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Is this formula satisfiable?

(x ∨ y ∨ ¬z)
∧ (¬x ∨ ¬z ∨ w)
∧ (¬z ∨ ¬w)
∧ (¬y ∨ z ∨ ¬w)
∧ (¬x ∨ z)
∧ (x ∨ y ∨ ¬w)
∧ (x ∨ y ∨ z ∨ w)
∧ (z ∨ w)
∧ (x ∨ ¬y ∨ ¬z ∨ w)

No... at least my SAT-solver says so!
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Certification



Certification

▶ Automated reasoning tools are complicated → correctness?

▶ Use certification – each answer comes with a
machine-checkable certificate

▶ It suffices to ensure correctness of the certificate checker
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SAT – boolean satisfiability

(x ∨ ¬y) ∧ (¬x ∨ z)instance

solver
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SAT – boolean satisfiability

SAT

assignment

(x ∨ ¬y) ∧ (¬x ∨ z)instance

solver
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SAT – boolean satisfiability

extended
resolution

proof

UNSATSAT

assignment

(x ∨ ¬y) ∧ (¬x ∨ z)instance

solver
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QBF – quantified boolean satisfiability

∃x∀y (x ∨ ¬y) ∧ (¬x ∨ z)

extended
resolution

proof

SAT

extended
resolution

proof

UNSAT

instance

solver

This talk applies to QBF as well.
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Extended Resolution Proofs

▶ Used for (UN)SAT, QBF

▶ Essentially a list of clauses, each of which is implied by the
previous clauses

▶ Properties:
▶ “efficiently” checkable
▶ long (exponential in size of the input)

▶ Certificates can be many terabytes (!) in size
▶ e.g. 200 TiB in [Heule,Kullmann,Marek 2016] to solve the boolean

Pythagorean Triples problem
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The problem

▶ Huge resolution proofs are difficult to handle

▶ In some cases, it can take even longer to verify the proof than
to solve the instance (!)
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Polynomial-time
certification?!



No.

However...



No. However...



Interactive Protocols – Summary

We sacrifice:

▶ certainty
▶ non-interactivity
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A breakthrough

▶ IP = PSPACE [Lund,Fortnow,Karloff,Nisan 1990], [Shamir 1992]

▶ famous breakthrough in complexity theory
▶ demonstrates that efficient certification is possible via

interactive protocols, for any PSPACE problem
▶ i.e. SAT, QBF, model counting, ...
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Interactive Protocols

ProverVerifier
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Interactive Protocols
ProverVerifier

Instance

Claim

φ = ¬x ∧ y

UNSAT
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Interactive Protocols

▶ One-sided error

▶ If the claim is correct, Prover can always convince Verifier, if it
follows the protocol

▶ If the claim is incorrect, with high probability Prover cannot
convince Verifier, regardless of Prover’s behaviour

▶ “with high probability” means 1 − 2−n, where n is the size of
the input → negligible in practice

▶ IP is the class of problems that admit such a protocol
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Interactive Protocols – Summary

We sacrifice:
▶ certainty
▶ non-interactivity

polynomial-time
certification

We gain:

Altar
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Why do we want this?

▶ Make certification faster

▶ Leverage computational asymmetry between parties
▶ e.g. a cloud provider offers a QBF-service

▶ Split performance-critical and trusted parts of software
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From theory to practice

▶ Why has IP = PSPACE not already been used for
certification?

▶ The result constructs an interactive protocol for QBF
▶ While Verifier is efficient ...
▶ ... Prover is naive; best-case exponential-time (!)

▶ iterating over all assignments
▶ completely impractical!

▶ In practice, SAT and QBF are solved using advanced data
structures and heuristics

▶ e.g. DPLL, CDCL for SAT; QCDCL, BDDs for QBF

Problem: how do we generate interactive certificates with practical
approaches?

53



From theory to practice

▶ Why has IP = PSPACE not already been used for
certification?

▶ The result constructs an interactive protocol for QBF

▶ While Verifier is efficient ...
▶ ... Prover is naive; best-case exponential-time (!)

▶ iterating over all assignments
▶ completely impractical!

▶ In practice, SAT and QBF are solved using advanced data
structures and heuristics

▶ e.g. DPLL, CDCL for SAT; QCDCL, BDDs for QBF

Problem: how do we generate interactive certificates with practical
approaches?

54



From theory to practice

▶ Why has IP = PSPACE not already been used for
certification?

▶ The result constructs an interactive protocol for QBF
▶ While Verifier is efficient ...

▶ ... Prover is naive; best-case exponential-time (!)
▶ iterating over all assignments
▶ completely impractical!

▶ In practice, SAT and QBF are solved using advanced data
structures and heuristics

▶ e.g. DPLL, CDCL for SAT; QCDCL, BDDs for QBF

Problem: how do we generate interactive certificates with practical
approaches?

55



From theory to practice

▶ Why has IP = PSPACE not already been used for
certification?

▶ The result constructs an interactive protocol for QBF
▶ While Verifier is efficient ...
▶ ... Prover is naive; best-case exponential-time (!)

▶ iterating over all assignments
▶ completely impractical!

▶ In practice, SAT and QBF are solved using advanced data
structures and heuristics

▶ e.g. DPLL, CDCL for SAT; QCDCL, BDDs for QBF

Problem: how do we generate interactive certificates with practical
approaches?

56



From theory to practice

▶ Why has IP = PSPACE not already been used for
certification?

▶ The result constructs an interactive protocol for QBF
▶ While Verifier is efficient ...
▶ ... Prover is naive; best-case exponential-time (!)

▶ iterating over all assignments
▶ completely impractical!

▶ In practice, SAT and QBF are solved using advanced data
structures and heuristics

▶ e.g. DPLL, CDCL for SAT; QCDCL, BDDs for QBF

Problem: how do we generate interactive certificates with practical
approaches?

57



From theory to practice

▶ Why has IP = PSPACE not already been used for
certification?

▶ The result constructs an interactive protocol for QBF
▶ While Verifier is efficient ...
▶ ... Prover is naive; best-case exponential-time (!)

▶ iterating over all assignments
▶ completely impractical!

▶ In practice, SAT and QBF are solved using advanced data
structures and heuristics

▶ e.g. DPLL, CDCL for SAT; QCDCL, BDDs for QBF

Problem: how do we generate interactive certificates with practical
approaches?

58



From theory to practice

▶ Why has IP = PSPACE not already been used for
certification?

▶ The result constructs an interactive protocol for QBF
▶ While Verifier is efficient ...
▶ ... Prover is naive; best-case exponential-time (!)

▶ iterating over all assignments
▶ completely impractical!

▶ In practice, SAT and QBF are solved using advanced data
structures and heuristics

▶ e.g. DPLL, CDCL for SAT; QCDCL, BDDs for QBF

Problem: how do we generate interactive certificates with practical
approaches?

59



From theory to practice

▶ Why has IP = PSPACE not already been used for
certification?

▶ The result constructs an interactive protocol for QBF
▶ While Verifier is efficient ...
▶ ... Prover is naive; best-case exponential-time (!)

▶ iterating over all assignments
▶ completely impractical!

▶ In practice, SAT and QBF are solved using advanced data
structures and heuristics

▶ e.g. DPLL, CDCL for SAT; QCDCL, BDDs for QBF

Problem: how do we generate interactive certificates with practical
approaches?

60



BDDs



BDDs

▶ Reduced Ordered Binary Decision
Diagrams (BDDs)

▶ Unique encoding of boolean functions
with efficient boolean operations

▶ Are used effectively for QBF, CTL model
checking (and many other problems)

▶ not as good for SAT, though

x ∧ (y ⊕ z)
∨ ¬x ∧ y ∧ ¬z

y

x

y

zz

1
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Our result



Our result

▶ We give an interactive protocol:

Theorem. Let φ denote a QBF instance with n variables.
1. Verifier executes in time O(n2|φ|), with negligible failure

probability, and
2. Prover takes O(T ) time to solve φ and answer Verifier’s

challenges,
where T is the time the BDD algorithm takes to solve φ.

(constants in practice)
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Our result

▶ We give an interactive protocol:

Theorem. Let φ denote a QBF instance with n variables.
1. Verifier executes in time O(n2|φ|) ≈ 0, with negligible failure

probability ≈ 10−10, and
2. Prover takes O(T ) ≈ 3T time to solve φ and answer

Verifier’s challenges,
where T is the time the BDD algorithm takes to solve φ.

(constants in practice)
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Evaluation



Evaluation

▶ We implement our approach as blic, a certifying QBF solver
▶ We compare against state-of-the-art QBF solvers CAQE,

DepQBF and PGBDDQ

▶ DepQBF and PGBDDQ are certifying as well, using extended
resolution proofs

▶ Benchmarks are taken from the crafted instances track of the
QBF Evaluation 2022
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Verification time is negligible
median 250 times (!) faster
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Conclusions

First practical approach with polynomial-time certificate
verification!

▶ Checking time of the interactive certificate are negligible
(median 250 times faster!)

▶ Competitive performance (blic solves 96 of 172 benchmarks,
others 98, 91 and 87)

▶ Generating interactive certificates is low-overhead (factor ∼3)
▶ Error probability is negligible (at most 10−10 here)
▶ Can be applied to any BDD algorithm
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More Power!

Using this one simple trick...
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Resets

Challenge
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Prover
cannot
retain
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Resets

▶ Consider a Prover with a “reset”-button

▶ Equivalent to having multiple non-interacting provers
▶ This increases the power to NEXP
▶ Seems reasonable in practice
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Use-case 1: Avoid memory overhead
▶ Current approach needs to persist intermediate BDDs to disk

▶ Essentially, computation is bottom-up, while certification is
top-down

▶ With a reset-button, we can run the certification on-the-fly
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Use-case 2: Resolution proofs
▶ Let φ be a boolean formula and Φ a resolution proof of φ

▶ Goal: given an interactive protocol where

▶ Verifier needs poly(|φ|) time
▶ Prover needs poly(|Φ|) time

▶ With a reset-button, this seems possible
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Conclusions

First practical approach with polynomial-time certificate
verification!
▶ Checking time of the interactive certificate are negligible

(median 250 times faster!)
▶ Competitive performance (blic solves 96 of 172 benchmarks,

others 98, 91 and 87)
▶ Generating interactive certificates is low-overhead (factor ∼3)
▶ Error probability is negligible (≤ 10−10)
▶ Can be applied to any BDD algorithm

Thank you for your attention! Questions?
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