Houdini and Invariants

Evaluation o Conclusion

#### Invariants production and Transition Power Abstraction

#### Konstantin Britikov, Martin Blicha, Natasha Sharygina

University of Lugano, Switzerland

Britikov (USI)

Invariants production and TPA

September 12, 2023

Houdini and Invariants

#### Golem Architecture<sup>1</sup>



<sup>&</sup>lt;sup>1</sup>Blicha, Britikov, and Sharygina, "The Golem Horn Solver", Computer Aided Verification - 35th International Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings, Part II, 2023.

Britikov (USI)

Evaluation o Conclusion oo

#### Motivation for Transition Power Abstraction (TPA)<sup>4</sup>

- All of the model checking engines like Spacer,<sup>2</sup> LAWI<sup>3</sup>are concentrated on states.
- Classical engines are slow in some cases (for example for deep loops).

- TPA abstracts over transitions.
- TPA goes deep, finding complicated counterexamples.
- TPA turned out to be able to prove safety.



<sup>3</sup>McMillan, "Lazy Abstraction with Interpolants", CAV, 2006.

<sup>4</sup>Blicha et al., "Transition Power Abstractions for Deep Counterexample Detection", *TACAS*, 2022.

Britikov (USI)

Invariants production and TPA

Houdini and Invariants

Evaluation

Conclusion oo

#### Transition Power Abstraction

$$Init(x^0) \longrightarrow \overline{Tr(x^0, x^1)} \longrightarrow Bad(x^1)$$



Houdini and Invariants

Evaluation

Conclusion

#### **Transition Power Abstraction**



U

Houdini and Invariants

Evaluation

Conclusion

4/13

#### **Transition Power Abstraction**



Houdini and Invariants

Evaluation o Conclusion

### Transition Power Abstraction (TPA)

Transition Power Abstraction (TPA) algorithm is based on abstract transition sequence  $TPA^{\leq 0}$ ,  $TPA^{\leq 1}$ , ...,  $TPA^{\leq n}$ , ...



Houdini and Invariants

Evaluation

Conclusion

## Transition Power Abstraction (TPA)

Transition Power Abstraction (TPA) algorithm is based on abstract transition sequence  $TPA^{\leq 0}$ ,  $TPA^{\leq 1}$ ,...,  $TPA^{\leq n}$ ,...

- Overapproximates reachability up to 2<sup>n</sup> steps of Tr
  - $Tr^i \subseteq TPA^{\leq n}$  for  $0 \leq i \leq 2^n$

U

Houdini and Invariants

Evaluation

Conclusion

## Transition Power Abstraction (TPA)

Transition Power Abstraction (TPA) algorithm is based on abstract transition sequence  $TPA^{\leq 0}$ ,  $TPA^{\leq 1}$ ,...,  $TPA^{\leq n}$ ,...

- Overapproximates reachability up to 2<sup>n</sup> steps of Tr
  - $Tr^i \subseteq TPA^{\leq n}$  for  $0 \leq i \leq 2^n$
- Quantifier-free (only 2 copies of state variables)



Houdini and Invariants

Evaluation

Conclusion

## Transition Power Abstraction (TPA)

Transition Power Abstraction (TPA) algorithm is based on abstract transition sequence  $TPA^{\leq 0}$ ,  $TPA^{\leq 1}$ ,...,  $TPA^{\leq n}$ ,...

- Overapproximates reachability up to 2<sup>n</sup> steps of Tr
  - $Tr^i \subseteq TPA^{\leq n}$  for  $0 \leq i \leq 2^n$
- Quantifier-free (only 2 copies of state variables)
- Construction and refinement of the sequence intertwined with bounded reachability checks



# Split Transition Power Abstraction (split-TPA)<sup>5</sup>

Adds additional checks to the TPA algorithm, now the reachability is split on two types of abstract transitions:

- $TPA^{< n+1} = TPA^{< n} \cup TPA^{=n} \circ TPA^{< n}$
- $TPA^{=n+1} = TPA^{=n} \circ TPA^{=n}$

This approach has folloving positive effects:

• Smaller, simpler checks.

<sup>&</sup>lt;sup>5</sup>Blicha et al., "Split Transition Power Abstractions for Unbounded Safety", FMCAD, 2022.

# Split Transition Power Abstraction (split-TPA)<sup>5</sup>

Adds additional checks to the TPA algorithm, now the reachability is split on two types of abstract transitions:

- $TPA^{< n+1} = TPA^{< n} \cup TPA^{=n} \circ TPA^{< n}$
- $TPA^{=n+1} = TPA^{=n} \circ TPA^{=n}$

This approach has folloving positive effects:

- Smaller, simpler checks.
- Both inductive and k-inductive reasoning.



<sup>&</sup>lt;sup>5</sup>Blicha et al., "Split Transition Power Abstractions for Unbounded Safety", *FMCAD*, 2022.

# Split Transition Power Abstraction (split-TPA)<sup>5</sup>

Adds additional checks to the TPA algorithm, now the reachability is split on two types of abstract transitions:

- $TPA^{< n+1} = TPA^{< n} \cup TPA^{=n} \circ TPA^{< n}$
- $TPA^{=n+1} = TPA^{=n} \circ TPA^{=n}$

This approach has folloving positive effects:

- Smaller, simpler checks.
- Both inductive and k-inductive reasoning.
- More invariant candidates.



<sup>&</sup>lt;sup>5</sup>Blicha et al., "Split Transition Power Abstractions for Unbounded Safety", *FMCAD*, 2022.

#### Safety checks in TPA

Both TPA and split-TPA support the production of the safety invariants. Following conditions should be satisfied for  $TPA^{< n}$  to be safe inductive transition invariant:

• 
$$Tr^i(x, x') \Longrightarrow TPA^{< n}(x, x')$$
 for  $0 \le i < k$  and  $k = 2^n$ .



#### Safety checks in TPA

Both TPA and split-TPA support the production of the safety invariants. Following conditions should be satisfied for  $TPA^{< n}$  to be safe inductive transition invariant:

•  $Tr^i(x, x') \Longrightarrow TPA^{< n}(x, x')$  for  $0 \le i < k$  and  $k = 2^n$ .

• 
$$TPA^{< n}(x, x') \wedge Tr(x', x'') \Longrightarrow TPA^{< n}(x, x'').$$



#### Safety checks in TPA

Both TPA and split-TPA support the production of the safety invariants. Following conditions should be satisfied for  $TPA^{< n}$  to be safe inductive transition invariant:

•  $Tr^i(x, x') \Longrightarrow TPA^{< n}(x, x')$  for  $0 \le i < k$  and  $k = 2^n$ .

• 
$$TPA^{< n}(x, x') \wedge Tr(x', x'') \Longrightarrow TPA^{< n}(x, x'').$$

•  $Init(x) \wedge TPA^{< n}(x, x') \wedge Bad(x') \Longrightarrow false.$ 



**Houdini search** - is a general algorithm to find the biggest inductive subset in a formula. Was originaly introduced to search for loop invariants.

1 We have a set of invariant candidates  $C(x) = c_1(x) \land c_2(x) \land ... \land c_n(x)$ , and some kind of transition Tr(x, x').

<sup>&</sup>lt;sup>6</sup>Flanagan and Leino, "Houdini, an Annotation Assistant for ESC/Java", FME 2001: Formal Methods for Increasing Software Productivity, International Symposium of Formal Methods Europe, Berlin, Germany, March 12-16, 2001, Proceedings, 2001.

**Houdini search** - is a general algorithm to find the biggest inductive subset in a formula. Was originaly introduced to search for loop invariants.

- 1 We have a set of invariant candidates  $C(x) = c_1(x) \land c_2(x) \land ... \land c_n(x)$ , and some kind of transition Tr(x, x').
- $2 \ C(x) \wedge Tr(x,x') \Longrightarrow C(x')$

<sup>6</sup>Flanagan and Leino, "Houdini, an Annotation Assistant for ESC/Java", FME 2001: Formal Methods for Increasing Software Productivity, International Symposium of Formal Methods Europe, Berlin, Germany, March 12-16, 2001, Proceedings, 2001.

Britikov (USI)

Invariants production and TPA

- 1 We have a set of invariant candidates  $C(x) = c_1(x) \land c_2(x) \land ... \land c_n(x)$ , and some kind of transition Tr(x, x').
- (3) true  $\longrightarrow C(x)$  is an invariant

<sup>&</sup>lt;sup>6</sup>Flanagan and Leino, "Houdini, an Annotation Assistant for ESC/Java", FME 2001: Formal Methods for Increasing Software Productivity, International Symposium of Formal Methods Europe, Berlin, Germany, March 12-16, 2001, Proceedings, 2001.

- 1 We have a set of invariant candidates  $C(x) = c_1(x) \land c_2(x) \land ... \land c_n(x)$ , and some kind of transition Tr(x, x').
- $C(x) \wedge Tr(x, x') \Longrightarrow C(x')$
- **3** true  $\longrightarrow C(x)$  is an invariant
- 4 false  $\longrightarrow$  for each  $c_i$  in C(x):  $C(x) \land Tr(x, x') \Longrightarrow c_i(x')$

<sup>&</sup>lt;sup>6</sup>Flanagan and Leino, "Houdini, an Annotation Assistant for ESC/Java", FME 2001: Formal Methods for Increasing Software Productivity, International Symposium of Formal Methods Europe, Berlin, Germany, March 12-16, 2001, Proceedings, 2001.

- 1 We have a set of invariant candidates  $C(x) = c_1(x) \land c_2(x) \land ... \land c_n(x)$ , and some kind of transition Tr(x, x').
- $2 C(x) \land Tr(x, x') \Longrightarrow C(x')$
- **3** true  $\longrightarrow C(x)$  is an invariant
- **4** false  $\longrightarrow$  for each  $c_i$  in C(x):  $C(x) \land Tr(x, x') \Longrightarrow c_i(x')$

<sup>&</sup>lt;sup>6</sup>Flanagan and Leino, "Houdini, an Annotation Assistant for ESC/Java", FME 2001: Formal Methods for Increasing Software Productivity, International Symposium of Formal Methods Europe, Berlin, Germany, March 12-16, 2001, Proceedings, 2001.

- 1 We have a set of invariant candidates  $C(x) = c_1(x) \land c_2(x) \land ... \land c_n(x)$ , and some kind of transition Tr(x, x').
- (3) true  $\longrightarrow C(x)$  is an invariant
- **4** false  $\longrightarrow$  for each  $c_i$  in C(x):  $C(x) \land Tr(x, x') \Longrightarrow c_i(x')$
- 6 After the filtering, go to step 2.

<sup>&</sup>lt;sup>6</sup>Flanagan and Leino, "Houdini, an Annotation Assistant for ESC/Java", FME 2001: Formal Methods for Increasing Software Productivity, International Symposium of Formal Methods Europe, Berlin, Germany, March 12-16, 2001, Proceedings, 2001.

#### Houdini, transitions, and magic

**TPA**, unlike the original houdini abstracts over transitions, not states. So we had to use different approach at picking invariant candidates.

 $C(x) \wedge Tr(x, x') \Longrightarrow C(x')$ 



#### Houdini, transitions, and magic

**TPA**, unlike the original houdini abstracts over transitions, not states. So we had to use different approach at picking invariant candidates.

$$C(x) \wedge Tr(x, x') \Longrightarrow C(x')$$

$$TPA^{< n}(x, x') \land Tr(x', x'') \Longrightarrow TPA^{< n}(x, x'')$$

This means that we can use  $TPA^{<n}(x, x')$  as a set of candidates for the intermediate invariants.



Conclusion 00

#### Houdini, transitions, and magic

**TPA**, unlike the original houdini abstracts over transitions, not states. So we had to use different approach at picking invariant candidates.

 $TPA^{< n}(x, x') \land Tr(x', x'') \Longrightarrow TPA^{< n}(x, x'')$ 

This means that we can use  $TPA^{<n}(x, x')$  as a set of candidates for the intermediate invariants.

 $\mathcal{C}(x) \wedge \mathcal{T}r(x, x') \Longrightarrow \mathcal{C}(x')$ 

Evaluation

Conclusion oo

#### Houdini, transitions, and magic

**TPA**, unlike the original houdini abstracts over transitions, not states. So we had to use different approach at picking invariant candidates.





Conclusion

#### Houdini, transitions, and magic

**TPA**, unlike the original houdini abstracts over transitions, not states. So we had to use different approach at picking invariant candidates.

 $TrInv(x, x') \subset TPA^{< n}(x, x')$ 



Invariants produced by the usage of Houdini algorithm can be utilised in solving to refine the abstraction. As you recall, this are three main points in proving safety:



Invariants produced by the usage of Houdini algorithm can be utilised in solving to refine the abstraction. As you recall, this are three main points in proving safety:

1) 
$$Tr^i(x, x') \Longrightarrow TPA^{< n}(x, x')$$
 for  $0 \le i < k$   
and  $k = 2^n$ .



Invariants produced by the usage of Houdini algorithm can be utilised in solving to refine the abstraction. As you recall, this are three main points in proving safety:

- 1  $Tr^i(x, x') \implies TPA^{< n}(x, x')$  for  $0 \le i < k$ and  $k = 2^n$ .
- 2  $TPA^{<n}(x, x') \wedge Tr(x', x'') \Longrightarrow TPA^{<n}(x, x'')$

U

Invariants produced by the usage of Houdini algorithm can be utilised in solving to refine the abstraction. As you recall, this are three main points in proving safety:

- 1  $Tr^i(x, x') \implies TPA^{< n}(x, x') \text{ for } 0 \le i < k$ and  $k = 2^n$ .
- 2  $TPA^{<n}(x, x') \wedge Tr(x', x'') \Longrightarrow$  $TPA^{<n}(x, x'')$
- 3  $Init(x) \wedge TPA^{< n}(x, x') \wedge Bad(x') \Longrightarrow false$



Invariants produced by the usage of Houdini algorithm can be utilised in solving to refine the abstraction. As you recall, this are three main points in proving safety:

**1** 
$$Tr^i(x, x') \Longrightarrow TPA^{< n}(x, x')$$
 for  $0 \le i < k$  and  $k = 2^n$ .

1) 
$$Tr^i(x, x') \Longrightarrow TPA^{< n}(x, x')$$
 for  $0 \le i < k$   
and  $k = 2^n$ .

2 
$$TPA^{  
 $TPA^{$$$

Init(x) 
$$\land$$
 TPA<sup>(x, x')  $\land$  Bad(x')  $\Longrightarrow$  false</sup>

Invariants produced by the usage of Houdini algorithm can be utilised in solving to refine the abstraction. As you recall, this are three main points in proving safety:

1  $Tr^i(x, x') \implies TPA^{< n}(x, x') \text{ for } 0 \le i < k$ and  $k = 2^n$ .

2 
$$TPA^{  
 $TPA^{$$$

Init(x)  $\land$  TPA<sup><n</sup>(x, x')  $\land$  Bad(x')  $\Longrightarrow$  false

1  $Tr^i(x, x') \Longrightarrow TPA^{< n}(x, x')$  for  $0 \le i < k$ and  $k = 2^n$ .

2 
$$TPA^{  
 $Trlnv(x, x'') \Longrightarrow TPA^{$$$



Invariants produced by the usage of Houdini algorithm can be utilised in solving to refine the abstraction. As you recall, this are three main points in proving safety:

1  $Tr^i(x, x') \implies TPA^{< n}(x, x') \text{ for } 0 \le i < k$ and  $k = 2^n$ .

2 
$$TPA^{  
 $TPA^{$$$

Init(x)  $\land$  TPA<sup><n</sup>(x, x')  $\land$  Bad(x')  $\Longrightarrow$  false

1  $Tr^i(x, x') \Longrightarrow TPA^{< n}(x, x')$  for  $0 \le i < k$ and  $k = 2^n$ .

2 
$$TPA^{  
 $Trlnv(x, x'') \Longrightarrow TPA^{$$$

 $Init(x) \land TPA^{<n}(x, x') \land TrInv(x, x') \land \\ Bad(x') \Longrightarrow false$ 



Conclusion 00

#### Evaluation

Comparison of Houdini and Non-Houdini performance (600 seconds timeout)

|            | Number of tests | split-TPA (Houdini) | split-TPA | TPA (Houdini) | TPA |
|------------|-----------------|---------------------|-----------|---------------|-----|
| LIA linear | 585             | 342                 | 332       | 302           | 295 |
| LRA linear | 498             | 202                 | 196       | 136           | 130 |

#### Table: CHC-COMP'21 selection



Houdini and Invariants

Evaluation

Conclusion

#### Evaluation

Comparison of Houdini and Non-Houdini performance (600 seconds timeout)





11/13

Britikov (USI)

#### Future Work

- Introduce Houdini-based invariant search in exact transition abstractions
- Filter out low-potential candidates
- Improvements to the algorithm to pick the candidates for invariants



Houdini application to the TPA

• Was able to improve performance of the split-TPA and TPA



Britikov (USI)

Invariants production and TPA

September 12, 2023

Houdini application to the TPA

- Was able to improve performance of the split-TPA and TPA
- Is open-source github.com/usi-verification-and-security/golem



Britikov (USI)



Houdini application to the TPA

- Was able to improve performance of the split-TPA and TPA
- Is open-source github.com/usi-verification-and-security/golem
- Searching for PhDs and PostDocs





Houdini application to the TPA

- Was able to improve performance of the split-TPA and TPA
- Is open-source github.com/usi-verification-and-security/golem
- Searching for PhDs and PostDocs
- Check out our website: https://verify.inf.usi.ch/





### Questions?



- Blicha, Martin, Konstantin Britikov, and Natasha Sharygina. "The Golem Horn Solver". In: Computer Aided Verification - 35th International Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings, Part II. Ed. by Constantin Enea and Akash Lal. Vol. 13965. Lecture Notes in Computer Science. Springer, 2023, pp. 209–223. doi: 10.1007/978-3-031-37703-7\\_10. url: https://doi.org/10.1007/978-3-031-37703-7\\_10.
- Blicha, Martin et al. "Split Transition Power Abstractions for Unbounded Safety". In: FMCAD. Ed. by Alberto Griggio and Neha Rungta. Cham: TU Wien Academic Press, 2022, pp. 349–358. doi: 10.34727/2022/isbn.978–3–85448–053–2\_42.
  - ."Transition Power Abstractions for Deep Counterexample Detection". In: *TACAS*. Ed. by Dana Fisman and Grigore Rosu. Cham: Springer International Publishing, 2022, pp. 524–542.

Flanagan, Cormac and K. Rustan M. Leino. "Houdini, an Annotation Assistant for ESC/Java". In: *FME 2001: Formal Methods for Increasing Software Productivity, International Symposium of Formal Methods Europe, Berlin, Germany, March 12-16, 2001, Proceedings*. Ed. by José Nuno Oliveira and Pamela Zave. Vol. 2021. Lecture Notes in Computer Science. Springer, 2001, pp. 500–517. doi:

10.1007/3-540-45251-6\\_29.url:

https://doi.org/10.1007/3-540-45251-6\\_29.

- Komuravelli, Anvesh, Arie Gurfinkel, and Sagar Chaki. "SMT-based Model Checking For Recursive Programs". In: *FMSD*. Vol. 48. 3. 2016, pp. 175–205.
- McMillan, Kenneth L. "Lazy Abstraction with Interpolants". In: CAV. Ed. by Thomas Ball and Robert B. Jones. Berlin, Heidelberg: Springer Berlin Heidelberg. 2006, pp. 123–136.