AgentLang

FACULTY
= OF MATHEMATICS
AND PHYSICS

Charles University

Programming Language for Agent-based Modeling

Author: Tomds Boda | Supervisor: Mgr. Tomds Petficek, Ph.D. | 2024

Introduction

AgentlLang is a programming language designed for modeling agent-based
simulations. It provides a straightforward structure, where the user defines an

agent model and a set of properties representing the behaviour of the agent.

Agent-based Modeling

Agent-based modeling is a simulation technique, where a system is
modeled using a set of fundamental units of a system called agents. Each
agent individually assesses the current situation and makes decisions based

on a set of defined rules.

Primary Goals

Due to the increasing popularity of the agent-based modeling technique in
many scientific fields, there is a need for a unified framework usable by
people of all scientific fields, regardless of their technical proficiency. For these

reasons, the AgentLang framework aims to provide:

¢ unified language with simple and straightforward syntax and structure
e only the necessary, essential core library of features

* an alternative way of modeling using a spreadsheet representation

Global Variables
. 1 Boids Algorithm for Bird Flocking
We define a set of global constants 5 e srEhm o B e
that can be shared among all agents. 3 define visual_range = 100;
(4 define avoid_range = 20;
5 define centering_factor = 0.0005;
(6 define avoid_factor = 0.005;
Agent Model 7 define matching_factor = 0.05;
. 8
We define an agent model of type 9 define s_max = 83
boid and spawn 100 of these agents. 10 define s_min = 6;
11
12 agent boid 100 {
(13
Agent Constants 14 const w = 10;
. . 15 const h 103
We define a set of constant properties 16 ’
for this agent - properties that have a 17 const x_init = random(100, width() - 100);
constant value during the course of \ 18 const y_init = random(100, height() - 100);
9 19 const x_vel_init = choice(-2, 2);
the simulation. 20 const y_vel_init = choice(-2, 2);
21
22 property x: x_init = (x + x_vel_limit) % width();
(23 property y: y_init = (y + y_vel_limit) % height();
Agent Properties 24
" . . 25 property x_vel: x_vel_init = x_vel + x_separation + x_alignment + x_cohesion;
We define a set of properties for this 26 property y_vel: y_vel_init = y_vel + y_separation + y_alignment + y_cohesion;
agent, properties that are recalculated ___———] 27
f : 28 property s_sqrt = sqrt(x_vel * x_vel + y_vel * y_vel);
each step of the simulation for each 29 property s = if s_sqrt == @ then 1 else s_sqrt;
agent. 30
31 property vrc = count(boids_vr);
32
(o 33 property x_separation = sum(boids_ar | b -> x - b.x) * avoid_factor;
Retrieving Agents 34 property y_separation = sum(boids_ar | b -> y - b.y) * avoid_factor;
. 35
We retrieve the array of ogents of type 36 property x_alignment = (sum(boids_vr | b -> b.x_vel) / vrc - x_vel) * matching_factor;
boid and their values using the 37 property y_alignment = (sum(boids_vr | b -> b.y_vel) / vrc - y_vel) * matching_factor;
. . 38
clgent(bmd) function. 39 property x_cohesion = (sum(boids_vr | b -> b.x) / vrc - x) * centering_factor;
40 property y_cohesion = (sum(boids_vr | b -> b.y) / vrc - y) * centering_factor;
. 41
Filtering Agents 42 property boids = agents(boid);
43
We filter the array of agents of type —’/’_I 44 property boids_ar = filter(boids | b -> dist(b.x, b.y, x, y) < avoid_range);
N . 45 property boids_vr = filter(boids | b -> dist(b.x, b.y, x, y) < visual_range);
boid based on some expression and 46
retrieve the filtered array of agents. 47 property x_vel_limit =
48 property y_vel_limit
49 }
Technical Details
AgentLang is an interpreted programming language. The source code is parsed i
onciusion

using a pushdown automaton, which produces a semantic representation of
the program in form of an abstract syntax tree (AST). The interpreter is a tree-

walk interpreter that traverses the AST and interprets the code node by node.

Interesting Concepts

The primary structure of an AgentLang model is an agent. Its behaviour is
modelled using a set of property declarations, each assigned an inline
expression upon which it is recalculated. This structure is simple to understand
as well as can easily be mapped to the columns of the spreadsheet interface.
Moreover, interactions between agents are realized using the built-in set
comprehension structure, which takes an array of agents as the parameter,
followed the name of the agent instance that is currently operated on and
finally an expression based on which the set comprehension either finds, filters

or sums the agent instances.

The project features a fully usable programming language and a web-based
interface with a code editor, a spreadsheet editor and visualisation module. The

project fulfilled all of the stated goals and criteria.

Acknowledgements
I would like to thank my supervisor Mgr. Tomas Petficek, Ph.D,, whose guidance,
patience and expertise have been invaluable, shaped this thesis and

contributed significantly to its completion.

AgentLa ng
Tomas Boda

github.com/TomasBoda/agent-lang

