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Golem Architecture1
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1Blicha, Britikov, and Sharygina, “The Golem Horn Solver”, Computer Aided Verification - 35th International Conference, CAV 2023, Paris, France, July 17-22,
2023, Proceedings, Part II, 2023.
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Motivation for Transition Power Abstraction (TPA)4

• All of the model checking engines like
Spacer,2 LAWI3are concentrated on
states.

• Classical engines are slow in some
cases (for example for deep loops).

• TPA abstracts over transitions.
• TPA goes deep, finding complicated

counterexamples.
• TPA turned out to be able to prove

safety.

2Komuravelli, Gurfinkel, and Chaki, “SMT-based Model Checking For Recursive Programs”, FMSD, 2016.
3McMillan, “Lazy Abstraction with Interpolants”, CAV, 2006.
4Blicha et al., “Transition Power Abstractions for Deep Counterexample Detection”, TACAS, 2022.
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Transition Power Abstraction

Tr(x0, x1) Bad(x1)Init(x0)
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Transition Power Abstraction

Tr(x0, x1) Tr(x1, x2)

TPA≤1(x0, x2)

Bad(x2)Init(x0)
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Transition Power Abstraction

...

TPA≤n(x0, xk )

...

TPA≤n(xk , x2k )

TPA≤n+1(x0, x2k )

Bad(x2k )Init(x0)

Where k = 2n.
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Transition Power Abstraction (TPA)
Concept

Transition Power Abstraction (TPA) algorithm is based on abstract transition
sequence TPA≤0,TPA≤1, . . . ,TPA≤n, . . .

• Overapproximates reachability up to 2n steps of Tr

• Tr i ⊆ TPA≤n for 0 ≤ i ≤ 2n

• Quantifier-free (only 2 copies of state variables)
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Transition Power Abstraction (TPA)
Concept

Transition Power Abstraction (TPA) algorithm is based on abstract transition
sequence TPA≤0,TPA≤1, . . . ,TPA≤n, . . .

• Overapproximates reachability up to 2n steps of Tr
• Tr i ⊆ TPA≤n for 0 ≤ i ≤ 2n

• Quantifier-free (only 2 copies of state variables)
• Construction and refinement of the sequence intertwined with bounded

reachability checks
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Split Transition Power Abstraction (split-TPA)5

Concept

Adds additional checks to the TPA algorithm, now the reachability is split on two
types of abstract transitions:
• TPA<n+1 = TPA<n ∪ TPA=n ◦ TPA<n

• TPA=n+1 = TPA=n ◦ TPA=n

This approach has folloving positive effects:
• Smaller, simpler checks.

• Both inductive and k-inductive reasoning.
• More invariant candidates.

5Blicha et al., “Split Transition Power Abstractions for Unbounded Safety”, FMCAD, 2022.
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Safety checks in TPA

Both TPA and split-TPA support the production of the safety invariants. Following
conditions should be satisfied for TPA<n to be safe inductive transition invariant:

• Tr i(x , x ′) =⇒ TPA<n(x , x ′) for 0 ≤ i < k and k = 2n.

• TPA<n(x , x ′) ∧ Tr(x ′, x ′′) =⇒ TPA<n(x , x ′′).
• Init(x) ∧ TPA<n(x , x ′) ∧ Bad(x ′) =⇒ false.

Britikov (USI) Invariants production and TPA September 12, 2023 7 / 13



Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Safety checks in TPA

Both TPA and split-TPA support the production of the safety invariants. Following
conditions should be satisfied for TPA<n to be safe inductive transition invariant:

• Tr i(x , x ′) =⇒ TPA<n(x , x ′) for 0 ≤ i < k and k = 2n.
• TPA<n(x , x ′) ∧ Tr(x ′, x ′′) =⇒ TPA<n(x , x ′′).

• Init(x) ∧ TPA<n(x , x ′) ∧ Bad(x ′) =⇒ false.

Britikov (USI) Invariants production and TPA September 12, 2023 7 / 13



Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Safety checks in TPA

Both TPA and split-TPA support the production of the safety invariants. Following
conditions should be satisfied for TPA<n to be safe inductive transition invariant:

• Tr i(x , x ′) =⇒ TPA<n(x , x ′) for 0 ≤ i < k and k = 2n.
• TPA<n(x , x ′) ∧ Tr(x ′, x ′′) =⇒ TPA<n(x , x ′′).
• Init(x) ∧ TPA<n(x , x ′) ∧ Bad(x ′) =⇒ false.

Britikov (USI) Invariants production and TPA September 12, 2023 7 / 13



Introduction Transition Power Abstraction Houdini and Invariants Evaluation Conclusion

Houdini search6

Houdini search - is a general algorithm to find the biggest inductive subset in a
formula. Was originaly introduced to search for loop invariants.

1 We have a set of invariant candidates C(x) = c1(x) ∧ c2(x) ∧ ... ∧ cn(x), and some
kind of transition Tr(x , x ′).

2 C(x) ∧ Tr(x , x ′) =⇒ C(x ′)

3 true −→ C(x) is an invariant
4 false −→ for each ci in C(x): C(x) ∧ Tr(x , x ′) =⇒ ci(x ′)

5 If 4 is false −→ C := C \ ci

6 After the filtering, go to step 2.

6Flanagan and Leino, “Houdini, an Annotation Assistant for ESC/Java”, FME 2001: Formal Methods for Increasing Software Productivity, International
Symposium of Formal Methods Europe, Berlin, Germany, March 12-16, 2001, Proceedings, 2001.
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Houdini, transitions, and magic

TPA, unlike the original houdini abstracts over transitions, not states. So we had to
use different approach at picking invariant candidates.

C(x) ∧ Tr(x , x ′) =⇒ C(x ′)
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This means that we can use TPA<n(x , x ′) as a set of candidates for the intermediate
invariants.
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Houdini, transitions, and magic

TPA, unlike the original houdini abstracts over transitions, not states. So we had to
use different approach at picking invariant candidates.

TrInv(x , x ′) ⊆ TPA<n(x , x ′)
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Usage of invariants

Invariants produced by the usage of Houdini algorithm can be utilised in solving to
refine the abstraction. As you recall, this are three main points in proving safety:

1 Tr i(x , x ′) =⇒ TPA<n(x , x ′) for 0 ≤ i < k
and k = 2n.

2 TPA<n(x , x ′) ∧ Tr(x ′, x ′′) =⇒
TPA<n(x , x ′′)

3 Init(x)∧TPA<n(x , x ′)∧Bad(x ′) =⇒ false

1 Tr i(x , x ′) =⇒ TPA<n(x , x ′) for 0 ≤ i < k
and k = 2n.

2 TPA<n(x , x ′) ∧ Tr(x ′, x ′′) ∧
TrInv(x , x ′′) =⇒ TPA<n(x , x ′′)

3 Init(x) ∧ TPA<n(x , x ′) ∧ TrInv(x , x ′) ∧
Bad(x ′) =⇒ false
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Evaluation
Comparison of Houdini and Non-Houdini performance (600 seconds timeout)

Number of tests split-TPA (Houdini) split-TPA TPA (Houdini) TPA
LIA linear 585 342 332 302 295
LRA linear 498 202 196 136 130

Table: CHC-COMP’21 selection
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Future Work

• Introduce Houdini-based invariant search in exact transition abstractions
• Filter out low-potential candidates
• Improvements to the algorithm to pick the candidates for invariants
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Conclusion

Houdini application to the TPA
• Was able to improve performance of the split-TPA and TPA

• Is open-source github.com/usi-verification-and-security/golem

• Searching for PhDs and PostDocs
• Check out our website: https://verify.inf.usi.ch/
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