
Behavior Protocols Verification: Fighting State Explosion

Martin Mach1, Frantisek Plasil1,2, Jan Kofron1

Charles University, Prague
Academy of Sciences of the Czech Republic

Abstract

A typical problem formal verification faces is the size of
the model of a system being verified. Even for a small
system, the state space of the model tends to grow
exponentially (state explosion). In this paper, we present a
new representation of state spaces suitable for implementing
operations upon behavior protocols of software components
[1]. The proposed representation is linear in length of the
source behavior protocol. By trading space for time, it
allows handling behavior protocols of “practical size”. As a
proof of concept, two versions of a verification tool based
on the proposed technique are discussed.

Keywords: Formal verification, software components, state
explosion, behavior protocols, parse trees.

1. Introduction and motivation

The traditional verification techniques of program
correctness are testing and simulation. However these
techniques suffer from two major problems: (i) A working
prototype is necessary for the verification, which inherently
means belated error discovery within the development cycle.
A remedy may require a major change in the program’s
architecture, which may be very costly in late design stages.
(ii) It is usually hardly possible to test all the potential
interactions with the program’s environment so that some
errors may remain undetected during the development,
being discovered as late as by an end user.

Formal verification is a well-established method for
correctness checking which can be employed during the
whole program development cycle. The complete program
is described via a mathematical model the properties of
which can be verified with the assistance of verification
tools.

1Faculty of Mathematics and Physics
Department of Software Engineering
Malostranske namesti 25, 118 00 Prague 1,
Czech Republic
{mach, plasil, kofron}@nenya.ms.mff.cuni.cz,
http://nenya.ms.mff.cuni.cz

2Academy of Sciences of the Czech Republic
Institute of Computer Science
Pod Vodarenskou vezi 2, 182 07 Prague 8,
Czech Republic
plasil@cs.cas.cz, http://www.cs.cas.cz

However, as forming of the actual model can be quite
complicated, these tools are usually not easy to employ.
Another important problem is that the representation of the
state space associated with the model tends to exhaust all
the memory available for a particular verification tool (the
“state explosion” problem).

In this paper, we focus on formal models targeting
behavior description of software components. In particular,
we address the issue of efficient memory representation of
the behavior protocols [1], which allows behavior
compliance checking of cooperating components.

1.1. Components and behavior

Components are modern foundations of building software
applications. Frequently understood as a design entity, a
component provides some services to its environment and
requires other services from the environment (other
components). A service is usually described as an interface
(and the methods in this interface). Therefore, in a typical
component model, a component features both provided and
required interfaces, like in Darwin [14] and Fractal [15].

In addition to defining interfaces at the syntax level,
some of the component models partially capture also the
semantics of components by specifying the desired/allowed
sequences of method invocations (behavior of components).
Such component models include Wright[5], Darwin[14],
and SOFA[3]. In this paper, we focus on the behavior
specification via behavior protocols [1] employed in SOFA,
an open source component model [3].

1.2. Behavior protocols

A behavior protocol is a regular expression-based
expression describing behavior at different levels of
granularity (interface, interplay of all interfaces of a
component, composition of several components). A
behavior is a language over symbols that denote either the
start or end of a method invocation (events). A behavior
protocol features additional operators to enhance
expressiveness. These additions do not break regularity of
the languages described by behavior protocols. We provide
only a basic overview of behavior protocols, for further
reference we refer the reader to [1] and [4].

Syntax. The symbols denoting events are used to
describe synchronous and asynchronous method invocations
and have the following syntax:

(type, interface_name, event_name, flag)

where type indicates whether event_name determines a
method invocation accepted on interface_name (?),
emitted on interface_name (!), or it is an internal event
taking place within a composed component (τ). Further,
flag denotes whether the event is a method invocation
request (↑) or response (↓). As an example, the acceptance
of synchronous call invoking the method b on an interface a
is expressed as ?a.b↑ ; !a.b↓.

Semantics. In addition to the operators defined for

regular expressions, i.e. ; (sequencing), + (alternative), *
(repetition), several new operators are added to handle
restriction, parallelism, and composition. For the purpose of
this paper, it is sufficient to mention the operator | (and-
parallel) which produces an arbitrary interleaving of traces
generated by its operands.

Example. Consider a component representing a file. It

provides one interface that contains five methods to
manipulate the file: open, read, write, close,
and status. The supported behavior either (i) starts with
calling open, then an arbitrary interleaving of read and
write follows and finally close has to be called; or (ii)
allows status to be called at anytime (in parallel with (i)).
The corresponding behavior protocol takes the form (for
simplicity we use shortcut method_name for
?method_name↑; !method_name↓):

(open;(read+write)*;close)|status*

Compliance. Behavior protocols allow static testing of
behavior compliance of tied components. This way
questions like “Is it possible to safely replace a component
by another one if we know their interfaces and behavior?” or
“Is it possible to interconnect these two components if we
know the behavior interplay on the provided and required
interfaces of each of them?” can be answered. Basically, the
components are compliant if they fulfill two conditions
based on subset relations. The publication [1] describes the
compliance concept thoroughly and also provides an
algorithm of compliance verification.

State explosion. Basically, the state space associated

with a behavior protocol is the state space of the finite
automaton accepting the regular language generated the
behavior protocol.

Above, we mentioned that formal verification has
typically to cope with the state explosion problem. Also
behavior protocols suffer from this problem, because the
compliance is tested via the corresponding automata
determined by the behavior protocols in question, since any
parallel activity causes exponential growth of the state
space. For example in the original SOFA verifier [3], the

state space corresponding to an expression involving more
than 13 parallel operators does not practically fit into the
memory available for the verifier even on a decent PC.

1.3. Goals and structure of the paper

To target the problem mentioned above, we designed a
novel automata representation, which significantly improves
the efficiency of the compliance verifier. In the inherent
space versus time tradeoff, it shifts the complexity towards
time in such a way that it allows to solve practical problems
at least twice as big as the original verifier could handle.
The main goal of this paper is to present the basic idea of
this novel representation and share with the reader the
lessons we learned during experiments with the new
verifiers.

The structure of the paper is following. In Section 2, we
discuss the flaws of classical automata representations
(Section 2.2), while the Sections 2.3 and 2.4 bring the core
of the paper by introducing parse tree automata and their
optimizations. In Section 3, we describe an experimental
behavior protocol verifier based on parse tree automata and
Section 4 describes an enhanced Java version of the verifier.
In Section 5, we evaluate the proposed representation and
compare it with other techniques addressing state explosion.
Section 6 concludes the paper.

2. Behavior protocol representation

2.1. Representation and efficiency

Different representations of a state space corresponding
to a behavior protocol (expression for short) have specific
benefits and drawbacks. Such a situation makes any
reasoning on the representation efficiency a complicated
task.

To show the properties of different finite automata
representations (representation for short), we have
identified four criteria proved to be important for a
successful choice of a particular representation. The chosen
criteria are:

• Size of representation is the amount of the memory

required to store a (state space) representation. This is
determined by all the data structures involved.

• Building time is the time required to create the
representation from an expression.

• Space requirement of composed state identifiers is the
amount of memory required to identify the states in a
state space.

• Access time is the average time needed to determine the
list of transitions associated with a state.

2.2. Basic representation techniques

To illustrate how the evaluation criteria help (i)
characterize different representation techniques and (ii)
show trade-off between time and space complexity, we
present an overview of two classical finite automata
representation techniques.

Explicit representation is the most simple and

straightforward technique to represent an automaton. All
necessary information is explicitly held in memory – lists of
states, transitions, and accepting states (as lists, hash tables,
matrices, ...).

As to size of such representation, state explosion is very
likely. Also building time is fairly low as the construction of
a state space is usually done recursively by composing the
state spaces of sub-expressions and as the whole state space
has to be traversed during this construction.

On the other hand, explicit representations shine in access
time and size of identifiers. Hardly anything can beat the
usage of pointers in states identification and retrieving a list
of transition from memory.

Size of a representation is the major drawback of explicit
representation causing that verification tools avoid using it.
As explained in [2], the original SOFA behavior protocol
verifier uses this type of representation. States are
implemented as Java objects holding lists of labeled
references to other states.

Symbolic representation is a group of techniques that

use a different approach. The required state space is not
generated in advance as in explicit representations but it is
rather computed on-the-fly. This approach brings two
benefits in terms of fighting state explosion: (i) In most
cases, very large numbers of states can be handled, and (ii)
the unvisited portions of the space are not generated at all.
However access time is slower than in explicit
representation because several computations are needed to
obtain a list of transitions. Also a state identifier is usually
implemented via a composed data structure, hence
consuming more memory than a state identifier in the
explicit representation technique.

The most recognized member of the symbolic
representation technique category is the Ordered Binary
Decision Diagram (OBDD) [6] technique. An OBDD is an
acyclic directed graph representing a Boolean function
f(x1,…,xn) → {0, 1}. In this graph, the internal nodes
correspond to functional arguments and the two possible
terminal nodes correspond to the output of the function. The
arguments appear in the same order on the path from the
root to leaves (Fig. 1). However the size of an OBDD graph
strongly depends on the order of the function arguments.

x
10 1

f(0, x
2
,...,x

n
) f(1, x

2
,...,x

n
)

Fig. 1. Root of the decision diagram determining the function
f(x1,...,xn)

There are functions that are described by a graph of linear
size for a specific argument ordering and of exponential size
for a different ordering. And, unfortunately, deciding on an
optimal ordering is an NP-complete problem [6].

To our knowledge, a precise evaluation of using OBDDs
for representation of regular expressions has not been
provided so far.

2.3. Parse trees and parse tree automata

To tackle the state explosion problem in representation of
behavior protocols, we suggest and describe bellow parse
tree automata, a novel symbolic representation technique.

Parse trees (also syntax or expression trees) are a

common way to represent expressions in memory. They are
mainly used to represent mathematic formulas and program
source codes in compilers. Obviously, they are also capable
to represent behavior protocols (Fig. 2).
A parse tree is a tree structure that describes a given
expression unambiguously. When representing behavior
protocols, the parse tree features the following important
properties:

• Event symbols featuring in an expression appear only in
the leaf nodes and operators in inner nodes of the
corresponding parse tree.

• The operator nodes representing the repetition and
restriction operators are unary; all others are binary.

• Every subtree describes an expression (valid behavior
protocol).

The main advantage of parse trees is the size of
representation, linearly dependent on the expression length
and having no direct relation to the number of states. Also
the building time is linear in the length of expression.
Evaluation of access time and state identifiers’ space
requirement will be discussed later after we present parse
tree-based representation technique (parse tree automata).

;

+ *

b ca

Fig. 2. A parse tree representing (a+b) ; c*

Parse tree automata (PTA). Construction of a PTA
follows the idea of recursive state space creation in the
explicit representation technique. As PTA is a symbolic
technique, the actual full state space of PTA is never
represented as a single complex data structure. On the
contrary, the key idea is to (i) directly represent only the
parse tree (PT) of the expression and the primitive automata
which accept the event symbols in the leaves of the parse
tree, (ii) introduce composed state identifiers allowing to
detect the current state and avoid unnecessary multiple
traversals of PTA states, and (iii) define the transition
function of PTA via recursive rules determining the (direct)
transitions from a state, given its composed identifier. An
example of PTA and its correspondence to a parse tree is
illustrated on Fig. 3.

We will demonstrate the idea on three simple examples:
(1) representation of a primitive automaton, (2)
implementation of automata composition driven by the
sequence operator, and (3) implementation of automata
composition driven by the parallel operator. Automata
compositions driven by the other operators are implemented
in a similar manner (a detailed description is in [2]).

A primitive automaton has two states (initial and
accepting) and a single transition between them. The
transition label is an event symbol.

The sequencing operator expresses concatenation of the
languages accepted by the left- and right - hand automata
PTAL and PTAR. To create the respective composed
automaton PTA; , it is sufficient to establish implicit
transitions (λ) from the accepting states of PTAL to the
initial state of PTAR (Fig. 4b). The resulting set of
accepting states in PTA; consists of the accepting states of
PTAR . The accepting states of PTAL are added only if the
initial state of PTAR is accepting. Obviously, modifications
of PTAL and PTAR are not necessary, since the implicit
transitions λ are added in the implementation of the
sequencing operator in PTA;.

The parallel operator expresses arbitrary interleaving of
all the words of the languages accepted by the left- and right
hand automata PTAL and PTAR. In order to create the
respective product automaton, it is sufficient to establish a
state space “grid” and corresponding transitions as
illustrated in Fig. 4c.

Composed state identifiers in PTA. To address the idea
(ii) above, a state identifier must reflect the structure of the
subtree of PT it is associated with and capture the state of
the primitive automata within the subtree. For a specific PT,
all the top-level identifiers will be of the same size (linear in
the size of PT). As a technicality, memory allocation for
state identifiers can cause substantial memory overhead. It
is recommended to use an allocator that is optimized for
allocating small memory chunks of the same size.

Time requirements for generating PTA transitions.

The average time required is influenced by the number of
PT nodes that have to be visited to calculate the list of
transitions associated with a particular state. In each of
these nodes some computation is necessary, as the potential
transitions are determined on the fly. For each transition,

Fig. 3. Generating states and transitions of PTA.
Circles represent states. Squares represent nodes of
PT.

a

b

a b

a)
b)

[0] [1]

[0] [1]

[0,0] [0,1] [1,0] [1,1]

λ

c)

a

a

a

b

b

b

c c c

d d d

[0,0]

[1,0]

[2,0]

[0,1] [0,2]

[1,1] [1,2]

[2,1] [2,2]

Fig. 4. a) Primitive automata for the “a” and “b” event
symbols. b) PTA for “a;b”. c) PTA for (a;b) | (c;d). Legend: A
dotted arrow represents an implicit transition λ. State identifiers
are in brackets (simplified).

; ;

b↑
a↓a↑ b↓

+

[0,0] [0,2] [0,1] [1,1] [1,2]

also the state identifier of the target state has to be evaluated
for keeping track of the states visited.

The number of visited PT nodes is greatly influenced by
the actual operators encountered in PT. For example, for the
standard regular expression operators only one subtree has
to be visited. On the contrary, encountering a parallel
operator means visiting both subtrees.

2.4. PTA optimizations

As discussed in Section 2.3, performance of PTA
depends on the number of nodes in PT. If the number of PT
nodes were reduced, performance would greatly improve.
Therefore we experimented with several optimizations in
PTA representation.

Multinodes. The idea of multinodes is to collapse the
nodes of PT featuring the same operator into a single node.
For example, in Fig. 5 collapsing means representing only a
single node for the sequence operator ‘;’ (associated with a
list of PT subtrees a, b, c, d).

; M;

;

; d

dcba

ba

c

a) b)

Fig. 5. a) Original parse tree. b) Parse tree with multinodes for the
protocol a;b;c;d

This way, access time is greatly improved since less
computation is required.

Forward cutting (of primitive automata). Removal of
the transitions from the state space, which are discarded by a
restriction operator, can be easily achieved by removing the
affected event symbols nodes from PT.

Again, such optimization can produce PTs with a smaller
number of nodes what results in a smaller state identifiers’
space and improved access time.

Explicit subtrees. Since performance of explicit
representation is very good for state spaces of “reasonable”
size, it can be advantageous to combine both the PTA and
explicit representations techniques. It is feasible to select
those PT subtrees that imply a small state space (typically
not featuring “many” parallel operators) and the states of
which are generated more than once (e.g. forced by a
parallel operator in a higher level of PT) and represent them
via explicit automata embedded in PTA.

We implemented two verifiers based on the PTA

representation technique (“Python verifier” and “Java

verifier”). These implementations provide a flexible
framework that allows simple addition of new parsers,
optimizations, and verification backend alternatives as
explained below.

3. Python implementation of PTA

Architecture platform. The Python verifier consists of
three independent parts (parser, optimizer, backend)
orchestrated by a simple application. All the parts of the
verifier are implemented in Python [7]. However as the
original Python provides only interpreted execution, we use
the PSYCO [8] optimizing compiler to improve efficiency.

Parser. The goal of the parser is the creation of a PT

representation from an expression. Currently only behavior
protocols (Section 1.2) are considered as expressions.

Optimizer currently supports forward cutting of events

and explicit subtrees optimizations. To choose a subtree that
should be converted into an explicit automaton, a simple
estimate of the number of states described by the subtree is
based on assigning weights: the primitive automata get
weight 2; for sequencing and alternative operators we sum
the weights of the underlying automata, for parallel
operators we multiply the weights. All the subtrees, the
weight of which does not exceed a specific value, are
addressed via explicit representation.

Backend alternatives. To enhance the application area

of behavior protocols, we created three backend
alternatives: compliance checking, visualization (using
Aisee visualization tool [9]), and model checking (using
Caesar/Aldebaran model checker [10]). Technically,
compliance is checked by evaluating the subset relations of
the compliance conditions (defined in [1]) via inspecting the
emptiness of intersection of one set and the complement of
the other. Visualization of a state space can ease up protocol
perception, especially by highlighting counter examples
produced by compliance verifier. When the state space gets
too large for visualization, checking of specific properties is
easier via a model-checking tool such as the
Caesar/Aldebaran toolset. The bottom line is that
independent tools are used for visualization and model
checking; the verifier prepares only source files for them.

Since all backends use exhaustive traversal of the state
space, we implemented a general depth-first-search
algorithm that provides hooks for the algorithm specific
computations during a state space traversal. The algorithm
uses state space caching technique [12] to keep the list of
visited states.

Implementation details. For particular operators,

operator nodes are implemented as classes derived from a
single interface that allows the client to obtain the initial
state of the state space, list of transitions for a particular

state, and list of the accepting states. In addition to the
behavior protocol operators, we also implemented operators
for language complement and automata product. A state
identifier is implemented as a tree of Python 2-tuples.

Benchmarks. We used a slightly modified case study

from [1] to assess performance of the Python verifier. The
case study features a database server composed of two
components and the protocol describing the server’s
behavior is:

!dbAcc.Open;
 (?d.Insert

{(!dadbAcc.Insert; !dbLog.LogEvent)*}
+
 ?d.Delete

{(!dadbAcc.Delete; !dbLog.LogEvent)*}
+
 ?d.Query

{(!dadbAcc.Query)*}) *;
!dbAcc.Close

Our enhancements to the case study [1] pertain

parallelism for accessing the functionality of the database
server (replacing the ‘+’ operator by ‘|’) and the addition of
two methods, insert and modify, to the server
interface. The new methods are used in a similar way as
their siblings. Using parallelism and the addition of new
methods significantly increased the size and complexity of
the related state space. These modifications are discussed in
[2].

We created four benchmarks (1-4): In (1) we tested the
compliance of the protocol described in the case study [1]
with the composed protocol of nested components. Both
state spaces in (1) were very simple and compliance
verification was fast. In the subsequent benchmarks, we (2)
replaced the alternative operators by parallel operators and
(3) added the insert and (4) modify methods.

For illustration, the protocol in the (4) variant (most
demanding as far as the size of state space generated is
considered) was:

!dbAcc.open; (
 (?dbSrv.insert↑;!trans.begin;
 (!dbAcc.insert;!lg.logEvent)*;
 (!trans.commit+!trans.abort); !dbSrv.insert↓)
|
 (?dbSrv.delete↑;!trans.begin;
 (!dbAcc.delete;!lg.logEvent)*; (!trans.commit +
 !trans.abort); !dbSrv.delete↓)
|
 (?dbSrv.update↑;!trans.begin;
 (!dbAcc.update;!lg.logEvent)*;
 (!trans.commit+!trans.abort); !dbSrv.update↓)
|

(?dbSrv.modify↑;!trans.begin; (!dbAcc.modify;
!lg.logEvent)*; (!trans.commit+!trans.abort);
!dbSrv.modify↓)

|
(?dbSrv.query↑;!dbAcc.query;!dbSrv.query↓)

)*;
!dbAcc.close.

We benchmarked the consumed memory and required
time of the original verifier and of the Python verifier with
different optimizer settings. The speed without the forward
cutting of primitive automata optimization was very poor,
being significantly slower when compared to the original
verifier; therefore this optimization was applied in all of the
following benchmarks.

 (1) (2) (3) (4)

Simple
protocol from

[1]

Protocol
with |

Protocol
with | and
insert

Protocol with
| , insert

and modify

 Original
verifier 12.2MB 16.8MB 70.5MB

Out of memory
limit

P
y
t

0 explicit
states 5.9MB 6.2MB 12.3MB 72.4MB

h
o
n

100
explicit
states

5.9MB 6.6MB 10.1MB 46.4MB

v
e
r
i

10,000
explicit
states

0.16s/
5.7MB 6.7MB 9.9MB 40.2MB

f
i
e
r

1,000,000
explicit
states

5.7MB 6.4MB 14.0MB 70MB

Table 1. Memory benchmark results of the original verifier and
the Python verifier for various sizes of explicit subtrees measured
by number of their states.

 (1) (2) (3) (4)

Simple
protocol from

[1]

Protocol
with |

Protocol
with | and
insert

Protocol with
| , insert

and modify

 Original
verifier 800.0% 102.9% 197%

Out of memory
limit

P
y
t

0 explicit
states 100% 100% 100% 100%

h
o
n

100
explicit
states

123.1% 48.9% 45.8% 44.6%

v
e
r
i

10,000
explicit
states

123.1% 48.9% 34.0% 32.8%

f
i
e
r

1,000,000
explicit
states

123.1% 97.1% 45.0% 28.2%

 Table 2. Relative time requirements: The original verifier vers.
Python verifier for various sizes of explicit subtrees measured by
number of their states.

The explicit subtrees optimization was applied to a
different numbers of states embedded in explicit

representation: 0 (no optimization), 100, 10,000, and
1,000,000. The results of the benchmarks were a little bit
surprising: The Python verifier (based on PTA) with
forward cutting of primitive automata outperformed the
original SOFA verifier (based on explicit representation).
However, there was a major difference in CPU time
dedication: The original verifier spent most of the time by
creating the explicit representation, while the actual
verification was very quick (about two seconds for (3)). The
Python verifier spent some time on optimizations and a
significant amount of time on verification. The time spent
by the optimizer heavily depended on the size of explicit
subtrees. For example, in (4) the creation of explicit subtrees
with 1,000,000 states took about 135 seconds. The increase
of the overall execution time of (2) and (3) (comparing
10,000 and 1,000,000 states) was caused by the time
necessary for creation of explicit subtrees.

4. Java implementation of PTA

To fully incorporate a checking tool into the SOFA
environment, we decided to reimplement the Python verifier
in the Java language.

The Java verifier uses the approach and techniques
employed in the former Python verifier, but it introduces
new optimizations and backend features. By these
optimizations, both time and space requirements decreased
and, therefore, the complexity of the protocols that can be
checked was pushed a bit further.

Optimizations. Besides the optimizations included in the

Python verifier (explicit subtrees and forward cutting), the
multinodes optimization (Fig. 5) was implemented and
found very beneficial. This optimization is performed during
the construction of a parse tree in a straightforward, efficient
way.

Backend alternatives. In the Java verifier we

implemented only two backends: compliance checking and
visualization, since these two had been identified as the
most frequently needed.

For visualization, we decided to use the dot tool of the
Graphviz package [16], since it is freely distributed and its
features greatly suffice for our purposes. The visualization
backend is able to provide both protocol parse tree and
graph of the PTA state space. Since the dot tool supports,
among other types of output, the Virtual Reality Modeling
Language (VRML), this format can be advantageously used
for complex protocols both to get the whole picture of the
automaton and zoom into its specific parts.

Implementation details. Because of the differences

between Python and Java, we had to cope with a lot of
specific problems when rewriting the verifier from Python
to Java. A main problem was the state identifiers in Java
(handled internally by Python): As implied by the

argumentation in Section 2.3, we needed state identifiers
that could be computed fast and consume as small amount
of memory as possible. We could not use Java references,
because of the on-the-fly state generation (potentially
repeated for a particular state).

Therefore, each state is represented by a state tree, where
its leaves represent the states of primitive automata, while
inner nodes represent the state of the composed automata
corresponding to the nodes’ subtree. The state identifier of a
primitive automaton indicates its active state (0 or 1) (Fig.
4a). The state identifier of a composed automaton is created
as concatenation of its children’s identifiers. Thus, the
resulting state identifier reflects the structure of PT,
uniquely denotes a state within the state space, and its
length is linear in the size of PT. Obviously, the state
identifier of the main automaton is determined at the root of
the state tree. The state identifiers are computed in a lazy
way (only when actually needed) and are stored in a cache.
Traversal of the state space employs frequent comparison of
the identifiers (that is quite fast). Even though the
computation of state identifiers was optimized for speed, it
is still the most time consuming operation in the checking
process (since it is performed for each state visit).

Benchmarks. We employed two types of benchmarks:

the first type was focused on the benefits of particular
optimizations in the Java verifier and the second one on a
comparison of performance of the three verifier versions:
the original verifier (written in Java), and Python and Java
PTA verifiers. Always we used protocols of various
complexity; both real-life and “academic” protocols
inducing large state spaces were checked.

The real-life protocols included again a set of database
server protocols similar to those used in Section 3. The
“academic” protocols involved only the parallel operator
(such as a | b, a | b | c, …), which is one of those
causing the exponential growth of the state space, so that
using it enabled us to generate really large state spaces and
easily compute their sizes.

The optimization benchmarks have shown that disabling
the forward cutting optimization results in a very poor
performance. This is caused by the complement operator
expanding the state space to an enormous size. Hence, as
well as in Section 3, forward cutting is used in each of the
benchmarks below. The benefits of the other types of
optimization depend on the concrete structure of the
protocols being checked (Table 3). For example, in the case
of “academic” protocols using the parallel operator, the
most worthwhile optimization are multinodes; the explicit
subtrees optimization cannot be used here, because the
states of the automaton represented by the only (multi-)
node in the parse tree are used only once. While checking
the real-life protocols, the explicit subtrees optimization is
most beneficial.

Since the most important parameter of the protocol
verifier is the state processing speed, in Table 4 we present
the comparison of all verifiers based on checking the

“academic” protocols (the results of checking the real-life
protocols are not so interesting). A comparison of memory
requirements is not involved since it is clear from Table 1
that a PTA representation requires a smaller amount of
memory than a corresponding explicit representation. In all
benchmarks considered below all optimizations were
applied.

In the case of “academic” protocols, the Java verifier is
faster than the Python verifier even if we turn off the
multinodes optimization; the state processing is about two
times faster in the Java verifier, which is probably caused by
the fact that the Java Virtual Machine outperformes the
Python Psyco compiler. On the other hand, the construction
of the explicit subtrees is much slower in Java because of
the evaluation of the state identifiers; the Python verifier is
also able to keep more states (and larger explicit
subautomata) in memory, because its state identifiers are
shorter. In any case, the PTA approach beats the original
explicit state representation.

Forward
cutting

only

All
optimization

No
multinodes

No
explicit
subtree

Academic
(parallel) 100% 76.2% 100.8% 75.7%

Real-life 100% 50.5% 67.7% 81.4%

Table 3. Average relative time the Java verifier spent by checking
with various optimizations enabled.

Number of

parallel
operators

used

Original
verifier

Python
verifier Java verifier

6 100% 38.3% 22.3%
7 100% 16.5% 7.7%
8 100% 6.9% 2.3%
9 100% 2.7% 0.7%

Table 4. Relative time spent by checking the “academic” (parallel)
protocols by all verifiers.

5. Evaluation and related work

Evaluation. The idea of using parse trees for symbolic
representation has proven to be useful for the verification of
behavior protocols. The newly implemented verifiers
outperformed the original SOFA one, both in time and space
complexity. The results provide a solid base for the
hypothesis that the symbolic PT representation supported by
the forward cutting of primitive automata optimization
outperforms the explicit representation. Nevertheless, this
hypothesis is still to be justified by a more thorough
benchmarking.

While experimenting with the proposed technique of
PTA, we identified the following implementation issues: (i)
Access time was significantly influenced by applying the
forward cutting of primitive automata optimization. This
implies there might be huge method calls overhead during
the list of transition computation. (ii) Another access time
improvement may be achieved by an adaptive selection of
explicit subtrees, since our benchmarks showed that access
time depends on the size of the parse trees as well. (iii) State
identifiers may involve allocation of small structures what
means a significant memory allocation overhead. Using a
customized allocator, the amount of consumed memory
might be greatly decreased in both Python and Java cases.

Related work. To our knowledge, there is no other work

that would focus on evaluation of an optimal representation
for regular expressions. Therefore we can provide bellow
only a comparison with representation techniques that face
state explosion in other transition systems.

Space explosion handling techniques can be divided into
two categories: (i) efficient representation of the state space
and (ii) structural simplification of the state space. OBDDs
(mentioned in Section 2.2) and their derivatives Multiple-
value Decision Diagrams (MDDs) [11] and Multiple-
terminal BDDs (MTBDDs) [13] are typical representatives
of (i). All these representations suffer from the optimal
ordering problem [6]. There are heuristics developed, but
they cannot guarantee the optimal results. Structural
simplification of the state space is usually achieved by
employing several level of abstraction in model description
[14]. In fact, this technique was implicitly employed in
SOFA component model [3], since a behavior protocol is
always defined for a particular level of component nesting
(as opposed to [14]) and behavior compliance is evaluated
separately at the adjacent levels of component hierarchy.

6. Conclusions and future intentions

In this paper, we presented a new representation of a
state space called Parse Tree Automata that addresses the
state explosion problem encountered in behavior protocol
checking. PTA fights this problem successfully for behavior
protocols of “practical size”. Both verifiers based on this
representation outperformed the original verifier
implemented within the SOFA project not only in memory
requirements but in the speed of verification as well.

In the future, we intend to focus on handling the
implementation issues described in Section 5. In particular
we would like to implement an adaptive version of explicit
subtrees optimization and make experiments with various
memory allocators.

Acknowledgement

The work was partially supported by the Grant Agency of
the Czech Republic (project number 102/03/0672). We are
grateful to our colleagues Vladimir Mencl and Jiri Adamek
for valuable comments.

References

[1] F.Plasil and S.Visnovsky: Behavior protocols for
software components. IEEE Transactions on SW
Engineering, 28 (9), Sep 2002.

[2] M.Mach: Formal verification of behavior protocols.
Master thesis, Dept. of SW Engineering, Charles
University, Prague, 2003.

[3] SOFA project, http://nenya.ms.mf.cuni.cz/sofa/
[4] F.Plasil and J.Adamek: Behavior Protocols Capturing

Errors and Updates. Proceedings of the Second
International Workshop on Unanticipated Software
Evolution (USE 2003), ETAPS, University of
Warsaw, 2003.

[5] R.Allen and D.Garlan: A Formal Basis For
Architectural Connection. ACM Transactions on
Software Engineering and Methodology, Jul 1997.

[6] C.Meinel and T.Theobald: “Algorithms and Data
Structures in VLSI Design: OBDD Foundations and
Applications”. Springer Verlag, 1998.

[7] Python, http://www.python.org
[8] PSYCO compiler, http://psyco.sourceforge.net
[9] Aisee visualization tool, http://www.aisee.com
[10] Caesar/Aldebaran model checker,

http://www.inrialpes.fr/vasy/cadp/
[11] A.Srinivasan, T.Kam, S.Malik, and R.Brayton:

Algorithms for discrete function manipulation. Int’l
Conf. on CAD, 1990.

[12] P.Godefroid, G.Holzmann, and D.Pirottin: State-Space
Caching Revisited. Formal Methods in System
Design: An International Journal, 1995.

[13] M.Fujita, P.McGeer, and J.Yang.: Multi-Terminal
Binary Decision Diagrams: An Efficient Data
Structure for Matrix Representation. Formal Methods
in System Design: An International Journal, 10, April
1997.

[14] D.Giannakopoulou, J.Kramer, and S.Cheung:
Analysing the Behaviour of Distributed Systems using
Tracta. Journal of Automated Software Engineering,
special issue on Automated Analysis of Software, vol.
6(1), Jan 1999.

[15] E.Bruneton, T.Coupaye, and J.Stefani: The Fractal
Composition Framework. Proposed Final Draft of
Interface Specification version 0.9, The ObjectWeb
Consortium, Jun 2002.

[16] Graphviz - open source graph drawing software,
http://www.research.att.com/sw/tools/graphviz

