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Abstract: JetBrains MPS is a language workbench, an IDE that allows developers both to write code
and create language definitions. It leverages the concept of projectional editing, where the developer
directly manipulates the AST representation of program code. While MPS focuses on domain-specific
languages (DSL), it needs to support also general-purpose programming languages (GPPLs) — for
example, to compile and run programs written in some DSL.

We present INGRID, a method for construction of a language definition in MPS based on its ANTLR
grammar. The structure of a language is generated automatically, but its projectional editor and other
aspects has to be adjusted manually. During the development of INGRID, we encountered several chal-
lenges related to the mapping between grammars and language definitions in MPS that are based on
object-oriented principles. Another difficulty is that grammars do not hold any information about code
layout. We implemented INGRID as a plugin for MPS and evaluated it on several mainstream GPPLs,
such as JavaScript and C#. Results show that our approach is practical, and it saves the user from many
hours of tedious and error-prone work. Necessary manual adjustments take only a short time.

This work was partially supported by JetBrains.
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1 Introduction

The prevailing approach to define valid syntaxes for programming languages is through grammars,
which are typically written in notations based on the Extended Backus-Naur Form (EBNF). Many tools
exist for automated generation of parsers from the grammar definitions — for example, ANTLR [5, 13]
and Bison/Flex [3]. The source code of programs is written in a text editor, usually embedded into an
IDE. Parsers are used to create an abstract syntax tree (AST) representation of the code, e.g. inside the
compiler.

An alternative approach is projectional (or structural) editing [8, 7, 2], where a developer directly
manipulates the AST representation of the source code instead of plain text. This idea emerged as early
as in 1970s, but it failed to get adopted widely, mostly due to inconvenient and unnatural way of ma-
nipulating code. A recent revival of projectional editing has been observed in the area of language
workbenches — IDE-like tools that enable the developers to manipulate the actual language definition.
Popular examples are JetBrains MPS [12, 1] and Spoofax [4]. In particular, JetBrains MPS (Meta Pro-
gramming System) is an open-source language workbench that focuses on domain specific languages
(DSL) and leverages the concept of projectional editing. MPS provides the whole IDE infrastructure
that enables developers to design custom languages, use them to write program code, and compile the
code into executables. In the rest of the paper, we will often use examples from MPS to illustrate the
key concepts of our approach and related issues.

Projectional editing, keeping the code in the AST form, and the absence of parsers, brings along
several benefits.

• A projectional editor does not allow the developers to enter syntactically invalid code, because it
controls the interaction between the user and the program code.

• Programming languages can be defined in a modular way, and multiple languages can be easily
combined together in a single program or one can extend another.

• The languages may support diverse contextual or non-parseable notations with complex layout,
such as tables, diagrams, and mathematical expressions.

• Since the projection is detached from the physical representation of code (AST), authors of lan-
guages can define multiple notations and allow the developers to switch between them on the
screen.

All of this is useful especially for DSLs, which are frequently used by domain experts who may not
be professional software developers. The mbeddr project [6] illustrates the abilities of language work-
benches in general and of JetBrains MPS in particular. Voelter et al. [7] discuss the benefits and limita-
tions of projectional editors in more detail.

Nevertheless, the usage of projectional editors introduces some new problems. Before a language
can be used inside an editor, it has to be defined through the specific infrastructure, so that the IDE can
understand the language and work with it. More precisely, an author of a language has to create:

1. the abstract syntax (structure of the language), which defines the types of allowed AST nodes,

2. the concrete syntax for editing, i.e. projection of the AST on the screen and interactions with the
user, and

3. text generation scripts to enable creation of plain text representation used as input for compilers.

IDE tools based on projectional editors are typically used for syntactically rich DSLs. In the specific
case of MPS, before a program written in a DSL can be executed, it is transformed on the AST level by
a series of model-to-model transformations to an AST model that represents the desired semantics in
a general-purpose programming language (GPPL), such as C or Java. This model is then converted to
a textual representation of that language and compiled by the standard means of the target platform.
Therefore, the target GPPL must also be defined in MPS, using the respective infrastructure, in order to
allow the DSLs to have their models transformed into a model in the GPPL.

However, very few mainstream GPPLs are now supported by MPS, because it requires substantial
effort to manually create a full definition of a language in MPS. Only Java and C have been implemented
to date. The overall goal of our project is to automatize the process of language definition in MPS as
much as possible. We believe that such an automated process would encourage and speed-up the
migration of more GPPLs into MPS, thus giving the authors of DSLs more options regarding target
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general languages. Another possible application is the combination of general-purpose languages with
DSLs natively created in MPS.

In this paper we present INGRID, a method and a tool for semi-automated construction of a language
definition in MPS that uses an ANTLR grammar as a description of its syntax. The process of construc-
tion is semi-automated for two reasons: (1) ANTLR grammars have to be adjusted before INGRID can
process them, and (2) some aspects of the language definitions in MPS typically must be tweaked or
created manually in order to improve languages’ usability.

We also discuss the main challenges that we encountered during the development of INGRID and our
solution to them. They are related to principal differences between the two approaches to the definition
of a programming language — (i) one that uses grammars in an EBNF-like notation, with rules and
tokens written in plain text, and parser generators, and (ii) the structured object-oriented approach
used in MPS and other language workbenches. Specifically, the description of a language in the form of
a grammar does not hold any information about the code layout, and the grammar typically contains
many rules that do not directly correspond to AST nodes and programming language constructs.

INGRID can also make the construction of DSLs more efficient. Based on our experience, we believe
that, especially for simple languages, it is less time consuming to write their grammar by hand and
then create the language definition in MPS with the help of INGRID, than to create everything manually
using the MPS GUI.

Although we define the INGRID method in the context of MPS, and illustrate everything using exam-
ples from MPS and ANTLR grammars, it can be easily adapted to other language workbenches (i) that
use projectional editing and (ii) where the language definition is based on a structural object-oriented
approach. Most of the challenges that we discuss and key principles behind our method are general
and therefore apply also to other language workbenches.

We make the following key contributions:

• The INGRID method for construction of MPS language definitions from ANTLR grammars, which
can be used (1) for the import of general-purpose languages into MPS and (2) for efficient con-
struction of DSLs. INGRID can be adapted also to other language workbenches based on similar
principles as MPS.

• Identification and discussion of general challenges related to the differences between (1) language
definitions that use grammars and (2) the structured object-oriented approach used in projectional
editors.

• Discussion of the practical usability of generated MPS languages and its dependence on (1) the
specific form of ANTLR grammars and (2) the manual adjustments of input grammars and spe-
cific aspects of MPS languages (e.g., with respect to code layout). Details are provided in Sec-
tion 3.4 and Section 3.6.

The rest of the paper has the following structure. In the next section, we provide (i) all information
about MPS that is necessary to understand the examples presented in the paper and (ii) a brief overview
of related work, including projects with similar goals as INGRID. Then, in Section 3, we describe in detail
our approach to the construction of a language definition in MPS from its ANTLR grammar, discussing
the major challenges together with our solution along the way. We also discuss our experience with
application of INGRID on complex mainstream languages, such as JavaScript and C# (Section 4), and
then we conclude.

2 Background and Related Work

In this section, we introduce basic features of the MPS platform, and then we discuss other existing
projects that aim to add support for general purpose languages into MPS.

2.1 JetBrains MPS

JetBrains MPS is a language workbench — an IDE that allows developers to create their own languages
and use them to write code. The code can then be transformed into a target language, typically a GPPL
such as Java or C, and eventually compiled into executable programs.

When using the MPS projectional editor, the developer does not work with the textual representation
of the source code, but rather directly with its AST that is the model of the code. Programs are created
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by assembling the tree (AST) out of predefined building blocks of selected languages. The definition
of a language in MPS dictates where in the AST certain elements can be placed and how they can be
nested inside other elements.

The building blocks of MPS models are called nodes. Code of any program in MPS is built from
nodes, which represent instances of concepts from the languages that the program is written in. In
MPS, a concept is a language element, i.e. a building block of a language definition. We use the terms
MPS concept and AST node when needed to avoid confusion.

One of the key advantages of projectional editing stems from the separation of abstract and concrete
syntax. While AST provides a complete and precise representation of the code, the way it is displayed
on the screen and the way the user interacts with it are unconstrained. The editor can take any visual
form and shape. The language author can define multiple alternative visualizations and let the devel-
oper choose one that fits best the task at hand. In particular, the visual representations are not bound to
be just textual at all.

The definition of an MPS concept (language element) consists of several aspects, where each aspect
codifies a different part of the AST nodes’ behavior. The essential aspects are the following: Structure,
Editor and TextGen. Structure represents the abstract syntax (types and hierarchy of AST nodes), Editor
defines the concrete syntax (i.e., how the code is visualized and edited) and TextGen specifies how AST
nodes are transformed into textual representation. If, instead of generating text directly, programs in the
language are supposed to be transformed into another language that is available in MPS, the Generator
aspect must be used to specify the model-to-model transformation rules. Since only the Structure,
Editor and TextGen aspects are relevant for the contribution of this paper, we describe them below in
more detail, and neglect other aspects such as type constraints.

Languages are built from the concepts using techniques known from object-oriented programming
— containment, inheritance, interfaces, and so on. Therefore, a definition of a whole language in MPS
typically has an object-oriented and hierarchical nature.

Structure. The fundamental aspect of any MPS language is Structure. It must be created first for each
intended language concept. Structure specifies core attributes of an MPS concept such as the name,
inheritance relationships, child concepts (their types and cardinalities), implemented interfaces, and
references to other AST nodes. Figure 1 shows the Structure aspect for the if-then-else statement.

Structure also restricts the type of AST nodes that can appear at a particular place in the tree. For
example, one can restrict the condition in if-then-else to be a boolean expression, and the then-block to
be a list of statements.

concept IfStatement extends Statement

implements IContainsStatementList

IDontSubstituteByDefault

IConditional

instance can be root: false

alias: if

short description: <no short description>

properties:

forceOneLine : boolean

forceMultiLine : boolean

children:

condition : Expression[1]

ifFalseStatement : Statement[0..1]

ifTrue : StatementList[1]

elsifClauses : ElsifClause[0..n]

references:

<< ... >>

Figure 1: Structure aspect of the if-then-else statement

Editor. The Editor aspect is where the language designer specifies what the projectional representa-
tion of a code fragment (an AST) looks like on the screen and how the user interacts with the code.
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JetBrains have developed a cellular system that enables placing properties and children of a node (con-
cept) into different cells. The author usually incorporates all of the node’s children, references, and
properties inside the representation, so that future users of the language can insert all values that the
node expects. Additionally, cells of the editor can be styled using a language similar to CSS. Supported
visual characteristics include color and indentation.

Figure 2 shows an example of what the definition of the Editor aspect for the if-then-else statement
might look like. While here we indicate positions of cell borders on each line by spaces (just for illustra-
tion), MPS GUI actually uses a graphically much more appealing way of displaying the Editor aspects,
which involves vertical and horizontal lines of different colors and also background colors other than
white for some cells. The symbols [- and -] represent layout information, which specifies mutual
positioning of the contained cells (vertical, horizontal, indentation).

<default> editor for concept IfStatement

node cell layout:

[-

if ( % conditions % ) [-

{

[- % ifTrue % -]

}

-]

?[- else % ifFalseStatement % -]

-]

Figure 2: Editor aspect for the if-else statement

BaseLanguage. Another important feature of MPS that we need to describe is BaseLanguage [19], a
clone of Java implemented using the MPS constructs. BaseLanguage was developed in the early days
of MPS in order to implement MPS itself and also to support the basic set of language-definition DSLs,
Although BaseLanguage is syntactically almost identical to Java, it is edited in a projectional editor,
just like all the languages in MPS. The language-definition DSLs, used to define custom languages by
their authors, are generated into the BaseLanguage. Similarly, all the custom DSLs that are meant to
be generated into Java choose BaseLanguage as their generation target. The conversion to textual Java
sources is handled by BaseLanguage (without any further manual effort), through its TextGen aspect.

TextGen. The TextGen aspect specifies how a given AST node will be translated into plain text rep-
resentation. It is typically needed only for the bottom-line base languages. DSLs, on the other hand,
need to define rules for model-to-model conversions (Generators), since programs in such languages
are rarely converted to text directly. After TextGen has generated textual sources from an AST, a com-
piler for the particular GPPL is invoked to compile the textual sources into binary code. The TextGen
definition follows a very straightforward pattern — each node outputs its textual representation into a
buffer, while calling TextGen of its children nodes at the right moments. MPS calls the corresponding
method on the root AST nodes of the given program.

text gen component for concept IfStatement {

(context, buffer, node)->void {

append \n;

indent buffer;

append {if (} ${node.condition} {) {};

with indent {

append ${node.ifTrue};

}

append \n {}} $list{node.elsifClauses};

if (node.ifFalseStatement.isNotNull) {

append { else} ${node.isFalseStatement};

}

}

}

Figure 3: TextGen aspect definition for the if-else statement
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TextGen aspect for each AST node (concept of the language) has to be defined using the BaseLan-
guage. Again, we include an example for the if-else statement (Figure 3).

2.2 Related Projects with Similar Goals

We are aware just of a few attempts to create ports of general-purpose languages into IDE tools based
on projectional editing. All of them (described below) were conducted manually.

The BaseLanguage [19] is an almost full port of Java, which was created by JetBrains and extended
with MPS-specific features. The C language has also been manually tailored for MPS within the mbeddr
project [6].

The following three projects — PE4MPS, ANTLR_MPS, and mps-metabnf — aim to provide certain
support for GPPLs within the MPS platform. We describe their main features and limitations in this
section.

PE4MPS [17]. This is a project that addresses the lack of information about code layout in grammars
by using so called PE grammars [18], which is a new notation proposed by the same author. PE stands
for projectional editing.

PE grammars extend the syntax of the ANTLR v4 notation by constructs that provide information
about the possible layout of AST nodes. The current version, as of November 2016, supports just hor-
izontal lists, vertical lists, and some indentation rules. However, even these few features make the
extended syntax of ANTLR v4 much more complicated.

The PE4MPS tool creates an MPS language in a single atomic step. An input PE file is loaded and
processed by the PE parser, and then all concepts (AST nodes) and their aspects are directly generated
inside MPS. Information about the code layout, extracted from the PE file, is used when generating the
projectional editor for every AST node.

The main disadvantage of the PE4MPS approach is that it only shifts the tedious manual work from
creating projectional editors in the MPS IDE to writing PE grammars in plain text. Language developers
are forced to specify the code layout manually in PE grammars, through the corresponding extensions.
Usage of a standard text editor is inferior (and much more error-prone) with respect to MPS, which has
been designed for the purpose of specifying the code layout and provides lot of support to developers.
Like for INGRID, every grammar might require non-trivial adjustments before it can be processed using
the PE4MPS tool.

We discuss application of PE4MPS on JavaScript in Section 4, and compare its results to our INGRID
approach.

ANTLR_MPS [14]. This project also uses the ANTLR v4 grammar notation, but otherwise works quite
differently from PE4MPS. Its author created an ANTLR v4 MPS language, which captures the syntax
of ANTLR v4 notation using MPS concepts. Given the textual grammar of some language as input, the
grammar is imported automatically into MPS, taking the form of the ANTLR v4 MPS language. The
next step would be to create a new MPS language from the grammar definition in MPS, but it is not
implemented yet.

However, the project has also other important limitations. The tool does not generate any parent-
child relationships in the Structure aspect, and it provides no support for the projectional editor at all
(by completely neglecting the Editor and TextGen aspects).

mps-metabnf [15]. This tool, implemented by members of the DSLFoundry group, builds upon sim-
ilar ideas as the ANTLR_MPS project described above. Authors of this project, too, created an MPS
language to capture ANTLR grammars. Every imported grammar is represented using this ANTLR v4
MPS language. A user is then able to adjust the grammar as he wishes, specifying the code layout in
the projectional editor. In the last step, the target MPS language is derived from the adjusted grammar
definition.

The main limitation of this approach is the need to perform the last step manually, because MPS
currently does not provide any support for automated transformation of a grammar captured by the
ANTLR v4 MPS language into the definition of the actual target MPS language.
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Other IDEs. Note that while the INGRID method has been designed primarily for MPS, and can be
easily adapted to other IDE tools based on projectional editing, there also exist several language work-
benches that use parser generators (such as ANTLR) and support free editing of textual source code. A
prominent member of the latter category of tools is Spoofax [4], which essentially restricts the syntax of
DSLs to linear text. INGRID is not applicable for creating languages inside such language workbenches.

3 Creating Language Definition in MPS

The proposed INGRID method accepts grammars in the ANTLR v4 notation [5] as input. Syntax defini-
tion in the form of an ANTLR v4 grammar exists for all widely used programming languages 1. Unlike
some of the related projects, we did not extend the notation with any custom features, and we also did
not create an MPS language for the ANTLR notation.

The process of language construction by INGRID consists of four phases — the first is parsing of the
input grammar, followed by definition of the essential aspects of the language (Structure, Editor, and
TextGen, respectively).

INGRID is currently able to create (i) a full Structure aspect for each element of the given language,
(ii) a very basic Editor, and (iii) a basic TextGen aspect. Therefore, the resulting MPS language typically
still has to be adjusted manually to improve its usability, and the remaining aspects not yet supported
by INGRID must also be defined.

Our approach differs from the existing projects with similar goals (Section 2.2) especially in the level
of automation, and it also has much better support for Editor and TextGen.

3.1 Running Example

We will describe the INGRID method using a simplified XML language defined in Figure 4. The Sim-
pleXML language is small but complex enough to be used for illustration of the main challenges and
behavior of the proposed algorithms.

grammar SimpleXML ;

document : prolog? comment? element ;

prolog : '<?xml ' attr* '?>' ;

comment : '<!--' TEXT '-->' ;

element : '<' Name attr* '>' content* '</' Name '>'

| '<' Name attr* '/>' ;

attr : Name '="' TEXT '"' ;

content : TEXT | element | comment | CDATA ;

Name : NameStCh NameChar* ;

DIGIT : [0-9] ;

NameChar : NameStCh | '-' | '_' | '.' | DIGIT ;

NameStCh : [:a-zA-Z] ;

TEXT : ~[<"]* ;

CDATA : '<![CDATA[' .*? ']]>' ;

Figure 4: Grammar of the SimpleXML language in the ANTLR v4 notation

The grammar of SimpleXML contains elements of the kinds that are listed below. Each color in
Figure 4 corresponds to one kind in a way indicated by the list item headers.

• ANTLR v4 keywords are required by the notation.

• Parser rules describe the structure of a language. Alternatives on the right side of a rule are
separated by the pipe character (|).

• Lexer rules describe terminal symbols that the parser matches against the input. A terminal sym-
bol can be encoded as a string value or a regular expression.

• String literals, always written inside of a pair of single quote marks, also represent terminal sym-
bols, but by exact match to a string constant.

• String tokens are described by regular expressions with a special ANTLR v4 regex notation2.
1https://github.com/antlr/grammars-v4
2https://github.com/antlr/antlr4/blob/master/doc/lexer-rules.md
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Elements on the right side of a rule can be annotated with standard EBNF operators (?, +, *) that specify
the allowed number of occurrences.

3.2 Phase 1: Parsing Input Grammar

The first phase in the process of MPS language construction is parsing of the input ANTLR v4 grammar.
It is done using an ANTLR parser that was automatically generated from the grammar of the ANTLR
v4 notation itself. Nevertheless, the full parse tree, which comes out of the parser, is quite complex and
contains information not relevant for the INGRID algorithm. In order to get a simple representation that
is easy to process by the later phases and keeps only information necessary for the construction of MPS
languages, several steps of post-processing of the parse tree are performed in this phase. An output is
a custom AST-like structure that represents the grammar, especially the hierarchy of parser rules, in a
way more suitable for MPS.

The representation of lexer rules (tokens) in the full parse tree has to be simplified too. In the ANTLR
notation, lexer rules can be built from alternatives just like the parser rules — see, for example, the lexer
rule Name from our SimpleXML language (Figure 4). For each lexer rule, the parser produces a tree
that captures its structure. The lexer rules are, in fact, just regular expressions used to recognize tokens
in the input string.

Every tree that represents a lexer rule is flattened into the equivalent regular expression by the re-
cursive algorithm in Figure 5. A sequence is created from the elements of each alternative, and then all
those sequences are joined by the alternation operator | to form a regular expression. Our implemen-
tation of the algorithm detects rules defined in a recursive way (e.g., using the pattern N : 'text' N) and
rejects the input grammar if it contains such rules. However, note that we use the flatenning algorithm
only for lexer rules, where recursion is quite rare — specifically, the algorithm is not applied to parser
rules.

Flatten(R ):

T = empty list

for each alternative A in rule R :

R = ''

for each element E of A :

if E is not yet flattened then Flatten(E )

R.append(E )

R.append(E.operator)

T.add(R )

build string S from elements of T :

S = t1 | t2 | . . . | tn
return S

Figure 5: Flattening algorithm

The output of Flatten(Name), i.e. application of the algorithm to the Name rule, is this regular
expression:

[:a-zA-Z]([:a-zA-Z]|\-|_|\.|[0-9])*

It defines the syntactically valid identifiers of elements and attributes in SimpleXML. Each identifier
must begin with a letter, followed by any combination of letters, digits, underscore, dash, or a dot.

3.3 Phase 2: Structure

In the next phase, the complete structure of the MPS language is automatically generated from the AST
that represents syntax of the input language. Elements of the Structure aspect are derived from the AST
nodes, and then linked appropriately. Therefore, structure of the MPS language is usually similar to the
original ANTLR grammar.

When designing the procedure for translating AST nodes (i.e., grammar rules) into the MPS lan-
guage structure, we faced several challenges. The main challenge, as we already mentioned, is that a
grammar typically contains rules that do not directly correspond to programming language constructs.
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Such rules exist at the intermediate layers of a syntax hierarchy. Their main purpose is to enable easier
understanding and maintenance of the grammar by humans. Nevertheless, presence of the interme-
diate layers would significantly complicate usage of the given language in MPS, and the layers are
actually not necessary for construction of an MPS language. We show examples illustrating this prob-
lem, which we call a layer problem, later in this section at a point where we describe our solution. As a
part of the INGRID method, we have designed an approach to eliminate the unnecessary layers during
construction of the Structure aspect — we call it the shortcut approach (Section 3.3.1). However, before
focusing on the intermediate layers, we describe the basic principles of translation from the AST into
the language structure.

In MPS, each concept of the language (i.e., every AST node) is represented by an object that may
have a parent, some children, and properties of any data type. Additionally, the object may implement
any number of interfaces, and it may also contain references to objects representing other AST nodes.
The parent-child relationships between objects that make the Structure aspect are derived from rules
of the grammar. For each rule, the object corresponding to the left-hand side is in the parent-child
relationships with sets of objects that represent language elements referenced by the right-hand side. If
a rule has multiple alternatives, then a distinct object (MPS concept) has to be created in the structure
for each alternative. The name of a concept (object) in MPS is composed from (1) the name of the AST
node, which is equivalent to the string encoding of the left-hand side of the corresponding rule, and (2)
the number indicating the position of the respective alternative on the right-hand side of the rule.

concept Element_1 extends BaseConcept

implements IContent, IElement

instance can be root: false

alias: < > </ >

short description: Element

properties:

Name_1 : Name

Name_2 : Name

children:

Attribute_1 : Attribute[0..n]

Content_2 : IContent[0..n]

Figure 6: Structure aspect of the Element_1 concept

Consider the parser rule element from the grammar in Figure 4. Its first alternative represents the
full XML element with content. Figure 6 shows the Structure aspect for the MPS concept (object) named
Element_1 that corresponds to the alternative. The object contains two properties, one for each reference
to the lexer rule Name. Values of these properties will be restricted using the regular expression that
corresponds to the rule. String literals, such as the opening and closing brackets ('<', '/>') in XML, are
omitted because they will be defined only in the Editor aspect for this concept.

References to other parser rules are captured by pointers to child objects. The types of child objects,
such as IContent in the Element_1 concept, are determined as follows. Consider the content rule from the
SimpleXML language. We show just the relevant fragment of the grammar again in Figure 7. An object
corresponding to any one of the four alternatives could be the actual value anywhere the content rule
is referenced.

content : TEXT | element | comment | CDATA ;

Figure 7: Parser rule content

Our solution is to use interface concepts. For each rule with more than one alternative on the right
side, first an interface concept is defined in the MPS language structure, and then one object that im-
plements the given interface is created for each alternative. The resulting fragment of the language
structure looks like the one in Figure 8. It contains one interface IContent that is implemented by four
object concepts Content_1, . . ., Content_4.

Now we can illustrate the layer problem on the behavior of auto-completion in MPS. Suppose that a
user is creating a new document in the SimpleXML language, just inserted a fresh node of the type Ele-
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IContent : Content_1 | Content_2 | Content_3 | Content_4

Figure 8: MPS interface IContent and the types of implementing objects

ment_1 (see above), and would like to insert another nested XML element inside. The auto-completion
mechanism of MPS offers four options that are displayed in the left part of Figure 9. Each option repre-
sents one of the MPS concepts that implement the interface IContent, and therefore also one alternative
of the content rule.

Figure 9: Layer problem in auto-completion

However, in order to correctly insert another nested element, a user has to perform two steps:

1. Insert an object (node) of the type Content_2 inside the Element_1 node. The Content_2 object has
only a single child node of the interface type IElement.

2. Then, the user must again trigger auto-complete and insert either an Element_1 node or Element_2
into the Content_2 node. See the right part of Figure 9.

The main difficulty here is that, in the first step, the user has to (i) either correctly guess what option
offered by the auto-complete menu to select, or (2) to remember the order of alternatives in the grammar
rule.

Similarly, if the user would like to replace a nested Element_1 node with, for example, an XML
comment (i.e., the Comment node), then both intermediary layers have to be deleted before she gets
back to the original selection among the concepts Content_1, . . ., Content_4.

Intermediary layers have no visual appearance, and therefore it is very difficult for users to see what
is actually happening and they may get confused very easily. The layer problem is addressed by the
shortcut approach, which we describe in the next subsection.

3.3.1 The Shortcut Approach

The key idea of this approach is to skip all the intermediary layers (nodes) in the syntax tree, and
consider just the nodes to be directly offered to the user through the auto-completion menu. Specifically,
the content rule from the SimpleXML grammar, given in Figure 10 together with rules that determine
the relevant fragment of the syntax hierarchy, expands ultimately into the nodes highlighted using the
bold font in Figure 11.

content : TEXT | element | comment | CDATA ;

element : '<' Name attr* '>' content* '</' Name '>' | '<' Name attr* '/>' ;

comment : '<!--' TEXT '-->' ;

Figure 10: The parser rule content with other rules that determine the relevant fragment of the syntax hierarchy

For the input that consists of a particular AST node N and the grammar rule R that expands N ,
the procedure implementing the shortcut approach systematically traverses the parser tree (AST) built
in the earlier phases in order to identify each AST node that (i) may appear in some derivation chain
starting by the rule R from the node N and (ii) does not belong to any intermediary layer. We call them
end nodes. Here we must emphasize that end nodes do not correspond to terminal symbols from gram-
mars, because they may represent AST nodes with children (i.e., syntax elements that can be further
expanded using grammar rules).

Figure 12 shows the algorithm that finds all paths to some end node from a given parser rule R.
The algorithm is based on recursive traversal of the parser tree. At each level of recursion, it gathers all
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Content_1 (TEXT)
Content_2 → Element_1
Content_2 → Element_2
Content_3 → Comment
Content_4 (CDATA)

Figure 11: Leaf nodes of the parser tree fragment that has the content rule as its root

1 FindAllPathsToEndNodes(R ):

2 CurPath = empty list of rules and nodes

3 return FindPaths(R , CurPath )

4

5 FindPaths(R , CurPath ):

6 Paths = empty list

7 for each alternative A in rule R :

8 NewCurPath = Clone(CurPath )

9 if A contains only a single element E :

10 NewCurPath.Add(NE) where NE is the node representing E

11 P = FindPaths(RE, NewCurPath ) where RE is the rule that expands E

12 Paths = Merge(Paths , P )

13 else:

14 NewCurPath.Add(R )

15 NewCurPath.Add(NA) where NA is the node representing A

16 Paths.Add(NewCurPath )

17 return Paths

Figure 12: Algorithm to find all paths to end nodes for a parser rule

paths that lead from the current parser rule R to some end node through its alternatives (line 7). Two
cases may occur:

• When a particular alternative A of the rule R contains only a single element E that is a reference
to another rule (line 9), the alternative A is an intermediary layer that can be hidden from the
user of the MPS language. A run of the algorithm continues, at line 11, by recursively processing
alternatives of the rule corresponding to E, which lies at the next level of the parser tree.

• Otherwise, an end node of a derivation chain was found and the recursion stops (lines 13-16).

By appending the node corresponding to the current alternative (lines 10 and 15) and to the rule that
leads to the alternative (line 14), the algorithm creates a full path that contains the target end node as
the last element of the chain.

We use the name shortcut approach for this algorithm, because the paths collected by the algorithm
provide shortcuts from the given rule to end nodes, by the virtue of hiding all intermediary layers. For
example, the result of this algorithm for the content rule (Figure 10) is the list shown in Figure 11.

The primary use case for shortcuts is to generate options for the auto-completion menus, such that
only the end nodes are offered. Shortcuts have to be considered when nodes are inserted, and also when
they are deleted. In each case, the whole chain including possibly multiple intermediary AST nodes (up
to the end node) must be added, respectively deleted. When the user wants to delete some end node
from the AST of a program or document written in the MPS language, the effect of an insertion must be
fully reversed.

3.4 Phase 3: Editor

Having the complete structure of the new MPS language, the next phase is to define the visual repre-
sentation of all concepts (AST nodes) in the projectional editor. As we said in Section 2.1, MPS uses a
cellular system that enables the language developer to arrange the children and properties of an AST
node in a table-like manner. Cells of different types are supported by MPS — for storing property val-
ues, references to child nodes, and keywords (string literals), and also cells that influence layout (e.g.,

10
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indentation). The specific goal of this phase is to create the Editor aspect for each language concept,
such that all its attributes — name, properties, children — are projected using the respective cell types.

The main problem that we had to address is the absence of information about the code layout and
whitespace in ANTLR grammars. Rules forming the grammar only tell what the syntax tree looks like
and how the program text is decomposed into AST nodes. Here we present a solution that is only
partially automated for reasons explained below.

We observed that the most tedious and error-prone step in the manual definition of the Editor aspect
is the creation of cells for all literals (keywords), properties, children, and other fields of a given concept
that should appear in its visual representation. This step can be very easily automated.

Our solution that we implemented in the current version of the INGRID method is to create all the
cells and place them in a single row. The resulting basic layout is illustrated on the example of the
Element_1 concept in the upper left corner of Figure 13. Further adjustments of the layout, such as
indentation and line breaks, can be done very efficiently by the user in the MPS IDE. The bottom right
part of Figure 13 shows a fully customized layout for the Element_1 concept.

Figure 13: Editor aspect of the Element_1 concept

Based on our experience, it takes a very short time to manually adjust the layout into a form much
better than any fully automated heuristic could achieve. A typical user of the INGRID method will
be able to use the projectional editor in MPS quite efficiently. We actually experimented with several
heuristics to derive a useful code layout automatically, but all of them produced rather suboptimal re-
sults — it is quite hard to automatically identify language concepts for which the default layout should
be refactored, and the user would have to adjust the layout by hand anyway. More details are provided
in Section 4, including our experience with several mainstream programming languages.

We have found that the combination of two steps, (1) automated placing of cells into a single row
and (2) subsequent manual adjustment of the layout, is a very fast and efficient way of creating a nice
code layout. Nevertheless, we plan to work on a more automated approach to the definition of Editor
aspects in the future, based on machine learning. The key idea would be to derive the code layout from
a set of valid input source files.

3.5 Phase 4: Text Generation

The purpose of the last phase of the MPS language construction is to generate the TextGen aspect for
each concept. We use the Element_1 concept again for illustration. Figure 14 shows a fragment of
BaseLanguage code that can be used as its TextGen aspect. The code appends all literals, properties,
and children of Element_1 to the output buffer.

Like in the case of a projectional editor, the main challenge associated with TextGen is to produce
valid code with a reasonable layout. An implementation of the TextGen aspect must determine properly
where to put line breaks, spaces, and indentation. For example, in the case of the concept representing
an XML element, there must be a space between the element’s name and the first attribute, while it is
not required between the opening bracket '<' and the name.

Our INGRID method targets mostly text-based languages, for the concepts of which the visual rep-
resentation in a projectional editor must be almost equivalent to their plain-text representation. An ob-
vious choice would therefore be to use the same approach for Editor and TextGen. Nevertheless, since
the Editor aspect has to be adjusted manually, we decided to use a different approach for TextGen. We
designed a procedure based on a simple fully automated heuristic that provides acceptable results —
the output is human-readable and close to standard formatting of source code used by popular IDE
tools, although minor tweaks are often needed.

11
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text gen component for concept Element_1 {

(context, buffer, node)->void {

append {<};

append ${node.Name_1 };

append { };

append $list{node.Attribute_1 };

append {>};

append $list{node.Content_2 };

append {</};

append ${node.Name_2 };

append {>};

}

}

Figure 14: Basic TextGen aspect for the Element_1 concept

The procedure creates the TextGen aspect for a given language concept in two steps. First, it gen-
erates a basic variant that inserts spaces in between every two tokens of the textual representation of
the concept. In the second step, spaces are eliminated from places where they are not really needed.
The main criterion is whether the generated textual output can be accepted by a parser of the original
language (using the ANTLR grammar). We discuss all the cases here:

• When there is a non-alphabetical literal that is used as a token in the grammar, and that might get
recognized by the parser without the need for whitespace separators around it, then we can omit
the spaces. An example of such literal is ’<’ in SimpleXML.

• In the case of an arbitrary string, the whitespace may be omitted when the adjacent literal ends,
respectively begins, with a non-alphabetical character. This applies especially to the values of
properties defined in Structure aspects, such as the name of an XML element. Based on this
heuristic, redundant spaces inside of quotes will be eliminated, as well as spaces next to semi-
colons and around brackets. On the other hand, it will separate language keywords from other
literals by preserving the space characters between them.

• Spaces can be safely omitted also when optional child nodes are not present, and in the case of
empty lists of child nodes, so that whitespace does not accumulate.

A space must be always inserted when two child nodes are next to each other. Elements from a sequence
of child nodes are separated with spaces or line breaks.

Figure 15 contains the complete, automatically generated, TextGen aspect for the Element_1 concept.
Such code may be adjusted by hand very easily in order to produce nicely indented XML documents.
We only need to wrap the Content_2 child node with indentation and change the sequence separator to
a new line character. A fragment of the resulting adjusted code is in Figure 16.

3.6 Remarks about Grammars

During our work on the INGRID method, we have also observed that practical usability of a resulting
MPS language depends on the specific manner in which the input ANTLR grammar is defined. We
discuss several issues and our workarounds in this section.

Adjusting grammars. In some cases, a small adjustment of the input grammar before the run of IN-
GRID might yield a better and more useful MPS language. Here we illustrate this on two simple exam-
ples.

For the first example, we use the definition of an XML attribute in Figure 17, which is taken from the
original XML grammar. The lexer rule STRING actually says that quotes make a part of the attribute’s
value. If the MPS language would faithfully match the grammar, the user would have to always input
the leading and trailing quote together with the value in the projectional editor.

In our SimpleXML language, we adjusted the grammar easily in a way that we show in Figure 18.
We turned quotes into literals, ensuring that they will only appear in the projectional editor as string
constant cells.
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text gen component for concept Element_1 {

(context, buffer, node)->void {

append {<};

if (node.Name_1.isNotEmpty) {

append ${node.Name_1 };

}

if (node.Attribute_1.size > 0) {

append { };

append $list{node.Attribute_1 with };

}

append {>};

if (node.Content_2.size > 0) {

append $list{node.Content_2 with };

}

append {</};

if (node.Name_2.isNotEmpty) {

append ${node.Name_2 };

}

append {>};

}

}

Figure 15: Full TextGen aspect for the Element_1 concept

if (node.Content_2.size > 0) {

append \n;

indent buffer;

with indent {

append $list{node.Content_2 with };

}

append \n;

}

Figure 16: Fragment of the TextGen aspect of Element_1 with adjusted indentation

The second example relates to a fragment of the JavaScript language, also known as ECMAScript.
Every statement in JavaScript needs to be terminated by a semicolon, newline, end of the file, or end of
the block — see the Figure 19, which contains the corresponding fragment of the ECMAScript grammar.
Since there are multiple options, a user would have to select one of them for each statement in the
editor. Technically, every language concept representing a statement would contain one child node of
the interface type IEos, which has to be assigned a proper object (i.e., an AST node corresponding to
one of the options listed above).

Since MPS can differentiate between statements on the AST level, there is no need for an explicit
separator. For example, we can put each statement on a distinct line, as is usual for JavaScript code,
and keep just the semicolon as a fixed literal in the projectional editor. The eos rule would have to be
changed to this form: eos : ';'. A small adjustment of the grammar, like this one, is a very quick solution
and makes the generated language more usable in MPS. On the other hand, this adjustment of the
original ANTLR grammar, performed just for the purpose of creating the MPS language, changes the
grammar in such a way that it does not precisely describe the standard JavaScript language. To ensure
compatibility with JavaScript, the TextGen aspect in the MPS language should put the semicolon after
each statement in the plain-text representation of a program code.

Breaking original grammars and parsers. We also want to point out a general problem with grammar
adjustments, which all potential users of the INGRID method should be aware of. The original ANTLR
grammar for an input language can be very easily changed in a way that, at first, seems harmless and
valid inside MPS, but the parser generated out of the adjusted grammar stops accepting the original
language. In particular, adjustments needed to improve the resulting MPS language can break down
the parser.

This problem has two main causes: (1) low-level implementation details of token matching in the
ANTLR parser and (2) usage of ANTLR grammars for a different purpose (that was not expected) in

13



D3S, Technical Report no. D3S-TR-2018-01

attr : Name '=' STRING ;

STRING : '"' ~["]* '"'

| '\’' ~[’]* '\’' ;

Figure 17: Definition of an XML attribute

attr : Name '="' TEXT1 '"'

| Name '=\’' TEXT2 '\’' ;

TEXT1 : ~["]* ;

TEXT2 : ~[’]* ;

Figure 18: Adjusted fragment of the SimpleXML grammar

our project. Since, for practical reasons, it is very important that a parser works for programs written
according to the original grammar, adjustments have to be performed carefully by the users of INGRID.

4 Evaluation

We implemented the INGRID method as an MPS plugin. While most of the plugin is written in Java,
small fragments of BaseLanguage code were needed to bind with the MPS API, which is used to pro-
gramatically generate language elements and their aspects. The plugin uses the ANTLR library [13]
for parsing of ANTLR v4 grammar files, and several MPS libraries that implement the MPS API. Our
complete implementation is available at https://github.com/premun/ingrid.

For the purpose of evaluation, we applied INGRID to several well-established and widely used lan-
guages, including JSON, JavaScript (ECMAScript 5.1 [10]), and C#. MPS projects that contain definitions
of all three languages are also released at https://github.com/premun/ingrid. In the rest of this sec-
tion, we discuss our experience with application of INGRID to these languages, and then we highlight
few general observations.

However, first we must emphasize that MPS languages automatically produced by the INGRID
method, are not ready-to-use full-fledged MPS counterparts of the original input languages. The struc-
ture of a generated MPS language fully corresponds to the respective ANTLR grammar, but its other
aspects have to be manually tweaked (e.g., the Editor) or defined from scratch by the end user. INGRID
also does not yet support advanced features of MPS, such as type checking.

For each of the three languages (JSON, JavaScript, C#), we provide (1) its MPS definition in the form
that incorporates all tweaks performed manually by authors of this paper and (2) the adjusted ANTLR
v4 grammar used as input for INGRID.

JSON. The least amount of manual adjusting after the import into MPS was needed in case of the
JSON language [11], because it is the simplest language from all that we used for our experiments.
Specifically, the first author spent less than 20 minutes in order to get a language that is ready to use.

JavaScript. In the case of JavaScript, which is an example of a widely-used complex general purpose
programming language, automated generating of the language definition in MPS from the ANTLR
grammar and subsequent manual adjusting was done in less than one hour.

We are aware of other projects that aim to create a manual port of JavaScript into MPS. For example,
there is ECMAScript4MPS [16] developed by the author of the PE4MPS project [17] that we described
in Section 2.2.

The main advantage of INGRID over ECMAScript4MPS is that, despite its current limitations, IN-
GRID fully automatically produces the definition of JavaScript in MPS that needs just minor adjustments
to be really useful — for example, the language designer has to define actions that improve editing ex-
perience by automatically transforming the AST in the background. INGRID achieved a very good
result, when compared to PE4MPS, especially in the case of language structure, concept aliases, and
support for auto-completion. The Structure aspect generated by INGRID is very similar to that of the
ECMAScript4MPS project, which was created manually over a large number of hours.
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eos : SemiColon | EOF | lineBreakAhead()?

| _input.LT(1).type() == CloseBrace? ;

// example reference to the eos rule

breakStmt : Break Identifier? eos ;

Figure 19: Statements in JavaScript

C#. Another very complex programming language that we used for experiments is C# [9]. Before we
could run INGRID, we had to manually adjust the ANTLR grammar of C# in order to ensure that IN-
GRID produces at least a reasonable structure (hierarchy of concepts) that can be practically used in MPS
just with minor alterations. Necessary adjustments include removal of intermediary rules such as state-
ment_list : statement* ';' by inlining the right-hand side. The Editor aspect was modified afterwards, but
only for some of the concepts. Roughly one hour of manual effort was needed in total. Nevertheless,
additional modifications of the grammar and selected aspects of the MPS language are still needed. A
great flexibility and complexity of the C# language is the main reason behind all the necessary changes
to the language definition in MPS and to the ANTLR grammar. The definition is quite large, involving
more than 800 concepts.

Other languages. We also tried to apply INGRID on few other languages, such as Python and Ruby.
Results are mixed because ANTLR grammars of these languages are written in a style that is not fully
compatible with INGRID. For example, the structure and hierarchy of rules in the Python grammar are
quite different from JavaScript or JSON, and consequently the language definition created by INGRID
is rather badly organized. We plan to address this limitation in the future and extend INGRID such that
very few modifications of the grammar would be necessary even for these languages.

General observations. The main overall benefit of the INGRID method is partial automation. Most of
the languages discussed above are quite complex regarding their structure and syntax variety. There-
fore, completely manual definition would be a very time-consuming and error-prone process. Fully
automated generation of the Structure aspect is where INGRID spares the user from many hours of
tedious and sometimes quite challenging work.

On the other hand, our experiments with complex languages show that, in the case of the Editor
and TextGen aspects, manual adjustment (e.g., adding line breaks and indentation) is a very effective
approach that takes only a short time — in particular, an order of magnitude less time than we initially
expected. The first author spent between 20 and 60 minutes of work on each language, when adjusting
the result of automated generation into a more useful and readable form. MPS IDE provides good
support for efficient tweaking of the code layout in Editor and TextGen, allowing designers to produce
really useful languages very fast. Despite that, we also tried to design some automated heuristics, but
so far all yield rather mediocre results when compared to what human users can achieve efficiently
instead.

Regarding future changes to the ANTLR grammar of a subject language, it is certainly possible to
directly update the corresponding MPS definition, but in some cases it may be easier to run again the
whole import process that will overwrite the previous definition with a new one.

5 Conclusion and Future Work

Our contribution is the INGRID method for constructing language definitions in MPS from grammars
in the ANTLR notation. The method is only partially automated, but nevertheless it greatly reduces the
amount of manual work that developers of MPS languages have to perform. Although we discussed
all challenges, details of our solution and general observations just in the context of ANTLR grammars
and JetBrains MPS, we believe they are more general — in particular, relevant to everyone tackling a
similar problem in the field of DSLs and language workbenches.

In the future, we would like to add support for generating other aspects of MPS languages and
increase the level of automation. Our primary research goal is to investigate the usage of automated
(machine) learning for the purpose of generating editors that support nice and readable code layout.
First, we would have to collect a set of input source code files to be used for training. This step might
involve a user study designed in order to identify examples of layout that a majority considers as nice
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and readable. The information about code layout, once it is available, will be then leveraged and used
also to improve TextGen. Another subject for future work is automated construction of parser-based
tools that could be used for translating source code in plain-text to instances of MPS languages.
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