CORBA Benchmarking
Frantisek Plasil’?, Petr Tiima', Adam Buble'”

1 2

Charles University Institute of Computer Science

Faculty of Mathematics and Physics, Academy of Sciences of the Czech Republic
Department of Software Engineering Pod voddrenskou vezi 2

Malostranské namésti 25 182 07 Prague 8

118 00 Prague 1 Czech Republic

Czech Republic Phone: +420-2-6605 3291

phone: +420-2-2191 4266 Fax: +420-2-858 57 89

fax: +420-2-532 742 e-mail: plasil@uivt.cas.cz

e-mail: {plasil, tuma, buble}@nenya.ms.mff .cuni.cz

Abstract. This TR was created in preparation of the Charles University response to the
ORBOS Benchmark RFI (OMG document bench/98-05-02); this pre-specified the outline
of the text. As the main contribution, the authors suggest to reduce ORB benchmarking
complexity by factoring ORB request-handling functionality into prime actions which can
be the subject of a separate benchmarking. To measure the prime actions, ORB has to be
equipped with a light-weight intercepting mechanism. It is pointed out that the standard
interceptors defined in CORBA are not very useful for this purpose. In addition, a way to
overcome the difficulty that some prime actions can be performed in parallel is proposed.

1 Introduction

With our industrial partner, MLC Systeme Ratingen, Germany, we were involved in the CORBA
Comparison Project [1]. The goal of the project was to select a CORBA implementation that could support a
backbone of a distributed information system. The criteria the evaluation was based on included, e.g., ORB
performance, CORBAservices support and interoperability. Naturally, benchmarking was a portion of the
project (for evaluating ORBs' performance). Published on the Internet (http://nenya.ms.mff.cuni.cz), the
project report drew a lot of attention. This has encouraged us to reflect our benchmarking experience gained
during the project as this article (response to the ORBOS Benchmark RFI, bench/98-05-02).

2 Responses to RFI objectives

2.1 What are the goals of CORBA benchmarking in terms of domains, types of applications, etc.?

In our experience related to [1], we identified particularly the following domains where benchmarking gets
employed:

- potential ORB users often want to know whether a particular ORB implementation is suitable for their
specific application, or which implementation to choose (user orientation domain),

- ORB vendors naturally want to know the criteria their customers employ when choosing an ORB, and
also want to test their product to locate possible sources of problems. For this domain (ORB vendors
domain), the goals incline towards getting more low-level details about specific fragments of ORB
functionality.

In a slightly modified form, this TR was submitted as the Charles University Response to the OMG Benchmark PSIG RFI (OMG document
bench/98-05-02), and is available as the OMG document bench/98-10-04.

CORBA Benchmarking October 16, 1998

Other domains can be found as well, such as using a benchmarking support to diagnose running systems.
Overall, however, we see the user orientation domain as the primary target of our RFI response, because this
is the domain that puts most emphasis on portability of benchmarks and comparability of results, which we
see as the proper areas to be addressed by the OMG standardization activity (as far as the ORB vendors
domain goes, most vendors have their test suites already anyway).

2.2 What kinds of benchmark measurements are appropriate in a CORBA environment (e.g.
throughput, scalability, reliability, memory footprint, etc.)?

The quality of an ORB is influenced by many factors; some of them can be complex and depend on other
factors, e.g. throughput and scalability. It is inherently difficult to evaluate any benchmark-based
measurement of a complex factor, as the influence of other (sub)factors involved in the benchmark is usually
hard to identify and analyze.

The important factors that make up the overall quality of the ORB are:

a) the effectivity of the request/response handling mechanism (complex factors such as throughput,
scalability, and latency can be evaluated here),

b) the reliability and robustness of the ORB implementation,

¢) the support for CORBAservices (especially for those services that require close cooperation with the
ORB, the Security and Transaction services in particular),

d) the existence and functionality of extensions such as the multithreading support,
e) the interoperability.

In our project, benchmarking was used to test a) and partially b); in fact, there is another benchmark to test
parts of d) and e) as well. Briefly, to test the effectivity of the request/response handling mechanism,
benchmark suites with the following goals were designed:

- measuring differences in invocation times when using different load patterns and different invocation
strategies,

- measuring differences in invocation times related to different aspects of the structural complexity of
IDL interfaces,

- measuring the overall throughput of the ORB and the overhead associated with passing specific data
types,

- measuring invocation times and resource consumption as functions of the number of objects, number of
proxies, number of connections, etc.

In our experience, problems with reliability of an ORB demonstrate themselves in unusual settings, unusual
load patterns, etc. Contrary to that, benchmarking is usually done in typical settings, with typical load
patterns. Hence, we believe that it is not practical to try devising a benchmarking suite to test ORB
reliability (although some test suites might be set up to partially verify, e.g., the correctness of the I1OP
implementation, but the OMG Branding Program already does this).

In a simplified view, robustness is determined by upper limits of entities handled, e.g. the maximum size of
requests, the maximum number of objects on the server and client sides, etc. Naturally, tests to measure
these limits can be defined.

Interoperability is addressed by the OMG Branding Program (http://www.omg.org/members/branding.htm),
hence we do not discuss it in any depth in this article.

CORBA Benchmarking October 16, 1998

2.3 Are there meaningful, and possibly interoperable, ways of measuring these?

In our experience, benchmark results (in terms of absolute numbers) vary depending on the benchmarking
platform (extremely in many cases); hence it is difficult to conclude on any meaningful results unless one
has actually run all the important benchmarks on all the ORBs in question on the same platform (possibly
the application target platform in the user orientation domain).

The variance of results also makes it difficult to verify any published data, because the exact settings of the
benchmark might be too hard or too expensive to duplicate (not to mention the fact that the correctness of
the settings might also be questioned).

A way to address at least some of these difficulties (and the difficulties addressed in Section 2.2) might be to
measure partial factors that influence the quality of an ORB separately. As a subject of our current research,
we try to base our approach to the ORB benchmarking on expressing the ORB functionality in terms of
well-defined prime actions (e.g. marshalling, dispatching), and on benchmarking these actions. Using a
concept analogous to CORBA interceptors, benchmarking of the prime actions can be based on intercepting
prime points (points separating prime actions) in the request handling path.

2.4 What kinds of CORBA benchmarking technologies are already available, either as (part of)
vendor or publicly available components?

We have already mentioned our CORBA Comparison project [1]. Douglas Schmidt, University of
Washington, St. Louis, developed a number of benchmarks
(http://siesta.cs.wustl.edu/~schmidt/ACE_wrappers/); another benchmark suite is MCITT, developed in
NIST (http://www.mel.nist.gov/msidstaff/flater/mcitt/). There is also a small benchmarking program
enclosed with IONA's Orbix, and some of the other ORBs include very simple benchmarks as well.

As an aside, we keep a list of benchmarking results and other related resources at our web site
(http://nenya.ms.mff.cuni.cz/thegroup/).

2.5 Isit possible (and practical) to create a library of benchmarking reference algorithms,
procedures, and/or applications?

It is our hypothesis that it is possible to create a suite of benchmarks with the goal to measure (and evaluate
separately) the prime actions. This is a subject of our current research.

It would be desirable to create such a benchmark suite library for the following reasons:

- the library could be used to execute the benchmarks in a specific setting, e.g., the target application
settings in the user orientation domain, to obtain results relevant to that particular setting,

- vendors could provide benchmark library implementations certified to be correctly implemented for a
particular ORB,

- publishing the library instead of the results would resolve the problems related to verifying the results
mentioned in Section 2.3.

As an aside, in compliance with TPC [4], we believe that there is a difference between creating good
benchmarks and creating a good process of reviewing and monitoring those benchmarks. We believe OMG
is in a good position to become involved in the latter.

CORBA Benchmarking October 16, 1998

2.6 What sort of ORB instrumentation might be needed or helpful to assist in the gathering of
comparative benchmark data?

In section 2.3, we have outlined the idea of reducing benchmarking complexity by measuring prime actions.
Such a benchmark needs to be able to find out what prime actions are being carried out by the ORB during
the request processing; this can be done, e.g., by intercepting the prime points in the request processing path.
To do this, the ORB needs to be instrumented with an adequate intercepting mechanism. We believe that the
standard interceptors as defined in the CORBA specification are not very useful for benchmarking purposes,
because their very existence can slow down the overall performance of the ORB. Therefore, we suggest to
equip ORBs with a set of lightweight measurement upcalls that would signal when a particular request is
passing a prime point (based on the publisher-subscriber pattern, a benchmark could register with the ORB
to get notified, e.g., about start/stop of marshalling, start/stop of network transport).

The measurement of prime actions is complicated by the fact that the ORB can actually perform several
prime actions in parallel, or perform a single prime action in several phases. To overcome this difficulty, the
lightweight upcall mechanism would simply be obliged to call the corresponding "start", resp. "stop",
function whenever a thread enters, resp. leaves, an activity related to the monitored action (thus potentially
re-opening the same action several times during a single request, or opening several actions concurrently).

As presented here, the solution does not resolve issues such as collecting precise statistics of thread activity
when the ORB uses multithreading to perform several prime actions in parallel. So far, we have only
managed to do this using system-dependent profiling tools, but a definition of a portable benchmark can
hardly rely on these.

2.7 What are the potential problems associated with benchmarking (e.g., not measuring what you
thought you were, vendor optimization to artificial benchmarks to the detriment of general
applicability, copyright, intellectual property, liability issues related to benchmark algorithms,
procedures, applications, and results)?

In this section, we address only the benchmark-oriented optimization (benchmark special implementations in
[4]) whose purpose is performance optimization of benchmark results without any corresponding
applicability to real-word applications and environments - we call this anti-benchmarking.

In principle, we see the following key ways to tackle anti-benchmarking:
- an administrative restriction, e.g. clause 0.2 (anti-benchmark prohibition) in TPCs [4],
- anti-benchmark avoidance, e.g. by a sophisticated design of the benchmark set.

When employing the measurement points approach (sections 2.3 and 2.6), anti-benchmarking related to
request handling path measurements should be detectable by creating cross-benchmarks - benchmarks
designed to cross-check the partial results by comparing their sums with overall measurements.

At the same time, we believe that an anti-benchmark optimization (e.g., faster delivery based on shortcuts in
the dispatcher possible when using only a small numbers of objects) should be detectable by other
benchmarks as a hard-to-explain anomaly.

It is also important to note that if an optimization has a real-world motivation (realistic special cases of the
number of objects, number of connections, number of threads, etc. taken into account), then all involved
parties benefit. The benchmarking suite should have a wide-enough scope to distinguish these optimizations
from anti-benchmarking, and, possibly, to characterize the situations where the optimized results apply.

CORBA Benchmarking October 16, 1998

3 References

[1] "CORBA Comparison Project, Final Report", Distributed Systems Research Group, Charles University,
Prague, June 1998, http://nenya.ms.mff.cuni.cz/thegroup/

[2] Michi Henning, "Binding, Migration and Scalability in CORBA", DSTC, St. Lucia, Oct. 1998,
http://www.dstc.edu.au/BDU/staff/michi-henning.html

[3] Aniruddha S. Gokhale, Douglas C. Schmidt, "Measuring and Optimizing CORBA Latency and
Scalability Over High-speed Networks”, Washington University, St. Louis, Oct. 1998,
http://www.cs.wustl.edu/~schmidt/corba-research-performance.html

[4] Kim Shanley, "History and Overview of the TPC", Transaction Processing Performance Council, Feb.
1998, http://www.tpc.org/articles/tpc.overview.history.1.html

