

Reconstructing the Pygmalion
programming environment

Author: Adrián Habušta
Supervisor: Mgr. Tomáš Petříček, Ph.D.

The goal of this reconstruction was to create an
application which allows users to experience the style of
interaction presented by Pygmalion. We chose the
factorial example from the original thesis as our baseline.

A single step of the definition of a factorial in the
original system.

Part of the definition of a factorial in the finished
reconstruction.

Difficulties
There were several difficulties that we
encountered when creating our reconstruction:

● Lack of proper documentation

● Smalltalk-72 source code

● Conditional icons

Iterative Methodology
To create the reconstruction, we applied an iterative
methodology. We first created a design that was based
on our initial understanding of the system. We then used
the insight gained from this implementation to plan and
create our second design.

Pygmalion is a visual programming system that was lost to time. It utilized the ideas of programming by
demonstration and iconic programming with ambitions to provide an error-free programming experience.
Nowadays, you can’t easily run Pygmalion, as the only existing copy is a scan of the source code in
Smalltalk-72.

type SimpleExecutionAction =
 | EvaluateSimpleIcon of IconPrism
 | PickupNewIcon of IconOperation
 | PickupIcon of IconPrism
 | PickupNumber of UnderlyingNumberDataType
 | PickupParameter of parameterIndex : int
 | PickupIconResult of IconPrism
 | PlacePickup of MovableObjectTarget
 | CancelPickup
 | RemoveIcon of remover : (Icons -> Icons)
 | RemoveIconParameter of IconPrism * int

Based on the idea
of storing user
actions directly
and replaying
them during
evaluation.

Second design

Based on the idea
of using user
actions to build an
expression. When
evaluated with the
same input, it
produces the
same output as
the users actions.

First design

type IOP = IconOperationParameter
type IconOperation =
 | Unary of string * IOP
 | Binary of string * IOP * IOP
 | If of IOP
 | CustomOp of string * IOP list
type IconOperationParameter =
 | Trap
 | Constant of int
 | OperationParameter of int
 | LocalIconReference of IconID
type CustomOperation =
 { ParameterCount : int
 SavedIcons : IconTable
 EntryPoint : IconID option}

	Slide 1

