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Abstract

Verification of software behavior and assuring thus its reliability is among current trends
of applications’ construction. As an arbitrary application tends to yield a large state space,
using software components and a suitable abstraction mechanism enables for model checking
the application piecewise, thus in reasonable time. Behavior protocols [1] are one of the
component behavior specification platform. During the work on the specification of Airport
Internet Access Application implemented in Fractal [3] a need of specifying both component
initialization and synchronization of service requests and responses arised. In this article, we
introduce a behavior protocols extension called atomic actions that enables for an easy way
of specification of these commonly used programming techniques.

1 Introduction

In recent years, the use of software components as building blocks of (distributed) applications
has become widely spread technique of software construction. The need of assuring the compati-
bility of components from various vendors is thus a legitimate requirement. Real-life experiences
show that restricting this compatibility relation to the type-compatibility of bounded components’
interfaces is simply not sufficient in most cases. Therefore, additional kind of semantic (behav-
ior) specification is needed in order to test the components’ behavior compatibility. By applying
model checking techniques to compare components’ behavior one can obtain a formal-level proof
of component behavior compatibility. As model checking techniques applicable on the kind of
testing stated above are usually based on exhaustive state space traversing and the size of a state
space of a software piece (a software component) is usually too large to be traversed using today’s
system, a suitable method of software behavior abstraction is to be used.

1.1 Behavior Protocols

Behavior protocols are a method of software component behavior specification [1]. A behavior
protocol describes an associated component behavior as a set of sequences of events appearing on
component interfaces. The component interfaces are divided into two groups: provided (server)
interfaces — provides and required (client) interfaces — requires. On provides, method calls are
accepted and on requires, method calls are emitted.

Having the components’ behavior described by behavior protocols, automated checking for
components’ behavior compatibility can be performed yielding the information about components’
composition correctness.

∗This work was partially supported by the Czech Academy of Sciences project 1ET400300504 and France Telecom
under the external research contract number 46127110.
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1.2 Goals and Structure of the Paper

As stated in Section 1, the state space of a software component usually yields a state space being
to large for automated (yet lesser for manual) processing. Employing the behavior protocols in
non-trivial case studies has showed up that they can be successfully used for software component
behavior specification. However, in some cases, the component behavior modeling using behavior
protocols resulted in a very complex, unreadable behavior protocol usually yielding unnecessar-
ily large state space due to absence of variable abstraction, and synchronization and exception
mechanisms. During the work on behavior specification it has turned out that modeling of the
synchronization has the most burning problem. Therefore, we have enriched behavior protocols
with atomic actions – special kind of events when a component may perform more than one single
event at a time (using one state space transition). Using atomic action has substantially simplified
the parts of behavior protocols dealing with synchronization which is very common mechanism in
software components.

The paper is structured as follows: In Section 1 a short introduction and problem statement
are presented. Section 2 contains an overview of behavior protocols as a platform for component
behavior specification. Section 3 describes atomic actions, defines their syntax and semantics,
while Section 4 discusses approaches to achieve synchronization and atomicity in other specification
languages. Section 5 concludes the paper and proposes directions of possible future research.

2 Behavior Protocols and Component Behavior

2.1 Behavior Protocols

A behavior protocol is an expression describing the behavior of a software component as a set of
sequences (traces) of events. An event may be a method call emitting (!interface.method↑),
method call accepting (?interface.method↑), emitting of a return from a method call
(!interface.method↓) and accepting such a return (?interface.method↓). These events can
be combined together using various operators (regular and special ones) forming thus regular-like
expressions describing the set of possible/allowed traces a component may perform.

As an example consider a component representing a file. It provides one interface that con-
tains five methods to manipulate the file: open, read, write, close, and status. The supported
behavior (i) starts with calling open, then an arbitrary interleaving of read and write follows and
finally close has to be called; and (ii) allows status to be called at anytime (in parallel with (i)).
The corresponding behavior protocol takes the form (for simplicity we use shortcut ’methodName’
for ’methodName↑; methodName↓’):

(open; (read + write)*; close) | status*

2.2 Specifying Behavior of a Software Component

Software components are basic building blocks of today’s application. Dividing the application
logic into several smaller pieces with both semantics and interface defined more clearly enables
for automatized reasoning about software component properties. A way to check for interacting
components compatibility is to use of behavior protocols for their behavior specification.

Behavior of each software component [2, 3] is described by its frame protocol and expresses the
black-box-view behavior of the component. That means that only the events on the component
provided and required interfaces are taken into account. Furthermore, in the case of composite
component, i.e. a component created by composing several other components, we obtain a grey-
box-view behavior where the events of the first-level subcomponents are visible. The behavior at
this level is described by the architecture protocol of a composite component, which is created by a
consent [4] composition of the first-level subcomponents’ frame protocols. The consent composition
is parametrized by a set S of events corresponding to the methods of interfaces bounded between
the two components being composed (if there are more than two components they are composed
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in a stepwise manner). The result of this operator application is basically a parallel composition
of the particular behavior protocols but the resulting traces synchronize on the complementary
(in the sense of accepting vs. emitting an event) events from S.

The development of a component application is based on hierarchical composition of primitive
components (i.e. components that do not contain other components) creating thus composite
components. Errors on a particular level, i.e. among first-level subcomponents of a particular
component, are denoted as composition errors, while errors between adjacent composition levels,
i.e. between parent and child components, are captured by the behavior compliance.

We distinguish three kinds of composition errors: bad activity, no activity, and infinite activity.
Bad activity denotes a situation, when a component tries to emit a call on one of its required
interfaces and the component bound to this required interface by its provided interface is not able
(according to its frame protocol) to accept such a call. No activity denotes a deadlock and infinite
activity a livelock (i.e. some components are working, but no progress to a final state can be
made).

As to the behavior compliance, each component (and also a composite one) is supposed to
have a frame protocol associated that is in the case of a composite component compared with the
architecture protocol. The compliance is defined as the absence of errors in the composition of the
architecture protocol and inverted frame protocol that is created by inverting (swapping provided
and required interfaces) the component frame protocol. As this reduces the problem of detecting
compliance errors to a problem of detecting composition errors, only composition is taken into
account from now on.

3 Atomic Actions

3.1 Motivation

During the work on behavior specification of components being part of an application test bed for
wireless internet access, it has turned out that a kind of atomic component initialization is needed.
To clarify the problem core consider the following situation: There are three components A, B and
C. The component A is a main component that is responsible for starting up and coordinating
components B and C. Suppose components B and C need an initialization. Then, the corresponding
protocols of A, B and C would look like following:

ProtA: !initB; !initC; doSomeWorkA

ProtB: ?initB; doSomeWorkB

ProtC: ?initC; doSomeWorkC

Consent composition of the three protocols above may (in case that doSomeWorkA includes com-
munication between A and B and A and C) cause a bad activity error, since e.g. component B is able
to enter the doSomeWorkB section before the component C has finished its initialization. It is easy
to see that even if not using the syntactical abbreviation the same problem arises. However, there
is still a way to solve this problem using behavior protocols. Although it is very difficult (even
maybe impossible for a developer) to construct appropriate behavior protocols from scratch, con-
structing a finite automaton modeling the composition of the three components and rewriting it
back to behavior protocols is a feasible option. The resulting protocol is both long yet unreadable
and its future maintenance is certes impossible.

3.2 Overview

Atomic actions are a proposed extension of behavior protocols. In some cases when description of
component behavior results in a very long yet unreadable behavior protocol, using atomic actions
provides a convenient, much faster yet more natural way of behavior description. To address the
problem of the example stated above, a behavior protocol without atomic actions modeling the
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behavior of the component A that is correct with respect to behavior protocols of the other com-
ponents (i.e. not yielding composition errors) would look like following:

(!initB; (!initC | ?startOfSomeWorkB); ?startOfSomeWorkC; restOfSomeWorkA)
+
(!initB; !initC; ?startOfSomeWorkC; ?startOfSomeWorkB; restOfSomeWorkA)

Even if we drop readability and protocol construction issues (being much worse when more com-
ponents are in game and/or the intercommunication is more complex), the protocol still does not
correctly reflect the intended behavior, i.e. the initialization of the whole system precedes its
Work. The remedy is use of atomic actions (protocol parts enclosed between ’[’ and ’]’); the
protocol employing atomic actions follows:

[!initB↑, !initC↑]; [?initB↓, ?initC↓]; doSomeWorkA

Obvousily, the using of atomic actions solves both readability and construction difficulties and
inconsistence of a component implementation and its behavior protocol.

3.3 Syntax

An atomic action may occur in a behavior protocol at positions where a single event and an
abbreviation may. Atomic action starts with ’[’ and ends with ’]’. There is a coma-separated
list of events (the use of abbreviations is not allowed as their use doesn’t make sense here) between
’[’ and ’]’ which is treated as a set, not a sequence; [e1, e2] and [e2, e1] are thus the same atomic
actions. As an example consider the behavior protocol with atomic actions in Section 3.2.

3.4 Semantics

3.4.1 Informal Description

An atomic action is as an ordinary event executed in a single step. Let PA and PB be two behavior
protocols and ma be a method on a provided interface IA1 of the component A and mb be a method
on a provided interface IB1 of the component B corresponding to protocols PA and PB, respectively.
Let there be two required interfaces IA2 and IB2 of components A and B, respectively. Let the
interface IA2 is bound to the interface IB1 and the interface IB2 is bound to the interface IA1. Let
c be a method of another required interface IA3 of component A bound to a different component.
Then the composition of protocols containing atomic actions using the consent operator will result
in a behavior protocol with atomic action again:

...[?IA1.ma↑,!IA3.c↑]...∇...!IB2.ma↑... -> ...[τIB2-IA1.ma↑,!IA3.c↑]...

Hence, the event inside of an atomic action is transformed by the consent operator to an internal
event just like events outside atomic actions are. We say the event has been bound.

To preserve the associativity of the consent operator, consent composition of behavior proto-
cols needs to be redefined from [4]. Consider two behavior protocols not containing atomic actions
not bound each to the other:

ProtA : !I1.m1 (an abbreviation for !I1.m1↑; ?I1.m1↓)
ProtB : ?I2.m2 (an abbreviation for ?I2.m2↑; !I2.m2↓)

The consent composition of these protocols yields a behavior protocol (generating no error traces)
containing atomic actions:
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Figure 1: State space generated by consent composition using (a) former semantics and (b) ex-
tended semantics (with atomic actions)

ProtA∇B: (!I1.m1↑; ?I1.m1↓; ?I2.m2↑; !I2.m2↓) +
(!I1.m1↑; [?I1.m1↓, ?I2.m2↑]; !I2.m2↓) +
(!I1.m1↑; ?I2.m2↑; ?I1.m1↓; !I2.m2↓) +
(!I1.m1↑; ?I2.m2↑; [?I1.m1↓, !I2.m2↓]) +
(!I1.m1↑; ?I2.m2↑; !I2.m2↓; ?I1.m1↓) +
([!I1.m1↑, ?I2.m2↑]; ?I1.m1↓; !I2.m2↓) +
([!I1.m1↑, ?I2.m2↑]; [?I1.m1↓, !I2.m2↓]) +
([!I1.m1↑, ?I2.m2↑]; !I2.m2↓; ?I1.m1↓) +
(?I2.m2↑; !I1.m1↑; ?I1.m1↓; !I2.m2↓) +
(?I2.m2↑; !I1.m1↑; [?I1.m1↓, !I2.m2↓]) +
(?I2.m2↑; !I1.m1↑; !I2.m2↓; ?I1.m1↓) +
(?I2.m2↑; [!I1.m1↑, !I2.m2↓]; ?I1.m1↓) +
(?I2.m2↑; !I2.m2↓; !I1.m1↑; ?I1.m1↓)

The state space of a corresponding finite automata is shown in Figure 1b. For comparison with
the state space generated by an automaton corresponding to the previous version consider the
Figure 1a.

3.4.2 Formal Definition

A formal definition of consent operator extended with atomic action is done in the context of the
finite automata theory. As the special protocol operators, such as and-parallel, do not break the
regularity of the language generate by behavior protocols [4], in this sense, the definition is correct.

Definition 3.1 (The consent operator extended by atomic actions):
Let us denote the set of traces specified by a protocol P by L(P) and the set of traces accepted
by a finite automaton A by L(A). Let P, Q be group protocols specifying behavior of component
groups G1, G2. As justified in [4], L(P), L(Q) are regular languages, and, therefore, there exist
nondeterministic finite automata A, B s.t. L(P) = L(A), L(Q) = L(B) and the number of the
states of both A, B is minimal. Let S be a set of events on bindings between the groups G1, G2,
and U be the set of events on unbound interfaces in G1 and G2, S ∩U = {} ({} denotes the empty
set). Furhtermore, let us denote e the complement event to e, i.e. !e is ?e and vice versa.

We define the semantics of the extended consent operator by construction of a (nondetermin-
istic) finite automaton D s.t. L(D) = L(P ∇S,UQ). The construction is done in four steps: In the
first step a (nondeterministic) automaton C is constructed, which accepts all the traces reflecting
correct communication between G1 and G2 (i.e. the traces containing no composition errors), and
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also the traces with bad activity, no activity, unbound requires and bad atomic activity (caused by
an atomic action) errors, while the third and the fourth steps defines the behavior for cases with
atomic actions. Unbound requires errors are denoted by a token of the form ε©©→e, where e is the
event occurring on an unbound requires interface, while to denote a conditional bad atomic activity
and a conditional unbound requires error the tokens ε?e and ε©©→?e, respectively, are used, where e
is an event inside of an atomic action occurring on an bound requires interface.

In the last step, D is constructed in such a way that it accepts all the traces which are accepted
by C and in addition it accepts also the traces expressing divergence errors, denoted by the event
token ε∞. Basically, if a divergence error occurs in P ∇S,UQ, the groups G1, G2 might never stop
their communication.

Let A = (Act,QA, qA, FA, NA) where Act is the set of all event tokens forming the alphabet,
QA is the set of states, qA in QA is the initial state, FA ⊆ QA is the set of accepting states and
NA ⊆ QA ×Act×QA is the transition relation. In a similar way, B = (Act,QB , qB , FB , NB).

Let error tokens be all the tokens of the form εe, ε®, ε∞, ε©©→e, ε?e, or ε©©→?e where e is an
event. We define C = (Act,QC , qC , FC , NC), where QC = QA × QB ∪ error, qC = (qA, qB),
FC = FA×FB ∪ error. A transition is an element of NC if and only if it is deduced by one of the
following rules:

((q1, q2), ?e, (q′1, q2)) ∈ NC if (q1, ?e, q′1) ∈ NA and e /∈ (S ∪ U)

((q1, q2), ?e, (q1, q
′
2)) ∈ NC if (q2, ?e, q′2) ∈ NB and e /∈ (S ∪ U)

((q1, q2), !e, (q′1, q2)) ∈ NC if (q1, !e, q′1) ∈ NA and e /∈ (S ∪ U)

((q1, q2), !e, (q1, q
′
2)) ∈ NC if (q2, !e, q′2) ∈ NB and e /∈ (S ∪ U)

((q1, q2), t, (q′1, q2)) ∈ NC if (q1, t, q
′
1) ∈ NA, where t is either τe or an error token

((q1, q2), t, (q1, q
′
2)) ∈ NC if (q2, t, q

′
2) ∈ NB , where t is either τe or an error token

((q1, q2), τe, (q′1, q
′
2)) ∈ NC if (q1, !e, q′1) ∈ NA and (q2, ?e, q′2) ∈ NB and e ∈ S

((q1, q2), τe, (q′1, q
′
2)) ∈ NC if (q1, ?e, q′1) ∈ NA and (q2, !e, q′2) ∈ NB and e ∈ S

((q1, q2), εe, error) ∈ NC if (q1, !e, q′1) ∈ NA and there is no q′2 ∈ QB s.t. (q2, ?e, q′2) ∈ NB or
(q2, [?e, . . .], q′2) ∈ NB ande ∈ S

((q1, q2), εe, error) ∈ NC if (q2, !e, q′2) ∈ NB and (there is no q′1 ∈ QA s.t. (q1, ?e, q′1) ∈ NA or
(q1, [?e, . . .], q′1) ∈ NA and e ∈ S

((q1, q2), ε®, error) ∈ NC if (there is no (q1, t, q
′
1) /∈ NA s.t. t is either !e, ?e, or an error token)

and (there is no (q2, t, q
′
2) /∈ NB s.t. t is either !e, ?e, or an error token) and (q1 /∈ FA or

q2 /∈ FB)

((q1, q2), ε©©→e, error) ∈ NC if (q1, !e, q′1) ∈ NA and e ∈ U

((q1, q2), ε©©→e, error) ∈ NC if (q2, !e, q′2) ∈ NB and e ∈ U

Furthermore, additional rules defining concerning atomic actions are included within the rule
set. As an atomic action contains events from S of various consent operator instances, the top-
most consent operator (i.e. the last instance of consent operator applied in the component compo-
sition hierarchy) has to be treated in a special way.

The following rules are valid for all consent operator instances:
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((q1, q2), [e1, e2], (q′1, q
′
2)) ∈ NC if

(q1, e1, q
′
1) ∈ NA and (q2, e2, q

′
2) ∈ NB and e1, e2 /∈ (S ∪ U)

((q1, q2), [e1, e2, . . . , en], (q′1, q
′
2)) ∈ NC if

(q1, e1, q
′
1) ∈ NA and (q2, [e2, . . . , en], q′2) ∈ NB and {e1, . . . , en} ∈ Act\(S ∪ U)

((q1, q2), [e1, e2, . . . , en], (q′1, q
′
2)) ∈ NC if

(q2, e2, q
′
2) ∈ NB and (q1, [e1, . . . , en], q′1) ∈ NA and {e1, . . . , en} ∈ Act\(S ∪ U)

((q1, q2), [e1, e2, . . . , ei, ei+1, . . . , en], (q′1, q
′
2)) ∈ NC if

(q1, [e1, . . . , ei], q′1) ∈ NA and (q2, [ei+1, . . . , en], q′2) ∈ NB and {e1, . . . , en} ∈ Act\(S ∪ U)

((q1, q2), [e1, e2, . . . , τei, . . . , τej , . . . , en], (q′1, q
′
2)) ∈ NC if

{e1, e2, . . . , ei−1, ej+1, . . . , en} ⊆ Act\(S ∪ U) and
{ei, . . . , ej} ⊆ S and
(q1, [e1, . . . , ej ], q′1) ∈ NA and
(q2, [ei, . . . , ej , ej+1, . . . , en], q′2) ∈ NB

((q1, q2), [ε!e1, . . . , ε!ei, . . . , ε!ej , τej+1, . . . , τek, !ek+1, . . . , !el, . . . , !en], error) ∈ NC if
(q1, [ε?e1, . . . , ε?ei, ej+1, . . . , !ek, !ek+1, . . . , !el], q′1) ∈ NA and
(q2, [ε?ei+1, . . . , ε?ej , ej+1, . . . , ek, !el+1, . . . , !en], q′2) ∈ NB and
{ej+1, . . . , ek} ⊆ S, {e1, . . . , ej , !ek+1, . . . , !en} ⊆ Act\(S ∪ U),
i, j ≥ 0, i + j ≥ 1, i ≤ j ≤ k ≤ l ≤ n

((q1, q2), [ε©©→e1, . . . , ε©©→ei, . . . , ε©©→ej , τej+1, . . . , τek, !ek+1, . . . , !el, . . . , !en], error) ∈ NC if
(q1, [ε?e1, . . . , ε?ei, ej+1, . . . , !ek, !ek+1, . . . , !el], q′1) ∈ NA and
(q2, [ε?ei+1, . . . , ε?ej , ej+1, . . . , ek, !el+1, . . . , !en], q′2) ∈ NB and
{ej+1, . . . , ek} ⊆ U, {e1, . . . , ej , !ek+1, . . . , !en} ⊆ Act\(S ∪ U),
i, j ≥ 0, i + j ≥ 1, i ≤ j ≤ k ≤ l ≤ n

The following rules are valid for all the consent operator instances except for the top-most one:

((q1, q2), [?e1, . . . , ?ei, . . . , ?ej , ε?ej+1, . . . , ε?ek, . . . , ε?el, τel+1, . . . , τem, em+1, . . . , en, . . . , eo],
(q′1, q

′
2)) ∈ NC if

(q1, [?e1, . . . , ?ei, !ej+1, . . . , !ek, el+1, . . . , em, em+1, . . . , en], q′1) ∈ NA and
(q2, [?ei+1, . . . , ?ej , !ek+1, . . . , !el, el+1, . . . , em, en+1, . . . , eo], q′2) ∈ NB and
{e1, . . . , ej} ⊆ Act\(S ∪ U), {el+1, . . . , em} ⊆ S, {em+1, . . . , eo} ⊆ Act\(S ∪ U) and
i ≥ 0, j ≥ 0, i + j ≥ 1 and there is no atomic action ∈ NB containing all of ?ej+1 . . .?em

((q1, q2), [?e1, . . . , ?ei, . . . , ?ej , ε?ej+1, . . . , ε?ek, . . . , ε?el, τel+1, . . . , τem, em+1, . . . , en, . . . , eo],
(q′1, q

′
2)) ∈ NC if

(q1, [?e1, . . . , ?ei, !ej+1, . . . , !ek, el+1, . . . , em, em+1, . . . , en], q′1) ∈ NB and
(q2, [?ei+1, . . . , ?ej , !ek+1, . . . , !el, el+1, . . . , em, en+1, . . . , eo], q′2) ∈ NA and
{e1, . . . , ej} ⊆ Act\(S ∪ U), {el+1, . . . , em} ⊆ S, {em+1, . . . , eo} ⊆ Act\(S ∪ U) and
i ≥ 0, j ≥ 0, i + j ≥ 1 and there is no atomic action ∈ NA containing all of ?ej+1 . . .?em

((q1, q2), [?e1, . . . , ?ei, . . . , ?ej , ε©©→?ej+1, . . . , ε©©→?ek, . . . , ε©©→?el, τel+1, . . . , τem, em+1, . . . ,
en, . . . , eo], (q′1, q

′
2)) ∈ NC if

(q1, [?e1, . . . , ?ei, !ej+1, . . . , !ek, el+1, . . . , em, em+1, . . . , en], q′1) ∈ NA and
(q2, [?ei+1, . . . , ?ej , !ek+1, . . . , !el, el+1, . . . , em, en+1, . . . , eo], q′2) ∈ NB and
{e1, . . . , ej} ⊆ Act\(S ∪ U), {el+1, . . . , em} ⊆ U, {em+1, . . . , eo} ⊆ Act\(S ∪ U) and
{el+1, . . . , em} ⊆ S and i ≥ 0, j ≥ 0, i + j ≥ 1

((q1, q2), [?e1, . . . , ?ei, . . . , ?ej , ε©©→?ej+1, . . . , ε©©→?ek, . . . , ε©©→?el, τel+1, . . . , τem, em+1, . . . ,
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en, . . . , eo], (q′1, q
′
2)) ∈ NC if

(q1, [?e1, . . . , ?ei, !ej+1, . . . , !ek, el+1, . . . , em, em+1, . . . , en], q′1) ∈ NB and
(q2, [?ei+1, . . . , ?ej , !ek+1, . . . , !el, el+1, . . . , em, en+1, . . . , eo], q′2) ∈ NA and
{e1, . . . , ej} ⊆ Act\(S ∪ U), {el+1, . . . , em} ⊆ U, {em+1, . . . , eo} ⊆ Act\(S ∪ U) and
{el+1, . . . , em} ⊆ S and i ≥ 0, j ≥ 0, i + j ≥ 1

The following rules are valid for the top-most consent operator instance:

((q1, q2), [?e1, . . . , ?ei, . . . , ?ej , εej+1, . . . , εek, . . . , εel, τel+1, . . . , τem, em+1, . . . , en, . . . , eo],
error) ∈ NC if
(q1, [?e1, . . . , ?ei, !ej+1, . . . , !ek, el+1, . . . , em, em+1, . . . , en], q′1) ∈ NA and
(q2, [?ei+1, . . . , ?ej , !ek+1, . . . , !el, el+1, . . . , em, en+1, . . . , eo], q′2) ∈ NB and
{e1, . . . , ej} ⊆ Act\(S ∪ U), {el+1, . . . , em} ⊆ S, {em+1, . . . , eo} ⊆ Act\(S ∪ U) and
i ≥ 0, j ≥ 0, i + j ≥ 1 and there is no atomic action ∈ NB containing all of ?ej+1 . . .?em

((q1, q2), [?e1, . . . , ?ei, . . . , ?ej , εej+1, . . . , εek, . . . , εel, τel+1, . . . , τem, em+1, . . . , en, . . . , eo],
error) ∈ NC if
(q1, [?e1, . . . , ?ei, !ej+1, . . . , !ek, el+1, . . . , em, em+1, . . . , en], q′1) ∈ NB and
(q2, [?ei+1, . . . , ?ej , !ek+1, . . . , !el, el+1, . . . , em, en+1, . . . , eo], q′2) ∈ NA and
{e1, . . . , ej} ⊆ Act\(S ∪ U), {el+1, . . . , em} ⊆ S, {em+1, . . . , eo} ⊆ Act\(S ∪ U) and
i ≥ 0, j ≥ 0, i + j ≥ 1 and there is no atomic action ∈ NA containing all of ?ej+1 . . .?em

((q1, q2), [?e1, . . . , ?ei, . . . , ?ej , ε©©→ej+1, . . . , ε©©→ek, . . . , ε©©→el, τel+1, . . . , τem, em+1, . . . , en, . . . , eo],
error) ∈ NC if
(q1, [?e1, . . . , ?ei, !ej+1, . . . , !ek, el+1, . . . , em, em+1, . . . , en], q′1) ∈ NA and
(q2, [?ei+1, . . . , ?ej , !ek+1, . . . , !el, el+1, . . . , em, en+1, . . . , eo], q′2) ∈ NB and
{e1, . . . , ej} ⊆ Act\(S ∪ U), {ej+1, . . . , el}
⊆ U, {el+1, . . . , em} ⊆ S, {em+1, . . . , eo} ⊆ Act\(S ∪ U) and i ≥ 0, j ≥ 0, i + j ≥ 1

((q1, q2), [?e1, . . . , ?ei, . . . , ?ej , ε©©→ej+1, . . . , ε©©→ek, . . . , ε©©→el, τel+1, . . . , τem, em+1, . . . , en, . . . , eo],
error) ∈ NC if
(q1, [?e1, . . . , ?ei, !ej+1, . . . , !ek, el+1, . . . , em, em+1, . . . , en], q′1) ∈ NB and
(q2, [?ei+1, . . . , ?ej , !ek+1, . . . , !el, el+1, . . . , em, en+1, . . . , eo], q′2) ∈ NA and
{e1, . . . , ej} ⊆ Act\(S ∪ U), {ej+1, . . . , el} ⊆ U, {el+1, . . . , em} ⊆ S,
{em+1, . . . , eo} ⊆ Act\(S ∪ U) and i ≥ 0, j ≥ 0, i + j ≥ 1

We say that a state q = (q1, q2) of the automaton C is a divergence state, if the following two
conditions are satisfied:

(i) There exists a cycle (in C) containing the state q, i.e. there exists a sequence q1, ..., qn ∈
QC s.t. q1 = q, qn = q and (∀i ∈ 1, ..., n− 1)(∃ event token or an atomic action t)((qi, t, qi+1) ∈
NC).

(ii) From q no accepting state is reachable, i.e. there exists no sequence q1, ..., qn ∈ QC s.t. q1 =
q, qn ∈ FC and (∀i ∈ 1, ..., n− 1)(∃ event token or an atomic action t)((qi, t, qi+1) ∈ NC).

The resulting automaton is defined as D = (Act,QC , qC , FC , ND), where

ND = NC∪{(q, ε∞, error) : q is a divergence state}.

4 Related Work

A way for specifying atomic or uninterruptable sequences of operation is certainly necessary once
describing behavior of a software piece. Otherwise, the state space growth caused by generating
unnecessary interleavings of multiple threads instruction is too large to maintain for automated
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reasoning. As the software model checking is in its early stages of research and development, a stan-
dard way (a language or even a method) for describing software behavior hasn’t been established
so far. On the other hand, a method of achieving desired effect (synchronization, uniterruptable
sequence) is available in most specification languages.

In Promela [5] — the Spin model checker language — there are two ways to express two kinds
of uninterruptable sequences. The first option is the use of atomic statement, which embodies a
sequence of statements intended to be executed without interruption; however, once the thread
executing instruction inside an atomic statement is blocked, other thread is selected for execution.
A stronger construct is the d step (stands for deterministic step) statement, where blocking of the
thread leads to a deadlock and is thus considered as an error. Both constructs, if used correctly,
may significantly reduce the resulting state space achieving thus an acceptable checking time
requirements. Furthermore, they allow for specification behavior that would be very difficult or
impossible in some cases to describe without these constructs.

Java PathFinder [6] is a tool for checking of models written in the Java programming language
[7]. It features a special Java class Verify to instrument the input code written in Java for reducing
the state space and introduces also an easy way for employing of the non-determinism into the
Java code. The Verify class contains the beginAtomic and endAtomic methods for denoting code
intended to be performed without interruption by other threads. Although the JPF implements
very beneficent partial-order-reduction algorithm, the beginAtomic and endAtomic methods are
useful in cases when POR doesn’t work well.

Symbolic Model Verifier [8] is a tool for symbolic model checking finite state systems against
a specification in CTL. The input language of SMV is a parallel assignment language describing
finite Kripke structures. It defines state variables, their initial values and changes in each steps.
All the assignments of variables are performed in parallel in each step, modeling of atomicity is
thus easy to achieve. On the other hand, one can still model asynchronous systems by declaring
multiple processes, whose assignments are interleaved — in each step a process is chosen and one
step of this process is performed, while the state variables of other process remain unchanged.
SMV allows thus for specification both synchronous and asynchronous systems with the implicit
ability of expressing atomicity of more operations.

In process algrebras like CSP [9] and CCS [10], uninterruptable sequences can be easily modeled
while exploiting the process synchronization (join operation) and the fact that these formalisms
don’t require a strict mapping between code and specification allowing thus for creating a coarser-
grained abstraction.

5 Conclusion and Future Work

Introducing of the atomic actions to the behavior protocols specification platform has significantly
simplified the behavior specification of special behavior constucts like initialization and synchro-
nization. In cases when a specification without atomic actions is not feasible due to enourmous
protocol complexity, the use of atomic actions provides a very convenient way. On the other
hand, there are situations impossible to be described by a finite behavior protocol without atomic
actions. Atomic actions thus extend the expressing power of behavior protocols. They can be
also used in situations where one doesn’t want to check all possible interleavings of components’
behavior knowing that a particular part of the behavior doesn’t affect the result of checking for
compliance and composition errors.

The future work can be divided into two main areas: (i) further enhancement of behavior
protocols as a component behavior specification platform enabling it for use in real-life applications
and (ii) on fastening (i.e. looking for both suitable state space representation and its efficient
traversing) of the behavior protocols checker implementation.
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