
Extending Behavior Protocols With Data and

Multisynchronization∗

Technical report

Jan Kofron

October 20, 2006

Department of Software Engineering Institute of Computer Science
Charles University in Prague Academy of Sciences of the Czech Republic

Czech Republic Czech Republic
kofron @ nenya.ms.mff.cuni.cz kofron @ cs.cas.cz

Abstract

Using behavior protocol [1] for behavior specification of components in hierarchical com-
ponents model (SOFA [2], Fractal [3]) turned out to be very beneficial if one is interested in
communication errors among the application components. Recently, during specification of
a Fractal component application aimed at controlling the access to the Internet at airports
allowing for several types of payments for the access, several issues regarding the behavior
protocols as a specification platform have arisen. The two most important are (i) insufficient
expensiveness of behavior protocol language when specifying some typical behavior patterns,
and (ii) insufficient performance of the behavior protocol checker — a tool used for searching
for composition errors among communicating components. This paper focuses on solution of
the first issue by proposing several extensions to behavior protocols.

1 Introduction

The use of software components as building blocks of (distributed) applications has become widely
spread technique of software construction. Therefore, assuring the compatibility of components
from various vendors is a legitimate requirement. Restricting the compatibility relation to the
type-compatibility of bounded components’ interfaces is according to our experiences simply not
sufficient. Additional kind of semantic (behavior) specification is therefore needed in order to
check for the components’ behavior compatibility.

As model checking techniques applicable on the kind of testing stated above are usually based
on exhaustive state space traversing and the size of a state space of a software piece (a software
component) is usually too large to be traversed using today’s system, a suitable method of software
behavior abstraction is to be used.

1.1 Behavior Protocols

Behavior protocols are a method of software component behavior specification [1]. A behavior
protocol describes an associated component behavior as a set of sequences of events appearing on
component interfaces. The component interfaces are divided into two groups: provided (server)
interfaces — provides and required (client) interfaces — requires. On provides, method calls are
accepted and on requires, method calls are emitted.

∗This work was partially supported by the Grant Agency of the Czech Republic project GD201/05/H014 and
the Czech Academy of Sciences project 1ET400300504.

1



Having the components’ behavior described by behavior protocols, automated checking for
components’ behavior compatibility can be performed yielding the information about components’
composition correctness.

1.2 Goals and Structure of the Paper

Specification of a real-life component application aimed at controlling the access to the Internet
[5] has revealed several issues regarding behavior protocols as a component specification platform.
One of the most important ones has been insufficient expensiveness of behavior protocol language
when specifying some typical behavior patterns. Therefore, in this paper, we propose several
extensions to behavior protocols making them easier to use and enabling precise description of
behavior in cases where an approximate specification has have to be used.

The rest of the paper is structured as follows: In Sect. 2 we describe the original behavior
protocols. In Sect. 3 particular motivations for the proposed extensions to the formalism of
behavior protocols are informally described, while Sect. 4 describes all the extensions formally.
Sect. 5 presents several examples illustrating the meaning of the proposed extensions. Sect. 6
concludes the paper and proposes possible direction of future work.

2 Behavior Protocols and Component Behavior

2.1 Behavior Protocols

A behavior protocol is an expression describing the behavior of a software component as a set of
sequences (traces) of events. An event may be a method call emitting (!interface.methodˆ),
method call accepting (?interface.method̂ ), emitting of a return from a method call
(!interface.method$) and accepting such a return (?interface.method$). These events can
be combined together using various operators (regular and special ones) thus forming regular-like
expressions describing the set of possible/allowed traces a component may perform.

As an example consider a component representing a file. It provides one interface that con-
tains five methods to manipulate the file: open, read, write, close, and status. The supported
behavior (i) starts with calling open, then an arbitrary interleaving of read and write follows
and finally close has to be called; and (ii) allows status to be called at anytime (in parallel with
(i)). The corresponding behavior protocol takes the form (for simplicity we use an abbreviation
’methodName’ for ’methodNameˆ; methodName$’):

(open; (read + write)*; close) | status*

2.2 Specifying Behavior of a Software Component

Software components are basic building blocks of today’s application. Dividing the application
logic into several smaller pieces with both semantics and interface defined more clearly enables
for automatized reasoning about software component properties. A way to check for interacting
components compatibility is to use of behavior protocols for their behavior specification.

Behavior of each software component [2, 3] is described by its frame protocol and expresses the
black-box-view behavior of the component. That means that only the events on the component
provided and required interfaces are taken into account. Furthermore, in the case of composite
component, i.e. a component created by composing several other components, we obtain a grey-
box-view behavior where the events of the first-level subcomponents are visible. The behavior at
this level is described by the architecture protocol of a composite component, which is created by a
consent [6] composition of the first-level subcomponents’ frame protocols. The consent composition
is parametrized by a set S of events corresponding to the methods of interfaces bounded between
the two components being composed (if there are more than two components they are composed
in a stepwise manner). The result of this operator application is basically a parallel composition

2



of the particular behavior protocols but the resulting traces synchronize on the complementary
(in the sense of accepting vs. emitting) events from S.

The development of a component application is based on hierarchical composition of primitive
components (i.e. components that do not contain other components) creating thus composite
components. Errors on a particular level, i.e. among first-level subcomponents of a component,
are denoted as composition errors, while errors between adjacent composition levels, i.e. between
parent and child components, are captured by the behavior compliance.

We distinguish four kinds of composition errors: bad activity, no activity, infinite activity, and
unbound requires error. Bad activity denotes a situation, when a component tries to emit a call on
one of its required interfaces and the component bound to this required interface by its provided
interface is not able (according to its frame protocol) to accept such a call. No activity denotes
a deadlock and infinite activity a livelock (i.e. some components are working, but no progress to
a final state can be made). The unbound requires error denotes the situation when a component
tries to emit a request on an unbound required interface.

As to the behavior compliance, each component (and also a composite one) is supposed to
have a frame protocol associated that is in the case of a composite component compared with the
architecture protocol. The compliance is defined as the absence of errors in the composition of the
architecture protocol and inverted frame protocol that is created by inverting (swapping provided
and required interfaces) the component frame protocol. As this reduces the problem of detecting
compliance errors to the problem of detecting composition errors, only composition is taken into
account from now on.

3 Extensions to behavior protocols

The following sections describe various extensions of behavior protocols reflecting the most burn-
ing and important problems. The extensions include macros for reuse of protocol parts, data for
passing parameters and storing information about actual state of stateful components, multisyn-
chronization for synchronizing more than two components, and the “until loop” construct for easy
specification of “service components” behavior.

3.1 Macros

Macros are a construct for reusing source code fragments and thus both enhancing readability and
making error fixes faster and at one place. They are present in a variety of languages — C, C++,
Latex, Promela, etc.

In a behavior protocol describing complex component behavior, a situation when a fragment of
a behavior protocol or its modification is used several times also occurs. As an example, consider
the behavior protocol of the IpAddressManager component from a complex component application
[5] listed on Fig. 9. A rough structure of this protocol can be described by the expression on Fig. 1.

initialization;
(

use db1
+
(

(use db1 | ?start using db2ˆ); !start using db2$;
(use db2 | ?stop using db2ˆ); !stop using db2$

)
)

Figure 1: Rough structure of the protocol of the IpAddressManager component.

3



By using macros for “implementing” initialization, use db1, and use db2 protocol parts, both
main advantages of macros are demonstrated — first, the reuse of use db1 fragment simplifies a
potential error fix within this fragment, and second, the readability of this expression is undoubt-
edly much better in comparison with the original behavior protocol. Furthermore, as the use db1
and use db2 fragments have very similar structure, they can be both “implemented” by a single
parameterized macro.

It is clear from the example above that incorporation of macros into behavior protocols greatly
enhances the readability by reusing protocol fragments and thus shortening the expressions. We
decided to use the CPP [4] syntax as it is simple yet powerful enough and also used in the Promela
language. Furthermore, for preprocessing of behavior protocol files with CPP macros, an already
existing implementation of the preprocessor can be used, e.g. [4].

3.2 Data

When modeling component behavior, data can be used for two main purposes — (1) to pass
method-specific information to the implementation of a method, and (2) to store information
across multiple method calls. Introducing of data to a modeling language must be done in a
careful way, because the data may be a major cause of the state space explosion. To illustrate
this claim, consider the behavior protocol ?i.m1 | ?i.m2. A component that behaves according
to this behavior protocol is able to accept the m1 and m2 methods on the i interface in parallel.
The state space generated by this protocol consists of nine states. Adding a parameter of the
integer type to each method that is used in the potential method bodies blows up the state space
to 9 × sizeof(integer) × sizeof(integer)1. Moreover, in almost all cases a data type of a much
smaller domain, e.g. byte, would be sufficient.

The control flow of a program piece, in particular a component, often depends on data values.
Therefore, to model the behavior of a component precisely, data has to be incorporated into the
modeling language. As an example consider a part of the behavior protocol of the FlyTicketClas-
sifier component from [5] on Fig. 2.

?IF lyT icketAuth.CreateToken {
(

!IAfF lyT icketDb.GetF lyT icketV alidity;
(!IAfF lyT icketDb.IsEconomyF lyT icket + NULL)

)
+
(

!ICsaF lyT icketDb.GetF lyT icketV alidity;
(!ICsaF lyT icketDb.IsEconomyF lyT icket + NULL)

)
+
NULL

}

Figure 2: A Part of the FlyTicketClasiffier behavior protocol.

In the component implementation, after accepting the CreateToken method request, the com-
ponent calls the GetFlyTicketValidity method either on the IAfFlyTicketDb or ICsaFlyTicketDb
interface depending on the parameter passed to the CreateToken method. In the case of a mal-
formed or wrong parameter, no method is called (represented by the last NULL token). Similarly,
the validity of the parameter is checked by the GetFlyTicketValidity methods and depending on
the result the IsEconomyFlyTicket method is potentially called.

1Assuming the integer size to be 4 bytes, the resulting state space consists of more than 1020 states.

4



Because of absence of the parameters, the behavior protocol specifies a superset of the imple-
mented component behavior — in particular, it allows the GetFlyTicketValidity method on the
ICsaFlyTicketDb interface to be called even in cases when the same method on the IAfFlyTicketDb
interface should be called instead. Even if such imprecisions usually don’t extend the state space
size, a behavior incompatibility among communicating components may be missed.

To illustrate the problem with specification of a stateful component, consider the aforemen-
tioned IpAddressManager component whose behavior protocol is listed on Fig. 9. The rough
structure listed on Fig. 1 can be further simplified when using a variable for remembering which
of the two available databases is currently used. The resulting protocol takes the form listed on
Fig. 3.

initialization;
(

(start using db2; stop using db2) ∗
|
(use db1 or db2) ∗

)

Figure 3: Rough structure of the reduced IpAddressManager protocol.

Using (state) variables, a single implementation of the use dbx protocol part with conditional
calls to a particular database is sufficient, as the use db1 and use db2 protocol parts are very
similar (see Fig. 9). Therefore, also, the fix of a potential error can be made in one place.

The last concerned issue regarding the variables inside behavior protocols are method return
values. As it is an one-directional data transmission as well as in the previous case of parameter
passing, we do not extend behavior protocols by such a construct; the data-dependent control-flow
can be modeled using an artificial method call passing necessary data.

3.3 Multisynchronization

Behavior protocols provide a natural mechanism for synchronizing two communicating compo-
nents. The synchronization can be achieved by a simple emitting of a shared event, i.e., performing
a method call. However, there are two issues regarding such synchronization:

1. The synchronization is done in an one-directional way so if the component on the active
(emitting) side reaches the synchronization point before the other one does, a bad-activity
error appears.

2. No more than two components may be synchronized in a simple way2.

Both the aforementioned issues become a problem in cases when general synchronization of
more than two components is needed. As an example, consider the following situation occurring
also in [5]: There are three components A, B, and C, whose interfaces are bound as shown on
Fig. 4. The (simplified) corresponding behavior protocols for components B and C are listed on
Fig. 5.

The cooperation scenario is following: First, the A component creates the data necessary for
initialization of the B and C components and pass it to them. After the B and C components
complete their initialization, they are ready to start their work. A problem lies in construction of
the protocol for the A component. The first option is to initialize the components in the order of
B, C. In this case, however, after initialization of the B component through its BPI1 interface,
the component may emit a request to the A component (using BRI1 → API1 binding) before

2Of course, as the synchronization of a fixed number of components can be modeled by a finite automaton, it
can be also described by a behavior protocol. However, the protocol is quite complex and its length grows with the
number of components involved.

5



ARI1 ARI2

BPI1

B
P
I2

C
R
I1

CPI1

BRI1
A
P
I1

Figure 4: Synchronization of three components.

the C component has finished its initialization. This would result in a bad-activity error — the
A component is not ready to accept the request at this point. Similarly, using the initialization
order of C, B may result in a call to the non-initialized component B using the CRI1 → BPI1
binding. The only way to cope with this problem in this particular situation is to use the parallel
operator, which results in a behavior protocol listed on Fig. 6. This protocol models more than
the desired behavior and thus may cause problems with encapsulation of the components into a
supercomponent3.

B : ?BPI1.init; (!BRI1.m1 | ?BPI2.m2)
C : ?CPI1.init; !CRI1.m

Figure 5: Behavior protocols corresponding to the B and C components on Fig. 4.

!ARI1.init; (?API1.m1 | !ARI2.init)

Figure 6: Behavior protocol corresponding to the A component on Fig.4.

As sketched above, there is no possible correct sequential order of initialization of the compo-
nents B and C — without introducing an artificial parallelism, both orders result in a behavior
protocol not composable (i.e., yielding composition errors) with the other protocols.

Therefore, we would like to have an easy-to-use synchronization mechanism that would allow
for synchronization of more than two components. In [5], this problem was solved via extending the
semantics of behavior protocols by introducing atomic actions. An atomic action is a special event
consisting of other ordinary events. All the events inside of an atomic action are executed atomi-
cally in a single step. Although this enabled for behavior specification of all components involved
in the demo application, several issues arose. Violation of associativity of the consent operator and
much more complex formal system were the most important ones. In each proposed solution of
these issues, at least one of the aforementioned problems persisted. Therefore, we don’t consider

3In cases the A component reacts to requests from B and C by interacting with other components.

6



the use of atomic actions for synchronization of more components as a suitable approach. In the
following paragraphs, we discuss several other options for achieving the multisynchronization.

First, let us consider the use of a shared variable for synchronization of several components.
The synchronized components access this variable and, at the synchronization point, they block
or continue their execution according to the variable value. There are at least two issues to be
mentioned regarding this approach: (1) the initial value of the synchronization variable has to be
set by an arbitrary process, and (2) the synchronization variable couldn’t be reused in a simple
way — all processes have to pass the synchronization point before the variable reuse, which must
be assured by, e.g., using an additional variable or other notification construct. Furthermore, at
least one process has to be aware of the total number of processes synchronized at a point for
initial variable assignment.

Another option is to use the existing communication mechanism of emitting and accepting
events and extend it by broadcast/multicast options. As a broadcast usually means delivery of
a message to all nodes, which is definitely not suitable for all situations in behavior protocols, a
sort of multicast seems to be a better solution. Nonetheless, at least three issues arise in this case:
(1) Not only the exact number, but also the identities of all participating components has to be
known to at least one component, (2) there must be the “sending” component which is the central
part of this construct, and (3) the emit synchro-event must be blocked until all recipients are able
to accept this event that does not correspond with the semantics of behavior protocols.

The final option discussed here is based on a special (neither emit nor accept) event that is
shared by the components participating on a synchronization. This event is blocking, as expected.
The set of synchronization events is passed to the composition operator when composing compo-
nents together. A component is allowed to execute a synchronization event in its current state
if and only if the other component being composed with this one is also able to execute this
event in its current state. The components then execute the event in a single atomic step. Unlike
the common method events, the synchronization event is not transformed (does not result in a
τ -event) by the composition. Therefore, it can be reused in future compositions thus providing
synchronization of more than two components.

3.4 Until loops

During the work on the project [5], a lack of expensiveness was identified when specifying service
component behavior. By the term service component we mean a component providing some
functionality through its provided interfaces. The behavior protocol of such a component takes
the form “(?provide service)∗”. In some cases, however, it is desirable to make the component
stop providing the service; in these situations the component first should accomplish the current
serving, if there is any, followed by switching to a stop state.

As an example consider the behavior protocol on Fig. 7. In this case, the component provides
service1 and service2 as long as other components ask for the services. However, the component
cannot be stopped explicitly.

((?service1{!process service1}) + (?service2{!process service2}))∗

Figure 7: Example of behavior protocol of a service component without a stop state.

A behavior protocol specifying behavior of a service component that can be explicitly stopped
is listed on Fig. 8. Although precisely describing the desired behavior, this protocol is not well
readable and hard to understand; nonetheless, it shows that behavior of a service component that
may be stopped still can be described by a behavior protocol. Therefore, introducing a syntactic
abbreviation for comfortable expressing of such behavior will be sufficient.

7



((?service1{!process service1}) + (?service2{!process service2}))∗;
(?stop +
((

(?service1{!process service1ˆ; ?stopˆ; ?process service1$}) +
(?service2{!process service2ˆ; ?stopˆ; ?process service2$}) +
(?service1{?stopˆ; !process service1}) +
(?service2{?stopˆ; !process service2}) +

); !stop$)
)

Figure 8: Behavior protocol of a service component with stop.

4 Formal definition

In the following sections, we provide a formal description of all the behavior protocols extensions
informally described above and discuss related issues.

4.1 Macros

The syntactical and semantical rules are adopted from well-established macro system originally
used for the C language. Macros in behavior protocols are allowed to use parameters, but for the
sake of simplicity, recursion of macros is not permitted. The macro definition has the following
syntax:

#define macro name(p1, ...,pn) macro body

By this line, one declares a macro called macro name with formal parameters p1,. . . ,pn. In a
protocol below this macro definition, all occurrences of the string ‘macro name(a1,. . . , an)’ are
replaced with ‘macro body ’, where all occurrences of ‘pi’ are replaced by ‘ai’, for each i ∈ 1 . . . n.

For macro processing, we use the C preprocessor [4] supporting a lot of preprocessing features
that can be used in future, e.g. conditional preprocessing of code fragments.

Furthermore, as a technicality, we also use a macro statement for including files:

#include file.pr

4.2 Method parameters

The method parameters can be only of symbolic values — the values can be tested for equality,
but other kind of comparing, e.g. ‘<’ and ‘<=’, is not provided. The domain of parameter values
is defined at the beginning of a protocol source file via the parvalues statement:

parvalues = {value1, value2, ..., valuen}

By this line, n different values of method parameters are defined. There can be multiple parvalue
statements in a protocol source file — all the values then share a single “namespace” and can be
used independently of the group they are defined. In other words, the parameter values are not
of any type.

To allow for passing method parameters at the caller side, the original event token denoting
emitting a request !interface.methodˆ is extended in the following way:

!interface.method(a1, . . . , an)̂

8



The a1, . . . an are values of method parameters. The parameter values have to be defined
within a parvalues statement before they can be used in a method call. To grant the backward
compatibility, a parameterless method call can be expressed both as !interface.method()̂ and
!interface.methodˆ. To enhance the readability in some cases, a syntactic abbreviation regarding
this event is defined:

!interface.method(a1, . . . , an)

corresponds to:

!interface.method(a1, . . . , an)̂ ; ?interface.method$

At the callee side, the expression denoting processing a method request ?interface.method{. . .}
is again extended:

?interface.method(p1, . . . , pn){method body}

Here, the formal parameters p1, . . . , pn are set to values corresponding to the ones the caller has
chosen. In the method body, switch statements testing the values of the parameters are to be used.
The syntax of the expression testing a parameter pi takes the following form:

switch(pi) {
value1 : { protocol1 }
value2 : { protocol2 }
...
valuen : { protocoln }
default : { protocold }

}

The default branch is optional — it can be omitted. The switch statements may be nested; that
means that the protocoli expressions may also contain switch statements. The parameters (and
their values) are visible only while processing a particular method call, i.e., in the method body in
the expression above.

To define the semantics of protocols with parameters informally described above, we describe
a way to construct a behavior protocol without parameters modeling the same behavior as a given
behavior protocol with parameters.

At the caller (client) side, the emit-request event !interface.method(a1, . . . , an)ˆ is transformed
into !interface.method a1 . . . anˆ.

At the callee (server) side, the situation is more interesting. In the case of accepting a request
?interface.method(p1, . . . , pn){method body}, in the method body, for each combination of values
of parameters p1, . . . , pn, there is a protocol (possibly NULL) defined that is valid for a particular
parameter values combination. Thus, the accepting of a request ?interface.method(p1, . . . , pn)
{method body} is transformed into alternative of branches starting with accept tokens for all
combinations of possible parameter values:

?interface.method a1 a1 . . . a1{ protocol 1 1 . . . 1 } +
?interface.method a1 a1 . . . a2{ protocol 1 1 . . . 2 } +
...
?interface.method a1 a1 . . . an{ protocol 1 1 . . . n } +
?interface.method a2 a1 . . . a1{ protocol 2 1 . . . 1 } +
...
?interface.method an an . . . an{ protocol n . . . n } +

9



The protocols protocol 1 1 . . . 1, . . . , protocol n . . . n are except for the switch statements
copies of the original protocol method body in the parameterized version. The switch statements
are (according to the value of a tested formal parameter) replaced with the branch of the switch
statement corresponding to the actual branch of the alternative operator. This transformation is
recursively applied to the branches. The resulting behavior protocol does not contain parameter-
ized method requests and models the same behavior as the original one.

4.3 State variables

A state variable is a component local variable used for storing information across multiple method
calls. As to the data domain, the same rules as for parameters are applied, i.e., the state variables
can hold only the values previously defined by a parvalues statement. Each state variable is defined
after the parvalues statements and before the behavior protocol. The syntax is as follows:

var local var <– initial value

By this statement, a state variable var name being initialized to initial value is declared. The
values of state variables can be changed in method bodies via assignment either to a constant or
to a value of a parameter passed to this method. The assignment statement is executed in a single
non-interruptible step. The assignment of a value to the variable local var takes the form:

local var <– value

For testing a state variable value the same mechanism as in the case of parameters, i.e., the
switch statement, is used.

To define the semantics, we describe construction of a finite automaton corresponding to the
behavior and modeling the desired behavior. However, the situation in this case is more complex
as the values of state variables may be changed “in parallel” by multiple parallel branches of a
behavior protocol; this results in a situation when behavior of a parallel branch affects the behavior
of another one. The algorithm for construction of a finite automaton Amain corresponding to a
behavior protocol containing state variables follows:

1. Eliminate the method parameters as described in previous section.

2. Create a finite automaton A corresponding to the behavior protocol:

• Each switch statement model as an alternative of all the branches; mark the initial
state of this alternative with “SWITCH”.

• Do not include a transition for the assignments of state variables; mark the states,
where a transition for assignment should start with “ASSIGN”.

• All the other operators model as original protocol operators.

3. Let n be the number of all possible combination of state variables’ values. Create n copies
of the A automaton and denote them by Ai for i ∈ 1 . . . n; each automaton represents a
combination of state variables’ values.

4. For each state marked with “ASSIGN”, add a transition to the “same” state of an automaton
Ai representing the same combination of variables’ values except for the variable being
assigned. Label this transition with the assignment statement.

5. For each state marked with “SWITCH”, keep only the transition leading from this state
that corresponds to the state variable value represented by this automaton; delete only the
first transition of each branch but one, but keep the following transitions and states.

6. Delete unreachable states and transitions in all automatons.

10



7. The resulting automaton Amain is the automaton created from Ai, i ∈ 1 . . . n; the only initial
state of Amain is the initial state of the Ai that Ai represents the combination of initial state
variables’ values. The set of accepting states is the union of the sets of accepting states of
particular Ai.

4.4 Multisynchronization

The synchronization of multiple behavior protocols is based on usage of special protocol events
being neither requests nor responses. Let us denote these events joining events. A joining event
is a blocking event executed simultaneously and atomically by all participating components as
well as the emit-accept pair of ordinary events by two communicating components. However, the
joining events are not “internalized” (i.e., converted to τ -events), but they keep their form and
meaning even after composition. Thus, they can be used in further compositions to synchronize
additional components on the same joining events. On the other hand, a protocol may contain a
joining event not used in a particular composition; then, such a joining event does not block and
“is executed” in the same way as an ordinary event on an interface that is not (yet) bound.

A joining event may occur in a behavior protocol as an ordinary event. The token denoting a
joining event starts with ‘@’ followed by the name of the joining event; for instance:

@synchro

The information what joining events are shared by particular components is expressed as a pa-
rameter of the composition operator; thus, the syntax and semantics of the consent composition
operator are extended accordingly.

To formally describe the semantics of the joining events, we use the same approach as in
previous case — we describe the semantics using the theory of finite automata. For the sake of
simplicity, at this point, we only describe the part regarding the joining events.

Let us denote the language generated by a behavior protocol P by L(P ) and the set of traces
accepted by a finite automaton A by L(A). Because for each behavior protocol P there exists
a finite automaton AP such that L(P ) = L(AP ) (and vice versa), we define the result of the
consent composition of two behavior protocols in terms of a finite automaton. Let there be
two behavior protocols BPA and BPB and the automata A = (Act,QA, qA, FA, NA) and B =
(Act,QB , qB , FB , NB) such that L(BPA) = L(A) and L(BPB) = L(B). Let Act be the set of all
event tokens forming the alphabet, QA be the set of states, qA ∈ QA be the initial state, FA ⊆ QA

be the set of accepting states and NA ⊆ QA ×Act×QA be the transition relation (and similarly
for B). Let J = {@j1, . . . , @jn} be the set of joining events, S the set of synchronization events
and U the set of unbound events; let J , S, and U are pairwise disjoint. Then, the automaton
C accepting the language L(C) = L(BPA∇S,U,JBPB) contains a transition labeled by @ji from
states corresponding to the following rule:

((q1, q2), @ji, (q′1, q
′
2)) ∈ NC iff (q1, @ji, q

′
1) ∈ NA and (q2, @ji, q

′
2) ∈ NB and @ji ∈ J

4.5 Until loops

The syntax of a protocol describing a stoppable service component follows:

do service part until ?stop method

Service part is an arbitrary behavior protocol, while stop method is a method of a service compo-
nent provided interface used to make the component stop providing the service. The !stop method$
response may be emitted after accomplishing (i.e., reaching of a final state of) the current execution
specified by service part.

11



To formally define the semantics, we again present a procedure for construction of a behavior
protocol having the original syntax and modeling the same behavior.

First recall that each behavior protocol corresponds to a finite automaton accepting the same
language as the behavior protocol generates. Let the ASP be a finite automaton so that L(ASP ) =
L(service part). Let us denote the states of ASP by s0 . . . sn. Let A′SP be a copy of the automaton
ASP and let us denote its states by s′0 . . . s′n. We construct an automaton ASSC created from ASP

and A′SP in the following way:

1. Add all states s1 . . . sn and s′1 . . . s′n and all transitions to ASSC .

2. Add a new state sfinal to ASSC .

3. Redirect all loop transitions leading to the initial state of A′SP from states s′i of A′SP corre-
sponding to the top-most repetition operator to the state sfinal. Label this transition with
the !stop method$ token.

4. Add a new state stmp to ASSC ; add a transition from the initial state of ASP to stmp and
label it with the ?stop methodˆ token; add a transition from stmp to sfinal and label it with
the !stop method$ token.

5. Except for the initial state of ASP , add transitions from si to s′i for all i ∈ {1 . . . n} and
label them with the ?stop methodˆ token.

6. Let the initial state of ASSC be only the initial state of ASP and the accepting state of ASCC

only the state sfinal.

7. Delete unreachable states and corresponding transitions.

For the finite automaton ASSC , let us create a regular expression (being also a behavior
protocol) SSC such that L(ASSC) = L(SSC) [7]. The behavior protocol SCC has the original
syntax and specifies the same behavior as the original protocol stated above.

5 Examples

In this part, we present several examples illustrating the aforementioned procedures and algo-
rithms.

5.1 Parametrized method calls

First, consider the behavior protocol on Fig. 10 containing parameterized method calls. As in the
case of parameterized method calls a potential interleaving of a protocol part with another parallel
branch does not interfere, for the sake of simplicity, this example contains no parallel operator.
A protocol yielding the same set of traces (up to the method name modifications, of course) and
containing no parametrized method calls is stated on Fig. 11. The CreateToken OTHER1,. . . ,
CreateToken OTHERn method accepts represents all the other possible values of the airlines
parameter.

5.2 Multisynchronization

To demonstrate the necessity of a multisynchronization mechanism in behavior protocols, consider
the following fragments of original behavior protocols corresponding to Arbitrator (Fig. 12), Token
(Fig. 13), and DhcpServer (Fig. 14) components. Here, the synchronization is performed via
atomic actions.

Because the components are bound and communicate each with both others, there in no
sequential order in which they can be initialized in a correct way (i.e., not rising up a bad activity
in later phases of the protocols). The atomic actions (events between ‘[’ and ‘]’) provide the
power we need in this case, however, they violate the associativity of the consent operator, which

12



we consider as an important property of composition operators. On Fig. 15 - 17, there are the
corresponding fragments of behavior protocols stated using the proposed synchronization method
— joining events.

6 Evaluation and conclusion

In this paper, we presented several extensions to behavior protocols enhancing the usability of this
platform for specification of behavior of software components. Two data entities were introduced
addressing problems with method parameters and stateful components. Further, a synchronization
mechanism allowing for synchronization of more than two components via new kind of events called
joining events extending the expressive power of behavior protocols was introduced. Last, but not
least, the do..until statement being only a syntactic abbreviation greatly simplifies the readability
of specification of service components.

Using the extended version of behavior protocols for the Airport Internet Access application
[5] resulted in much shorter, more readable yet more precise specification.

The future work will focus on implementing a tool for checking behavior compatibility of
components specified by this newly proposed version of behavior protocols and evaluating the
contribution on more case studies.

References

[1] Plasil, F., Visnovsky, S.: Behavior Protocols for Software Components, IEEE Transactions
on Software Engineering, vol. 28, no. 11, Nov 2002

[2] SOFA — http://sofa.objectweb.org

[3] E. Bruneton, T. Coupaye, M. Leclerc, V. Quema, J-B. Stefani: An Open Component Model
and Its Support in Java. 7th SIGSOFT International Symposimum on Component-Based
Software Engineering (CBSE7), LNCS 3054, Edinburgh, Scotland, May 2004.

[4] GCC, the GNU Compiler Collection, http://gcc.gnu.org/.

[5] Adamek, J., Bures, T., Jezek, P., Kofron, J., Mencl, V., Parizek, P., Plasil, F.: Compo-
nent Reliability Extensions for Fractal Component Model. http://kraken.cs.cas.cz/ft/
public/public index.phtml

[6] Adamek, J., Plasil, F.: Component Composition Errors and Update Atomicity: Static Anal-
ysis, Journal of Software Maintenance and Evolution: Research and Practice 17(5), Sep 2005

[7] Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction To Automata Theory, Languages,
and Computation, Addison-Wesley, 2001, Second edition

[8] Holzmann, G. J.: The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley
Professional, September 2003.

[9] Demartini, C., Iosif, R., Sisto, R: dSPIN: A Dynamic Extension of SPIN, Lecture Notes In
Computer Science; Vol. 1680, 1999, ISBN:3-540-66499-8

13



7 Appendices

(
?IDhcpServerLifetimeController.Startˆ;
!IListenerLifetimeController.Startˆ;
[?IListenerLifetimeController.Start$, !IDhcpServerLifetimeController.Start$]

)
;
(

(
(

(
?IDhcpListenerCallback.RequestNewIpAddress{

!IIpMacTransientDb.GetIpAddress 1;
(
(

!IIpMacTransientDb.Add 1;
!IT imer.SetT imeout

) + NULL
)

}
+
?IDhcpListenerCallback.RenewIpAddress{

!IIpMacTransientDb.GetIpAddress 1; (
(

!IIpMacTransientDb.SetExpirationT ime 1;
!IT imer.SetT imeout

) + NULL
)

}
+
?IDhcpListenerCallback.ReleaseIpAddress{

!IIpMacTransientDb.GetIpAddress 1; (
(

!IIpMacTransientDb.Remove 1;
!IDhcpCallback.IpAddressInvalidated 1;
(!IT imer.CancelT imeouts 1 + NULL)

) + NULL
)

}
) ∗
|
(
?IT imerCallback.T imeout{

(
!IIpMacTransientDb.GetExpirationT ime 2; (

(
!IIpMacTransientDb.Remove 2;
!IDhcpCallback.IpAddressInvalidated 2
) + NULL

)
) ∗

14



}
) ∗

)

)
+
(
(

(
(

?IDhcpListenerCallback.RequestNewIpAddress{
!IIpMacTransientDb.GetIpAddress 1;
(

(
!IIpMacTransientDb.Add 1;
!IT imer.SetT imeout
) + NULL

)
}
+
?IDhcpListenerCallback.RenewIpAddress{
!IIpMacTransientDb.GetIpAddress 1; (

(
!IIpMacTransientDb.SetExpirationT ime 1;
!IT imer.SetT imeout
) + NULL

)
}
+
?IDhcpListenerCallback.ReleaseIpAddress{
!IIpMacTransientDb.GetIpAddress 1; (

(
!IIpMacTransientDb.Remove 1;
!IDhcpCallback.IpAddressInvalidated 1;
(!IT imer.CancelT imeouts 1 + NULL)
) + NULL

)
}

) ∗
|
(

?IT imerCallback.T imeout{
(

!IIpMacTransientDb.GetExpirationT ime 2; (
(

!IIpMacTransientDb.Remove 2;
!IDhcpCallback.IpAddressInvalidated 2

) + NULL
)

) ∗
}

) ∗

15



)
|
?IManagement.UsePermanentIpDatabaseˆ

); !IManagement.UsePermanentIpDatabase$; (
(
(

?IDhcpListenerCallback.RequestNewIpAddress{
!IIpMacTransientDb.GetIpAddress 1; (

(
!IIpMacPermanentDb.GetIpAddress; (

(
!IIpMacTransientDb.Add 1;
!IT imer.SetT imeout
) + NULL

)
) + (
!IIpMacTransientDb.Add 1;
!IT imer.SetT imeout
)

)
}
+
?IDhcpListenerCallback.RenewIpAddress{
!IIpMacTransientDb.GetIpAddress 1; (

(
(

!IIpMacPermanentDb.GetIpAddress; (
(

!IIpMacTransientDb.SetExpirationT ime 1;
!IT imer.SetT imeout

) + NULL
)

) + (
!IIpMacTransientDb.SetExpirationT ime 1;
!IT imer.SetT imeout

)
) + NULL

)
}
+
?IDhcpListenerCallback.ReleaseIpAddress{
!IIpMacTransientDb.GetIpAddress 1; (

(
!IIpMacTransientDb.Remove 1;
!IDhcpCallback.IpAddressInvalidated 1;
(!IT imer.CancelT imeouts 1 + NULL)
) + NULL

)
}

) ∗
|
(

16



?IT imerCallback.T imeout{
(

!IIpMacTransientDb.GetExpirationT ime 2; (
(

!IIpMacTransientDb.Remove 2;
!IDhcpCallback.IpAddressInvalidated 2

) + NULL
)

) ∗
}

) ∗
)
|
?IManagement.StopUsingPermanentIpDatabaseˆ

); !IManagement.StopUsingPermanentIpDatabase$
)

) ∗

Figure 9: Behavior protocol of the IpAddressManager component

?IF lyT icketAuth.CreateToken(airlines) {
switch (airlines) {

AIRFRANCE : {
!IAfF lyT icketDb.GetF lyT icketV alidity;
(!IAfF lyT icketDb.IsEconomyF lyT icket + NULL)

}
CZECHAIRLINES : {

!ICsaF lyT icketDb.GetF lyT icketV alidity;
(!ICsaF lyT icketDb.IsEconomyF lyT icket + NULL)

}
default : {NULL}

}
}

Figure 10: A behavior protocol containing parametrized method calls.

17



?IF lyT icketAuth.CreateToken AIRFRANCE {
!IAfF lyT icketDb.GetF lyT icketV alidity;
(!IAfF lyT icketDb.IsEconomyF lyT icket + NULL)

}
+
?IF lyT icketAuth.CreateToken CZECHAIRLINES {

!ICsaF lyT icketDb.GetF lyT icketV alidity;
(!ICsaF lyT icketDb.IsEconomyF lyT icket + NULL)

}
+
?IF lyT icketAuth.CreateToken OTHER1 {NULL}
+
?IF lyT icketAuth.CreateToken OTHER2 {NULL}
+
...
+
?IF lyT icketAuth.CreateToken OTHERn {NULL}

Figure 11: A behavior protocol containing no parametrized method calls.

(
?ITokenCallback.Notifyˆ;
!IArbitratorCallback.Notifyˆ;
[?IArbitratorCallback.Notify$, !ITokenCallback.Notify$];

?IArbitratorLifetimeController.Startˆ;
[!ITokenLifetimeController.Startˆ, !IDhcpServerLifetimeController.Startˆ];
[?ITokenLifetimeController.Start$, ?IDhcpServerLifetimeController.Start$,

!IArbitratorLifetimeController.Start$]
)
;
rest of protocol

Figure 12: A fragment of a behavior protocol of the Arbitrator component.

((
?IToken.SetEvidence
|
?IToken.SetV alidity
|
(?IToken.SetAccountCredentials + NULL)

) + NULL)
;
!ITokenCallback.Notify
;
?ITokenLifetimeController.Start
;
rest of protocol

Figure 13: A fragment of a behavior protocol of the Token component.

18



?IDhcpServerLifetimeController.Start
;
rest of protocol

Figure 14: A fragment of a behavior protocol of the DhcpServer component.

(
?ITokenCallback.Notifyˆ;
!IArbitratorCallback.Notifyˆ;
?IArbitratorCallback.Notify$; !ITokenCallback.Notify$;
@syncEnvironment;
?IArbitratorLifetimeController.Startˆ;
!ITokenLifetimeController.Startˆ; !IDhcpServerLifetimeController.Startˆ;
?ITokenLifetimeController.Start$ | ?IDhcpServerLifetimeController.Start$;
!IArbitratorLifetimeController.Start$

);
@syncAll
;
rest of protocol

Figure 15: A fragment of a synchronized version of the Arbitrator component.

((
?IToken.SetEvidence
|
?IToken.SetV alidity
|
(?IToken.SetAccountCredentials + NULL)

) + NULL)
;
!ITokenCallback.Notify
;
?ITokenLifetimeController.Start
;
@syncAll
;
rest of protocol

Figure 16: A fragment of a synchronized version of the Token component.

?IDhcpServerLifetimeController.Start
;
@syncAll
;
rest of protocol

Figure 17: A fragment of a synchronized version of the DhcpServer component.

19


