
Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Invariants production and Transition Power Abstraction

Konstantin Britikov, Martin Blicha, Natasha Sharygina

University of Lugano, Switzerland

Britikov (USI) Invariants production and TPA September 12, 2023 1 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Golem Architecture1

Interpreter Preprocessor BMC KIND

LAWI IMC

SpacerTPA

Engines

.smt2

SAT
+

model
UNSAT

+
proof Interpolator

Core solver

OpenSMT

Interpolation
customization

1Blicha, Britikov, and Sharygina, “The Golem Horn Solver”, Computer Aided Verification - 35th International Conference, CAV 2023, Paris, France, July 17-22,
2023, Proceedings, Part II, 2023.

Britikov (USI) Invariants production and TPA September 12, 2023 2 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Motivation for Transition Power Abstraction (TPA)4

• All of the model checking engines like
Spacer,2 LAWI3are concentrated on
states.

• Classical engines are slow in some
cases (for example for deep loops).

• TPA abstracts over transitions.
• TPA goes deep, finding complicated

counterexamples.
• TPA turned out to be able to prove

safety.

2Komuravelli, Gurfinkel, and Chaki, “SMT-based Model Checking For Recursive Programs”, FMSD, 2016.
3McMillan, “Lazy Abstraction with Interpolants”, CAV, 2006.
4Blicha et al., “Transition Power Abstractions for Deep Counterexample Detection”, TACAS, 2022.

Britikov (USI) Invariants production and TPA September 12, 2023 3 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Transition Power Abstraction

Tr(x0, x1) Bad(x1)Init(x0)

Britikov (USI) Invariants production and TPA September 12, 2023 4 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Transition Power Abstraction

Tr(x0, x1) Tr(x1, x2)

TPA≤1(x0, x2)

Bad(x2)Init(x0)

Britikov (USI) Invariants production and TPA September 12, 2023 4 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Transition Power Abstraction

...

TPA≤n(x0, xk)

...

TPA≤n(xk , x2k)

TPA≤n+1(x0, x2k)

Bad(x2k)Init(x0)

Where k = 2n.

Britikov (USI) Invariants production and TPA September 12, 2023 4 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Transition Power Abstraction (TPA)
Concept

Transition Power Abstraction (TPA) algorithm is based on abstract transition
sequence TPA≤0,TPA≤1, . . . ,TPA≤n, . . .

• Overapproximates reachability up to 2n steps of Tr

• Tr i ⊆ TPA≤n for 0 ≤ i ≤ 2n

• Quantifier-free (only 2 copies of state variables)

Britikov (USI) Invariants production and TPA September 12, 2023 5 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Transition Power Abstraction (TPA)
Concept

Transition Power Abstraction (TPA) algorithm is based on abstract transition
sequence TPA≤0,TPA≤1, . . . ,TPA≤n, . . .

• Overapproximates reachability up to 2n steps of Tr
• Tr i ⊆ TPA≤n for 0 ≤ i ≤ 2n

• Quantifier-free (only 2 copies of state variables)

Britikov (USI) Invariants production and TPA September 12, 2023 5 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Transition Power Abstraction (TPA)
Concept

Transition Power Abstraction (TPA) algorithm is based on abstract transition
sequence TPA≤0,TPA≤1, . . . ,TPA≤n, . . .

• Overapproximates reachability up to 2n steps of Tr
• Tr i ⊆ TPA≤n for 0 ≤ i ≤ 2n

• Quantifier-free (only 2 copies of state variables)

Britikov (USI) Invariants production and TPA September 12, 2023 5 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Transition Power Abstraction (TPA)
Concept

Transition Power Abstraction (TPA) algorithm is based on abstract transition
sequence TPA≤0,TPA≤1, . . . ,TPA≤n, . . .

• Overapproximates reachability up to 2n steps of Tr
• Tr i ⊆ TPA≤n for 0 ≤ i ≤ 2n

• Quantifier-free (only 2 copies of state variables)
• Construction and refinement of the sequence intertwined with bounded

reachability checks

Britikov (USI) Invariants production and TPA September 12, 2023 5 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Split Transition Power Abstraction (split-TPA)5

Concept

Adds additional checks to the TPA algorithm, now the reachability is split on two
types of abstract transitions:
• TPA<n+1 = TPA<n ∪ TPA=n ◦ TPA<n

• TPA=n+1 = TPA=n ◦ TPA=n

This approach has folloving positive effects:
• Smaller, simpler checks.

• Both inductive and k-inductive reasoning.
• More invariant candidates.

5Blicha et al., “Split Transition Power Abstractions for Unbounded Safety”, FMCAD, 2022.

Britikov (USI) Invariants production and TPA September 12, 2023 6 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Split Transition Power Abstraction (split-TPA)5

Concept

Adds additional checks to the TPA algorithm, now the reachability is split on two
types of abstract transitions:
• TPA<n+1 = TPA<n ∪ TPA=n ◦ TPA<n

• TPA=n+1 = TPA=n ◦ TPA=n

This approach has folloving positive effects:
• Smaller, simpler checks.
• Both inductive and k-inductive reasoning.

• More invariant candidates.

5Blicha et al., “Split Transition Power Abstractions for Unbounded Safety”, FMCAD, 2022.

Britikov (USI) Invariants production and TPA September 12, 2023 6 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Split Transition Power Abstraction (split-TPA)5

Concept

Adds additional checks to the TPA algorithm, now the reachability is split on two
types of abstract transitions:
• TPA<n+1 = TPA<n ∪ TPA=n ◦ TPA<n

• TPA=n+1 = TPA=n ◦ TPA=n

This approach has folloving positive effects:
• Smaller, simpler checks.
• Both inductive and k-inductive reasoning.
• More invariant candidates.

5Blicha et al., “Split Transition Power Abstractions for Unbounded Safety”, FMCAD, 2022.

Britikov (USI) Invariants production and TPA September 12, 2023 6 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Safety checks in TPA

Both TPA and split-TPA support the production of the safety invariants. Following
conditions should be satisfied for TPA<n to be safe inductive transition invariant:

• Tr i(x , x ′) =⇒ TPA<n(x , x ′) for 0 ≤ i < k and k = 2n.

• TPA<n(x , x ′) ∧ Tr(x ′, x ′′) =⇒ TPA<n(x , x ′′).
• Init(x) ∧ TPA<n(x , x ′) ∧ Bad(x ′) =⇒ false.

Britikov (USI) Invariants production and TPA September 12, 2023 7 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Safety checks in TPA

Both TPA and split-TPA support the production of the safety invariants. Following
conditions should be satisfied for TPA<n to be safe inductive transition invariant:

• Tr i(x , x ′) =⇒ TPA<n(x , x ′) for 0 ≤ i < k and k = 2n.
• TPA<n(x , x ′) ∧ Tr(x ′, x ′′) =⇒ TPA<n(x , x ′′).

• Init(x) ∧ TPA<n(x , x ′) ∧ Bad(x ′) =⇒ false.

Britikov (USI) Invariants production and TPA September 12, 2023 7 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Safety checks in TPA

Both TPA and split-TPA support the production of the safety invariants. Following
conditions should be satisfied for TPA<n to be safe inductive transition invariant:

• Tr i(x , x ′) =⇒ TPA<n(x , x ′) for 0 ≤ i < k and k = 2n.
• TPA<n(x , x ′) ∧ Tr(x ′, x ′′) =⇒ TPA<n(x , x ′′).
• Init(x) ∧ TPA<n(x , x ′) ∧ Bad(x ′) =⇒ false.

Britikov (USI) Invariants production and TPA September 12, 2023 7 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Houdini search6

Houdini search - is a general algorithm to find the biggest inductive subset in a
formula. Was originaly introduced to search for loop invariants.

1 We have a set of invariant candidates C(x) = c1(x) ∧ c2(x) ∧ ... ∧ cn(x), and some
kind of transition Tr(x , x ′).

2 C(x) ∧ Tr(x , x ′) =⇒ C(x ′)

3 true −→ C(x) is an invariant
4 false −→ for each ci in C(x): C(x) ∧ Tr(x , x ′) =⇒ ci(x ′)

5 If 4 is false −→ C := C \ ci

6 After the filtering, go to step 2.

6Flanagan and Leino, “Houdini, an Annotation Assistant for ESC/Java”, FME 2001: Formal Methods for Increasing Software Productivity, International
Symposium of Formal Methods Europe, Berlin, Germany, March 12-16, 2001, Proceedings, 2001.

Britikov (USI) Invariants production and TPA September 12, 2023 8 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Houdini search6

Houdini search - is a general algorithm to find the biggest inductive subset in a
formula. Was originaly introduced to search for loop invariants.

1 We have a set of invariant candidates C(x) = c1(x) ∧ c2(x) ∧ ... ∧ cn(x), and some
kind of transition Tr(x , x ′).

2 C(x) ∧ Tr(x , x ′) =⇒ C(x ′)

3 true −→ C(x) is an invariant
4 false −→ for each ci in C(x): C(x) ∧ Tr(x , x ′) =⇒ ci(x ′)

5 If 4 is false −→ C := C \ ci

6 After the filtering, go to step 2.

6Flanagan and Leino, “Houdini, an Annotation Assistant for ESC/Java”, FME 2001: Formal Methods for Increasing Software Productivity, International
Symposium of Formal Methods Europe, Berlin, Germany, March 12-16, 2001, Proceedings, 2001.

Britikov (USI) Invariants production and TPA September 12, 2023 8 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Houdini search6

Houdini search - is a general algorithm to find the biggest inductive subset in a
formula. Was originaly introduced to search for loop invariants.

1 We have a set of invariant candidates C(x) = c1(x) ∧ c2(x) ∧ ... ∧ cn(x), and some
kind of transition Tr(x , x ′).

2 C(x) ∧ Tr(x , x ′) =⇒ C(x ′)

3 true −→ C(x) is an invariant

4 false −→ for each ci in C(x): C(x) ∧ Tr(x , x ′) =⇒ ci(x ′)

5 If 4 is false −→ C := C \ ci

6 After the filtering, go to step 2.

6Flanagan and Leino, “Houdini, an Annotation Assistant for ESC/Java”, FME 2001: Formal Methods for Increasing Software Productivity, International
Symposium of Formal Methods Europe, Berlin, Germany, March 12-16, 2001, Proceedings, 2001.

Britikov (USI) Invariants production and TPA September 12, 2023 8 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Houdini search6

Houdini search - is a general algorithm to find the biggest inductive subset in a
formula. Was originaly introduced to search for loop invariants.

1 We have a set of invariant candidates C(x) = c1(x) ∧ c2(x) ∧ ... ∧ cn(x), and some
kind of transition Tr(x , x ′).

2 C(x) ∧ Tr(x , x ′) =⇒ C(x ′)

3 true −→ C(x) is an invariant
4 false −→ for each ci in C(x): C(x) ∧ Tr(x , x ′) =⇒ ci(x ′)

5 If 4 is false −→ C := C \ ci

6 After the filtering, go to step 2.

6Flanagan and Leino, “Houdini, an Annotation Assistant for ESC/Java”, FME 2001: Formal Methods for Increasing Software Productivity, International
Symposium of Formal Methods Europe, Berlin, Germany, March 12-16, 2001, Proceedings, 2001.

Britikov (USI) Invariants production and TPA September 12, 2023 8 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Houdini search6

Houdini search - is a general algorithm to find the biggest inductive subset in a
formula. Was originaly introduced to search for loop invariants.

1 We have a set of invariant candidates C(x) = c1(x) ∧ c2(x) ∧ ... ∧ cn(x), and some
kind of transition Tr(x , x ′).

2 C(x) ∧ Tr(x , x ′) =⇒ C(x ′)

3 true −→ C(x) is an invariant
4 false −→ for each ci in C(x): C(x) ∧ Tr(x , x ′) =⇒ ci(x ′)

5 If 4 is false −→ C := C \ ci

6 After the filtering, go to step 2.

6Flanagan and Leino, “Houdini, an Annotation Assistant for ESC/Java”, FME 2001: Formal Methods for Increasing Software Productivity, International
Symposium of Formal Methods Europe, Berlin, Germany, March 12-16, 2001, Proceedings, 2001.

Britikov (USI) Invariants production and TPA September 12, 2023 8 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Houdini search6

Houdini search - is a general algorithm to find the biggest inductive subset in a
formula. Was originaly introduced to search for loop invariants.

1 We have a set of invariant candidates C(x) = c1(x) ∧ c2(x) ∧ ... ∧ cn(x), and some
kind of transition Tr(x , x ′).

2 C(x) ∧ Tr(x , x ′) =⇒ C(x ′)

3 true −→ C(x) is an invariant
4 false −→ for each ci in C(x): C(x) ∧ Tr(x , x ′) =⇒ ci(x ′)

5 If 4 is false −→ C := C \ ci

6 After the filtering, go to step 2.

6Flanagan and Leino, “Houdini, an Annotation Assistant for ESC/Java”, FME 2001: Formal Methods for Increasing Software Productivity, International
Symposium of Formal Methods Europe, Berlin, Germany, March 12-16, 2001, Proceedings, 2001.

Britikov (USI) Invariants production and TPA September 12, 2023 8 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Houdini, transitions, and magic

TPA, unlike the original houdini abstracts over transitions, not states. So we had to
use different approach at picking invariant candidates.

C(x) ∧ Tr(x , x ′) =⇒ C(x ′)

Britikov (USI) Invariants production and TPA September 12, 2023 9 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Houdini, transitions, and magic

TPA, unlike the original houdini abstracts over transitions, not states. So we had to
use different approach at picking invariant candidates.

C(x) ∧ Tr(x , x ′) =⇒ C(x ′)

TPA<n(x , x ′) ∧ Tr(x ′, x ′′) =⇒ TPA<n(x , x ′′)

This means that we can use TPA<n(x , x ′) as a set of candidates for the intermediate
invariants.

Britikov (USI) Invariants production and TPA September 12, 2023 9 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Houdini, transitions, and magic

TPA, unlike the original houdini abstracts over transitions, not states. So we had to
use different approach at picking invariant candidates.

C(x) ∧ Tr(x , x ′) =⇒ C(x ′)

TPA<n(x , x ′) ∧ Tr(x ′, x ′′) =⇒ TPA<n(x , x ′′)

This means that we can use TPA<n(x , x ′) as a set of candidates for the intermediate
invariants.

Britikov (USI) Invariants production and TPA September 12, 2023 9 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Houdini, transitions, and magic

TPA, unlike the original houdini abstracts over transitions, not states. So we had to
use different approach at picking invariant candidates.

Britikov (USI) Invariants production and TPA September 12, 2023 9 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Houdini, transitions, and magic

TPA, unlike the original houdini abstracts over transitions, not states. So we had to
use different approach at picking invariant candidates.

TrInv(x , x ′) ⊆ TPA<n(x , x ′)

Britikov (USI) Invariants production and TPA September 12, 2023 9 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Usage of invariants

Invariants produced by the usage of Houdini algorithm can be utilised in solving to
refine the abstraction. As you recall, this are three main points in proving safety:

1 Tr i(x , x ′) =⇒ TPA<n(x , x ′) for 0 ≤ i < k
and k = 2n.

2 TPA<n(x , x ′) ∧ Tr(x ′, x ′′) =⇒
TPA<n(x , x ′′)

3 Init(x)∧TPA<n(x , x ′)∧Bad(x ′) =⇒ false

1 Tr i(x , x ′) =⇒ TPA<n(x , x ′) for 0 ≤ i < k
and k = 2n.

2 TPA<n(x , x ′) ∧ Tr(x ′, x ′′) ∧
TrInv(x , x ′′) =⇒ TPA<n(x , x ′′)

3 Init(x) ∧ TPA<n(x , x ′) ∧ TrInv(x , x ′) ∧
Bad(x ′) =⇒ false

Britikov (USI) Invariants production and TPA September 12, 2023 10 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Usage of invariants

Invariants produced by the usage of Houdini algorithm can be utilised in solving to
refine the abstraction. As you recall, this are three main points in proving safety:

1 Tr i(x , x ′) =⇒ TPA<n(x , x ′) for 0 ≤ i < k
and k = 2n.

2 TPA<n(x , x ′) ∧ Tr(x ′, x ′′) =⇒
TPA<n(x , x ′′)

3 Init(x)∧TPA<n(x , x ′)∧Bad(x ′) =⇒ false

1 Tr i(x , x ′) =⇒ TPA<n(x , x ′) for 0 ≤ i < k
and k = 2n.

2 TPA<n(x , x ′) ∧ Tr(x ′, x ′′) ∧
TrInv(x , x ′′) =⇒ TPA<n(x , x ′′)

3 Init(x) ∧ TPA<n(x , x ′) ∧ TrInv(x , x ′) ∧
Bad(x ′) =⇒ false

Britikov (USI) Invariants production and TPA September 12, 2023 10 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Usage of invariants

Invariants produced by the usage of Houdini algorithm can be utilised in solving to
refine the abstraction. As you recall, this are three main points in proving safety:

1 Tr i(x , x ′) =⇒ TPA<n(x , x ′) for 0 ≤ i < k
and k = 2n.

2 TPA<n(x , x ′) ∧ Tr(x ′, x ′′) =⇒
TPA<n(x , x ′′)

3 Init(x)∧TPA<n(x , x ′)∧Bad(x ′) =⇒ false

1 Tr i(x , x ′) =⇒ TPA<n(x , x ′) for 0 ≤ i < k
and k = 2n.

2 TPA<n(x , x ′) ∧ Tr(x ′, x ′′) ∧
TrInv(x , x ′′) =⇒ TPA<n(x , x ′′)

3 Init(x) ∧ TPA<n(x , x ′) ∧ TrInv(x , x ′) ∧
Bad(x ′) =⇒ false

Britikov (USI) Invariants production and TPA September 12, 2023 10 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Usage of invariants

Invariants produced by the usage of Houdini algorithm can be utilised in solving to
refine the abstraction. As you recall, this are three main points in proving safety:

1 Tr i(x , x ′) =⇒ TPA<n(x , x ′) for 0 ≤ i < k
and k = 2n.

2 TPA<n(x , x ′) ∧ Tr(x ′, x ′′) =⇒
TPA<n(x , x ′′)

3 Init(x)∧TPA<n(x , x ′)∧Bad(x ′) =⇒ false

1 Tr i(x , x ′) =⇒ TPA<n(x , x ′) for 0 ≤ i < k
and k = 2n.

2 TPA<n(x , x ′) ∧ Tr(x ′, x ′′) ∧
TrInv(x , x ′′) =⇒ TPA<n(x , x ′′)

3 Init(x) ∧ TPA<n(x , x ′) ∧ TrInv(x , x ′) ∧
Bad(x ′) =⇒ false

Britikov (USI) Invariants production and TPA September 12, 2023 10 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Usage of invariants

Invariants produced by the usage of Houdini algorithm can be utilised in solving to
refine the abstraction. As you recall, this are three main points in proving safety:

1 Tr i(x , x ′) =⇒ TPA<n(x , x ′) for 0 ≤ i < k
and k = 2n.

2 TPA<n(x , x ′) ∧ Tr(x ′, x ′′) =⇒
TPA<n(x , x ′′)

3 Init(x)∧TPA<n(x , x ′)∧Bad(x ′) =⇒ false

1 Tr i(x , x ′) =⇒ TPA<n(x , x ′) for 0 ≤ i < k
and k = 2n.

2 TPA<n(x , x ′) ∧ Tr(x ′, x ′′) ∧
TrInv(x , x ′′) =⇒ TPA<n(x , x ′′)

3 Init(x) ∧ TPA<n(x , x ′) ∧ TrInv(x , x ′) ∧
Bad(x ′) =⇒ false

Britikov (USI) Invariants production and TPA September 12, 2023 10 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Usage of invariants

Invariants produced by the usage of Houdini algorithm can be utilised in solving to
refine the abstraction. As you recall, this are three main points in proving safety:

1 Tr i(x , x ′) =⇒ TPA<n(x , x ′) for 0 ≤ i < k
and k = 2n.

2 TPA<n(x , x ′) ∧ Tr(x ′, x ′′) =⇒
TPA<n(x , x ′′)

3 Init(x)∧TPA<n(x , x ′)∧Bad(x ′) =⇒ false

1 Tr i(x , x ′) =⇒ TPA<n(x , x ′) for 0 ≤ i < k
and k = 2n.

2 TPA<n(x , x ′) ∧ Tr(x ′, x ′′) ∧
TrInv(x , x ′′) =⇒ TPA<n(x , x ′′)

3 Init(x) ∧ TPA<n(x , x ′) ∧ TrInv(x , x ′) ∧
Bad(x ′) =⇒ false

Britikov (USI) Invariants production and TPA September 12, 2023 10 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Usage of invariants

Invariants produced by the usage of Houdini algorithm can be utilised in solving to
refine the abstraction. As you recall, this are three main points in proving safety:

1 Tr i(x , x ′) =⇒ TPA<n(x , x ′) for 0 ≤ i < k
and k = 2n.

2 TPA<n(x , x ′) ∧ Tr(x ′, x ′′) =⇒
TPA<n(x , x ′′)

3 Init(x)∧TPA<n(x , x ′)∧Bad(x ′) =⇒ false

1 Tr i(x , x ′) =⇒ TPA<n(x , x ′) for 0 ≤ i < k
and k = 2n.

2 TPA<n(x , x ′) ∧ Tr(x ′, x ′′) ∧
TrInv(x , x ′′) =⇒ TPA<n(x , x ′′)

3 Init(x) ∧ TPA<n(x , x ′) ∧ TrInv(x , x ′) ∧
Bad(x ′) =⇒ false

Britikov (USI) Invariants production and TPA September 12, 2023 10 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Evaluation
Comparison of Houdini and Non-Houdini performance (600 seconds timeout)

Number of tests split-TPA (Houdini) split-TPA TPA (Houdini) TPA
LIA linear 585 342 332 302 295
LRA linear 498 202 196 136 130

Table: CHC-COMP’21 selection

Britikov (USI) Invariants production and TPA September 12, 2023 11 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Evaluation
Comparison of Houdini and Non-Houdini performance (600 seconds timeout)

Britikov (USI) Invariants production and TPA September 12, 2023 11 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Future Work

• Introduce Houdini-based invariant search in exact transition abstractions
• Filter out low-potential candidates
• Improvements to the algorithm to pick the candidates for invariants

Britikov (USI) Invariants production and TPA September 12, 2023 12 / 13

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Conclusion

Houdini application to the TPA
• Was able to improve performance of the split-TPA and TPA

• Is open-source github.com/usi-verification-and-security/golem

• Searching for PhDs and PostDocs
• Check out our website: https://verify.inf.usi.ch/

Britikov (USI) Invariants production and TPA September 12, 2023 13 / 13

github.com/usi-verification-and-security/golem

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Conclusion

Houdini application to the TPA
• Was able to improve performance of the split-TPA and TPA
• Is open-source github.com/usi-verification-and-security/golem

• Searching for PhDs and PostDocs
• Check out our website: https://verify.inf.usi.ch/

Britikov (USI) Invariants production and TPA September 12, 2023 13 / 13

github.com/usi-verification-and-security/golem

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Conclusion

Houdini application to the TPA
• Was able to improve performance of the split-TPA and TPA
• Is open-source github.com/usi-verification-and-security/golem

• Searching for PhDs and PostDocs

• Check out our website: https://verify.inf.usi.ch/

Britikov (USI) Invariants production and TPA September 12, 2023 13 / 13

github.com/usi-verification-and-security/golem

Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Conclusion

Houdini application to the TPA
• Was able to improve performance of the split-TPA and TPA
• Is open-source github.com/usi-verification-and-security/golem

• Searching for PhDs and PostDocs
• Check out our website: https://verify.inf.usi.ch/

Britikov (USI) Invariants production and TPA September 12, 2023 13 / 13

github.com/usi-verification-and-security/golem

Questions?

Britikov (USI) Invariants production and TPA September 12, 2023 13 / 13

References I

Blicha, Martin, Konstantin Britikov, and Natasha Sharygina. “The Golem Horn
Solver”. In: Computer Aided Verification - 35th International Conference, CAV 2023,
Paris, France, July 17-22, 2023, Proceedings, Part II. Ed. by Constantin Enea and
Akash Lal. Vol. 13965. Lecture Notes in Computer Science. Springer, 2023,
pp. 209–223. doi: 10.1007/978-3-031-37703-7_10. url:
https://doi.org/10.1007/978-3-031-37703-7_10.
Blicha, Martin et al. “Split Transition Power Abstractions for Unbounded Safety”.
In: FMCAD. Ed. by Alberto Griggio and Neha Rungta. Cham: TU Wien Academic
Press, 2022, pp. 349–358. doi: 10.34727/2022/isbn.978-3-85448-053-2_42.
— .“Transition Power Abstractions for Deep Counterexample Detection”. In:
TACAS. Ed. by Dana Fisman and Grigore Rosu. Cham: Springer International
Publishing, 2022, pp. 524–542.

Britikov (USI) Invariants production and TPA September 12, 2023 13 / 13

https://doi.org/10.1007/978-3-031-37703-7_10
https://doi.org/10.1007/978-3-031-37703-7_10
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_42

References II

Flanagan, Cormac and K. Rustan M. Leino. “Houdini, an Annotation Assistant for
ESC/Java”. In: FME 2001: Formal Methods for Increasing Software Productivity,
International Symposium of Formal Methods Europe, Berlin, Germany, March 12-16,
2001, Proceedings. Ed. by José Nuno Oliveira and Pamela Zave. Vol. 2021. Lecture
Notes in Computer Science. Springer, 2001, pp. 500–517. doi:
10.1007/3-540-45251-6_29. url:
https://doi.org/10.1007/3-540-45251-6_29.
Komuravelli, Anvesh, Arie Gurfinkel, and Sagar Chaki. “SMT-based Model Checking
For Recursive Programs”. In: FMSD. Vol. 48. 3. 2016, pp. 175–205.
McMillan, Kenneth L. “Lazy Abstraction with Interpolants”. In: CAV. Ed. by
Thomas Ball and Robert B. Jones. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 123–136.

Britikov (USI) Invariants production and TPA September 12, 2023 13 / 13

https://doi.org/10.1007/3-540-45251-6_29
https://doi.org/10.1007/3-540-45251-6_29

	
	Introduction
	Transition Power Abstraction
	Houdini and Invariants
	Evaluation
	Conclusion
	Appendix
	References

