
Combining effects with dependent types
Maya Mückenschnabel

supervisor: Tomáš Petříček

Combining effects with dependent types
Maya Mückenschnabel

supervisor: Tomáš Petříček

Abstract
Dependent type systems provide a novel way of reasoning about program cor-
rectness, by embedding behavior of the program into the more expressive type
system. Correctness is achieved by not allowing incorrect states to be repre-
sentable.
Languages like Idris show that dependent type systems are practically useful,
not only for formal proofs, but also for creating fewer bugs in production. But
the purity of computation poses a problem for composability of stateful compu-
tations and of side effects.
Effect handlers provide one possible solution for this problem. In this thesis we
propose an effect extension of dependent type systems. The resulting system
not only makes it possible to provide guarantees about correctness of a program,
but also make it easy to compose such guarantees using effects. We formalize
the type system and present a prototype implementation.

Generators in Kelp
With algebraic effects, we can define our own generators, similar to the ones
seen in Python or C#. With similar technique we can construct async/await but
algebraic effects are more flexible, there is no function coloring problem, and
asynchronous functions and synchronous functions can be intermixed without
any modification.

:Yield (Effect [Integer] Boolean)

:go
(lambda [n :: Integer

produce :: Boolean]
:-> []
;; each time go is invoked we can both Yield
;; and print to stdout
:! [Yield core:io:Stdout-write]
(if (not produce)

(core:io:print-line "done")
(begin
(let [next-n (+ n 1)

next-produce (raise Yield next-n)]
(go next-n next-produce)))))

:main
(lambda []
;; with handler catches Yield
;; so only the printing gets forwarded upwards
:! [core:io:Stdout-write]
;; yield true while n < 3
(with [Yield (lambda [resume n]

(core:io:print-line n)
;; resume returns to the place
;; where raise was called with
;; a value
(resume (< n 3)))]

;; run go for the first time
(go 0 true)))

;; STDOUT
0
1
2
done

Type and effect polymorphic map
We can create a map that can take any function and any list and produce a new
list by applying the function on each element. This function is a dependent
function and combines both the dependent type system and the algebraic effect
system.
The thing to note here is that the type of [1 2 3] is not actually (List
Integer) initially. Rather the constraint (Collection Integer 3) is con-
structed and coerced by the type-checking algorithm into the proper type.

:map
(lambda [A :: Type

B :: Type
E :: (List Any-Effect)
f :: (-> [A] B)
lst :: (List A)]

:-> (List B)
:! E
(if (empty? lst)

lst
[(f (first lst)) . (map f (rest lst))]))

:main
(lambda []
:! [core:io:Stdout-write]
(map Integer Unit core:io:Stdout-write

core:io:print-line
(map String Integer []

integer->string [1 2 3])))
;; STDOUT
1
2
3

Algebraic effects
Algebraic effects provide a way to specify side-effects as a part of our program
APIs. Not only that, effects provide tools for writing libraries that are in other
languages only available as in-language constructs, like:

• Async/Await
• Generators (yield)
• Fibers, Green Threads and Coroutines
• Resumable Exceptions
• ...

Novel features of this type system
The type system is the key innovation of Kelp and is formalized in the thesis.
This type system:
• Combines dependent types with effect handlers
• Supports unified tuple and list literals via constraints
• Powerful bidirectional type inference for lists
• Allows control of effects in type-level computations

Type system and effects
The function application behaves similarly to the regular bidirectional type-
checking. The difference is that the application is only allowed if the effects
of the function are in the effect context. That is either are handled directly or
passed to the caller.

Γ,Ε ⊢ t1 ⇒ ρ1 → ρ2 ↑! ε Γ,Ε ⊢ t2 ⇐ ρ1 ε ⊆ Ε
Γ,Ε ⊢ t1t2 ⇒ ρ2

Creating a lambda with an effect encapsulates it, so we can create functions
that have side-effects without having to have those side-effects allowed our-
selves.

Γ ⊞ {x : ρ1}, ε ⊢ t ⇒ ρ2

Γ, ∅ ⊢ λx.t ⇒ ρ1 → ρ2 ↑! ε
Raising an effect behaves from the callers perspective like calling a regular
function. We can check it the same way as application.

Γ,Ε ⊢ t1 ⇒ e Γ,Ε ⊢ t2 ⇐ ρ1 e : ρ1 →! ρ2 ∈ Ε
Γ,Ε ⊢ raise t1 t2 ⇒ ρ2

Head-Tail/Tail-Head synthesis
We introduce constraints and namely collections to extend the bidirectional
type-checking algorithm by adding non-instantiable pseudo-types that can only
appear as a result of writing language constructs that are not syntax driven.
In Kelp, for example, [1 2 3] can be a tuple, compile-time known length list
or a regular list.
We extend the bidirectional type-checking by adding a special ⊢c judgment that
allows terms to be synthesized and checked to be of constraint pseudo-types.
This extension also allows for stronger type-checking of collections, as we can
both infer type from the first element and coerce the others or from any element
further down the list.

Γ,Ε ⊢ t1 ⇒ ρ1
Γ,Ε ⊢c t2 ⇒ (Collection ρ1 n)

Γ ⊢c (cons t1 t2) ⇒ (Collection ρ1 n + 1)

Γ,Ε ⊢c t1 ⇐ ρ1
Γ,Ε ⊢c t2 ⇒ (Collection ρ1 n)

Γ ⊢c (cons t1 t2) ⇒ (Collection ρ1 n + 1)

Future work
In future the work can be extended to formalize the computational semantics
based on the works of Plotkin and Pretnar combined with dependent types.
The typing rules for effects are fairly restrictive a capability-based tracking of
allowed effects in the spirit of Effekt could prove to be more useful.


