. Distributed and
Technical report no. 2011/05 Dependable

Department of Distributed and Dependable Systems Department of
September 13, 2011 s

Refinement between TBP and Java Implementation of
Components

Jan Kofron, Pavel Jancik, Pavel Parizek

This work was partially supported by the Ministry of Education of the Czech Republic (grant
MSMO0021620838) and by the Grant Agency of the Czech Republic project P202/11/0312.

D3S, Technical Report no. 2011/05 Abstract

Abstract. An important correctness property of software built in a modular way is behav-
ior specification of its particular components. Only then one can reason about communication
correctness and properties of particular components. Since it is much more effective to do so
at the level of behavior models, establishing a correspondence between behavior specification
and implementation becomes an important part. In this paper, we present BeJC—a tool for
consistency checking between software component implementation and its behavior specifi-
cation. We also discuss practical experience with the tool and its application in the software
development process.

D3S, Technical Report no. 2011/05 1. Introduction

1 Introduction

An important correctness property of software systems built in a modular way, i.e., from
well-defined components, is that each component behaves only according to a given speci-
fication. This can involve functional (degree of parallelism, invoked methods) as well as extra-
functional (e.g., performance, reliability) properties. As to the functional properties, the more
precise behavior specification is available, the more one can say about the component without
inspecting its implementation. A relatively precise way is specification of allowed sequences
of method calls on other components in the system the component performs. We call the prop-
erty of error-free communication among components the component interaction compatibility.
The valid sequences of method calls can be specified in a number of way, e.g., in the form of
transition systems, e.g., LTS, finite automata, and in a higher-level language, e.g., LOTOS [14],
CSP [7], Threaded Behavior Protocols (TBP) [10]. The property of component interaction com-
patibility holds for a given system if:

e the implementation of each component is consistent with its behavior specification, i.e.
each component performs only the method calls and in such order that is allowed by its
specification, and

e there are no interaction errors between components of the system, such as performing a
method call unexpected by the target component.

While many techniques for detecting interaction errors at the level of behavior specifica-
tions were proposed in the past [1, 5], much less work has been done on checking consistency
between the component implementation (e.g., in Java and C) and its behavior specification.
Besides our previous work [11], we are aware only of one existing approach for Java [6], which
is, however, only partially automated.

In this paper, we present the BeJC tool for automatic checking of consistency between the
Java implementation of a software component and its behavior specification in the TBP lan-
guage. It implements the consistency checking algorithm proposed in our previous work [11]
with modifications needed for the new TBP specification language. The Be]C tool is publicly
available for download at the web site http://d3s.mff.cuni.cz/projects/formal_methods/
bejc.

2 Threaded Behavior Protocols

A behavior specification in TBP consists of five parts: types, variables, provisions, reactions, and
threads. In the type section, custom enumeration types are defined. These are used as types of
local variables defined in the variable section. These variables are used for storing information
across particular method calls. Provisions define permitted usage of the component, i.e., the
sequences of method calls that the component expects from other components—its environ-
ment. The component must handle these sequences, which means it should not end up in a
deadlock state or behave in a way different from what is specified in the reactions and threads
sections. Provisions can be seen as an assumption the component takes about its environment.
Syntax of the provisions section is similar to regular expressions over terms of the form ?itf.m
that expresses acceptance of a method call on a provided component interface (itf stands for an
interface name and m stands for a method name). It supports the standard regular operators
(;, +, *) and the parallel operator | that permits any interleaving of method call sequences de-
fined by its operands. Reactions define how the component reacts to a particular method call,
in terms of invoking methods on its required interfaces and modifying the content of its local
variables. Syntax of the reactions is inspired by Java-like programming languages. The basic
statement is a method call (litf.m(param)). More complex statements can be constructed using

D3S, Technical Report no. 2011/05 3. Compliance

the sequencing operator ; and control structures well-known from programming languages
(e.g., while and if-then-else). The ? character used at the place of a condition, e.g., in the if state-
ment, represents a non-deterministic choice. The threads section specifies permitted behavior
of threads internally created by the component. Syntax of the threads section follows the syn-
tax of the reactions. Semantics of the TBP language is defined using LTS. In particular, correct
communication of particular components on the level of TBP and the refinement relation are
not based on a simple trace set inclusion, but it is based on alternation simulation defined in [2].
More details on TBP can be found in [10].

component IpAddressManager {

provisions { class IpAddressManagerImpl
?IDhcpServer.Start ; (implements IDhcpServer
7IDhcpServer.RequestAddr + pr!vate IIpMacDb db;
?IDhcpServer.ReleaseAddr private ITimer timer;
) *

String RequestAddr(byte[] mac) {

¥) String ip = db.GetAddress(mac);
reactions { if (ip == null) ip = allocIP();
IDhcpServer.RequestAddr {
IITpMacDb.GetAddress ; Date expTime = new Date(...);
if (?) { db.Add(mac, ip, expTime);
I TIpMacDb.Add ; //timer.SetTimeout (expTime) ;
IITimer.SetTimeout .
return ip;
¥ }
¥ }
}

Figure 1: Example: TBP specification and Java implementation

3 Compliance

Figure 1 shows a fragment of the TBP specification for the IpAddressManager component. The
component manages IP addresses for clients on the network. The provisions section states that
Start must be invoked first on the component through its IDhcpServer interface; then it is possible
to call RequestAddr or ReleaseAddr repeatedly. The reactions section specifies that, upon accept-
ing a call of RequestAddr, the component must invoke GetAddress and then optionally Add and
SetTimeout in this order. The example contains an inconsistency between the TBP specification
and the Java implementation listed at the right-hand side of Figure 1—the SetTimeout method
is not invoked after Add in response to the RequestAddr call. This is the kind of errors that Be]JC
can detect.

To be more precise as to the relation between the specification and code, the implementa-
tion of the component under verification (1) has to accept any calls on its provided interfaces in
the order that is allowed by provisions and (2) is allowed to invoke just those methods on its re-
quired interfaces and in the order that are specified in the reactions. Since the implementation
does not feature any explicit provisions, i.e., the provisions are empty and do not restrict the
usage of the component, any sequence of methods can be called on the component provided
interfaces. The aforementioned method verifies the existence of the alternation simulation be-
tween TBP and the Java code and if no error is discovered, we know that the implementation
refines the TBP specification; in other words, the given TBP specification is an abstraction of
the implementation. This way, absence of communication errors of communicating compo-
nents captured at the level of TBP is after the code compliance verification assured also on the

D3S, Technical Report no. 2011/05 3. Compliance

implementation level.

The aforementioned claims are justified by the following algorithm and theorems. We will
take advantage of the formal framework defined in [12]. The following checking algorithm de-
scribes the way BeJC works.

1. The component environment from the provisions is generated: For each parallel branch
of the combined provisions for k threads [12] a thread in the environment code is created.
The code consists of the sequences of provided methods’ calls that are specified by the
parallel branch. The parameter values for these method calls are taken from a user-
defined database.

2. The code of the environment and the component is compiled and the compliance check-
ing is run.

3. The tools repeats the following step until all options with respect to thread scheduling
and parameter values are tried: A thread (either of the environment or of the compo-
nent) is selected and its step is performed. If the step is a method call on a component’s
required interface, the Be]JC tool checks whether this call is, with respect to the history of
already performed actions, allowed by the TBP specification.

4. If there is no disallowed method call on a required interface (according to the TBP spec-
ification), no deadlock, and no uncaught exception (checked by JPF) found during the
checking process of the previous step, the algorithm returns true, otherwise it returns
false along with the error trace (a sequence of calls leading to this state).

Definition 1. Let C be an implementation of a software component C and S be a TBP specification
which does not contain the general re-entrancy operator. We say that S is a TBP specification induced
by Cy if:

(i) The provisions are empty, i.e., no restriction on the order of calls of the component provided
interfaces is stated.

(ii) For each method on a provided interface of C' the set of all possible traces of method calls on
the component required interfaces performed by C are a subset of the set of the traces specified by the
corresponding reaction of S, if necessary also with respect to the history of calls.

(iii) If there are internal threads the component creates, the subset relation holds in the same way for
the set of threads’ traces of C and the threads section of S, otherwise the threads section is empty.

An induced TBP specification is an abstraction of the implementation in the sense of ob-
servable behavior. It is necessary to take the history of calls into account, since the component
can remember information (its state) in a variable and react in a different way in various states.

Theorem 2. Let S be a TBP specification and I be a TBP specification induced by a component C. If
the checking algorithm returns true, then I refines S.

Proof. For a contradiction, suppose that for a TBP specification S and a component implemen-
tation C' the checking algorithm returns true, but I does not refine S.

In order that I refines S, there must be an alternation simulation between initial states of
observation projections Ps and Py of S and I, respectively. Let sg € Py and sy € Pr. There are
three conditions that must be satisfied:

1. Y(s1,s5) €2p: (s1,85) € E
2. Y(s1,85) €2p: 05(ss,7m) = s'g = s} : d1(s1,?m) =) AN s g s

3. Y(s1,85) €Xp: 01(sr,!m) = s = s’y : d5(sg,!m) = s'g A s} < sy

D3S, Technical Report no. 2011/05 4. Tool Description

Here, E is a relation that relates the (error) states of P; and Pg, which is equal to true in this
case, since there is no a-priori relation between the (error) states of I and S (and hence between
Pr and Ps). Next, the provisions of Pr are empty, in other words, there is no restriction on the
calls on provided interfaces. The second condition is thus trivially satisfied as well. The only
condition that can be violated (and hence disallow the refinement between I and 5) is the third
one. To violate the third condition, there has to be an sequence of states ¢t = iy ..., in Py
and a sequence of states s = sgs1..s, in S such that V& = 0.n — 1 : 4, =g s;. Next, let
there be a transition !m from i, such that there is no such transition from s,,. Following the
construction of the observation projection [12] we observe that the state s,, was constructed
from a set of states such that none of them contained the transition !m (otherwise s, would
contain such a transition as well). Moreover, again from the definition of observation projection
we know that there is no other trace from the initial state of Pg to another state of Pg that would
share the same sequence of labels—the state s,, is unique in this sense. The sequence ¢t is also
present in I and hence in C. Since the checking algorithm uses the provision of S to construct
the environment of C, the sequence ¢ is also executed by the algorithm. After reaching the
state i, it return false since there is no !m transition from the corresponding state s,,. This is a
contradiction to our assumption made at the beginning of the proof and the theorem is proven.

U

Theorem 3. If the checking algorithm returns true for all components of a closed system and there
is no communication error in the component composition at the TBP level, then there is no deadlock,
no uncaught exception, and the method calls on provided interfaces of each component in the system
comply with the corresponding provisions.

Proof. Theorem 3 is a direct corollary of Theorem 2 and the correctness of the composition
verification algorithm for TBP defined in [12]. O

Still, there is an issue regarding construction of the component environment that is worth
mentioning at this place. As aforementioned, there is a “parameter database” that defines
the values for the provided methods called by the environment on the component. So far,
the database construction is up to the user of BeJC. Since the tool works in the explicit model
checking mode, there is no way to practically try all possible values for a given type, e.g.,
strings, integers, and classes. It is up to the user to include all the values that make the tool
cover all the possible situations in the component under verification. Only then Theorem 2
and Theorem 3 hold.

4 Tool Description

The BeJC tool checks consistency between Java code and TBP specification using state space
traversal. It consists of four modules: TBP library, environment generator, TBP checker, and
Java PathFinder (JPF) [9]. The architecture of the tool and flow of information among its mod-
ules are shown in Figure 2.

The input of the tool is the Java implementation, description of the component (metadata),
and the TBP specification. TBP library parses the TBP specification and creates two interme-
diate representations: abstract syntax tree (AST) and a state transition system. The environ-
ment generator creates an abstract environment for the component from the metadata and the
AST representation of provisions in the TBP specification. The abstract environment is a non-
deterministic program that performs all method call sequences allowed by provisions on the
component and calls each method with different combinations of parameter values—possible
values must be provided by the user as a part of the metadata. The Java program composed
of the abstract environment and Java implementation of the component is the input for actual
checking.

D3S, Technical Report no. 2011/05 4. Tool Description

o> G
[. | Ty

Environment
Metadata generator TBP checker

AN

Figure 2: Architecture of the BeJC tool

The process of checking involves parallel traversal of (i) the state space of the Java program
and (ii) the state transition system derived from the TBP specification. JPF traverses the Java
program’s state space and notifies the TBP checker about method call events (invocations and
returns) as they occur during program’s execution. TBP checker, implemented as a plug-in for
JPF, checks for each event whether it violates the TBP specification—this happens if there is no
matching transition from the current state of the transition system. This way, JPF with the TBP
checker verify that the Java implementation responds to all permitted calls on the component’s
interfaces in a way allowed by the reactions and threads sections of the TBP specification.

The output of the BeJC tool is the result of checking and a counterexample in the case of a
negative answer. The counterexample has two parts: execution path in the Java program and
a current path in the transition system.

Additional details about BeJC, such as description of the checking algorithm and the ap-
proach used to generate the abstract environment, can be found in [8].

D3S, Technical Report no. 2011/05 References

References

[1] J. Adamek and F. Plasil. Component Composition Errors and Update Atomicity: Static
Analysis, Journal of Software Maintenance, 17(5), 2005.

[2] L. de Alfaro and T. Henzinger. Interface automata. In Proceedings of the 8th European
software engineering conference held jointly with 9th ACM SIGSOFT international sym-
posium on Foundations of software engineering (ESEC/FSE-9). 2001. ACM, New York,
NY, USA, 109-120.

[3] L. Bulej, T. Bures, T. Coupaye, M. Decky, P. Jezek, P. Parizek, F. Plasil, T. Poch, N. Rivierre,
O. Sery, and P. Tuma. CoCoME in Fractal, LNCS, vol. 5153, 2008.

[4] The CLIF Project, http://clif.ow2.o0rg/

[5] D. Giannakopoulou, J. Kramer and S.-C. Cheung. Behaviour Analysis of Distributed Sys-
tems Using the Tracta Approach, Autom. Softw. Eng., 6(1), 1999.

[6] D. Giannakopoulou, C.S. Pasareanu and]J.M. Cobleigh, Assume-Guarantee Verification
of Source Code with Design-Level Assumptions, In ICSE 2004, IEEE.

[7] C. A. R. Hoare: Communicating Sequential Processes, Prentice-Hall, 1985, ISBN: 0-13-
153271-5

[8] P. Jancik. Checking Compliance of Java Implementation with TBP Specification, Master
Thesis, Charles University, 2010.

[9] Java PathFinder, http://babelfish.arc.nasa.gov/trac/jpt/

[10] J. Kofron, T. Poch, and O. Sery. TBP: Code-Oriented Component Behavior Specification,
In SEW-32, IEEE, 2009.

[11] P. Parizek, F. Plasil, and J. Kofron. Model Checking of Software Components: Combining
Java PathFinder and Behavior Protocol Model Checker, In SEW-30.

[12] T.Poch, O. ger}’l, E. Pl14sil,]. Kofron. Threaded Behavior Protocols, accepted for publication
in Formal Aspects of Computing, LNCS, 2011

[13] The Q-ImPrESS project, http://www.q-impress.eu

[14] T. Bolognesi and E. Brinksma: Introduction to the ISO specification language LOTOS,
Comput. Netw. ISDN Syst., 14/1, Elsevier Science Publishers B. V., 1987

