
Specification and Verification of
Temporal HAL-API Dependencies

Manuel Bentele

University of Freiburg

Hahn-Schickard

15th Alpine Verification Meeting (AVM’23)
September 13, 2023

Manuel Bentele Specification and Verification of Temporal HAL-API Dependencies 1 / 17



How does the Embedded System look like?

Raspberry Pi 3 Model B+
(single-board computer)

ADXL345 accelerometer
(sensor)

Data transfer via SPI

C program on Raspberry Pi 3 Model B+ reads data from sensor using SPI

Manuel Bentele Specification and Verification of Temporal HAL-API Dependencies 2 / 17



Why does the C program not transfer data properly?

C program for ADXL345 accelerometer
Transfers data from a local to a remote SPI peripheral and vice versa
Uses an API to control the local SPI peripheral
Requests and receives measured acceleration data
Is generic-error-free
Is compilable and executable

Does not configure the local SPI peripheral for a proper data transfer before a data
transfer takes place:

Initializes local
peripheral

Configures
local peripheral Transfers data . . .

Manuel Bentele Specification and Verification of Temporal HAL-API Dependencies 3 / 17



How does the Serial Peripheral Interface look like?

Interface for a synchronous serial communication
Half- or full-duplex data transfer between SPI master and slave

Master
SCK

MOSI
MISO

SS

Slave
SCK
MOSI
MISO
SS

Raspberry Pi 3
Model B+

ADXL345
accelerometer

Figure: Wiring of SPI master and slave

Operation is parameterized by configuration parameters, e.g.,
CPOL: Polarity of Serial Clock (SCK) during idle state
CPHA: Phase of SCK for data sampling

SPI and its configuration parameters are not standardized
Transmission errors may occur if configuration parameters are set improperly, e.g.,
mismatch of CPOL and CPHA from SPI master and slave

Manuel Bentele Specification and Verification of Temporal HAL-API Dependencies 4 / 17



How does the Hardware Abstraction Layer for SPI look like?

Hardware Abstraction Layer (HAL) is
part of the Linux kernel
Abstracts SPI peripherals and exposes
them in user space

spidev HAL-API consists of the
POSIX routines

open(), close()
read(), write()
custom ioctl() routines, e.g.,

ioctl(MESSAGE) to perform a
full-duplex data transfer
ioctl(WR_MODE32) to set CPOL
and CPHA of SPI peripheral

C program

POSIX API

POSIX library

System call interface

Virtual File System (VFS)

File operation API

spidev SPI driver

SPI subsystem

Hardware

U
se

r
sp

ac
e

K
er

ne
l
sp

ac
e

spidev HAL-API

spidev HAL
implementation

Figure: Overview of software layers from
HAL spidev

Manuel Bentele Specification and Verification of Temporal HAL-API Dependencies 5 / 17



Is there any dependency between two HAL-API routines?

Dependency
Describes the relation that some HAL-API routine depends on a previously performed
HAL-API routine.

Example
The HAL-API routine ioctl(MESSAGE) depends on the previously performed
HAL-API routine ioctl(WR_MODE32).

Example
The HAL-API routine ioctl(WR_MODE32) depends on the previously performed
HAL-API routine open().

Observed and extracted in total 26 dependencies from the spidev HAL-API

Manuel Bentele Specification and Verification of Temporal HAL-API Dependencies 6 / 17



What are Temporal HAL-API Dependencies (THADs)?

Syntax

THAD δ : q ◁ r (where q, r are HAL-API routines from HAL-API A)
THAD δ is element of THAD relation D (binary relation over A)

Example
THAD δ17 : ioctl(WR_MODE32) ◁ ioctl(MESSAGE)

Semantic
Is defined on HAL-API routine sequence s = a1, a2, a3, . . .

s satisfies δ iff. ∀i ∈ N • ai = r↓ =⇒ ∃j ∈ N • j < i ∧ aj = q↑

Example

s1 = q↓, q↑, r↓, r↑ satisfies δ? ✓ (yes)
s2 = r↓, r↑, q↓, q↑ satisfies δ? ✗ (no)

Manuel Bentele Specification and Verification of Temporal HAL-API Dependencies 7 / 17



Can THADs be represented graphically?

THADs from a THAD relation D can consitute forms
THAD form can be represented with a directed graph

◁

δ3

◁δ7

◁

δ8

◁

δ10

◁
δ12

◁
δ14

◁δ17

◁

δ20

◁

δ23

◁

δ26

◁

δ4

open()

ioctl(WR_MODE32) ioctl(WR_LSB_FIRST) ioctl(WR_BITS_PER_WORD) ioctl(WR_MAX_SPEED_HZ)

ioctl(MESSAGE)

ioctl(RD_MODE32). . .

close()

Figure: THAD form constituted by THADs from HAL-API spidev

Manuel Bentele Specification and Verification of Temporal HAL-API Dependencies 8 / 17



How to verify THADs?

HAL-API

HAL implementation

C program THADs

Program annotation

Program verification (Ultimate Automizer)

Verification result (correct, incorrect, unknown)

T
H

A
D

ve
rifi

ca
ti
on

Figure: Implementation of THAD verification for C programs

Manuel Bentele Specification and Verification of Temporal HAL-API Dependencies 9 / 17



How to annotate the C program?

ANSI/ISO C Specification Language (ACSL) is used for the program annotation

Program annotation for a THAD δ : q ◁ r

Uses ACSL ghost statements
(declarations, assignments, assertions)
HAL implementation of q and r is annotated
Is side-effect-free (according to ACSL)
Described by the monitor automaton for δ

z0start z1

z2

q↓, r↑

q↑

*

r↓

*

Figure: THAD monitor for δ

Manuel Bentele Specification and Verification of Temporal HAL-API Dependencies 10 / 17



How to annotate the C program? (Example)

1 /*@ ghost int state_d1 = 0; */

2
3 int open(const char *path , int oflag , ...) {
4 int ret = . . .;
5

6 /*@ ghost state_d1 = 1; */

7 return ret;
8 }
9

10 ssize_t read(int fd , void *buf , size_t nbyte) {

11 /*@ assert (state_d1 == 1); */
12
13 return . . .;
14 }

Listing 1: Program annotation for THAD δ1 : open() ◁ read()

Manuel Bentele Specification and Verification of Temporal HAL-API Dependencies 11 / 17



How to annotate the C program? (Data dependencies)

What about data dependencies between HAL-API routines (e.g., file descriptors)?

In theory: Extension of THADs to support parameters and return values
∀fd ∈ N • δfd3 : fd := open("/dev/...", O_RDWR) ◁ ioctl(fd, MESSAGE)

In practice: Introduce an additional ghost variable to save the file descriptor

Manuel Bentele Specification and Verification of Temporal HAL-API Dependencies 12 / 17



How to verify the annotated C program?

Use a state-of-the-art software verifier (like Ultimate Automizer)
Any verifier for C programs supporting ACSL can be used

Verifier checks annotated C program PD

and outputs verification result correct, incorrect, or unknown

Verification result correct for PD =⇒ P |= D (P satisfies all THADs from D)
THAD verification with its reduction is sound

Manuel Bentele Specification and Verification of Temporal HAL-API Dependencies 13 / 17



How is the evaluation of THAD verification done?

THAD verification is applied to three real-world C programs using the
spidev HAL-API
Total time and memory consumption (resource usage) is measured on a
commercial off-the-shelf desktop computer1

‘I/O Expander’:
Transmit data to actuator

(MCP23S17)

‘Accelerometer’:
Receive data from sensor

(ADXL345)

‘spidev -Test’:
Test Linux kernel’s

SPI Subsystem

1Quad-core CPU at 3.4 GHz with 8 GB memory
Manuel Bentele Specification and Verification of Temporal HAL-API Dependencies 14 / 17



How do the three C programs use the spidev HAL-API?

Direct use of the spidev HAL-API:
‘I/O Expander’ and ‘spidev -Test’

spidev HAL-API
spidev HAL implementation

Raspberry Pi 3 Model B+ hardware

Figure: HALs used by programs ‘I/O Expander’ and ‘spidev -Test’

Indirect use via third-party library, e.g., ADXL345 library:
‘Accelerometer’

ADXL345 HAL-API
ADXL345 HAL implementation

spidev HAL-API
spidev HAL implementation

Raspberry Pi 3 Model B+ hardware

Figure: HALs used by program ‘Accelerometer’
Manuel Bentele Specification and Verification of Temporal HAL-API Dependencies 15 / 17



Results of Evaluation

THAD verification
Returns correct (expected and proven) verification result
Is applicable to C programs in the field of embedded systems
Can also be applied to a third-party library, where the library itself uses a HAL-API
Result is available within a reasonable time with manageable resource usage:

Annotated C program Total time Memory consumption

‘I/O Expander’ 5.74 s 383 MB
‘Accelerometer’ 7.64 s 458 MB
‘spidev -Test’ 26.57 s 840 MB

Table: Checking time and memory consumption of Ultimate Automizer 0.2.3 program verifications

Manuel Bentele Specification and Verification of Temporal HAL-API Dependencies 16 / 17



Conclusion

What has been done?
Created THAD syntax and semantic to formalize dependencies
Elaborated THAD verification approach to verify THADs

Open questions?
How easy is the THAD syntax and semantic understandable?
Is expressiveness of THAD syntax and semantic handy?

What can be done in the future?
Optimization and automation of THAD verification
Refinement or extension of THAD syntax and semantic:

Concept of a grouped THAD
Regular expressions, e.g. (a | b) ◁ c ◁ d
Resource usage, e.g. open() and close()

Manuel Bentele Specification and Verification of Temporal HAL-API Dependencies 17 / 17


	Objects of Investigation
	Embedded System
	Faulty C program
	Serial Peripheral Interface
	Hardware Abstraction Layer

	Temporal HAL-API Dependencies
	Specification
	Verification

	Evaluation
	Conclusion

