
An Analysis of Compiled Code Reusability in Dynamic
Compilation

Andrej Pečimúth
Charles University

Prague, Czech Republic
pecimuth@d3s.mff.cuni.cz

Oracle Labs
Prague, Czech Republic

andrej.pecimuth@oracle.com

David Leopoldseder
Oracle Labs

Vienna, Austria
david.leopoldseder@oracle.com

Petr Tůma
Charles University

Prague, Czech Republic
petr.tuma@d3s.mff.cuni.cz

Abstract
Large applications reliant on dynamic compilation for perfor-
mance often run in horizontally scaled architectures. When
this is combined with frequent deployment or demand-based
scaling, hardware capacity is lost to frequent warmup phases
due to the need to recompile the code after each start of the
virtual machine (VM). Moreover, the individual VMs waste
hardware resources by repeating the same compilations.
Offloading compilation jobs to a dedicated compilation

server can mitigate these problems. Such a server can com-
pile the code in a mode where the compilation result is
reusable for multiple VMs. The goal is to save compilation re-
sources, such as CPU and memory, and potentially improve
the warmup time of individual VMs.

This paper investigates the options to reuse previous com-
pilation results of a high-performance compiler. Rather than
reusing machine code, we propose to reuse a pre-optimized
intermediate representation (IR). Reusability is achieved by
deferring VM-specific optimizations until the IR is com-
piled to machine code for a concrete VM. In an empirical
study using the GraalVM compiler and the HotSpot Java
VM, the slowdown of code compiled with deferred optimiza-
tion ranges between a negligible impact and a 6x slowdown.
However, the code still performs significantly better than
the code compiled by a lower-tier compiler. Therefore, the
presented approach can form the foundation for improving
warmup times in certain workloads.

CCS Concepts: • Software and its engineering → Dy-
namic compilers; Just-in-time compilers; Runtime envi-
ronments.

VMIL ’24, October 20, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1213-5/24/10
https://doi.org/10.1145/3689490.3690406

Keywords: remote compilation, code sharing, JIT compila-
tion, virtual machines

ACM Reference Format:
Andrej Pečimúth, David Leopoldseder, and Petr Tůma. 2024. An
Analysis of Compiled Code Reusability in Dynamic Compilation.
In Proceedings of the 16th ACM SIGPLAN International Workshop on
Virtual Machines and Intermediate Languages (VMIL ’24), October
20, 2024, Pasadena, CA, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3689490.3690406

1 Introduction
Applications running on dynamic runtimes experience a
warmup phase [2] when the JIT is compiling code. Until
optimized machine code is available, a virtual machine (VM)
executes application code via an interpreter or compiles it
with a baseline compiler. Moreover, the JIT compiler itself
competes for computing resources with the running applica-
tion. The effect is temporarily degraded performance [3] of
the running application.
For the above reasons, modern VMs are usually more

efficient in long-running workloads where the resources
spent for JIT compilation are amortized over a longer period.
However, this does not match the deployment setup of many
applications. In horizontally scaled setups, there are multiple
VMs where each VM performs JIT compilation individually.
If there is demand-based scaling, VMs may be stopped and
restarted. VM cold starts are also a concern in serverless
computing, where 96% of functions take less than a minute to
execute on average [25]. Although cloud providers minimize
the frequency of cold starts by keeping idle instances alive
for several minutes, the cost of cold starts is traded for the
idle instances that waste memory.
Frequent VM restarts amplify the issues associated with

the warmup phase. When a VM stops, all compiled code is
typically lost. The individual VMs repeat the same compila-
tions whenever they start, wasting hardware resources on
redundant work. End users may also observe the negative
effects of frequent VM warmups, e.g., as order-of-magnitude
increases [3] in request latency.

Remote JIT compilation [1, 14, 16] minimizes the overhead
of JIT compilation on the VM executing the application by

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

43

https://orcid.org/0009-0002-8357-7157
https://orcid.org/0000-0002-9361-6431
https://orcid.org/0000-0002-7035-2322
https://doi.org/10.1145/3689490.3690406
https://doi.org/10.1145/3689490.3690406
https://creativecommons.org/licenses/by/4.0/


VMIL ’24, October 20, 2024, Pasadena, CA, USA Andrej Pečimúth, David Leopoldseder, and Petr Tůma

1 static final String logLevel = System

2 .getProperty("log.level");

3 void doWork () {

4 if (logLevel.equals("verbose")) {

5 System.out.println("in␣doWork");

6 }

7 doWorkInternal ();

8 }

Listing 1. A static final field whose value may change be-
tween VM runs.

offloading the compilation jobs to a dedicated compilation
server. The compilation server may additionally cache and
reuse compilation results from previous VM runs. The result
is a shortened warmup phase, fewer CPU- and memory-
usage spikes caused by the JIT compiler, and fewer resources
spent on compilation overall.
This paper is part of the research [22] on how to reap

the benefits of remote JIT compilation with code caching
in the GraalVM compiler [19] and other dynamic languages
implemented on top of it. While attempting to reuse code
compiled with a highly optimizing compiler, we encountered
several interesting challenges that are not discussed in exist-
ing publications. Our findings may interest the community
as we believe they apply to other similar compilers.

Optimizing dynamic compilers specialize the compiled
code to the state of the application [10] and the VM, which
improves performance but hinders code reusability. For ex-
ample, the method in Listing 1 enables logging based on the
value of a system property stored in a static final field. The
compiler can evaluate the branch condition at compilation
time and either keep or completely remove the logging code
if it is disabled. Although this is a beneficial optimization, it
is not correct to reuse the compiled code in another VM run
if the field’s value differs.

To keep the compiled code reusable, existing implementa-
tions of code caching [6, 13, 29] typically use a lower opti-
mization level for compilations intended for later reuse. The
lower optimization level reduces the peak performance of
the cached code. For example, the field’s value in Listing 1
is different when the VM has a different value of the sys-
tem property. Consequently, the code compiled for reuse
using this approach evaluates the branch condition for each
method call at runtime.

Reusing code compiled with a lower optimization level,
like in the existing work, does not necessarily transfer well
to VMs such as GraalVM. In GraalVM, most of the compila-
tion time is spent compiling with the highest optimization
level using its top-tier GraalVM compiler. Only a fraction
of the time is usually spent in the lower-tier client compiler
[15], which employs less aggressive optimization passes. The

client compiler already emits code relatively fast, so the po-
tential compilation-time savings of caching the client com-
piler’s code are limited.

The major contribution of our work is an analysis of why
code compiled by a dynamic compiler might not be reusable.
The causes stem from the non-determinism of the runtime
environment and the executed application combined with
aggressive optimizations performed by the dynamic com-
piler. We illustrate the problems on the HotSpot Java Virtual
Machine (JVM) [26] and GraalVM compiler [19]. However,
these reasons are conceptual and apply to various runtimes.
Unlike the existing work, we aim to reuse the results of

previous compilations with high optimization levels. We pro-
pose to cache the intermediate representation (IR) instead
of the compiled code since we can pre-optimize the IR in a
way that is not bound to a specific VM. To leverage the per-
formance gains from VM-specific optimizations, we apply
them to the reusable IR. In summary, our approach is the
following: (1) begin the compilation conservatively (avoid-
ing or deferring optimizations that could break reusability),
(2) cache the IR for later reuse, (3) at the time of reuse, apply
the deferred optimizations, and finish the compilation.
This paper tests the feasibility of the proposed approach

using an empirical study of deferring optimizations in the
GraalVM compiler. We measure the peak-performance im-
pact of deferring optimizations in industry-standard bench-
marks [23] and analyze the effects on optimization decisions.
Compared to the unmodified GraalVM compiler, the reduc-
tion in peak performance ranges from a negligible impact to
a 6x slowdown in the most affected workload. The cause of
the slowdown is related to the failure to optimize the usage
of a particular dynamic feature of the JVM. However, the
code compiled using the GraalVM compiler with deferred
optimization is a significant improvement over the client
compiler [15], which is the lower-tier compiler [27] used in
HotSpot JVM.

In conclusion, we contribute the following:

• an analysis of the causes for code non-reusability in
modern runtimes illustrated on the HotSpot JVM and
the GraalVM compiler,

• an approach to reuse compilations results of an opti-
mizing compiler by deferring VM-specific optimiza-
tions to a later stage,

• an experimental evaluation of the peak-performance
impact of deferring optimizations in the GraalVM com-
piler.

2 Related Work
There are many past and ongoing efforts to improve the
warmup of JVM implementations. Code sharing improves
warmup by reusing code originally compiled by another VM
because it decreases resource usage of the JIT compiler and
also decreases the compilation latency (the time between

44



An Analysis of Compiled Code Reusability in Dynamic Compilation VMIL ’24, October 20, 2024, Pasadena, CA, USA

the VM issues a compilation request until executable code
is ready). Remote JIT compilation may improve warmup
by offloading compilation requests, usually to a machine
with more computational resources, which also works by
decreasing the compiler’s resource usage and compilation
latency. Finally, we examine a broader set of approaches that
improve warmup but are otherwise orthogonal to our work.

2.1 Code Sharing
The existing implementations of compiled code sharing for
the Java platform work on a single machine and employ
lower optimization levels to make the code reusable. Shared
Class Cache (SCC) [13] and ShMVM [6] store code in a file
containing pre-parsed class metadata optimized for quick
loading. ShareJIT [29] is a global code cache implemented
using shared memory. We describe each of these systems in
more detail.
SCC [13] is a mechanism in the OpenJ9 VM that allows

storing class data and compiled code in a memory-mapped
file. The code is compiled with a lower optimization level
to facilitate reusability. Consequently, the performance of
the cached code is higher than that of the interpreter but
lower than that of the JIT-compiled code. The cached code
is associated with validation records [8] so that the VM can
ensure the code is compatible with the environment in which
it is about to be loaded. The SCC also contains relocation
records [7]: before the cached code is loaded, the VM uses
these records to patch the addresses embedded in the code
with process-specific addresses.

ShMVM [6] is an implementation of class-data and code
sharing for an earlier version of the client compiler [15] in the
HotSpot JVM [26]. References to process-specific addresses
are solved using an indirection table: a pointer embedded in
the code refers to an entry in the indirection table. The com-
piled code looks up the value of the entry in the indirection
table, and the value is the actual process-specific address.

ShareJIT [29] is a global code cache for the Android Run-
time. To make code shareable, ShareJIT disables optimiza-
tions that are specific to the VM process. For example, it
does not embed the absolute address of a directly invoked
method in the compiled code, as the address may change
between VM invocations. Additionally, the compiler inlines
only built-in methods to simplify the verification of whether
the definition of the cached method is compatible.

Ř+ [17] is a system to cache the IR and compile it offline,
targeting the R language. Ř+ keeps multiple versions of com-
piled methods specialized to different contexts. The context
comprises both the global application context and the con-
text at the call site, e.g., the type of a particular variable.
While Java VMs (like HotSpot) generally do not dispatch
method calls based on the calling context, maintaining mul-
tiple compiled method versions could benefit code sharing
by increasing the cache hit rate. This is because assumptions

and speculative optimization [10] specialize the compiled
methods to a particular VM state.

2.2 Remote Compilation
JITServer [14] is a remote compilation server for the OpenJ9
VM. In this setup, the compilation server queries the client
VM for information needed for compilation in multiple net-
work calls. The authors show that JITServer particularly
benefits containers executing a saturating workload with
few computing resources. This is because remote compila-
tion moves the overhead of the JIT compilation to the server,
freeing up the resources available to the running application.

JITServer can additionally reuse previously compiled code.
This feature is built on top of the SCC [13] functionality in
OpenJ9. For a remote compilation request, the JITServer may
reply with a serialized SCC entry to a client. This serialized
entry contains references to classes and methods that re-
quire patching. After receiving the entry, the client looks up,
validates, and patches the references. The implementation is
based on global identifiers assigned to classes and methods.
The global identifier of a class comprises its fully-qualified
name and a hash of class metadata. Methods are identified
by their declaring class, name, and signature. As the cached
code is compiled with a lower optimization level, the hottest
methods are recompiled by the JIT compiler.
Azul Cloud Native Compiler [1] is another example of a

compilation server implemented for a production-grade Java
VM. However, there is little technical information available.
The available documentation does not mention compiled
code caching, but the system reuses profiles from previous
VM runs.

In the past, there were other compilation server implemen-
tations [16] usually focused on the objective of offloading
the resource-intensive JIT compilation to a different ma-
chine. However, the past work is not easily transferable to
contemporary high-performance VMs because the VMs and
compilers are more complex, and the runtime has become
more dynamic — even fundamental features such as lambdas
require dynamic code generation. For instance, the compi-
lation server for Jikes RVM [16] can fulfill the compilation
request in just a single roundtrip because it has access to the
application’s class files. In contrast, nowadays, much of the
information the server needs cannot be found in the class as
it is generated on the fly.

2.3 Other Approaches
AOT compilation is another option to improve the warmup.
This approach usually restricts the dynamic features of the
runtime. For example, GraalVM Native Image [20] works
under the closed-world assumption — all loaded classes must
be known in advance. OpenJDK project Leyden [5] also aims
to explore weaker constraints with different performance
tradeoffs. The advantage of remote compilation is that it is

45



VMIL ’24, October 20, 2024, Pasadena, CA, USA Andrej Pečimúth, David Leopoldseder, and Petr Tůma

more transparent and does not put constraints (such as the
closed-world assumption) on the application.

OpenJDK project CRaC [4] makes it possible to snapshot
and restore a warmed-up VM process. The application must
be able to restore open files or sockets, so the mechanism is
not transparent to the programmer.

In serverless computing, cloud providers usually keep the
application instance running for about 20 or more minutes
[28] even when if there is no function executing. The ratio-
nale is to improve the warmup of future function invocations.
The downside is that the idle VM wastes memory. This ap-
proach is orthogonal to code reuse because code reuse aims
to improve the warmup during a cold start, i.e., when a new
application instance is provisioned.

3 Reusability of Compiled Code
This section examines why code compiled by a modern dy-
namic compiler is not reusable and what options exist to
make it reusable. We present the conceptual reasons that
apply to many languages beyond Java. We discuss our expe-
rience with the HotSpot JVM to illustrate these concepts in
a practical implementation.

JIT compilers produce code that is specialized to the state
of the VM and the application. Many of the reasons why
code is not reusable stem from differences in the runtime
environment across VM runs (e.g., varying memory layout)
and different behavior of the running application itself. As
the changes in the runtime’s and application’s behavior are
outside the compiler’s control, we say that the runtime and
the application behave non-deterministically. The problem
with non-determinism is that it renders the compiled code
non-reusable in a future run because the state the code is spe-
cialized to will likely differ. We discuss the non-determinism
of the runtime in Section 3.1 and the non-determinism of the
application in Section 3.2.

The compiled code may depend not only on the VM state
that changes between VM runs, such as the memory layout,
but also on the state that changes during the single VM’s life-
time. An example of this is assumptions about loaded classes
and speculative optimization [10]. Generally, this kind of spe-
cialization enables more optimization opportunities for the
compiler, leading to faster code, but it hinders reusability. We
describe the optimizations based on VM state in Section 3.3.
As a related problem, the compiled code often contains

references to VMobjects, such as class andmethod references
and object constants. To install the code1 in a different target
VM, we must find the matching VM objects in the target VM.
The process is similar to relocation performed by a linker.
Ensuring that it is possible to find a mapping for all VM
object references in the compiled code could lead to further

1Code installation comprises preparing the compiled code for execution
and placing it in executable memory.

restrictions on the compiler. We describe these challenges in
Section 3.4.

3.1 Non-Determinism in the Runtime Environment
Compiled code may not be reusable because the runtime
environment behaves slightly differently in each VM run.
For efficiency reasons, the compiled code often directly ref-
erences VM objects. However, these objects typically reside
at different addresses in another VM run.

To reuse compilation results with references to VM objects,
we could try to patch the addresses in the machine code.
However, this approach introduces the following challenges:

• The actual value of an address may dictate what kind
of instruction sequence can access it, so the compiler
may have to generate unnecessarily conservative code.

• The compiled code may access an offset within a VM
object, which may also need relocation. For instance,
the referenced object could be a virtual method table
whose layout changes between VM runs.

• The referenced object may not have a unique global
identifier, so it may be difficult to relocate the reference
in another VM run. For example, the referent may be
an object on the heap or a dynamically generated class
(generated by the application or even the runtime).

For a practical illustration using the HotSpot JVM, con-
sider the Java method in Listing 2. The code constructs high-
lighted in comments lead to code that is not directly reusable.
We expect the problems will be similar to those of another

1 class Box {

2 Object content;

3 }

4 void processBoxes(ArrayList <Box > boxes) {

5 // (a) lambda expression

6 Consumer <Box > consumer = box -> {

7 // (b) VM object reference

8 if (box.content instanceof

9 String string) {

10 // (c) constant reference

11 String message = "Box:␣" +

12 string;

13 // (d) direct call

14 System.out.println(message );

15 }

16 // (e) field write

17 box.content = "foo";

18 };

19 // (f) virtual call

20 boxes.forEach(consumer );

21 }

Listing 2. Compiled code reusability of this Java source is af-
fected by the non-determinism of the runtime environment.

46



An Analysis of Compiled Code Reusability in Dynamic Compilation VMIL ’24, October 20, 2024, Pasadena, CA, USA

modern VM that was not designed with code reusability in
mind.

Each construct highlighted in Listing 2 hinders reusability
because it introduces the following VM-specific code:

(a) The implementation of lambda expressions in Java
[11] involves dynamically generated classes, and the
compiled code references this class.

(b) The instance check leads to a reference to the String
class in the compiled code.

(c) The string literal is compiled as an object reference.
(d) The direct call references the target method if it is not

inlined.
(e) A field write may require supporting code for the

garbage collector (GC) [18], which can reference GC-
related objects.

(f) A virtual call may be compiled as a lookup in a virtual
method table [24], where themethod entry offset could
change between VM runs in the HotSpot JVM.

3.2 Non-Determinism in Application Code
Optimizing JIT compilers take advantage of access to the

application’s state. For example, after a final static field is
initialized, its value cannot change. Therefore, at the IR level,
the compiler may replace all loads of this field with a constant
node holding the field’s value — we call this field-load folding.
We showed an example of a foldable field load in Listing 1.

Field-load folding is an optimization available to JIT com-
pilers but generally not possible for AOT compilers. This
happens when the application code computes the field’s
value, and the compiler cannot determine the result stati-
cally. As illustrated in Listing 1, the initializer may compute
a different field value in another VM run. In this situation, a
JIT compiler has the edge over an AOT compiler because it
needs to compile only for this particular VM run rather than
all possible runs.2

More optimization opportunities may arise after the com-
piler replaces the IR node representing a field load with a
constant IR node. The compiler may evaluate the expressions
that become constant. In Listing 1, we showed that the opti-
mizer could remove branching and potentially the dead code.
All these transformations based on the constant’s value may
be invalid in another VM run if the field’s value is different.
Suppose the constant is an object constant rather than a

primitive one. In that case, the compiler may leverage all
kinds of information about it, such as the exact type and the
values of final instance fields. If the constant is an array, the
optimizer may read its length and access the individual array
elements. This information enables optimization that is often
specific to the state of the application in this particular VM
run.

2Native Image can execute static initializers at build time, but this changes
the semantics of the language.

Unfortunately, it is relatively easy to write code that is
non-reusable due to the above reasons. Consider the exam-
ple in Listing 3, which shows an instance of the problem
from the Java Class Library. The getInstance method re-
turns a single instance of the service for each thread. How-
ever, the compiled code of getInstance would likely not
be reusable. This is due to the non-deterministic initializa-
tion of the threadLocalHashCode field in combination with
field-load folding and inlining.

The root of the problem is the ThreadLocal class, which
stores a thread-local hash code in a private final field. This
hash code comes from the atomic integer and is used to
index into the map with thread-local values. If the same
thread-local object, such as Service#instance, is initial-
ized in a different order relative to other thread-local objects,
the assigned hash code is different. During compilation, the
compiler folds the code that computes the map index based
on the hash code. This code then may get inlined into the
getInstance method. As a result, the compiled code now
depends on the state of the running application. Patching
the compiled code would be difficult, as the constant value
embedded in the code may not directly be the value of the
threadLocalHashCode field but rather the result of a com-
putation based on the field’s value.

3.3 Optimizations Based on VM State
Some optimizations tailor [10] the generated code to the state
of the running VM. The motivation is to improve the per-
formance of the compiled code. For example, a JIT compiler
may specialize the code based on the initialization status of a
class or the state of a virtual call site [24]. However, in some
cases, this VM state may change during the application’s
lifecycle. Therefore, the VM must explicitly track such as-
sumptions and react accordingly whenever they are violated
(e.g., by transferring execution to the interpreter and discard-
ing the compiled code). Consequently, these optimizations
restrict code reusability because the code is useful only if
the assumptions about the VM state are satisfied.

In the HotSpot JVM and the GraalVM compiler, there are
at least three mechanisms that enable optimization based
on the VM state: (1) assumptions — restrictions placed on
the loaded classes that may be violated by class loading (e.g.,
the assumption that an interface has a single implementor),
(2) speculations — conditions verified at runtime by the com-
piled code (e.g., that the receiver of a call is not null), and
(3) implicit assumptions in the compiled code that do not
require a check (e.g., that a class is initialized).

Assumptions enable the JIT compiler to perform optimiza-
tions, such as turning a virtual call into a direct call. These
assumptions are not checked by the compiled code but rather
by the VM during class loading. Assumptions can also work
well with code reuse [17]: since assumptions are explicitly
tracked, we can verify whether they hold in the target VM.

47



VMIL ’24, October 20, 2024, Pasadena, CA, USA Andrej Pečimúth, David Leopoldseder, and Petr Tůma

1 class Service {

2 static final ThreadLocal <Service > instance = ThreadLocal.withInitial(Service ::new);

3 static Service getInstance () { return instance.get(); }

4 }

5 class ThreadLocal <T> { // snippet from the Java Class Library

6 private static AtomicInteger nextHashCode = new AtomicInteger ();

7 private final int threadLocalHashCode = nextHashCode.getAndAdd(HASH_INCREMENT );

8 // ...

9 }

Listing 3. Compiled code reusability is hindered due to the accidental non-determinism of thread locals.

Speculations [10] allow the JIT compiler to optimize for
the common path. For example, the compiler does not have to
emit code for a branch that was never taken. Instead, the com-
piler emits code that transfers execution to the interpreter
(deoptimizes). As is the case with assumptions, speculations
can also work well with code reuse. Speculations also have
the property that installing code with a failed speculation
does not cause incorrect behavior because the conditions are
explicitly checked in the compiled code.
Finally, some assumptions in the compiled code are im-

plicit and unchecked, as they cannot be violated in the rest of
the application’s lifecycle. For example, in Java, classes have
static initializers that the runtime must invoke before the
class is used. Some JIT compilers [15] handle class initializa-
tion by compiling code that checks the initialization status of
the referenced class and invokes the initializer if necessary
(an initialization barrier). The barrier is unnecessary if the
referenced class is initialized at compilation time. However,
omitting the barriers hinders the reusability of the code.

3.4 Relocating Object References
As explained above, we may need to relocate object refer-
ences to reuse previously compiled code. The compiled code
may contain references to both VM objects (e.g., representing
loaded classes) and heap objects. To reuse the code, we must
map the objects from the source VM (for which the code was
compiled) to the target VM (where we want to reuse it). We
will illustrate that it is necessary to find logically equivalent
objects in the target VM obtained by following the same
process rather than simply mapping the objects by content.
To make the process of mapping references easier, we could
limit the compiler’s optimization passes so that all object
constants have known provenance and are thus relocatable.
We cannot map objects naively by content because an

object’s identity also affects program semantics. To illus-
trate how object identity affects semantics, consider methods
isFoo and isInternedFoo from Listing 4. For both methods,
an optimizing JIT compiler (such as the GraalVM compiler)
generates code that merely compares the passed string refer-
ence string with a constant address and returns the result

1 static final String foo = System

2 .getProperty("foo");

3 boolean isFoo(String string) {

4 return string == foo;

5 }

6 boolean isInternedFoo(String string) {

7 return string == foo.intern ();

8 }

Listing 4. The identity of the constants referenced by the
compiled methods affects the semantics of the program.

of the comparison. The only difference between the two com-
pilations is that the constants refer to two distinct strings
(even though they are equal by content) because the expres-
sions foo and foo.intern()3 evaluate to distinct references
at compilation time. As a result, the compiled methods be-
have differently: isFoo("bar") gives a different result than
isInternedFoo("bar") if the value of the system property
is bar.

The example illustrates the challenge of code reuse when
the JIT compiler is allowed to perform optimizations related
to constant object references. To facilitate code reuse, we can
forbid the compiler from folding operations on constants.
For example, we may allow the compiler to embed object
references originating in static final fields, but we would
remember where each constant comes from. However, we
would forbid the compiler from evaluating the result of the
intern call with a constant receiver at compilation time. As a
result, every constant reference in the IR has a known prove-
nance, making it possible to map the constants to another
VM.

4 Towards Reusing Performant Code
In this section, we introduce an approach that reuses pre-

optimized IR from a previous run. The goal is to save com-
pilation resources while achieving peak performance close

3In Java, the intern method returns a canonical reference to a string with
the same contents — https://docs.oracle.com/javase/specs/jls/se22/html/jls-
3.html#jls-3.10.5.

48

https://docs.oracle.com/javase/specs/jls/se22/html/jls-3.html#jls-3.10.5
https://docs.oracle.com/javase/specs/jls/se22/html/jls-3.html#jls-3.10.5


An Analysis of Compiled Code Reusability in Dynamic Compilation VMIL ’24, October 20, 2024, Pasadena, CA, USA

Start

LoadField#UI.WIDGET Const(4)

Start

+

Return

Const(20)
Start

Return
Invoke#Widget.height

+

Return

Invoke#Widget.height

+

Return

Const(4)
Const(24)

unoptimized IR A1. after folding the field load A2. after inlining A3. after constant
folding

regular compilation

Const(4)

Start

Const(Button)

If

Const(class UI) Const(112)

Deopt

Read#UI.WIDGET

IsNull

Start

B2. after lowering the field load

Start

LoadField#UI.WIDGET

InstanceOf

If

Deopt Return

Const(24)

B1. after type-checked inlining (requires
profiles) and constant folding

If

Deopt Return

Const(24)

InstanceOf

compilation with deferred optimization

reusable IR

VM
-specific IR

If

Deopt

IsNull

Start

If

Deopt Return

Const(24)

InstanceOf

Const(Button)

B3. after folding the read 

Start

Return

Const(24)

B4. after constant
folding

Figure 1. Graal IR [9] showing how the compiler optimizes heightWithMargin from Listing 5: a regular compilation (top) vs.
a compilation with deferred optimization (bottom). Thick lines are control-flow edges; thin lines are data-flow edges.

1 interface Widget {

2 int height ();

3 }

4 class Button implements Widget {

5 public int height () {

6 return 20;

7 }

8 }

9 // definitions of other widgets ...

10 class UI {

11 static final Widget WIDGET =

12 new Button ();

13 static int heightWithMargin () {

14 return WIDGET.height () + 4;

15 }

16 }

Listing 5. A snippet of an application with a user interface.

to the code compiled from scratch. Therefore, the reusable
IR is pre-optimized in such a way that it is correct to finish
the compilation in another VM run. For maximum perfor-
mance, the compiler may leverage profiling information and

speculative optimization [10] in the reusable IR. VM-specific
optimizations that would invalidate the IR for reuse are de-
ferred to the final compilation stage for each particular VM.
This stage, where we reuse the IR and apply VM-specific opti-
mization, is later in the compilation pipeline to save as many
computational resources as possible. This section describes
the challenges and analyzes the approach. In Section 5, we
devise an experiment to evaluate the impact on real-world
workloads.

To illustrate our approach, consider the source code in List-
ing 5 and the method heightWithMargin, which computes
the height of a user-interface element. Figure 1 contrasts how
the compiler may optimize the code on the IR level during a
regular compilation (top) compared to a compilation with
deferred optimization (bottom). The figure shows Graal IR
[9], which is a superposition of the control-flow and data-
flow graphs: thick lines represent control-flow edges, and
thin lines represent data-flow edges.
The top left IR graph in Figure 1 shows the state after

parsing method heightWithMargin without any optimiza-
tion. In a regular compilation (top of the figure), the compiler
evaluates the load from the static final field. As a result, the
height call becomes direct and inlinable. After inlining, the

49



VMIL ’24, October 20, 2024, Pasadena, CA, USA Andrej Pečimúth, David Leopoldseder, and Petr Tůma

compiler evaluates the result of the integer addition. The
final compiled code merely returns the result evaluated at
compilation time.

The bottom of Figure 1 shows how the compiler optimizes
the method using our approach. The IR graphs on the left
of the dashed line are reusable. The compiler cannot fold
the field load yet in order to avoid introducing an object
reference into the IR and keep the IR reusable. Consequently,
the receiver of the height call is not a constant, and there-
fore the receiving method cannot be determined at this time.
However, the compiler can inline the call speculatively (as de-
picted in the diagram) if profiles show that the only recorded
receiver type is Button. The nodes in the IR check that the re-
ceiver’s type is Button — if it is not, Deopt transfers control
to the interpreter (deoptimizes). After inlining the height
call, the compiler evaluates the result of the integer addition.
Finally, the field load is lowered to a read operation with a
null check.
The IR graphs on the right of the dashed line show opti-

mizations that leverage VM-specific information. The com-
piler evaluates the read operation and replaces the read node
with the constant result. Since the constant is of the expected
type, the null check and the type check are removed. The
final IR maps to efficient machine code and exactly matches
that of a regular compilation. Note that if the actual field’s
value were null or of a different type (impossible given the
code in Listing 5), it would still be correct to reuse the IR, but
the IR would not be useful as it would deoptimize immedi-
ately. The reusable IR speculates about the VM state based on
profiling information, which is necessary for performance,
but only in a way that maintains correctness across VM runs.

4.1 Reusing IR
The IR intended for reuse is pre-optimized only in such a
way that is valid across VMs. To install the IR in a different
VM, we must finish the compilation of the IR to obtain the
machine code. We can do this by applying the optimizations
specific to the target VM’s state and then running a tail of
the regular compilation pipeline.

The advantage of reusing the pre-optimized IR is that we
reuse the work performed in a past compilation and can
still leverage many optimization opportunities dependent on
the VM-specific state. Compared to reusing compiled code
directly, we still require the final compilation step, which
takes some CPU and memory resources. To minimize the
cost of the final compilation, we reuse the low-level IR from
a late compilation stage.

The final compilation step takes less CPU time and mem-
ory the closer the cached IR is to the target machine code.
However, the IR must be high-level enough so that we can
still apply and benefit from the VM-specific optimizations.
The concrete point in the compilation pipeline where we can
store the IR depends on the compiler implementation and

also on the VM-specific optimizations we defer to the final
compilation step.

4.2 Deferring Optimizations
Our approach requires avoiding implicit assumptions that
may not hold in a future VM run when compiling the IR
intended for later reuse. In particular, we cannot embed ad-
dresses of VM objects directly in the IR because the addresses
will likely change in another run. Moreover, we must defer
optimizations based on the application state, such as those
that depend on the contents of the heap. For example, the
compiler cannot yet access fields of object constants or even
the type information of the constants, as we cannot generally
guarantee they will not vary between VM runs. The compiler
can access the values of primitive constants from the con-
stant pool (those not computed by a bootstrap method [12]),
which do not vary unless the source code of the application
changes.
Instead of embedding an address of a VM object in the

IR, we can use a placeholder IR node in place of the address.
Higher-level optimization passes do not typically perform
optimizations based on the concrete value of an address.
Therefore, this mechanism does not discard optimization
opportunities. The placeholder node stores the information
on how to obtain the actual value of the address so that we
can relocate the IR at the time of reuse. In GraalVM, we
can use the same approach to relocate method vtable entry
offsets in the IR.

Optimizing JIT compilers may replace a field load by em-
bedding the field’s value in the IR if the value cannot change
in the rest of the application’s lifecycle. However, the field’s
value could differ in a future VM run. Therefore, we can-
not perform this optimization while compiling the reusable
IR. To capture this optimization opportunity, we defer this
optimization to the final compilation step, where we can
leverage the VM-specific state.
Optimization passes that comprise the tail of the regular

compilation pipeline, which we apply at the time of reuse, do
not require any special handling. For example, instruction
selection or register allocation are part of a late compila-
tion stage. At this stage, the compiler can make informed
decisions as it can utilize the VM-specific data.
We allow speculative assumptions [10] in the reusable

IR in order to not hinder peak performance. At the time
of reuse, we only require an extra step that verifies the IR
assumptions with the VM state. The verification is typically
also part of a regular JIT compilation, so existing VMs and
compilers already have the infrastructure to track and verify
assumptions. In GraalVM, we must also track and verify the
initialization status of the classes referenced in a compilation.

4.3 Performance of Reused IR
The deferring of optimizations may affect the optimization
decisions in all optimization passes on the reusable IR. Due to

50



An Analysis of Compiled Code Reusability in Dynamic Compilation VMIL ’24, October 20, 2024, Pasadena, CA, USA

the lack of field-load folding and related optimizations at the
beginning of a compilation, the IR may be more complex, and
the heuristics of some optimization passes may be less likely
to apply a transformation. As a result, the code compiled from
a cached IR may reach only reduced peak performance. The
actual effect on real-world workloads is difficult to predict.

For example, folding field loads usually enables other trans-
formations, such as constant folding or inlining. We defer
field-load folding to the final compilation step in our ap-
proach. Although we can still rerun constant folding at the
final stage, inlining is typically performed early in the compi-
lation pipeline. For this reason, we miss inlining opportuni-
ties dependent on the optimizations we deferred. Moreover,
the inliner considers the size of IR of a potential inlinee. Due
to the deferred optimizations, the IR may be larger at this
stage, which may misguide the inliner’s heuristics.

5 Experimental Evaluation
In this section, we evaluate the impact of making the IR
reusable by deferring optimizations to a later stage. We im-
plemented the approach in the GraalVM compiler so that we
can compare the code quality of compilations with deferred
optimizations with the unmodified GraalVM compiler. This
section presents an estimate of the peak-performance im-
pact on the workloads from the Renaissance [23] benchmark
suite. Moreover, we analyze the cause of the performance
difference in the most negatively affected workload.

To put the measured peak-performance impact in perspec-
tive, we compare it with the client compiler [15]. The client
compiler is the lower-tier compiler [27] in GraalVM, and
it emits moderately optimized code. The advantage of the
client compiler is that it completes the compilations much
faster than the top-tier GraalVM compiler. We show that the
performance of the code compiled with deferred optimiza-
tion is closer to that of the unmodified GraalVM compiler
than that of the lower-tier compiler.

5.1 Experimental Implementation
We created a modified version of the GraalVM compiler,
which prevents the compiler from utilizing some VM-specific
state until a point where we can cache the IR. At this point,
instead of caching the IR, we make the VM state available
to the compiler and apply optimizations that may benefit
from it. Then, the rest of the regular compilation pipeline
runs, and we install the code in the running VM. As a result,
we obtain the code as if it were compiled from an IR cache.
This way, we can estimate the peak-performance impact of
reusing cached IR.

The point at which we could cache the IR is relatively late
in the compilation pipeline, so there could be compilation-
time savings for compilations from the IR cache. However,
we do not measure the impact on the warmup, as there
are a few missing pieces that would enable actual IR reuse.

To achieve IR reuse, we would need to relocate and verify
the equivalence of class, method, and constant references,
relocate addresses of other VM objects (e.g., related to the
GC), patch virtual method table offsets and similar values in
the IR, verify the equivalence of the VM configuration and
the target platform, and verify the speculative optimizations
and assumptions in the cached IR.
The key parts of the implementation are disabling field-

load folding andwrapping object constants obtained from the
runtime constant pool. We disable field-load folding because
values of static final fields are computed by static initializers,
which could compute different values in different runs. This
way, we also ensure that all object-constant references ap-
pearing in the cached IR originate in the constant pool. As a
result, the relocation of constants is straightforward because
we can identify each constant in the IR using a constant-pool
index in the respective constant pool.

Wrapping object constants ensures that the compiler can-
not use any information about them that could be different
in another VM run. The wrapper for the object constants is
a new kind of IR node that we added to ensure the existing
optimization passes cannot use any information about the
wrapped constant. After the point where we would cache
the IR, we replace the wrapper nodes with regular constant
nodes. Then, the rest of the compilation pipeline can leverage
the VM-specific information as usual.

5.2 Measurement Setup
We measure the peak performance of GraalVM in three se-
tups: (1) the baseline setup without any compiler modifica-
tions, (2) the GraalVM compiler modified to defer optimiza-
tions, (3) with the GraalVM compiler disabled (leaving the
client compiler [15] enabled). We evaluate the peak perfor-
mance based on the average iteration time (lower is better) of
warmed-up workloads from the Renaissance [23] benchmark
suite. For eachworkload, we report the average iteration time
of the second and third variants relative to the baseline.

In the measured workloads, most JIT compilation activity
occurs in the first few minutes of run time. Therefore, we
run each workload for 30 minutes and remove the first half
of the measured iteration times as warmup. We filter out the
samples outside three standard deviations from the mean
and compute each run’s arithmetic mean of the iteration
time. For each workload and setup, we repeat 40 runs and
compute the arithmetic mean of the per-run means. The
number of runs is selected based on our available machine
time. We report 99% confidence intervals computed using
hierarchical bootstrap resampling — we first sample from
the runs and then from the iterations of the sampled runs.
We conducted the experiments on 20 identical machines

with the Intel Xeon E3-1230 v6 CPU, 32GB of RAM, Fedora 35
with Linux kernel version 5.16.11, and Renaissance version
0.15.0. We used a developer build of GraalVM Enterprise
based on OpenJDK 22.

51



VMIL ’24, October 20, 2024, Pasadena, CA, USA Andrej Pečimúth, David Leopoldseder, and Petr Tůma

Table 1. Slowdown ratios of the GraalVM compiler with
deferred optimization and the client compiler compared to
the GraalVM baseline with 99% confidence intervals.

benchmark deferred
optimization

client
compiler

scala-stm-bench7 1.00 0.99–1.01 7.25 7.19–7.31
reactors 1.04 1.03–1.05 10.09 10.02–10.16
future-genetic 1.05 1.03–1.07 12.69 12.53–12.87
akka-uct 1.05 1.04–1.05 20.95 20.69–21.21
fj-kmeans 1.06 1.06–1.06 51.67 51.37–51.98
philosophers 1.07 1.04–1.10 18.82 18.50–19.16
page-rank 1.08 1.06–1.09 18.11 17.93–18.30
movie-lens 1.11 1.10–1.11 17.30 17.24–17.36
als 1.11 1.11–1.12 54.07 53.46–54.69
scala-doku 1.14 1.07–1.22 12.68 12.04–13.44
rx-scrabble 1.15 1.14–1.16 6.77 6.71–6.83
neo4j-analytics 1.16 1.15–1.16 22.80 22.67–22.92
finagle-http 1.17 1.16–1.18 12.28 12.22–12.35
dotty 1.18 1.18–1.18 16.44 16.30–16.59
log-regression 1.23 1.22–1.24 32.02 31.75–32.30
dec-tree 1.23 1.23–1.24 19.55 19.48–19.63
scrabble 1.28 1.25–1.30 31.31 30.93–31.74
chi-square 1.28 1.25–1.30 50.78 50.18–51.27
finagle-chirper 1.30 1.29–1.32 17.71 17.58–17.83
scala-kmeans 1.32 1.32–1.33 14.04 13.87–14.23
par-mnemonics 1.63 1.50–1.78 17.64 16.51–18.97
mnemonics 1.68 1.55–1.82 12.49 11.64–13.41
naive-bayes 1.86 1.81–1.90 58.01 56.65–58.84
gauss-mix 5.62 5.00–6.17 181.88 161.17–201.73

5.3 Measurement Results
Table 1 reports the slowdown ratios of each workload. In the
middle, we report the mean iteration time of the GraalVM
compiler with deferred optimization divided by the mean
iteration time of the unmodified GraalVM compiler baseline,
including 99% confidence intervals. On the right, we show
the mean iteration time of the client compiler relative to the
unmodified GraalVM compiler baseline with respective 99%
confidence intervals.

The effect of deferring optimizations in the GraalVM com-
piler ranges from no impact in scala-stm-bench7 to a 5.62x
slowdown in gauss-mix. For all workloads but gauss-mix,
the slowdown ratio is below 2. We analyze the cause of the
regression in gauss-mix in Section 5.4.
Although deferring optimizations causes an overall per-

formance regression compared to the unmodified GraalVM
compiler, the performance of the compiled code is still much
better than that of the client compiler. The workloads com-
piled with the client compiler exhibit significant slowdowns
— they are from about 7 to 182 times slower. This data clearly

shows that the quality of the code compiled with deferred op-
timizations is much closer to the code quality of the highly
optimizing GraalVM compiler than that of the lower-tier
compiler.

5.4 Code Quality
The regression in the most negatively affected workload,
gauss-mix, is due to a failure to optimize method handles. A
method handle [21] is an invokable method reference in Java.
In a typical compilation, the GraalVM compiler attempts to
transform (intrinsify) method-handle invocations to regular
method invocations. The necessary condition is that the
target of the method handle is an object constant, which the
compiler can resolve to an invokable method. This procedure
only partially succeeds with deferred optimization: although
the compiler resolves the target method of themethod handle
after field-load folding is allowed, it is too late to inline the
target method.
In the IR during compilation, there is a constant holding

an instance of a method handle with the final field member,
which identifies the target method. The compiler can intrin-
sify the method-handle invocation only if the target method
is constant, i.e., the compiler must first fold the load of the
member field to a constant node. With deferred optimization,
this happens later in the compilation pipeline. However, the
GraalVM compiler inlines very early, so it is too late to inline
the target method.We analyzed the optimization decisions in
the workload combined with a sampling profiler; the hottest
compilation units were those the compiler failed to inline.
This is a clear sign of a performance regression caused by
inlining.

6 Conclusion
This paper investigated the challenges of reusing compiled
code in a modern VM. The problems are related to the non-
determinism of the running application, non-determinism
of the runtime environment, and aggressive optimizations
based on the state of the VM. Intending to reuse previous
compilation results with minimal peak-performance impact,
we introduced the approach of reusing IR with deferred
optimization. Unlike previous work, the compiled code lever-
ages VM-specific optimizations performed on the reusable IR.
While deferred optimization in a high-performance compiler
can reduce performance (leading to an up to 6x slowdown in
the most affected workload), it still significantly outperforms
the lower-tier compiler. These results suggest the approach
could be valuable for improving warmup times in specific
workloads.

Acknowledgments
This research was supported by projects SVV 260 698 and
GAUK 74824.

52



An Analysis of Compiled Code Reusability in Dynamic Compilation VMIL ’24, October 20, 2024, Pasadena, CA, USA

References
[1] Azul. 2024. Cloud Native Compiler. Retrieved May 20, 2024 from

https://docs.azul.com/optimizer-hub/about/cloud-native-compiler
[2] Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah Mount,

and Laurence Tratt. 2017. Virtual Machine Warmup Blows Hot and
Cold. Proc. ACM Program. Lang. 1, OOPSLA, Article 52 (2017), 27 pages.
https://doi.org/10.1145/3133876

[3] Joao Carreira, Sumer Kohli, Rodrigo Bruno, and Pedro Fonseca. 2021.
From warm to hot starts: leveraging runtimes for the serverless era. In
Proceedings of the Workshop on Hot Topics in Operating Systems (Ann
Arbor, Michigan) (HotOS ’21). Association for Computing Machinery,
New York, NY, USA, 58–64. https://doi.org/10.1145/3458336.3465305

[4] OpenJDK Community. 2024. Project CRaC. Retrieved May 20, 2024
from https://openjdk.org/projects/crac

[5] OpenJDK Community. 2024. Project Leyden. Retrieved May 20, 2024
from https://openjdk.org/projects/leyden

[6] Grzegorz Czajkowski, Laurent Daynès, and Nathaniel Nystrom. 2002.
Code Sharing among Virtual Machines. In ECOOP 2002 — Object-
Oriented Programming, Boris Magnusson (Ed.). Springer Berlin Hei-
delberg, Berlin, Heidelberg, 155–177. https://doi.org/10.1007/3-540-
47993-7_7

[7] Irwin D’Souza. 2018. Ahead Of Time Compilation: Relocation. Retrieved
May 21, 2024 from https://blog.openj9.org/2018/10/26/ahead-of-time-
compilation-relocation/

[8] Irwin D’Souza. 2018. Ahead Of Time Compilation: Validation. Retrieved
May 21, 2024 from https://blog.openj9.org/2018/11/08/ahead-of-time-
compilation-validation/

[9] Gilles Duboscq, Lukas Stadler, Thomas Wuerthinger, Doug Simon,
Christian Wimmer, and Hanspeter Mössenböck. 2013. Graal IR: An
Extensible Declarative Intermediate Representation. In Proceedings
of the Asia-Pacific Programming Languages and Compilers Workshop.
http://ssw.jku.at/General/Staff/GD/APPLC-2013-paper_12.pdf

[10] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wim-
mer, Doug Simon, and Hanspeter Mössenböck. 2013. An Intermediate
Representation for Speculative Optimizations in a Dynamic Com-
piler. In Proceedings of the 7th ACM Workshop on Virtual Machines
and Intermediate Languages (Indianapolis, Indiana, USA) (VMIL ’13).
Association for Computing Machinery, New York, NY, USA, 1–10.
https://doi.org/10.1145/2542142.2542143

[11] Ben Evans. 2020. Behind the scenes: How do lambda ex-
pressions really work in Java? Retrieved June 24, 2024
from https://blogs.oracle.com/javamagazine/post/behind-the-scenes-
how-do-lambda-expressions-really-work-in-java

[12] Brian Goetz. 2018. JEP 309: Dynamic Class-File Constants. Retrieved
July 15, 2024 from https://openjdk.org/jeps/309

[13] IBM. 2024. Introduction to class data sharing. Retrieved May 21, 2024
from https://eclipse.dev/openj9/docs/shrc/

[14] Alexey Khrabrov, Marius Pirvu, Vijay Sundaresan, and Eyal de Lara.
2022. JITServer: Disaggregated Caching JIT Compiler for the JVM in
the Cloud. In 2022 USENIX Annual Technical Conference (USENIX ATC
22). USENIX Association, Carlsbad, CA, 869–884. https://www.usenix.
org/conference/atc22/presentation/khrabrov

[15] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck,
Thomas Rodriguez, Kenneth Russell, and David Cox. 2008. Design of
the Java HotSpot™ Client Compiler for Java 6. ACM Transactions on
Architecture and Code Optimization 5, 1, Article 7 (May 2008), 32 pages.

https://doi.org/10.1145/1369396.1370017
[16] Han B. Lee, Amer Diwan, and J. Eliot B. Moss. 2007. Design, implemen-

tation, and evaluation of a compilation server. ACM Trans. Program.
Lang. Syst. 29, 4 (August 2007), 18–es. https://doi.org/10.1145/1255450.
1255451

[17] Meetesh Kalpesh Mehta, Sebastián Krynski, Hugo Musso Gualandi,
Manas Thakur, and Jan Vitek. 2023. Reusing Just-in-Time Compiled
Code. Proc. ACM Program. Lang. 7, OOPSLA2, Article 263 (2023),
22 pages. https://doi.org/10.1145/3622839

[18] Oracle. 2022. Garbage-First (G1) Garbage Collector. Retrieved June
25, 2024 from https://docs.oracle.com/en/java/javase/18/gctuning/
garbage-first-g1-garbage-collector1.html

[19] Oracle. 2024. GraalVM Compiler. Retrieved June 27, 2024 from https:
//www.graalvm.org/latest/reference-manual/java/compiler/

[20] Oracle. 2024. Native Image. Retrieved May 20, 2024 from https:
//www.graalvm.org/latest/reference-manual/native-image/

[21] Ed Ort. 2009. New JDK 7 Feature: Support for Dynamically
Typed Languages in the Java Virtual Machine. Retrieved June
25, 2024 from https://www.oracle.com/technical-resources/articles/
javase/dyntypelang.html

[22] Andrej Pečimúth. 2023. Remote Just-in-Time Compilation for Dy-
namic Languages. In Companion Proceedings of the 2023 ACM SIG-
PLAN International Conference on Systems, Programming, Languages,
and Applications: Software for Humanity (Cascais, Portugal) (SPLASH
2023). Association for Computing Machinery, New York, NY, USA, 1–3.
https://doi.org/10.1145/3618305.3623593

[23] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Du-
boscq, Petr Tůma, Martin Studener, Lubomír Bulej, Yudi Zheng, Alex
Villazón, Doug Simon, Thomas Würthinger, and Walter Binder. 2019.
Renaissance: Benchmarking Suite for Parallel Applications on the JVM.
In Proc. 40th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI). 17. https://doi.org/10.1145/3314221.
3314637

[24] John Rose. 2013. Virtual Calls (HotSpot). Retrieved June 25, 2024 from
https://wiki.openjdk.org/display/HotSpot/VirtualCalls

[25] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the Wild:
Characterizing and Optimizing the Serverless Workload at a Large
Cloud Provider. In 2020 USENIX Annual Technical Conference (USENIX
ATC 20). USENIX Association, 205–218. https://www.usenix.org/
conference/atc20/presentation/shahrad

[26] Sun Microsystems. 2006. The Java HotSpot Performance Engine Ar-
chitecture. Retrieved July 6, 2024 from https://www.oracle.com/java/
technologies/whitepaper.html

[27] Igor Veresov. 2013. Tiered Compilation in Hotspot JVM. Retrieved July
6, 2024 from https://www.slideshare.net/maddocig/tiered

[28] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking Behind the Curtains of Serverless Plat-
forms. In 2018 USENIX Annual Technical Conference (USENIX ATC 18).
USENIX Association, Boston, MA, 133–146. https://www.usenix.org/
conference/atc18/presentation/wang-liang

[29] Xiaoran Xu, Keith Cooper, Jacob Brock, Yan Zhang, and Handong
Ye. 2018. ShareJIT: JIT Code Cache Sharing across Processes and Its
Practical Implementation. 2, OOPSLA, Article 124 (2018), 23 pages.
https://doi.org/10.1145/3276494

53

https://docs.azul.com/optimizer-hub/about/cloud-native-compiler
https://doi.org/10.1145/3133876
https://doi.org/10.1145/3458336.3465305
https://openjdk.org/projects/crac
https://openjdk.org/projects/leyden
https://doi.org/10.1007/3-540-47993-7_7
https://doi.org/10.1007/3-540-47993-7_7
https://blog.openj9.org/2018/10/26/ahead-of-time-compilation-relocation/
https://blog.openj9.org/2018/10/26/ahead-of-time-compilation-relocation/
https://blog.openj9.org/2018/11/08/ahead-of-time-compilation-validation/
https://blog.openj9.org/2018/11/08/ahead-of-time-compilation-validation/
http://ssw.jku.at/General/Staff/GD/APPLC-2013-paper_12.pdf
https://doi.org/10.1145/2542142.2542143
https://blogs.oracle.com/javamagazine/post/behind-the-scenes-how-do-lambda-expressions-really-work-in-java
https://blogs.oracle.com/javamagazine/post/behind-the-scenes-how-do-lambda-expressions-really-work-in-java
https://openjdk.org/jeps/309
https://eclipse.dev/openj9/docs/shrc/
https://www.usenix.org/conference/atc22/presentation/khrabrov
https://www.usenix.org/conference/atc22/presentation/khrabrov
https://doi.org/10.1145/1369396.1370017
https://doi.org/10.1145/1255450.1255451
https://doi.org/10.1145/1255450.1255451
https://doi.org/10.1145/3622839
https://docs.oracle.com/en/java/javase/18/gctuning/garbage-first-g1-garbage-collector1.html
https://docs.oracle.com/en/java/javase/18/gctuning/garbage-first-g1-garbage-collector1.html
https://www.graalvm.org/latest/reference-manual/java/compiler/
https://www.graalvm.org/latest/reference-manual/java/compiler/
https://www.graalvm.org/latest/reference-manual/native-image/
https://www.graalvm.org/latest/reference-manual/native-image/
https://www.oracle.com/technical-resources/articles/javase/dyntypelang.html
https://www.oracle.com/technical-resources/articles/javase/dyntypelang.html
https://doi.org/10.1145/3618305.3623593
https://doi.org/10.1145/3314221.3314637
https://doi.org/10.1145/3314221.3314637
https://wiki.openjdk.org/display/HotSpot/VirtualCalls
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.oracle.com/java/technologies/whitepaper.html
https://www.oracle.com/java/technologies/whitepaper.html
https://www.slideshare.net/maddocig/tiered
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://doi.org/10.1145/3276494

	Abstract
	1 Introduction
	2 Related Work
	2.1 Code Sharing
	2.2 Remote Compilation
	2.3 Other Approaches

	3 Reusability of Compiled Code
	3.1 Non-Determinism in the Runtime Environment
	3.2 Non-Determinism in Application Code
	3.3 Optimizations Based on VM State
	3.4 Relocating Object References

	4 Towards Reusing Performant Code
	4.1 Reusing IR
	4.2 Deferring Optimizations
	4.3 Performance of Reused IR

	5 Experimental Evaluation
	5.1 Experimental Implementation
	5.2 Measurement Setup
	5.3 Measurement Results
	5.4 Code Quality

	6 Conclusion
	Acknowledgments
	References

