Manuel Bentele

Specification and Verification of
Temporal HAL-API Dependencies

Manuel Bentele

University of Freiburg

Hahn-Schickard

15th Alpine Verification Meeting (AVM'23)
September 13, 2023

Specification and Verification of Temporal HAL-AP| Dependencies 1/17

How does the Embedded System look like?

Raspberry Pi 3 Model B+
(single-board computer)
A

Data transfer via SPI

v
ADXL345 accelerometer

(sensor)

e C program on Raspberry Pi 3 Model B+ reads data from sensor using SPI

Manuel Bentele Specification and Verification of Temporal HAL-API| Dependencies 2/17

Why does the C program not transfer data properly?

C program for ADXL345 accelerometer

@ Transfers data from a local to a remote SPI peripheral and vice versa
@ Uses an API to control the local SPI peripheral
@ Requests and receives measured acceleration data

o Is generic-error-free

Is compilable and executable

@ Does not configure the local SPI peripheral for a proper data transfer before a data
transfer takes place:

" “Gonfigures” ~
locat peripheral

Initializes local

|
iSheral r---» Transfersdata (——» -
periphera :

Manuel Bentele Specification and Verification of Temporal HAL-AP| Dependencies 3/17

How does the Serial Peripheral Interface look like?

o

o
Raspberry Pi 3
Model B+

o

o

o

SCK
MOSI
MISO

Ss

Master

Interface for a synchronous serial communication

Half- or full-duplex data transfer between SPI master and slave

A A /

\ 4

SCK
MOSI
MISO
53

Slave

Figure: Wiring of SPI master and slave

Operation is parameterized by configuration parameters, e.g.,

o CPOL: Polarity of Serial Clock (SCK) during idle state
o CPHA: Phase of SCK for data sampling

SPI and its configuration parameters are not standardized

mismatch of CPOL and CPHA from SPI| master and slave

Manuel Bentele

ADXL345
accelerometer

Specification and Verification of Temporal HAL-AP| Dependencies

Transmission errors may occur if configuration parameters are set improperly, e.g.,

4/17

How does the Hardware Abstraction Layer for SPI look like?

@ Hardware Abstraction Layer (HAL) is
part of the Linux kernel

@ Abstracts SPI peripherals and exposes
them in user space

o spidev HAL-API consists of the
POSIX routines

e open(), close()
e read(), write()
e custom ioctl() routines, e.g.,
o ioctl(MESSAGE) to perform a
full-duplex data transfer
@ ioctl(WR_MODE32) to set CPOL
and CPHA of SPI peripheral

Manuel Bentele

C program

3
2 J POSIX API IL spidev HAL-API
g POSIX library
=)

System call interface
" Virtual File System (VFS) spidev HAL
® implementation
& File operation API
S _
S spidev SPI driver
o | _ o _______
& SPI subsystem

| Hardware |

Figure: Overview of software layers from
HAL spidev

Specification and Verification of Temporal HAL-AP| Dependencies 5/17

Is there any dependency between two HAL-API routines?

Dependency

Describes the relation that some HAL-API routine depends on a previously performed
HAL-API routine.

SEE

The HAL-API routine ioct1 (MESSAGE) depends on the previously performed
HAL-API routine ioctl (WR_MODE32).

Example

The HAL-API routine ioctl (WR_MODE32) depends on the previously performed
HAL-API routine open().

@ Observed and extracted in total 26 dependencies from the spidev HAL-API

Manuel Bentele Specification and Verification of Temporal HAL-AP| Dependencies 6/17

What are Temporal HAL-API Dependencies (THADs)?

Syntax
e THAD 6 : g <r (where g, r are HAL-API routines from HAL-API A)
@ THAD ¢ is element of THAD relation D (binary relation over A)

Example
@ THAD 617 : ioct1(WR_MODE32) < ioctl (MESSAGE)

Semantic
@ Is defined on HAL-API routine sequence s = ay, as, a3, . . .
o ssatisfies § iff. Vi€ Nea;=rt = JjeNej<inag =q'

Example
o 51 = g%, q", rt, r! satisfies 67 v (yes)
o s, = rt rT g%, g satisfies 67 X (no)

Manuel Bentele Specification and Verification of Temporal HAL-AP| Dependencies

Can THADs be represented graphically?

@ THADs from a THAD relation D can consitute forms
@ THAD form can be represented with a directed graph

O14
b7 <
< v J 012
ds d10
[1oct1 (RD_MODE32) | [foct1(WR_MODE32) | [ioctl(WR_LSB_FIRST)| [ioctl(WR_BITS_PER_WORD) | [ioctl(WR_MAX_SPEED_HZ) |
S0 A 03 &
017 020
< ® 023
>
626
I
ioctl (MESSAGE)

Figure: THAD form constituted by THADs from HAL-API spidev

Manuel Bentele Specification and Verification of Temporal HAL-AP| Dependencies 8/17

How to verify THADs?

’ C program ’ THADs

HAL-API

HAL implementation

¢ \ 4

c
S
‘5 (Program annotation)
!
9((Program verification (Ultimate Automizer))
T

A4

’ Verification result (correct, incorrect, unknown) ‘

Figure: Implementation of THAD verification for C programs

Manuel Bentele Specification and Verification of Temporal HAL-AP| Dependencies 9/17

How to annotate the C program?

@ ANSI/ISO C Specification Language (ACSL) is used for the program annotation

Program annotation for a THAD 6 : g<r

@ Uses ACSL ghost statements
(declarations, assignments, assertions)

@ HAL implementation of g and r is annotated
o Is side-effect-free (according to ACSL)

@ Described by the monitor automaton for &
Figure: THAD monitor for §

Manuel Bentele Specification and Verification of Temporal HAL-AP| Dependencies 10/17

How to annotate the C program? (Example)

1 /*@ ghost int state_dl = 0; */

2

3 int open(const char #*path, int oflag, ...) {
4 int ret = ...;

5

6 /*@ ghost state_dl = 1; x/

7 return ret;

8

9

10 ssize_t read(int fd, void #*buf, size_t nbyte) {
11 /*@ assert (state_dl == 1); */

12

13 return ...;

14)

Listing 1: Program annotation for THAD 47 : open() <read()

Manuel Bentele Specification and Verification of Temporal HAL-AP| Dependencies 11 /17

How to annotate the C program? (Data dependencies)

e What about data dependencies between HAL-API routines (e.g., file descriptors)?

@ In theory: Extension of THADs to support parameters and return values
Vid € Ne§i?: fd := open("/dev/...", O_RDWR) <ioctl(fd, MESSAGE)

@ In practice: Introduce an additional ghost variable to save the file descriptor

Manuel Bentele Specification and Verification of Temporal HAL-AP| Dependencies 12 /17

How to verify the annotated C program?

Use a state-of-the-art software verifier (like Ultimate Automizer)

Any verifier for C programs supporting ACSL can be used

Verifier checks annotated C program Pp

and outputs verification result correct, incorrect, or unknown

Verification result correct for Pp = P |= D (P satisfies all THADs from D)
e THAD verification with its reduction is sound

Manuel Bentele Specification and Verification of Temporal HAL-AP| Dependencies 13 /17

How is the evaluation of THAD verification done?

@ THAD verification is applied to three real-world C programs using the
spidev HAL-API

e Total time and memory consumption (resource usage) is measured on a

commercial off-the-shelf desktop computer?
— v
-— V

‘I/O Expander': ‘Accelerometer’: ‘spidev-Test':

Transmit data to actuator Receive data from sensor Test Linux kernel's
(MCP23S17) (ADXL345) SPI Subsystem

'Quad-core CPU at 3.4 GHz with 8 GB memory

Manuel Bentele Specification and Verification of Temporal HAL-API| Dependencies 14 /17

How do the three C programs use the spidev HAL-API?

@ Direct use of the spidev HAL-API:

‘l/O Expander’ and ‘spidev-Test'

S spidey HALAPI L
spidev HAL implementation

‘ Raspberry Pi 3 Model B+ hardware ‘

Figure: HALs used by programs ‘1/O Expander’ and ‘spidev-Test'

@ Indirect use via third-party library, e.g., ADXL345 library:

‘Accelerometer’

4 ADXL345 HAL-API \;

‘ Raspberry Pi 3 Model B+ hardware ‘

Figure: HALs used by program ‘Accelerometer’

Manuel Bentele Specification and Verification of Temporal HAL-AP| Dependencies 15 /17

Results of Evaluation

THAD verification

@ Returns correct (expected and proven) verification result
@ Is applicable to C programs in the field of embedded systems
@ Can also be applied to a third-party library, where the library itself uses a HAL-API

@ Result is available within a reasonable time with manageable resource usage:

Annotated C program Total time Memory consumption
‘I/O Expander’ 5.74s 383 MB
‘Accelerometer’ 7.64s 458 MB
‘spidev-Test’ 26.57s 840 MB

Table: Checking time and memory consumption of Ultimate Automizer 0.2.3 program verifications

Manuel Bentele Specification and Verification of Temporal HAL-AP| Dependencies 16 /17

Conclusion

What has been done?
e Created THAD syntax and semantic to formalize dependencies
o Elaborated THAD verification approach to verify THADs

Open questions?
@ How easy is the THAD syntax and semantic understandable?

@ Is expressiveness of THAD syntax and semantic handy?

What can be done in the future?

@ Optimization and automation of THAD verification
@ Refinement or extension of THAD syntax and semantic:

e Concept of a grouped THAD
o Regular expressions, e.g. (a| b) < c < d
e Resource usage, e.g. open() and close()

Manuel Bentele Specification and Verification of Temporal HAL-AP| Dependencies 17 /17

	Objects of Investigation
	Embedded System
	Faulty C program
	Serial Peripheral Interface
	Hardware Abstraction Layer

	Temporal HAL-API Dependencies
	Specification
	Verification

	Evaluation
	Conclusion

