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Abstract 

 

 
 

A typical problem formal verification faces is the size of 
the model of a system being verified. Even for a small 
system, the state space of the model tends to grow 
exponentially (state explosion). In this paper, we present a 
new representation of state spaces suitable for implementing 
operations upon behavior protocols of software components 
[1]. The proposed representation is linear in length of the 
source behavior protocol. By trading space for time, it 
allows handling behavior protocols of “practical size”. As a 
proof of concept, two versions of a verification tool based 
on the proposed technique are discussed. 
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1. Introduction and motivation 

The traditional verification techniques of program 
correctness are testing and simulation. However these 
techniques suffer from two major problems: (i) A working 
prototype is necessary for the verification, which inherently 
means belated error discovery within the development cycle. 
A remedy may require a major change in the program’s 
architecture, which may be very costly in late design stages. 
(ii) It is usually hardly possible to test all the potential 
interactions with the program’s environment so that some 
errors may remain undetected during the development, 
being discovered as late as by an end user. 

Formal verification is a well-established method for 
correctness checking which can be employed during the 
whole program development cycle. The complete program 
is described via a mathematical model the properties of 
which can be verified with the assistance of verification 
tools.  
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However, as forming of the actual model can be quite 
complicated, these tools are usually not easy to employ. 
Another important problem is that the representation of the 
state space associated with the model tends to exhaust all 
the memory available for a particular verification tool (the 
“state explosion” problem). 

In this paper, we focus on formal models targeting 
behavior description of software components. In particular, 
we address the issue of efficient memory representation of 
the behavior protocols [1], which allows behavior 
compliance checking of cooperating components. 

1.1. Components and behavior 

Components are modern foundations of building software 
applications. Frequently understood as a design entity, a 
component provides some services to its environment and 
requires other services from the environment (other 
components). A service is usually described as an interface 
(and the methods in this interface). Therefore, in a typical 
component model, a component features both provided and 
required interfaces, like in Darwin [14] and Fractal [15].  

In addition to defining interfaces at the syntax level, 
some of the component models partially capture also the 
semantics of components by specifying the desired/allowed 
sequences of method invocations (behavior of components). 
Such component models include Wright[5], Darwin[14], 
and SOFA[3]. In this paper, we focus on the behavior 
specification via behavior protocols [1] employed in SOFA, 
an open source component model [3]. 

1.2. Behavior protocols 

A behavior protocol is a regular expression-based 
expression describing behavior at different levels of 
granularity (interface, interplay of all interfaces of a 
component, composition of several components).  A 
behavior is a language over symbols that denote either the 
start or end of a method invocation (events). A behavior 
protocol features additional operators to enhance 
expressiveness. These additions do not break regularity of 
the languages described by behavior protocols. We provide 
only a basic overview of behavior protocols, for further 
reference we refer the reader to [1] and [4]. 

 



 

Syntax. The symbols denoting events are used to 
describe synchronous and asynchronous method invocations 
and have the following syntax:  

(type, interface_name, event_name, flag) 

where type indicates whether event_name determines a 
method invocation accepted on interface_name (?), 
emitted on interface_name (!), or it is an internal event 
taking place within a composed component (τ). Further, 
flag denotes whether the event is a method invocation 
request (↑) or response (↓).  As an example, the acceptance 
of synchronous call invoking the method b on an interface a 
is expressed as ?a.b↑ ; !a.b↓.  

 
Semantics. In addition to the operators defined for 

regular expressions, i.e. ; (sequencing),  + (alternative), * 
(repetition), several new operators are added to handle 
restriction, parallelism, and composition. For the purpose of 
this paper, it is sufficient to mention the operator | (and-
parallel) which produces an arbitrary interleaving of traces 
generated by its operands. 

 
Example.  Consider a component representing a file. It 

provides one interface that contains five methods to 
manipulate the file: open, read, write, close, 
and status. The supported behavior either (i) starts with 
calling open, then an arbitrary interleaving of read and 
write follows and finally close has to be called; or (ii) 
allows status to be called at anytime (in parallel with (i)). 
The corresponding behavior protocol takes the form (for 
simplicity we use shortcut method_name for 
?method_name↑; !method_name↓): 

(open;(read+write)*;close)|status* 

Compliance. Behavior protocols allow static testing of 
behavior compliance of tied components. This way 
questions like “Is it possible to safely replace a component 
by another one if we know their interfaces and behavior?” or 
“Is it possible to interconnect these two components if we 
know the behavior interplay on the provided and required 
interfaces of each of them?” can be answered. Basically, the 
components are compliant if they fulfill two conditions 
based on subset relations. The publication [1] describes the 
compliance concept thoroughly and also provides an 
algorithm of compliance verification.  

 
State explosion. Basically, the state space associated 

with a behavior protocol is the state space of the finite 
automaton accepting the regular language generated the 
behavior protocol.  

Above, we mentioned that formal verification has 
typically to cope with the state explosion problem. Also 
behavior protocols suffer from this problem, because the 
compliance is tested via the corresponding automata 
determined by the behavior protocols in question, since any 
parallel activity causes exponential growth of the state 
space. For example in the original SOFA verifier [3], the 

state space corresponding to an expression involving more 
than 13 parallel operators does not practically fit into the 
memory available for the verifier even on a decent PC.  

1.3. Goals and structure of the paper 

To target the problem mentioned above, we designed a 
novel automata representation, which significantly improves 
the efficiency of the compliance verifier. In the inherent 
space versus time tradeoff, it shifts the complexity towards 
time in such a way that it allows to solve practical problems 
at least twice as big as the original verifier could handle. 
The main goal of this paper is to present the basic idea of 
this novel representation and share with the reader the 
lessons we learned during experiments with the new 
verifiers.  

The structure of the paper is following. In Section 2, we 
discuss the flaws of classical automata representations 
(Section 2.2), while the Sections 2.3 and 2.4 bring the core 
of the paper by introducing parse tree automata and their 
optimizations. In Section 3, we describe an experimental 
behavior protocol verifier based on parse tree automata and 
Section 4 describes an enhanced Java version of the verifier. 
In Section 5, we evaluate the proposed representation and 
compare it with other techniques addressing state explosion. 
Section 6 concludes the paper. 

2. Behavior protocol representation 

2.1. Representation and efficiency 

Different representations of a state space corresponding 
to a behavior protocol (expression for short) have specific 
benefits and drawbacks. Such a situation makes any 
reasoning on the representation efficiency a complicated 
task.  

To show the properties of different finite automata 
representations (representation for short), we have 
identified four criteria proved to be important for a 
successful choice of a particular representation. The chosen 
criteria are: 

 
• Size of representation is the amount of the memory 

required to store a (state space) representation. This is 
determined by all the data structures involved. 

• Building time is the time required to create the 
representation from an expression. 

• Space requirement of composed state identifiers is the 
amount of memory required to identify the states in a 
state space.  

• Access time is the average time needed to determine the 
list of transitions associated with a state. 



      

2.2. Basic representation techniques 

To illustrate how the evaluation criteria help (i) 
characterize different representation techniques and (ii) 
show trade-off between time and space complexity, we 
present an overview of two classical finite automata 
representation techniques. 

 
Explicit representation is the most simple and 

straightforward technique to represent an automaton. All 
necessary information is explicitly held in memory – lists of 
states, transitions, and accepting states (as lists, hash tables, 
matrices, ...). 

As to size of such representation, state explosion is very 
likely. Also building time is fairly low as the construction of 
a state space is usually done recursively by composing the 
state spaces of sub-expressions and as the whole state space 
has to be traversed during this construction. 

On the other hand, explicit representations shine in access 
time and size of identifiers. Hardly anything can beat the 
usage of pointers in states identification and retrieving a list 
of transition from memory. 

Size of a representation is the major drawback of explicit 
representation causing that verification tools avoid using it. 
As explained in [2], the original SOFA behavior protocol 
verifier uses this type of representation. States are 
implemented as Java objects holding lists of labeled 
references to other states.  

 
Symbolic representation is a group of techniques that 

use a different approach. The required state space is not 
generated in advance as in explicit representations but it is 
rather computed on-the-fly. This approach brings two 
benefits in terms of fighting state explosion: (i) In most 
cases, very large numbers of states can be handled, and (ii) 
the unvisited portions of the space are not generated at all. 
However access time is slower than in explicit 
representation because several computations are needed to 
obtain a list of transitions. Also a state identifier is usually 
implemented via a composed data structure, hence 
consuming more memory than a state identifier in the 
explicit representation technique.  

The most recognized member of the symbolic 
representation technique category is the Ordered Binary 
Decision Diagram (OBDD) [6] technique. An OBDD is an 
acyclic directed graph representing a Boolean function 
f(x1,…,xn) → {0, 1}. In this graph, the internal nodes 
correspond to functional arguments and the two possible 
terminal nodes correspond to the output of the function. The 
arguments appear in the same order on the path from the 
root to leaves (Fig. 1). However the size of an OBDD graph 
strongly depends on the order of the function arguments. 
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Fig. 1. Root of the decision diagram determining the function 
f(x1,...,xn) 

There are functions that are described by a graph of linear 
size for a specific argument ordering and of exponential size 
for a different ordering. And, unfortunately, deciding on an 
optimal ordering is an NP-complete problem [6].  

To our knowledge, a precise evaluation of using OBDDs 
for representation of regular expressions has not been 
provided so far. 

2.3. Parse trees and parse tree automata 

To tackle the state explosion problem in representation of 
behavior protocols, we suggest and describe bellow parse 
tree automata, a novel symbolic representation technique. 

 
Parse trees (also syntax or expression trees) are a 

common way to represent expressions in memory. They are 
mainly used to represent mathematic formulas and program 
source codes in compilers. Obviously, they are also capable 
to represent behavior protocols (Fig. 2).  
A parse tree is a tree structure that describes a given 
expression unambiguously. When representing behavior 
protocols, the parse tree features the following important 
properties: 

• Event symbols featuring in an expression appear only in 
the leaf nodes and operators in inner nodes of the 
corresponding parse tree.  

• The operator nodes representing the repetition and 
restriction operators are unary; all others are binary.  

• Every subtree describes an expression (valid behavior 
protocol).  

The main advantage of parse trees is the size of 
representation, linearly dependent on the expression length 
and having no direct relation to the number of states. Also 
the building time is linear in the length of expression. 
Evaluation of access time and state identifiers’ space 
requirement will be discussed later after we present parse 
tree-based representation technique (parse tree automata). 
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Fig. 2. A parse tree representing (a+b) ; c* 

Parse tree automata (PTA). Construction of a PTA 
follows the idea of recursive state space creation in the 
explicit representation technique. As PTA is a symbolic 
technique, the actual full state space of PTA is never 
represented as a single complex data structure. On the 
contrary, the key idea is to (i) directly represent only the 
parse tree (PT) of the expression and the primitive automata 
which accept the event symbols in the leaves of the parse 
tree, (ii) introduce composed state identifiers allowing to 
detect the current state and avoid unnecessary multiple 
traversals of PTA states, and (iii) define the transition 
function of PTA via recursive rules determining the (direct) 
transitions from a state, given its composed identifier. An 
example of PTA and its correspondence to a parse tree is 
illustrated on Fig. 3. 

We will demonstrate the idea on three simple examples: 
(1) representation of a primitive automaton, (2) 
implementation of automata composition driven by the 
sequence operator, and (3) implementation of automata 
composition driven by the parallel operator. Automata 
compositions driven by the other operators are implemented 
in a similar manner (a detailed description is in [2]). 

A primitive automaton has two states (initial and 
accepting) and a single transition between them. The 
transition label is an event symbol. 

The sequencing operator expresses concatenation of the 
languages accepted by the left- and right - hand automata 
PTAL and PTAR. To create the respective composed 
automaton PTA; , it is sufficient to establish implicit 
transitions (λ) from the accepting states of PTAL to the 
initial state of PTAR  (Fig. 4b).  The resulting set of 
accepting states in PTA; consists of the accepting states of 
PTAR . The accepting states of PTAL are added only if the 
initial state of PTAR is accepting. Obviously, modifications 
of PTAL and PTAR are not necessary, since the implicit 
transitions λ are added in the implementation of the 
sequencing operator in PTA;. 

The parallel operator expresses arbitrary interleaving of 
all the words of the languages accepted by the left- and right 
hand automata PTAL and PTAR. In order to create the 
respective product automaton, it is sufficient to establish a 
state space “grid” and corresponding transitions as 
illustrated in Fig. 4c. 

 
 
 

 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Composed state identifiers in PTA. To address the idea 
(ii) above, a state identifier must reflect the structure of the 
subtree of PT it is associated with and capture the state of 
the primitive automata within the subtree. For a specific PT, 
all the top-level identifiers will be of the same size (linear in 
the size of PT). As a technicality, memory allocation for 
state identifiers can cause substantial memory overhead. It 
is recommended to use an allocator that is optimized for 
allocating small memory chunks of the same size. 

 
Time requirements for generating PTA transitions. 

The average time required is influenced by the number of 
PT nodes that have to be visited to calculate the list of 
transitions associated with a particular state.  In each of 
these nodes some computation is necessary, as the potential 
transitions are determined on the fly. For each transition, 

Fig. 3. Generating states and transitions of PTA. 
Circles represent states. Squares represent nodes of 
PT. 
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Fig. 4. a) Primitive automata for the “a” and “b” event 
symbols. b) PTA for “a;b”. c) PTA for (a;b) | (c;d). Legend: A 
dotted arrow represents an implicit transition λ. State identifiers 
are in brackets (simplified). 
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also the state identifier of the target state has to be evaluated 
for keeping track of the states visited. 

The number of visited PT nodes is greatly influenced by 
the actual operators encountered in PT. For example, for the 
standard regular expression operators only one subtree has 
to be visited. On the contrary, encountering a parallel 
operator means visiting both subtrees.  

2.4. PTA optimizations 

As discussed in Section 2.3, performance of PTA 
depends on the number of nodes in PT. If the number of PT 
nodes were reduced, performance would greatly improve. 
Therefore we experimented with several optimizations in 
PTA representation.  

Multinodes. The idea of multinodes is to collapse the 
nodes of PT featuring the same operator into a single node.  
For example, in Fig. 5 collapsing means representing only a 
single node for the sequence operator ‘;’  (associated with a 
list of PT subtrees a, b, c, d). 

; M;

;

; d

dcba

ba

c

a) b)  

Fig. 5. a) Original parse tree. b) Parse tree with multinodes for the 
protocol a;b;c;d 

This way, access time is greatly improved since less 
computation is required.  

Forward cutting (of primitive automata). Removal of 
the transitions from the state space, which are discarded by a 
restriction operator, can be easily achieved by removing the 
affected event symbols nodes from PT. 

Again, such optimization can produce PTs with a smaller 
number of nodes what results in a smaller state identifiers’ 
space and improved access time. 

Explicit subtrees. Since performance of explicit 
representation is very good for state spaces of   “reasonable” 
size, it can be advantageous to combine both the PTA and 
explicit representations techniques. It is feasible to select 
those PT subtrees that imply a small state space (typically 
not featuring “many” parallel operators) and the states of 
which are generated more than once (e.g. forced by a 
parallel operator in a higher level of PT) and represent them 
via explicit automata embedded in PTA. 

 
We implemented two verifiers based on the PTA 

representation technique (“Python verifier” and “Java 

verifier”). These implementations provide a flexible 
framework that allows simple addition of new parsers, 
optimizations, and verification backend alternatives as 
explained below. 

3. Python implementation of PTA 

Architecture platform. The Python verifier consists of 
three independent parts (parser, optimizer, backend) 
orchestrated by a simple application. All the parts of the 
verifier are implemented in Python [7]. However as the 
original Python provides only interpreted execution, we use 
the PSYCO [8] optimizing compiler to improve efficiency.  

 
Parser. The goal of the parser is the creation of a PT 

representation from an expression. Currently only behavior 
protocols (Section 1.2) are considered as expressions. 

 
Optimizer currently supports forward cutting of events 

and explicit subtrees optimizations. To choose a subtree that 
should be converted into an explicit automaton, a simple 
estimate of the number of states described by the subtree is 
based on assigning weights: the primitive automata get 
weight 2; for sequencing and alternative operators we sum 
the weights of the underlying automata, for parallel 
operators we multiply the weights. All the subtrees, the 
weight of which does not exceed a specific value, are 
addressed via explicit representation. 

 
Backend alternatives. To enhance the application area 

of behavior protocols, we created three backend 
alternatives: compliance checking, visualization (using 
Aisee visualization tool [9]), and model checking (using 
Caesar/Aldebaran model checker [10]). Technically, 
compliance is checked by evaluating the subset relations of 
the compliance conditions (defined in [1]) via inspecting the 
emptiness of intersection of one set and the complement of 
the other. Visualization of a state space can ease up protocol 
perception, especially by highlighting counter examples 
produced by compliance verifier. When the state space gets 
too large for visualization, checking of specific properties is 
easier via a model-checking tool such as the 
Caesar/Aldebaran toolset. The bottom line is that 
independent tools are used for visualization and model 
checking; the verifier prepares only source files for them. 

Since all backends use exhaustive traversal of the state 
space, we implemented a general depth-first-search 
algorithm that provides hooks for the algorithm specific 
computations during a state space traversal. The algorithm 
uses state space caching technique [12] to keep the list of 
visited states. 

 
Implementation details. For particular operators, 

operator nodes are implemented as classes derived from a 
single interface that allows the client to obtain the initial 
state of the state space, list of transitions for a particular 



 

state, and list of the accepting states. In addition to the 
behavior protocol operators, we also implemented operators 
for language complement and automata product. A state 
identifier is implemented as a tree of Python 2-tuples. 

 
Benchmarks. We used a slightly modified case study 

from [1] to assess performance of the Python verifier. The 
case study features a database server composed of two 
components and the protocol describing the server’s 
behavior is: 

 
!dbAcc.Open;  
  (?d.Insert  

{(!dadbAcc.Insert; !dbLog.LogEvent)*}  
+  
  ?d.Delete  

{(!dadbAcc.Delete; !dbLog.LogEvent)*} 
+  
  ?d.Query  

{(!dadbAcc.Query)*}) *;  
!dbAcc.Close 

 
Our enhancements to the case study [1] pertain 

parallelism for accessing the functionality of the database 
server (replacing the ‘+’ operator by ‘|’) and the addition of 
two methods, insert and modify, to the server 
interface. The new methods are used in a similar way as 
their siblings. Using parallelism and the addition of new 
methods significantly increased the size and complexity of 
the related state space. These modifications are discussed in 
[2]. 

We created four benchmarks (1-4): In (1) we tested the 
compliance of the protocol described in the case study [1] 
with the composed protocol of nested components.  Both 
state spaces in (1) were very simple and compliance 
verification was fast. In the subsequent benchmarks, we  (2) 
replaced the alternative operators by parallel operators and 
(3) added the insert and (4) modify methods.  

For illustration, the protocol in the (4) variant (most 
demanding as far as the size of state space generated is 
considered) was: 
 
!dbAcc.open; ( 
  (?dbSrv.insert↑;!trans.begin; 
  (!dbAcc.insert;!lg.logEvent)*; 
  (!trans.commit+!trans.abort); !dbSrv.insert↓)  
|  
  (?dbSrv.delete↑;!trans.begin; 
  (!dbAcc.delete;!lg.logEvent)*; (!trans.commit + 
  !trans.abort); !dbSrv.delete↓) 
| 
  (?dbSrv.update↑;!trans.begin; 
  (!dbAcc.update;!lg.logEvent)*; 
  (!trans.commit+!trans.abort); !dbSrv.update↓) 
| 

(?dbSrv.modify↑;!trans.begin; (!dbAcc.modify; 
!lg.logEvent)*; (!trans.commit+!trans.abort); 
!dbSrv.modify↓) 

| 
(?dbSrv.query↑;!dbAcc.query;!dbSrv.query↓) 

)*; 
!dbAcc.close. 

 

We benchmarked the consumed memory and required 
time of the original verifier and of the Python verifier with 
different optimizer settings. The speed without the forward 
cutting of primitive automata optimization was very poor, 
being significantly slower when compared to the original 
verifier; therefore this optimization was applied in all of the 
following benchmarks. 

 
  (1) (2) (3) (4) 

 
 

Simple 
protocol from 

[1] 

Protocol 
with | 

Protocol 
with | and 
insert 

Protocol with 
| , insert  

and modify 

 Original 
verifier 12.2MB 16.8MB 70.5MB 

Out of memory 
limit 

P
y
t

0 explicit 
states 5.9MB 6.2MB 12.3MB 72.4MB 

h
o
n

100 
explicit 
states 

5.9MB 6.6MB 10.1MB 46.4MB 

v
e
r
i

10,000 
explicit 
states 

0.16s/ 
5.7MB 6.7MB 9.9MB 40.2MB 

f
i
e
r

1,000,000 
explicit 
states 

5.7MB 6.4MB 14.0MB 70MB 

Table 1. Memory benchmark results of the original verifier and 
the Python verifier for various sizes of explicit subtrees measured 
by number of their states. 

 
  (1) (2) (3) (4) 

 
 

Simple 
protocol from 

[1] 

Protocol 
with | 

Protocol 
with | and 
insert 

Protocol with 
| , insert  

and modify 

 Original 
verifier 800.0% 102.9% 197% 

Out of memory 
limit 

P
y
t

0 explicit 
states 100% 100% 100% 100% 

h
o
n

100 
explicit 
states 

123.1% 48.9% 45.8% 44.6% 

v
e
r
i

10,000 
explicit 
states 

123.1% 48.9% 34.0% 32.8% 

f
i
e
r

1,000,000 
explicit 
states 

123.1% 97.1% 45.0% 28.2% 

 Table 2. Relative time requirements: The original verifier vers. 
Python verifier for various sizes of explicit subtrees measured by 
number of their states. 

The explicit subtrees optimization was applied to a 
different numbers of states embedded in explicit 



      

representation: 0 (no optimization), 100, 10,000, and 
1,000,000. The results of the benchmarks were a little bit 
surprising: The Python verifier (based on PTA) with 
forward cutting of primitive automata outperformed the 
original SOFA verifier (based on explicit representation). 
However, there was a major difference in CPU time 
dedication: The original verifier spent most of the time by 
creating the explicit representation, while the actual 
verification was very quick (about two seconds for (3)). The 
Python verifier spent some time on optimizations and a 
significant amount of time on verification. The time spent 
by the optimizer heavily depended on the size of explicit 
subtrees. For example, in (4) the creation of explicit subtrees 
with 1,000,000 states took about 135 seconds. The increase 
of the overall execution time of (2) and (3) (comparing 
10,000 and 1,000,000 states) was caused by the time 
necessary for creation of explicit subtrees. 

4. Java implementation of PTA 

To fully incorporate a checking tool into the SOFA 
environment, we decided to reimplement the Python verifier 
in the Java language.  

The Java verifier uses the approach and techniques 
employed in the former Python verifier, but it introduces 
new optimizations and backend features. By these 
optimizations, both time and space requirements decreased 
and, therefore, the complexity of the protocols that can be 
checked was pushed a bit further. 

 
Optimizations. Besides the optimizations included in the 

Python verifier (explicit subtrees and forward cutting), the 
multinodes optimization (Fig. 5) was implemented and 
found very beneficial. This optimization is performed during 
the construction of a parse tree in a straightforward, efficient 
way. 

 
Backend alternatives. In the Java verifier we 

implemented only two backends: compliance checking and 
visualization, since these two had been identified as the 
most frequently needed. 

For visualization, we decided to use the dot tool of the 
Graphviz package [16], since it is freely distributed and its 
features greatly suffice for our purposes. The visualization 
backend is able to provide both protocol parse tree and 
graph of the PTA state space. Since the dot tool supports, 
among other types of output, the Virtual Reality Modeling 
Language (VRML), this format can be advantageously used 
for complex protocols both to get the whole picture of the 
automaton and zoom into its specific parts. 

 
Implementation details. Because of the differences 

between Python and Java, we had to cope with a lot of 
specific problems when rewriting the verifier from Python 
to Java. A main problem was the state identifiers in Java 
(handled internally by Python): As implied by the 

argumentation in Section 2.3, we needed state identifiers 
that could be computed fast and consume as small amount 
of memory as possible. We could not use Java references, 
because of the on-the-fly state generation (potentially 
repeated for a particular state). 

Therefore, each state is represented by a state tree, where 
its leaves represent the states of primitive automata, while 
inner nodes represent the state of the composed automata 
corresponding to the nodes’ subtree. The state identifier of a 
primitive automaton indicates its active state (0 or 1) (Fig. 
4a). The state identifier of a composed automaton is created 
as concatenation of its children’s identifiers. Thus, the 
resulting state identifier reflects the structure of PT, 
uniquely denotes a state within the state space, and its 
length is linear in the size of PT. Obviously, the state 
identifier of the main automaton is determined at the root of 
the state tree. The state identifiers are computed in a lazy 
way (only when actually needed) and are stored in a cache. 
Traversal of the state space employs frequent comparison of 
the identifiers (that is quite fast). Even though the 
computation of state identifiers was optimized for speed, it 
is still the most time consuming operation in the checking 
process (since it is performed for each state visit). 

 
Benchmarks. We employed two types of benchmarks: 

the first type was focused on the benefits of particular 
optimizations in the Java verifier and the second one on a 
comparison of performance of the three verifier versions: 
the original verifier (written in Java), and Python and Java 
PTA verifiers. Always we used protocols of various 
complexity; both real-life and “academic” protocols 
inducing large state spaces were checked. 

The real-life protocols included again a set of database 
server protocols similar to those used in Section 3.  The 
“academic” protocols involved only the parallel operator 
(such as a | b, a | b | c, …), which is one of those 
causing the exponential growth of the state space, so that 
using it enabled us to generate really large state spaces and 
easily compute their sizes. 

The optimization benchmarks have shown that disabling 
the forward cutting optimization results in a very poor 
performance. This is caused by the complement operator 
expanding the state space to an enormous size. Hence, as 
well as in Section 3, forward cutting is used in each of the 
benchmarks below. The benefits of the other types of 
optimization depend on the concrete structure of the 
protocols being checked (Table 3). For example, in the case 
of “academic” protocols using the parallel operator, the 
most worthwhile optimization are multinodes; the explicit 
subtrees optimization cannot be used here, because the 
states of the automaton represented by the only (multi-) 
node in the parse tree are used only once. While checking 
the real-life protocols, the explicit subtrees optimization is 
most beneficial. 

Since the most important parameter of the protocol 
verifier is the state processing speed, in Table 4 we present 
the comparison of all verifiers based on checking the 



 

“academic” protocols (the results of checking the real-life 
protocols are not so interesting). A comparison of memory 
requirements is not involved since it is clear from Table 1 
that a PTA representation requires a smaller amount of 
memory than a corresponding explicit representation. In all 
benchmarks considered below all optimizations were 
applied. 

In the case of “academic” protocols, the Java verifier is 
faster than the Python verifier even if we turn off the 
multinodes optimization; the state processing is about two 
times faster in the Java verifier, which is probably caused by 
the fact that the Java Virtual Machine outperformes the 
Python Psyco compiler. On the other hand, the construction 
of the explicit subtrees is much slower in Java because of 
the evaluation of the state identifiers; the Python verifier is 
also able to keep more states (and larger explicit 
subautomata) in memory, because its state identifiers are 
shorter. In any case, the PTA approach beats the original 
explicit state representation. 

 

 
Forward 
cutting 

only 

All 
optimization 

No 
multinodes 

No 
explicit 
subtree

Academic 
(parallel) 100% 76.2% 100.8% 75.7% 

Real-life 100% 50.5% 67.7% 81.4% 

Table 3. Average relative time the Java verifier spent by checking 
with various optimizations enabled. 

 
Number of 

parallel 
operators 

used 

Original 
verifier 

Python 
verifier Java verifier 

6 100% 38.3% 22.3% 
7 100% 16.5% 7.7% 
8 100% 6.9% 2.3% 
9 100% 2.7% 0.7% 

Table 4. Relative time spent by checking the “academic” (parallel) 
protocols by all verifiers. 

5. Evaluation and related work 

Evaluation. The idea of using parse trees for symbolic 
representation has proven to be useful for the verification of 
behavior protocols. The newly implemented verifiers 
outperformed the original SOFA one, both in time and space 
complexity. The results provide a solid base for the 
hypothesis that the symbolic PT representation supported by 
the forward cutting of primitive automata optimization 
outperforms the explicit representation. Nevertheless, this 
hypothesis is still to be justified by a more thorough 
benchmarking.  

While experimenting with the proposed technique of 
PTA, we identified the following implementation issues: (i) 
Access time was significantly influenced by applying the 
forward cutting of primitive automata optimization. This 
implies there might be huge method calls overhead during 
the list of transition computation. (ii) Another access time 
improvement may be achieved by an adaptive selection of 
explicit subtrees, since our benchmarks showed that access 
time depends on the size of the parse trees as well. (iii) State 
identifiers may involve allocation of small structures what 
means a significant memory allocation overhead. Using a 
customized allocator, the amount of consumed memory 
might be greatly decreased in both Python and Java cases. 

 
Related work. To our knowledge, there is no other work 

that would focus on evaluation of an optimal representation 
for regular expressions. Therefore we can provide bellow 
only a comparison with representation techniques that face 
state explosion in other transition systems. 

Space explosion handling techniques can be divided into 
two categories: (i) efficient representation of the state space 
and (ii) structural simplification of the state space. OBDDs 
(mentioned in Section 2.2) and their derivatives Multiple-
value Decision Diagrams (MDDs) [11] and Multiple-
terminal BDDs (MTBDDs) [13] are typical representatives 
of (i). All these representations suffer from the optimal 
ordering problem [6]. There are heuristics developed, but 
they cannot guarantee the optimal results. Structural 
simplification of the state space is usually achieved by 
employing several level of abstraction in model description 
[14]. In fact, this technique was implicitly employed in 
SOFA component model [3], since a behavior protocol is 
always defined for a particular level of component nesting 
(as opposed to [14]) and behavior compliance is evaluated 
separately at the adjacent levels of component hierarchy. 

6. Conclusions and future intentions 

In this paper, we presented a new representation of a 
state space called Parse Tree Automata that addresses the 
state explosion problem encountered in behavior protocol 
checking. PTA fights this problem successfully for behavior 
protocols of “practical size”. Both verifiers based on this 
representation outperformed the original verifier 
implemented within the SOFA project not only in memory 
requirements but in the speed of verification as well. 

In the future, we intend to focus on handling the 
implementation issues described in Section 5. In particular 
we would like to implement an adaptive version of explicit 
subtrees optimization and make experiments with various 
memory allocators. 
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