier. There are two
modes of the message channels in Promela—in the first mode, the send-message command
gets blocked in the case it cannot be sent immediately (either there is no process waiting
for this message, or the message buffer associated with this channel is full), while in the
other mode, the message gets lost in such a case. In behavior protocols, on the contrary, we
want each emit event that cannot be accepted immediately to cause the bad activity error.
Thus, modeling such behavior would require incorporation of an algorithmic mechanism
(e.g. message counting) to detect bad activity errors. Therefore we decided to use shared
variables for communication between processes.

Each method of an exported interface is associated with two boolean variables repre-
senting the events of method call request and response. Initially, all variables corresponding
to these events are set to zero. Additionally, there is a shared variable lock used for mutual
exclusion of particular method calls, because each internal event requires execution of at
least one statement in each of the processes involved in the communication.

To emit an event, the lock variable has to be set to zero. Each time a component
emits an event, it first set the value of the lock variable to one, then it sets the variable
corresponding to the event to one. Because the lock is acquired, only accept events may be
now performed to form, together with the event just being emitted, a τ -event. The process
accepting the emit event resets the value of the variable corresponding to this event as well
as the lock variable to zero. If there is no component able to accept the emitted event,
deadlock occurs. Since the lock is acquired at the time of the deadlock, bad activity error
is detected. If the lock is not acquired at the moment of a deadlock, either no activity has

4.3. MODELING DATA 79

occurred or the execution has been successfully accomplished and the behavior specification
is thus communication error free.

The communication errors are detected as a Promela deadlock; then a variable rep-
resenting the current event being performed is checked and according to the value either
successful accomplishing, bad activity, or no activity is reported. If a communication error
is discovered during verification of the Promela model via the Spin model checker, a trail
through the state space is stored within a file (a feature of Spin) and Spin is run again in
the simulation mode to obtain the corresponding EBP error trace.

4.3 Modeling data

There are two kinds of data in EBP—the state variables and method parameters. As
variables of both of these data kinds may hold symbolic values, they have a lot in com-
mon regarding the translation into Promela. The main difference between state variables
and method parameters from the semantics point of view is that the value of a method
parameter is assigned at a moment of accepting a method call (accepting a request event)
and cannot change, while the value of a state variable may change anytime (even “asyn-
chronously” as a consequence of an event in a parallel branch). In the following paragraphs,
we describe the solution of data treatment for both method parameters and state variables.

4.3.1 State variables

State variables can be seen as method parameters that may change their value during
method call processing by a parallel process. Or, similarly, the method parameters can be
seen as state variables that cannot change during method call processing. Since a state
variable is accessible only within the component, i.e., only from a single Promela process,
we decided to represent it as a variable.

4.3.2 Method parameters

Method parameters can be viewed as a simpler case of state variables. As we can argue
the same way as in the previous case above and to keep the data treatment in the model
unified, we decided to use the global variables for transfer of parameter values as well.

4.4 Modeling multisynchronization

The multisynchronization events are modeled again using shared variables. This approach
is suitable here as it is, unlike message channels, symmetric.

Technically, there is a byte variable syncvar associated with each multisynchronization
event @sync; the syncvar is initialized with the number of processes containing this multi-
synchronization event. All the processes representing the EBP of components using @sync
are ordered (in the order of composition). If a process is able to execute the @sync event,

80 CHAPTER 4. TRANSFORMATION INTO PROMELA

it tries to do so via decreasing the variable syncvar after all the smaller (in the ordering)
processes have performed the event and waiting until all the other processes greater than
this process execute this event. If a process is not able to perform the @sync event, the
syncvar is increased again by each process that has previously decreased syncvar to return
the state before multisynchronization (kind of a “rollback”). Conversely, after all other
processes perform the @sync event, the variable is reset by the smallest process (in the
ordering) to the initial number. A simple decreasing and a test of the associated variable
(var == value) is not sufficient, as the @sync event may appear in a cycle within a single
specification.

4.5 Example

In this section, to illustrate the translation process, we present a translation of a simple
EBP specification into Promela. The specification under consideration is listed in Fig. 4.1
and describes behavior of the LightDisplay component from the CoCoME project [64].

The protocol specifies that the associated component is able to accept two instances of
the onEvent method—one instance with the EMEnabled parameter value and the other
with the EMDisabled value. Each time, it assigns the corresponding value to the state
local variable.

component LightDisplay {

types {
states = {LIGHT ENABLED, LIGHT DISABLED}

}

vars {
states state = LIGHT ENABLED

}

behavior {
?LightDisplayControllerEventHandlerIf.onEvent(EMEnabled) {

state <– LIGHT ENABLED
}*
|
?LightDisplayControllerEventHandlerIf.onEvent(EMDisabled) {

state <– LIGHT DISABLED
}*

}

Figure 4.1: EBP specification of the LightDisplay component.

4.5. EXAMPLE 81

This specification corresponds to the FSM with nine states depicted in Fig 4.2. For the
sake of readability, the labels are present only on the topmost and leftmost branches (the
missing labels are the same as the corresponding labels that are present).

?onEvent
(ExpressModeEnabledEvent)^

!onEvent
(ExpressModeEnabledEvent)$

stateß LIGHT_ENABLED

?onEvent
(ExpressModeDisabledEvent)^

!onEvent
(ExpressModeDisabledEvent)$

stateß LIGHT_DISABLED

Figure 4.2: FSM corresponding to the LightDisplay EBP specification.

This automaton is then translated into the Promela language; it takes the form listed
in Fig. 4.3. In addition to this code fragment, there are data structures containing the
information about transitions that are stored in an array (not listed here). Furthermore,
the fragment take advantage of several macros (emit, accept, . . .) simplifying the Promela
code.

82 CHAPTER 4. TRANSFORMATION INTO PROMELA

proctype LightDisplay()
{
int st = 8; /* the initial state */

do
::emit(st,tr0[Pc 0–>st*6+0],gr0[Pc 0–>st*6+0],S0);
::accept(st,tr0[Pc 0–>st*6+1],gr0[Pc 0–>st*6+1],E0,

“LightDisplayControllerEventHandlerIf.onEvent(EMEnabled)$”);
::assign(st,tr0[Pc 0–>st*6+2],gr0[Pc 0–>st*6+2],V0 state,LIGHT ENABLED);
::emit(st,tr0[Pc 0–>st*6+3],gr0[Pc 0–>st*6+3],S1);
::accept(st,tr0[Pc 0–>st*6+4],gr0[Pc 0–>st*6+4],E1,

“LightDisplayControllerEventHandlerIf.onEvent(EMDisabled)$”);
::assign(st,tr0[Pc 0–>st*6+5],gr0[Pc 0–>st*6+5],V0 state,LIGHT DISABLED);
::final(fn0[Pc 0–>st])
od;
DONE:
skip;
}

Figure 4.3: Promela fragment of the LightDisplay component specification

Chapter 5

Evaluation

5.1 BP vs. EBP comparison

As stated in Sect. 2.4, to our knowledge, except for BP, no formal method has been success-
fully used for behavior modeling and verification of a real-life-sized component architecture
(composed of e.g. 20 components). However, there is an ongoing project CoCoME [64] still
running at the time of writing this thesis which aims at comparison of various modeling
approaches. Since the results of the project are not yet available, we are not aware of
how many of the participants aim at not only modeling but also verification of component
behavior; hence, in this chapter, EBP is thoroughly compared with the original Behavior
Protocols only.

The application being the subject of the CoCoME contest aims at providing infrastruc-
ture for an enterprise company including a central stock, an items database, and several
stores with cash desks and customers. The application structure is depicted in Fig. 5.1.
For comparison, we have chosen the CashDeskApplication component, whose specification
is, when using BP or EBP, the most complex one. The complete specification of this
component using BP is listed in Appendix C, while the EBP specification can be found in
Appendix D.

As clear from Fig. 5.1, the CashDeskApplication component is a part of each CashDesk
component; it is responsible for controlling particular sales via communication with other
parts of the CashDesk component using buses. In the form of method calls, it receives
information about events reflecting various phases of a sale (bar code scanning, finishing of
the sale, opening/closing the cash box, etc.) as well as the switching between normal and
express modes (when the customers may use the associated cash desk only when buying
few items and they are required to pay cash). Next, as a reaction on the incoming events,
it notifies the StoreServer about sold items. Finally, in case of a payment using a credit
card, it is responsible for communication with the bank.

We compare the specifications with respect to the following criteria:

(C1) Format of the specification, i.e., its length, readability, and complexity of error fixing.

83

84 CHAPTER 5. EVALUATION

:TradingSystem

:Inventory

ReportingApplicationStoreApplication

:Data

:CashDeskLine

:CashDesk

:PrinterController:ScannerController:CashBoxController:CashDeskGUI:CardReaderController:LightDisplayController

:CashdeskApplication

CashDeskBus

CashDeskLineBus

:Coordinator

CashDeskConnectorIf

:StoreGUI :ReportingGUI

:StoreLogic :ReportingLogic

:Enterprise:Persistence:Store

StoreQueryIf PersistenceIf EnterpriseQueryIf

CashDeskConnectorIf StoreIf ReportingIf

Bank

BankIf

*

*

*

AccountSaleEvent

:StoreServer

ReportingApplication

ProductDispatcher

:Data

:ReportingGUI

:ReportingLogic

:Enterprise :Persistence :Store

StoreQueryIfPersistenceIfEnterpriseQueryIf

ReportingIf

EnterpriseServer

MoveGoodsIf

ProductDispatcherIf

Figure 5.1: Architecture of the CoCoME application

(C2) Preciseness of the specification, i.e., how much detailed with respect to the real
(implementation) behavior the specification is.

(C3) Verification efficiency, i.e., the time and memory requirements of the verification.

(C4) Verifiable properties, i.e., what kind of properties can be checked when using a given
modeling language.

Specification format (C1)

BP The description of the component behavior using the original BP is, excluding com-
ments, about 160 lines long (7kB). This is caused above all by the fact that several parts
are repeating within the specification; because of this, the error fixing is hard and often
several places of the BP have to be modified to fix a single bug. However, a specification
of that size can be still managed (debugged, updated) with a reasonable effort.

5.1. BP VS. EBP COMPARISON 85

EBP The EBP specification of the CashDeskApplication component is slightly shorter
(about 150 lines, 5.6kB). However, it is more readable due to the following facts: (i)
it is structured in a better way, and (ii) repetition of specification parts is significantly
reduced—in fact, it can be entirely eliminated via macros, which are directly supported in
EBP1. This enables easier and faster specification management.

The length on the complete CoCoME application specification is in both cases about
35kB, however, the EBP version is, as apparent from comparison of Appendix C and D,
in many cases more readable and easier to comprehend.

Preciseness of the specification (C2)

BP As described in Sect. 1, Behavior Protocols entirely abstract from data, i.e., no notion
of values and variables are present within the specification. However, as argued in Sect. 2.4,
the real behavior of a component is often data dependent; in particular, processing of a
method call often depends on the parameters passed to the method “implementation”.
Therefore, as a consequence, the specification of component behavior in BP often introduces
nondeterminism, which causes communication errors when composed with specification of
other components. In the case of the CashDeskApplication, to be able to model the behavior
at a reasonable level of abstraction, we decided to modify its method names to reflect
acceptance of various events through the bus. Although this seems to be a straightforward
and correct solution, we run into problems when comparing the specification with an
implementation [53] where the method names within the specification have to conform to
the implementation. Then, we had to maintain two versions of a specification.

After receiving the information that the express mode should be enabled, the Cash-
DeskApplication component sends this information using CashDeskBus to several other
subcomponents of the CashDesk component. If the CashDesk is already in the express
mode, the information is accepted by the CashDeskApplication, but it is ignored. Since
the components being notified about a change of the mode only accept this information
without any (external) reaction, the mode itself is not modeled in the specification. Con-
versely, after receiving the information about enabling the express mode, the specification
of the CashDeskApplication component models nondeterministic choice between forward-
ing and ignoring this information.

Except for the aforementioned issues, the component behavior in the sense of BP is
modeled correctly.

EBP Unlike in case of BP, an EBP specification, taking advantage of method parameters,
allows modeling of the messages accepted by the CashDeskApplication component with
correct (with respect to the implementation) method names. Hence, the specification can
be directly reused for code-against-specification verification.

As to modeling the express mode, it is modeled in the same way as described in the
previous paragraph. Even though the mode switching could be modeled precisely in EBP,

1We have not used macros in the specification to keep it easier to comprehend for the sake of this thesis.

86 CHAPTER 5. EVALUATION

it would not enable capturing any property of interest. Therefore we decided to model at
this level of abstraction.

Similarly to BP, the EBP specification of the CashDeskApplication component is up to
omitting the mode modeling discussed above precise.

Verification efficiency (C3)

BP Since the BPChecker tool ran out of memory while verifying some parts of the Co-
CoME application, we used dChecker for verification of the application modeled in the
Fractal component model instead. The dChecker tool is a successor of BPChecker; it is
written in Java and supports distribution of the task among several computers. It has been
developed in parallel with the ebp2promela tool, but it supports the original BP only. It is
about an order of magnitude faster than BPChecker while requiring less memory. Verifi-
cation of the composition correctness was done using a decent PC2 and took slightly more
than 3 minutes; the memory consumption of the most resource demanding verification were
about 1.2GB. In Fig. 5.2, the time consumption and state space size for the verification of
(vertical) compliance of the specific composite components as well as the state space sizes
are listed.

Component Time [s] States
CashDesk 9.2 483,797
CashDeskLine 24.5 1,562
StoreApplication 6.9 63,900
Data 45.9 124,416
ReportingApplication 0.2 17
StoreServer 40.1 297,024
EnterpriseServer 39.5 512
Inventory 0.2 121
TradingSystem 18.0 51,558
Total time 184.5 1,022,907

Figure 5.2: Durations and state space sizes of compliance verification the CoCoME com-
posite components when using original BP.

EBP For verification of EBP, we designed and implemented a tool ebp2prom [66] trans-
lating EBP specifications into Promela. Then, the Promela model is verified using the Spin
model checker [32]. We used the hardware and software configuration as in the BP case
for running the tests. The duration of transformation (T. time), verification of (vertical)

2PC 2x Intel Core2 Duo (dual core) processor with 4MiB L2 cache and 4GiB operational memory
running the Gentoo Linux version 2006.1 and Spin version 4.2.9

5.1. BP VS. EBP COMPARISON 87

compliance (V. time)3 and entire verification (Time)4 of particular composite components
again together with the state space sizes of the corresponding Promela models are listed
in Fig. 5.3.

Component T. time [s] V. time [s] Time [s] States
CashDesk 41.5 46.1 97.1 3,335,950
CashDeskLine 59.6 1.0 71.2 3,912
StoreApplication 37.5 3.2 50.1 378,466
Data 159.8 9.8 203.6 1,119,740
ReportingApplication 0.3 1.0 1.6 39
StoreServer 154.3 15.3 198.9 2,064,870
EnterpriseServer 151.9 1.0 178.3 2,241
Inventory 0.5 1.0 1.9 386
TradingSystem 54.0 1.4 66.4 71,279
Total time 659.4 79.8 869.1 6,781,743

Figure 5.3: Durations and state space sizes of compliance verification the CoCoME com-
posite components when using EBP.

Compared to the values in Fig. 5.2, the growth of the state space is caused by data;
however, apparently, it is not very significant and the verification times are still acceptable
for an application of this complexity. On the other hand, the duration of the actual
verification is significantly shorter. Also, since the EBP specifications of components are
transformed one after another (no behavior composition is involved at this stage), the state
space explosion is not an issue in the transformation. Moreover, Spin is able to handle much
larger state spaces than BPChecker and dChecker. In fact, when bitstate hashing method
is used in Spin, there is no state space size limit; then, however, verification reliability
decreases with the growth of the state space.

Verifiable properties (C4)

BP Behavior protocols enable verification of absence of communication errors (bad-
activity, no-activity, divergence, and unbound-requires error) at each particular level of
component nesting and verification of (vertical) compliance. Verification of other proper-
ties (e.g. LTL) is generally possible, but it would require extension of the tools.

3We used the bitstate-hashing mode with the lowest hashfactor value of 1287 (in the case of the
CashDesk component); hashfactor values greater than 100 are considered as denoting very reliable results.

4The transformation time is the time of running of the transformation tool ebp2prom; note that the
resulting Promela model is subsequently transformed by Spin to a model in the C language, and the C
model is compiled using gcc and finally run. The time requirements for the last two transformations (i.e.,
the generation of the C code and its compilation) are omitted here.

88 CHAPTER 5. EVALUATION

EBP As well as in the case of BP, using EBP as the specification platform enables
verification of composition correctness in the sense of absence of the composition errors;
as argued in Sect. 4, detection of divergence is not supported by our tool. Furthermore,
since the Spin model checker is used, model checking of an arbitrary LTL−X property is
possible (in addition to checking for absence of communication errors).

Similar to BP, EBP do not focus on direct support for dynamic reconfiguration—this
aspect is indirectly supported via re-verification of the specification parts affected by the
change. This way, of course, component behavior compliance only before and after the
reconfiguration can be checked; verification of the reconfiguration process itself is not
supported.

There is also no support for reasoning about performance and reliability aspects of the
behavior of components in the sense of e.g. parametric contracts [55]. However, such a
general specification platform would probably, in consequence of state explosion, exceed
the abilities of today’s computers, and thus become practically hard to use.

5.2 Comparison to other approaches

There are several formalisms aiming at specification and verification of component behav-
ior; they focus on verification of various properties.

Parametric contracts

Parametric contracts [55] and their extensions present in the Palladio component model [8]
aim at prediction of performance and reliability of components, in particular performance
and reliability of the services (methods) provided by the component. The Service-Effect
specification defines the possible set of reactions in the sense of calling external (required)
methods of other components as a reaction to a call of a provided service (method). The
allowed sequences of method calls on each provided interface are specified by a provides-
FSM. The interplay of all interfaces of the component frame is not modeled, since it is
not necessary for performance prediction. However, we believe that it is necessary for
evaluation of the compliance relation.

Component interaction automata

Component interaction (CI) automata [10] provide a general framework upon which a
more specific theory can be elaborated. The CI automata allow general composition of
particular automata that can be fine-tuned for a concrete theory. They do not directly
support specification of data values (parameters and variables). The checking of component
compliance can be modeled by defining a custom composition. The evaluation would
require implementation of a tool performing the composition. The CI automata do not
support any reliability nor performance reasoning.

5.2. COMPARISON TO OTHER APPROACHES 89

Promela

Promela [32] as a general specification language for verification of properties of parallel
processes can be used also for component behavior specification and compliance verifica-
tion. However, to model the same semantics (the trace semantics) as in EBP, the model
is very hard to write by hand and read. However, using Promela as the output language
turns out to be beneficial.

Darwin (Tracta)

In Darwin [43], the monadic form of the π-calculus is used for specification of component
behavior. Using this approach, it is possible to reason about dynamic architectures. The
behavior of only primitive components is specified, while the behavior of composite compo-
nents is modeled by a composition of behavior of their subcomponents. Therefore, Darwin
supports verification of deadlock freedom only—it does not support the verification of (ver-
tical) compliance. Conversely, the verification framework Tracta provides a developer with
a tool able to check various properties of the specification of the entire component applica-
tion (being the parallel composition of particular specifications). It has been proven, that
the monadic form of the π-calculus is strong enough to model any arbitrary data structure,
however, since the direct support for data within Tracta is missing, it will be probably hard
for an application designer to include them in the specification. There is also no direct
support for reliability and performance reasoning in Tracta.

Wright

Wright [3] is not tied to a specific component model, it is rather a modeling language,
which includes modeling of component behavior in CSP, for component based systems.
The behavior is modeled using interacting protocols (being a subset of CSP). Similar to
Tracta [43], behavior of only basic entities (component interfaces, roles, and connectors—
glues) is provided by an application designer. The behavior of composite components is
not provided by an application designer, but it is modeled as a parallel composition of
behavior of its subcomponents; here, only deadlock freedom may be verified. Hence, again,
the verification of the compliance relation is not supported. Wright provides a direct
support for reasoning about data in a symbolic way, which may be used for modeling
both method parameters and return values. Again, no direct support for reliability and
performance reasoning is present.

LOTOS

LOTOS [70] is a specification language used e.g. in [6]. As well as in majority of other
approaches, an application designer is responsible for providing behavior specification of
only primitive components. The behavior of composite components is modeled as a com-
position of subcomponent specifications—vertical compliance cannot be verified. The En-
hanced LOTOS (E-LOTOS) adds a support for reasoning about time (i.e. performance),

90 CHAPTER 5. EVALUATION

and modifies the approach to data and type specification to make it easier to use. Al-
though originally targeted to protocol and service specifications, it can be advantageously
used for specification of component behavior [6]. Since a specification in E-LOTOS is quite
detailed, to our knowledge, most models of real-life-sized applications suffer from the state
space explosion problem.

Chapter 6

Conclusion and future work

6.1 Conclusion

In this thesis, we presented Extended Behavior Protocols—a new language for specification
of component behavior. EBP are based on BP and, similarly to BP, they enable verification
of behavior compliance of communicating components.

To our knowledge, no other formalism focused on component behavior specification and
compliance verification was used in the scope of a real-life-sized application except for BP.
However, when using BP for behavior specification of the component application (aimed
at providing wireless Internet access at airports) [1], several issues arose in terms of its ex-
pressive power. Therefore, we decided to extend BP to address them. The resulting EBP
language is based on expressions determining again finite automata; moreover, the size of
automata of an EBP specification is still comparable with the automata determined by
the corresponding BP specification. As a positive consequence, verification of the behavior
compliance in EBP can be still evaluated in a reasonable time and space. For this pur-
pose, a compliance verification algorithm based on transformation of the EBP specification
into Promela was designed. As a proof of the concept, the transformation algorithm was
implemented in the bp2prom tool [66].

When verifying compliance of the CoCoME components, the actual verification of the
EBP specification in Spin was significantly faster, however, total time including the trans-
formations increased to 470% when compared to the case of BP. Also, the state space size
of the EBP specification was higher than the corresponding BP specification (660%). On
the positive side, the expressive power of EBP reduces the size of specification and makes
it more accurate (by capturing method parameters and component states, which can be
expressed by an enumeration type). Also, large state spaces are efficiently traversed by
Spin in a reasonable time. So, in a result, based on the CoCoME case study, EBP turn
out to be a better specification platform than BP.

Overall, all goals (G1)–(G4) stated in Chapter 2 were fulfilled; in particular, the original
BP were extended to model method parameters, component states, and synchronization
of multiple events, while making the specification more readable ((G1) and (G2)), after

91

92 CHAPTER 6. CONCLUSION AND FUTURE WORK

transformation to the Promela language, the verifiable properties include LTL−X proper-
ties (G3), and the efficiency of the verification has been greatly improved (comparing to
BPChecker) via using Spin as a model checker (G4).

6.2 Future work

As a future work, we plan to implement a new tool to check the Java code of primitive
components against their EBP specification similar to the verification of the Java code
against the original BP [53].

Next, we plan to use EBP for specification of other real-life-sized applications (like
CoCoME [64]) to obtain a better evaluation of the benefits of EBP as a new behavior
specification language aimed at real-life applications.

Finally, we would like to focus on articulating important properties (expressed in e.g.
LTL−X) such that they would be, besides absence of the communication errors already
captured by the consent operator, of the designer/developer interest and whose validity
could be verified.

Bibliography

[1] J. Adamek, T. Bures, P. Jezek, J. Kofron, V. Mencl, P. Parizek, and F. Plasil. Com-
ponent reliability extensions for Fractal component model, http://kraken.cs.cas.
cz/ft/public/public index.phtml, 2006.

[2] J. Adamek and F. Plasil. Component composition errors and update atomicity: Static
analysis. Journal of Software Maintenance and Evolution: Research and Practice,
17(5), 2004.

[3] R. Allen and D. Garlan. A formal basis for architectural connection. ACM Transac-
tions on Software Engineering and Methodology, 6(3):213–249, 1997.

[4] H. R. Andersen. Model checking and boolean graphs. Theoretical Computer Science,
126(1):3–30, 1994.

[5] A. Arnold and M. Nivat. Comportements de processus. In Colloque AFCET ”Les
Mathmatiques de l’Informatique”, pages 35–68, 1982.

[6] T. Barros, L. Henrio, and E. Madelaine. Verification of distributed hierarchical compo-
nents. In Proceedings of the International Workshop on Formal Aspects of Component
Software (FACS 2005), August 2006.

[7] F. Baude, D. Caromel, and M. Morel. From distributed objects to hierarchical grid
components. In International Symposium on Distributed Objects and Applications
(DOA), Catania, Sicily, Italy, 3-7 November, Springer Verlag, 2003. Lecture Notes in
Computer Science, LNCS.

[8] S. Becker, H. Koziolek, and R. Reussner. Model-based performance prediction with
the Palladio component model. In WOSP ’07: Proceedings of the 6th international
workshop on Software and performance, pages 54–65, New York, NY, USA, 2007.
ACM Press.

[9] J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstraction.
Theorethical Computer Science, 37:77–121, 1985.

[10] L. Brim, I. Cerna, P. Varekova, and B. Zimmerova. Component-interaction automata
as a verification-oriented component-based system specification. SIGSOFT Softw.
Eng. Notes, 31(2):4, 2006.

93

94 BIBLIOGRAPHY

[11] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. An open compo-
nent model and its support in java. In I. Crnkovic, J. A. Stafford, H. W. Schmidt, and
K. C. Wallnau, editors, CBSE, volume 3054 of Lecture Notes in Computer Science,
pages 7–22. Springer, 2004.

[12] T. Bures, P. Hnetynka, and F. Plasil. SOFA 2.0: Balancing Advanced Features in
a Hierarchical Component Model. In SERA, pages 40–48. IEEE Computer Society,
2006.

[13] D. Caromel, L. Henrio, and B. P. Serpette. Asynchronous and deterministic objects.
In POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pages 123–134, New York, NY, USA, 2004. ACM
Press.

[14] D. Caromel, W. Klauser, and J. Vayssière. Towards seamless computing and metacom-
puting in Java. Concurrency: Practice and Experience, 10(11–13):1043–1061, 1998.

[15] I. Cerna, P. Varekova, and B. Zimmerova. Component-interaction automata mod-
elling language. Technical Report FIMU-RS-2006-08, Masaryk University, Faculty of
Informatics, Brno, Czech Republic, October 2006.

[16] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite state
concurrent system using temporal logic specifications: a practical approach. In POPL
’83: Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 117–126, New York, NY, USA, 1983. ACM Press.

[17] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 2000.

[18] C. Demartini, R. Iosif, and R. Sisto. dSPIN: A dynamic extension of SPIN. In SPIN,
pages 261–276, 1999.

[19] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1985.

[20] A. Evans, R. France, K. Lano, and B. Rumpe. Developing the UML as a formal
modelling notation. In J. Bézivin and P.-A. Muller, editors, The Unified Modeling
Language, UML’98 - Beyond the Notation. First International Workshop, Mulhouse,
France, June 1998, pages 297–307, 1998.

[21] J.-C. Fernandez. An implementation of an efficient algorithm for bisimulation equiv-
alence. Science of Computer Programming, 13(1):219–236, 1989.

[22] H. Garavel. Compilation of lotos abstract data types. In FORTE ’89: Proceedings of
the IFIP TC/WG6.1 Second International Conference on Formal Description Tech-
niques for Distributed Systems and Communication Protocols, pages 147–162, Ams-
terdam, The Netherlands, The Netherlands, 1990. North-Holland Publishing Co.

BIBLIOGRAPHY 95

[23] H. Garavel. Binary Coded Graphs: Definition of the BCG Format. Technical Report
SPECTRE C28, Laboratoire de Génie Informatique — Institute IMAG, Grenoble,
January 1991.

[24] H. Garavel, F. Lang, and R. Mateescu. An overview of CADP 2001. Technical Report
254, INRIA, Rhone-Alpes, December 2001.

[25] H. Garavel and J. Sifakis. Compilation and verification of Lotos specifications. In
Logrippo, R. L. Probert, and H. Ural, editors, Proc. 10th International Symposium on
Protocol Specification, Testing and Verification, Amsterdam, 1990. Elsevier (North-
Holland).

[26] D. Giannakopoulou, J. Kramer, and S. C. Cheung. Behaviour analysis of distributed
systems using the tracta approach. Automated Software Engg., 6(1):7–35, 1999.

[27] M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Computer Science,
138(2):353–389, 1995.

[28] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32(1):137–161, 1985.

[29] D. Hirsch, J. Kramer, J. Magee, and S. Uchitel. Modes for software architectures. In
V. Gruhn and F. Oquendo, editors, EWSA, volume 4344 of Lecture Notes in Computer
Science, pages 113–126. Springer, 2006.

[30] P. Hnetynka and F. Plasil. Dynamic reconfiguration and access to services in hierar-
chical component models. In I. Gorton, G. T. Heineman, I. Crnkovic, H. W. Schmidt,
J. A. Stafford, C. A. Szyperski, and K. C. Wallnau, editors, CBSE, volume 4063 of
Lecture Notes in Computer Science, pages 352–359. Springer, 2006.

[31] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International
(UK) Ltd., 1985.

[32] G. Holzmann. The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading, Massachusetts, 2003.

[33] G. J. Holzmann. An analysis of bitstate hashing. In Proc. 15th Int. Conf on Protocol
Specification, Testing, and Verification, INWG/IFIP, pages 301–314, Warsaw, Poland,
1995. Chapman & Hall.

[34] P. Jezek, J. Kofron, and F. Plasil. Model checking of component behavior specification:
A real life experience. In Electronic Notes in Theoretical Computer Science, volume
160, pages 197–210, August 2006.

[35] J. Kofron. Enhancing behavior protocols with atomic actions. Technical Report
2005/8, Dep. of SW Engineering, Charles University in Prague, 2005.

96 BIBLIOGRAPHY

[36] J. Kofron. Extending Behavior protocols with data and multisynchronization. Techni-
cal Report 2006/10, Dep. of SW Engineering, Charles University in Prague, October
2006.

[37] J. Kofron. Software component verification: On translating Behavior protocols to
Promela. Technical Report 2006/11, Dep. of SW Engineering, Charles University in
Prague, October 2006.

[38] J. Kofron. Checking software component behavior using Behavior Protocols and Spin.
In Proceedings of Applied Computing 2007, pages 1513–1517, Seoul, Korea, March
2007.

[39] L. Lamport. “Sometime” is sometimes “not never”: on the temporal logic of pro-
grams. In POPL ’80: Proceedings of the 7th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 174–185, New York, NY, USA, 1980.
ACM Press.

[40] H. Lin. Symbolic transition graph with assignment. In International Conference on
Concurrency Theory, pages 50–65, 1996.

[41] M. Mach. Formal verification of behavior protocols. Master’s thesis, Department of
SW Engineering, Charles University in Prague, Czech Republic, 2003.

[42] M. Mach, F. Plasil, and J. Kofron. Behavior protocol verification: Fighting state
explosion. International Journal of Computer and Information Science, 6(1):22–30,
2005.

[43] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed Software
Architectures. In W. Schafer and P. Botella, editors, Proc. 5th European Software En-
gineering Conf. (ESEC 95), volume 989, pages 137–153, Sitges, Spain, 1995. Springer-
Verlag, Berlin.

[44] J. Magee and J. Kramer. Concurrency: State Models and Java Programs. Wiley, 1999.

[45] R. Mateescu and H. Garavel. Xtl: A meta-language and tool for temporal logic
model-checking, 1998.

[46] R. Mateescu and M. Sighireanu. Efficient on-the-fly model-checking for regular
alternation-free mu-calculus. Sci. Comput. Program., 46(3):255–281, 2003.

[47] K. L. McMillan. Symbolic model checking — an approach to the state explosion prob-
lem. PhD thesis, Carnegie Mellon University, 1992.

[48] B. Meyer. Object-oriented software construction (2nd ed.). Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1997.

BIBLIOGRAPHY 97

[49] R. Milner. Communication and Concurrency. Prentice Hall International (UK) Ltd.,
Hertfordshire, UK, UK, 1995.

[50] R. Milner. Communicating and Mobile Systems: the π-calculus. Cambridge University
Press, 1999.

[51] R. D. Nicola and F. W. Vaandrager. Action versus state based logics for transition
systems. In Proceedings of the LITP Spring School on Theoretical Computer Science,
pages 407–419, London, UK, 1990. Springer-Verlag.

[52] M. Nivat. Sur la synchronisation des processus. Thomson-CSF II (1979) 899-919,
1979.

[53] P. Parizek, F. Plasil, and J. Kofron. Model Checking of Software Components: Com-
bining Java PathFinder and Behavior Protocol Model Checker. In Proceedings of
30th Annual IEEE/NASA Software Engineering Workshop SEW-30 (SEW’06), pages
133–141, Los Alamitos, CA, USA, 2006. IEEE Computer Society.

[54] F. Plasil and S. Visnovsky. Behavior protocols for software components. IEEE Trans-
actions on SW Engineering, 28(9), 2002.

[55] R. Reussner, I. Poernomo, and H. W. Schmidt. Reasoning about software architectures
with contractually specified components. In A. Cechich, M. Piattini, and A. Valle-
cillo, editors, Component-Based Software Quality, volume 2693 of Lecture Notes in
Computer Science, pages 287–325. Springer, 2003.

[56] V. Roy and R. de Simone. Auto/autograph. In CAV ’90: Proceedings of the 2nd
International Workshop on Computer Aided Verification, pages 65–75, London, UK,
1991. Springer-Verlag.

[57] R. S. Scowen. Extended BNF — A generic base standard. Software Engineering
Standards Symposium, 1993.

[58] B. Vergauwen and J. Lewi. Efficient local correctness checking for single and alternat-
ing boolean equation systems. In ICALP ’94: Proceedings of the 21st International
Colloquium on Automata, Languages and Programming, pages 304–315, London, UK,
1994. Springer-Verlag.

[59] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model Checking Programs.
Automated Software Engineering, 10(2):203–232, 2003.

[60] I. Wegener. Branching Programs and Binary Decision Diagrams: Theory and Applica-
tions (Monographs on Discrete Mathematics and Applications). Society for Industrial
& Applied Mathematics, 2000.

[61] J. A. Whittaker and M. G. Thomason. A markov chain model for statistical software
testing. IEEE Trans. Softw. Eng., 20(10):812–824, October 1994.

98 BIBLIOGRAPHY

[62] P. Wolper and D. Leroy. Reliable hashing without collision detection. In Proc. 5th
International Computer Aided Verification Conference, pages 59–70, 1993.

[63] OMG Corba Component Model Specification, http://www.omg.org/technology/

documents/formal/components.htm.

[64] Modelling Contest: Common Component Modelling Example, http://agrausch.

informatik.uni-kl.de/CoCoME.

[65] Microsoft COM Technology, http://www.microsoft.com/com.

[66] EBP2Prom — A tool translating EBP specifications into Promela, http://dsrg.

mff.cuni.cz/∼kofron/phd-thesis/tools.zip.

[67] Sun Enterprise Java Beans, http://java.sun.com/products/ejb.

[68] Failures Divergences Refinement: User Manual and Tutorial, formal systems (europe)
limited.

[69] Graphviz –– open source graph drawing software, http://www.graphviz.org/.

[70] ISO: Information Processing Systems — Open Systems Interconection. LOTOS —
a formal description technique based on the temporal ordering of observational be-
haviour. ISO 8807, 1989.

[71] The SOFA project, http://sofa.objectweb.org.

[72] Tcl/Tk Tool Command Language — a dynamic programming language.

[73] Object management group: Unified Modeling Language, http://www.uml.org, 2005.

Appendix A

Syntax of Extended Behavior
Protocols

In this appendix, the syntax of Extended Behavior Protocols is described in the EBNF
format.

ebp = "component", component_name, "{",

[types_def],

[variables_def],

behavior_def,

"}";

component_name = idf;

idf = char, [{ digit | char }];

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

char = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" |

"L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" | "T" | "U" | "V" |

"W" | "X" | "Y" | "Z" | "a" | "b" | "c" | "d" | "e" | "f" | "g" |

"h" | "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" |

"s" | "t" | "u" | "v" | "w" | "x" | "y" | "z" | "_" | "-" | "<" |

">";

types_def = "types", "{", type, [{ type }], "}";

type = idf, "=", "{", idf, [{ "," idf }], "}";

variables_def = "vars", "{", var, [{ var }], "}";

99

100 APPENDIX A. SYNTAX OF EXTENDED BEHAVIOR PROTOCOLS

var = idf, idf, "=", idf;

behavior_def = protocol;

protocol = alt;

alt = seq, [{ "+", seq }];

seq = par, [{ ";", par }];

par = rep, [{ "|", rep }];

rep = term, "*";

term = "(", protocol, ")" |

switch |

while |

event;

switch = "switch", "(", idf, ")", "{", switchbody, "}";

switchbody = case, [{ case }];

case = idf, ":", "{", protocol, "}";

while = "while", "(", idf, "==", idf, ")", "{", protocol, "}";

event = ereq | eres | areq | ares | assign | sync;

ereq = "!", method, "(", parlist, ")", "^";

method = idf, ".", idf;

parlist = [idf, [{ ",", idf }]];

eres = "!", method, "$";

areq = "?", method, "(", (fparlist | parlist), ")", "^";

fparlist = [idf, idf, [{ ",", idf, idf }]];

ares = "?", method, "$";

101

assign = idf, "<-", idf;

sync = "@", idf;

102 APPENDIX A. SYNTAX OF EXTENDED BEHAVIOR PROTOCOLS

Appendix B

Behavior protocol of the
IpAddressManager component

(
?IDhcpServerLifetimeController.Startˆ;
!IListenerLifetimeController.Startˆ;
[?IListenerLifetimeController.Start$, !IDhcpServerLifetimeController.Start$]

)
;
(
(
(
(
?IDhcpListenerCallback.RequestNewIpAddress{
!IIpMacTransientDb.GetIpAddress 1;
(
(
!IIpMacTransientDb.Add 1;
!IT imer.SetT imeout

) + NULL
)

}
+
?IDhcpListenerCallback.RenewIpAddress{
!IIpMacTransientDb.GetIpAddress 1; (
(
!IIpMacTransientDb.SetExpirationT ime 1;
!IT imer.SetT imeout

) + NULL
)

}

103

104 APPENDIX B. IPADDRESSMANAGER SPECIFICATION

+
?IDhcpListenerCallback.ReleaseIpAddress{
!IIpMacTransientDb.GetIpAddress 1; (
(
!IIpMacTransientDb.Remove 1;
!IDhcpCallback.IpAddressInvalidated 1;
(!IT imer.CancelT imeouts 1 + NULL)

) + NULL
)

}
) ∗
|
(
?IT imerCallback.T imeout{
(
!IIpMacTransientDb.GetExpirationT ime 2; (
(
!IIpMacTransientDb.Remove 2;
!IDhcpCallback.IpAddressInvalidated 2

) + NULL
)

) ∗
}

) ∗
)

)
+
(
(
(
(
?IDhcpListenerCallback.RequestNewIpAddress{
!IIpMacTransientDb.GetIpAddress 1;
(
(
!IIpMacTransientDb.Add 1;
!IT imer.SetT imeout

) + NULL
)

}
+
?IDhcpListenerCallback.RenewIpAddress{

105

!IIpMacTransientDb.GetIpAddress 1; (
(
!IIpMacTransientDb.SetExpirationT ime 1;
!IT imer.SetT imeout

) + NULL
)

}
+
?IDhcpListenerCallback.ReleaseIpAddress{
!IIpMacTransientDb.GetIpAddress 1; (
(
!IIpMacTransientDb.Remove 1;
!IDhcpCallback.IpAddressInvalidated 1;
(!IT imer.CancelT imeouts 1 + NULL)

) + NULL
)

}
) ∗
|
(
?IT imerCallback.T imeout{
(
!IIpMacTransientDb.GetExpirationT ime 2; (
(
!IIpMacTransientDb.Remove 2;
!IDhcpCallback.IpAddressInvalidated 2

) + NULL
)

) ∗
}

) ∗
)
|
?IManagement.UsePermanentIpDatabaseˆ

); !IManagement.UsePermanentIpDatabase$; (
(
(
?IDhcpListenerCallback.RequestNewIpAddress{
!IIpMacTransientDb.GetIpAddress 1; (
(
!IIpMacPermanentDb.GetIpAddress; (
(
!IIpMacTransientDb.Add 1;

106 APPENDIX B. IPADDRESSMANAGER SPECIFICATION

!IT imer.SetT imeout
) + NULL

)
) + (
!IIpMacTransientDb.Add 1;
!IT imer.SetT imeout

)
)

}
+
?IDhcpListenerCallback.RenewIpAddress{
!IIpMacTransientDb.GetIpAddress 1; (
(
(
!IIpMacPermanentDb.GetIpAddress; (
(
!IIpMacTransientDb.SetExpirationT ime 1;
!IT imer.SetT imeout

) + NULL
)

) + (
!IIpMacTransientDb.SetExpirationT ime 1;
!IT imer.SetT imeout

)
) + NULL

)
}
+
?IDhcpListenerCallback.ReleaseIpAddress{
!IIpMacTransientDb.GetIpAddress 1; (
(
!IIpMacTransientDb.Remove 1;
!IDhcpCallback.IpAddressInvalidated 1;
(!IT imer.CancelT imeouts 1 + NULL)

) + NULL
)

}
) ∗
|
(
?IT imerCallback.T imeout{
(
!IIpMacTransientDb.GetExpirationT ime 2; (

107

(
!IIpMacTransientDb.Remove 2;
!IDhcpCallback.IpAddressInvalidated 2

) + NULL
)

) ∗
}

) ∗
)
|
?IManagement.StopUsingPermanentIpDatabaseˆ

); !IManagement.StopUsingPermanentIpDatabase$
)

)∗

108 APPENDIX B. IPADDRESSMANAGER SPECIFICATION

Appendix C

Specification of the
CashDeskApplication component in
BP

(
INITIALISED
(

(
?CashDeskAppEventHandlerIf.onSaleF inishedEvent +
?CashDeskAppEventHandlerIf.onPaymentModeEvent +
?CashDeskAppEventHandlerIf.onCashAmountEnteredEvent +
?CashDeskAppEventHandlerIf.onCashAmountCompletedEvent +
?CashDeskAppEventHandlerIf.onCashBoxClosedEvent +
?CashDeskAppEventHandlerIf.onProductBarcodeScannedEvent +
?CashDeskAppEventHandlerIf.onCreditCardScannedEvent +
?CashDeskAppEventHandlerIf.onPINEnteredEvent

)∗;
The important part :
?CashDeskAppEventHandlerIf.onSaleStartedEvent

);

#SALE STARTED

(
The important part :
?CashDeskAppEventHandlerIf.onProductBarcodeScannedEvent{

ExpressMode & products.size == 8
NULL
+
(

109

110 APPENDIX C. CASHDESKAPPLICATION IN BP

!CashDeskConnectorIf.getProductWithStockItem;

!CashDeskAppEventDispatcherIf.sendProductBarcodeNotV alidEvent
+
!CashDeskAppEventDispatcherIf.sendRunningTotalChangedEvent

)
###
} +
?CashDeskAppEventHandlerIf.onSaleStartedEvent +
?CashDeskAppEventHandlerIf.onPaymentModeEvent +
?CashDeskAppEventHandlerIf.onCashAmountEnteredEvent +
?CashDeskAppEventHandlerIf.onCashAmountCompletedEvent +
?CashDeskAppEventHandlerIf.onCashBoxClosedEvent +
?CashDeskAppEventHandlerIf.onCreditCardScannedEvent +
?CashDeskAppEventHandlerIf.onPINEnteredEvent

)∗; # < −−−LOOP

(
The important part :
?CashDeskAppEventHandlerIf.onSaleF inishedEvent;
(

?CashDeskAppEventHandlerIf.onSaleStartedEvent +
?CashDeskAppEventHandlerIf.onSaleF inishedEvent +
?CashDeskAppEventHandlerIf.onCashAmountEnteredEvent +
?CashDeskAppEventHandlerIf.onCashAmountCompletedEvent +
?CashDeskAppEventHandlerIf.onCashBoxClosedEvent +
?CashDeskAppEventHandlerIf.onCreditCardScannedEvent +
?CashDeskAppEventHandlerIf.onPINEnteredEvent +
?CashDeskAppEventHandlerIf.onProductBarcodeScannedEvent

) ∗
);

#SALE FINISHED

(
The important part :
?CashDeskAppEventHandlerIf.onPaymentModeEvent;
###
(

?CashDeskAppEventHandlerIf.onSaleStartedEvent +
?CashDeskAppEventHandlerIf.onSaleF inishedEvent +
?CashDeskAppEventHandlerIf.onCashBoxClosedEvent +
?CashDeskAppEventHandlerIf.onPaymentModeEvent +

111

?CashDeskAppEventHandlerIf.onProductBarcodeScannedEvent +
?CashDeskAppEventHandlerIf.onPINEnteredEvent

) ∗
);

PAY ING BY CASH
(

(
(

?CashDeskAppEventHandlerIf.onSaleStartedEvent +
?CashDeskAppEventHandlerIf.onSaleF inishedEvent +
?CashDeskAppEventHandlerIf.onCashBoxClosedEvent +
?CashDeskAppEventHandlerIf.onPaymentModeEvent +
?CashDeskAppEventHandlerIf.onProductBarcodeScannedEvent +
?CashDeskAppEventHandlerIf.onPINEnteredEvent +
?CashDeskAppEventHandlerIf.onCreditCardScannedEvent +
The important part :
?CashDeskAppEventHandlerIf.onCashAmountEnteredEvent
###

)∗;

On Enter
The important part :
?CashDeskAppEventHandlerIf.onCashAmountCompletedEvent{

!CashDeskAppEventDispatcherIf.sendChangeAmountCalculatedEvent
};
###

(
?CashDeskAppEventHandlerIf.onSaleStartedEvent +
?CashDeskAppEventHandlerIf.onSaleF inishedEvent +
?CashDeskAppEventHandlerIf.onPaymentModeEvent +
?CashDeskAppEventHandlerIf.onCashAmountEnteredEvent +
?CashDeskAppEventHandlerIf.onCashAmountCompletedEvent +
?CashDeskAppEventHandlerIf.onProductBarcodeScannedEvent +
?CashDeskAppEventHandlerIf.onPINEnteredEvent +
?CashDeskAppEventHandlerIf.onCreditCardScannedEvent

)∗;
The important part :
?CashDeskAppEventHandlerIf.onCashBoxClosedEvent{

!CashDeskAppEventDispatcherIf.sendSaleSuccessEvent;
!CashDeskEventDispatcherIf.sendAccountSaleEvent;
!CashDeskEventDispatcherIf.sendSaleRegisteredEvent

112 APPENDIX C. CASHDESKAPPLICATION IN BP

}
###

)

+

PAY ING BY CREDITCARD

(
(

?CashDeskAppEventHandlerIf.onCreditCardScannedEvent;

CREDITCARD SCANNED

(
?CashDeskAppEventHandlerIf.onPINEnteredEvent{

!BankLock.lock;
!BankIf.validateCard;
(

!CashDeskAppEventDispatcherIf.sendInvalidCreditCardEvent
+
(

!BankIf.debitCard;
!CashDeskAppEventDispatcherIf.sendInvalidCreditCardEvent

)
);
!BankLock.unlock

}
+
?CashDeskAppEventHandlerIf.onSaleStartedEvent +
?CashDeskAppEventHandlerIf.onSaleF inishedEvent +
?CashDeskAppEventHandlerIf.onPaymentModeEvent +
?CashDeskAppEventHandlerIf.onCashAmountEnteredEvent +
?CashDeskAppEventHandlerIf.onCashAmountCompletedEvent +
?CashDeskAppEventHandlerIf.onProductBarcodeScannedEvent +
?CashDeskAppEventHandlerIf.onCreditCardScannedEvent +
?CashDeskAppEventHandlerIf.onCashBoxClosedEvent

)∗;
?CashDeskAppEventHandlerIf.onPINEnteredEvent{

!BankLock.lock;
!BankIf.validateCard;
!BankIf.debitCard;
!CashDeskAppEventDispatcherIf.sendInvalidCreditCardEvent;

113

!BankLock.unlock
}

)∗;

?CashDeskAppEventHandlerIf.onCreditCardScannedEvent;

CREDITCARD SCANNED
(

?CashDeskAppEventHandlerIf.onSaleStartedEvent +
?CashDeskAppEventHandlerIf.onSaleF inishedEvent +
?CashDeskAppEventHandlerIf.onPaymentModeEvent +
?CashDeskAppEventHandlerIf.onCashAmountEnteredEvent +
?CashDeskAppEventHandlerIf.onCashAmountCompletedEvent +
?CashDeskAppEventHandlerIf.onProductBarcodeScannedEvent +
?CashDeskAppEventHandlerIf.onCreditCardScannedEvent +
?CashDeskAppEventHandlerIf.onCashBoxClosedEvent

)∗;

The important part :
?CashDeskAppEventHandlerIf.onPINEnteredEvent{

!BankLock.lock;
!BankIf.validateCard;
!BankIf.debitCard;
!BankLock.unlock;
!CashDeskAppEventDispatcherIf.sendSaleSuccessEvent;
!CashDeskEventDispatcherIf.sendAccountSaleEvent;
!CashDeskEventDispatcherIf.sendSaleRegisteredEvent

}
###

)
)

) ∗ | (

Enable Express Mode
?CashDeskAppEventHandlerIf.onExpressModeEnabledEvent{

!CashDeskAppEventDispatcherIf.sendExpressModeEnabledEvent + NULL
}

) ∗ | (

Disable Express Mode
?CashDeskAppEventHandlerIf.onExpressModeDisabledEvent

)∗

114 APPENDIX C. CASHDESKAPPLICATION IN BP

Appendix D

Specification of the
CashDeskApplication component in
EBP

component CashDeskApplication {

types {
states = {

INITIALIZED, SALE STARTED, SALE FINISHED,
PAY ING BY CREDITCARD, CREDIT CARD SCANNED,
PAY ING BY CASH, PAID

}
}
vars {

states state = INITIALIZED
}
behavior {

(
?CDAEventHandlerIf.onEvent(SaleStartedEvent) {

switch (state) {
INITIALIZED :

{ state < − SALE STARTED }
default :

{ NULL }
}

}
+
?CDAEventHandlerIf.onEvent(ProductBarcodeScannedEvent) {

switch (state) {
SALE STARTED :

115

116 APPENDIX D. CASHDESKAPPLICATION IN EBP

{
!CashDeskConnectorIf.getProductWithStockItem;
(

!CDAEventDispatcherIf.send(ProductBarcodeNotV alidEvent)
+
!CDAEventDispatcherIf.send(RunningTotalChangedEvent)

)
}

default :
{ NULL }

}
}
+
?CDAEventHandlerIf.onEvent(SaleF inishedEvent) {

switch (state) {
SALE STARTED :

{ state < − SALE FINISHED }
default :

{ NULL }
}

}
+
?CDAEventHandlerIf.onEvent(CashAmountEnteredEvent) {

switch (state) {
PAY ING BY CASH :

{ NULL }
default :

{ NULL }
}

}
+
?CDAEventHandlerIf.onEvent(CashAmountCompletedEvent) {

switch (state) {
PAY ING BY CASH :

{
!CDAEventDispatcherIf.send(ChangeAmountCalculatedEvent);
state < − PAID

}
default :

{ NULL }
}

}
+

117

?CDAEventHandlerIf.onEvent(CashBoxClosedEvent) {
switch (state) {

PAID :
{

!CDAEventDispatcherIf.send(SaleSuccessEvent);
!CashDeskEventDispatcherIf.send(AccountSaleEvent);
!CashDeskEventDispatcherIf.send(SaleRegisteredEvent);
state < − INITIALIZED

}
default :

{ NULL }
}

}
+
?CDAEventHandlerIf.onEvent(CreditCardScannedEvent) {

switch (state) {
PAY ING BY CREDITCARD :

{ state < − CREDIT CARD SCANNED }
CREDIT CARD SCANNED :

{ state < − CREDIT CARD SCANNED }
default :

{ NULL }
}

}
+
?CDAEventHandlerIf.onEvent(PaymentModeEvent) {

switch (state) {
SALE FINISHED :

{
state < − PAY ING BY CREDITCARD +
state < − PAY ING BY CASH

}
default :

{ NULL }
}

}
+
?CDAEventHandlerIf.onEvent(PINEnteredEvent) {

switch (state) {
CREDIT CARD SCANNED :

{
!BankLock.lock;
!BankIf.validateCard;

118 APPENDIX D. CASHDESKAPPLICATION IN EBP

(
(!CDAEventDispatcherIf.send(InvalidCreditCardEvent);
!BankLock.unlock)
+
(

!BankIf.debitCard;
!BankLock.unlock;
(

!CDAEventDispatcherIf.send(InvalidCreditCardEvent);
(

(NULL + state < − PAY ING BY CREDITCARD)
+
(
!CDAEventDispatcherIf.send(SaleSuccessEvent);
!CashDeskEventDispatcherIf.send(AccountSaleEvent);
!CashDeskEventDispatcherIf.send(SaleRegisteredEvent);
state < − INITIALIZED
)

)
)

)
)

}
default :

{ NULL }
}

}
) ∗ | (

Enable Express Mode
?CashDeskAppEventHandlerIf.onEvent(ExpressModeEnabledEvent) {

!CDAEventDispatcherIf.send(ExpressModeEnabledEvent)
+
NULL

}

) ∗ | (
Disable Express Mode
?CDAEventHandlerIf.onEvent(ExpressModeDisabledEvent)

) ∗
}

}

