Making IP = PSPACE Practical: Efficient Interactive Protocols for BDD Algorithms

Published at CAV 2023

Philipp Czerner ${ }^{1}$

collaboration with
Eszter Couillard ${ }^{1}$, Javier Esparza ${ }^{1}$, Rupak Majumdar ${ }^{2}$
${ }^{1}$ Department of Informatics, TU Munich
${ }^{2}$ Max Planck Institute for Software Systems

September 11, 2023

Outline

Is this formula satisfiable?

$$
\begin{aligned}
& (x \vee y \vee \neg z) \\
\wedge & (\neg x \vee \neg z \vee w) \\
\wedge & (\neg z \vee \neg w) \\
\wedge & (\neg y \vee z \vee \neg w) \\
\wedge & (\neg x \vee z) \\
\wedge & (x \vee y \vee \neg w) \\
\wedge & (x \vee y \vee z \vee w) \\
\wedge & (z \vee w) \\
\wedge & (x \vee \neg y \vee \neg z \vee w)
\end{aligned}
$$

Is this formula satisfiable?

$$
\begin{aligned}
& (x \vee y \vee \neg z) \\
\wedge & (\neg x \vee \neg z \vee w) \\
\wedge & (\neg z \vee \neg w) \\
\wedge & (\neg y \vee z \vee \neg w) \\
\wedge & (\neg x \vee z) \\
\wedge & (x \vee y \vee \neg w) \\
\wedge & (x \vee y \vee z \vee w) \\
\wedge & (z \vee w) \\
\wedge & (x \vee \neg y \vee \neg z \vee w)
\end{aligned}
$$

No...

Is this formula satisfiable?

$$
\begin{aligned}
& (x \vee y \vee \neg z) \\
\wedge & (\neg x \vee \neg z \vee w) \\
\wedge & (\neg z \vee \neg w) \\
\wedge & (\neg y \vee z \vee \neg w) \\
\wedge & (\neg x \vee z) \\
\wedge & (x \vee y \vee \neg w) \\
\wedge & (x \vee y \vee z \vee w) \\
\wedge & (z \vee w) \\
\wedge & (x \vee \neg y \vee \neg z \vee w)
\end{aligned}
$$

No... at least my SAT-solver says so!

Certification

Certification

- Automated reasoning tools are complicated \rightarrow correctness?

Certification

- Automated reasoning tools are complicated \rightarrow correctness?
- Use certification - each answer comes with a machine-checkable certificate

Certification

- Automated reasoning tools are complicated \rightarrow correctness?
- Use certification - each answer comes with a machine-checkable certificate

- It suffices to ensure correctness of the certificate checker

SAT - boolean satisfiability

SAT - boolean satisfiability

SAT - boolean satisfiability

QBF - quantified boolean satisfiability

This talk applies to QBF as well.

Extended Resolution Proofs

- Used for (UN)SAT, QBF

Extended Resolution Proofs

- Used for (UN)SAT, QBF
- Essentially a list of clauses, each of which is implied by the previous clauses

Extended Resolution Proofs

- Used for (UN)SAT, QBF
- Essentially a list of clauses, each of which is implied by the previous clauses
- Properties:
- "efficiently" checkable

Extended Resolution Proofs

- Used for (UN)SAT, QBF
- Essentially a list of clauses, each of which is implied by the previous clauses
- Properties:
- "efficiently" checkable
- long (exponential in size of the input)

Extended Resolution Proofs

- Used for (UN)SAT, QBF
- Essentially a list of clauses, each of which is implied by the previous clauses
- Properties:
- "efficiently" checkable
- long (exponential in size of the input)
- Certificates can be many terabytes (!) in size
- e.g. 200 TiB in [Heule,Kullmann,Marek 2016] to solve the boolean Pythagorean Triples problem

The problem

- Huge resolution proofs are difficult to handle

The problem

- Huge resolution proofs are difficult to handle
- In some cases, it can take even longer to verify the proof than to solve the instance (!)

Polynomial-time certification?!

No.

No. However...

Interactive Protocols - Summary

We sacrifice:

Interactive Protocols - Summary

We sacrifice:

- certainty
- non-interactivity

Interactive Protocols - Summary

We sacrifice:

- certainty
- non-interactivity

Interactive Protocols - Summary

We sacrifice:

- certainty
- non-interactivity

Interactive Protocols - Summary

We sacrifice:

- certainty
- non-interactivity

We gain:

A breakthrough

- IP = PSPACE [Lund,Fortnow,Karloff,Nisan 1990], [Shamir 1992]

A breakthrough

- IP = PSPACE [Lund,Fortnow,Karloff,Nisan 1990], [Shamir 1992]
- famous breakthrough in complexity theory

A breakthrough

- IP = PSPACE [Lund,Fortnow,Karloff,Nisan 1990], [Shamir 1992]
- famous breakthrough in complexity theory
- demonstrates that efficient certification is possible via interactive protocols, for any PSPACE problem

A breakthrough

- IP = PSPACE [Lund,Fortnow,Karloff,Nisan 1990], [Shamir 1992]
- famous breakthrough in complexity theory
- demonstrates that efficient certification is possible via interactive protocols, for any PSPACE problem
- i.e. SAT, QBF, model counting, ...

Interactive Protocols

Verifier

Prover

Interactive Protocols

Verifier Prover

Interactive Protocols

Verifier Prover

Interactive Protocols

Verifier Prover

Interactive Protocols

- One-sided error

Interactive Protocols

- One-sided error
- If the claim is correct, Prover can always convince Verifier, if it follows the protocol

Interactive Protocols

- One-sided error
- If the claim is correct, Prover can always convince Verifier, if it follows the protocol
- If the claim is incorrect, with high probability Prover cannot convince Verifier, regardless of Prover's behaviour

Interactive Protocols

- One-sided error
- If the claim is correct, Prover can always convince Verifier, if it follows the protocol
- If the claim is incorrect, with high probability Prover cannot convince Verifier, regardless of Prover's behaviour
- "with high probability" means $1-2^{-n}$, where n is the size of the input

Interactive Protocols

- One-sided error
- If the claim is correct, Prover can always convince Verifier, if it follows the protocol
- If the claim is incorrect, with high probability Prover cannot convince Verifier, regardless of Prover's behaviour
- "with high probability" means $1-2^{-n}$, where n is the size of the input \rightarrow negligible in practice

Interactive Protocols

- One-sided error
- If the claim is correct, Prover can always convince Verifier, if it follows the protocol
- If the claim is incorrect, with high probability Prover cannot convince Verifier, regardless of Prover's behaviour
- "with high probability" means $1-2^{-n}$, where n is the size of the input \rightarrow negligible in practice
- IP is the class of problems that admit such a protocol

Interactive Protocols - Summary

We gain:

Why do we want this?

- Make certification faster

Why do we want this?

- Make certification faster
- Leverage computational asymmetry between parties
- e.g. a cloud provider offers a QBF-service

Why do we want this?

- Make certification faster
- Leverage computational asymmetry between parties
- e.g. a cloud provider offers a QBF-service
- Split performance-critical and trusted parts of software

From theory to practice

- Why has IP = PSPACE not already been used for certification?

From theory to practice

- Why has IP = PSPACE not already been used for certification?
- The result constructs an interactive protocol for QBF

From theory to practice

- Why has IP = PSPACE not already been used for certification?
- The result constructs an interactive protocol for QBF
- While Verifier is efficient ...

From theory to practice

- Why has IP = PSPACE not already been used for certification?
- The result constructs an interactive protocol for QBF
- While Verifier is efficient ...
- ... Prover is naive; best-case exponential-time (!)

From theory to practice

- Why has IP = PSPACE not already been used for certification?
- The result constructs an interactive protocol for QBF
- While Verifier is efficient ...
- ... Prover is naive; best-case exponential-time (!)
- iterating over all assignments
- completely impractical!

From theory to practice

- Why has IP = PSPACE not already been used for certification?
- The result constructs an interactive protocol for QBF
- While Verifier is efficient ...
- ... Prover is naive; best-case exponential-time (!)
- iterating over all assignments
- completely impractical!
- In practice, SAT and QBF are solved using advanced data structures and heuristics

From theory to practice

- Why has IP = PSPACE not already been used for certification?
- The result constructs an interactive protocol for QBF
- While Verifier is efficient ...
- ... Prover is naive; best-case exponential-time (!)
- iterating over all assignments
- completely impractical!
- In practice, SAT and QBF are solved using advanced data structures and heuristics
- e.g. DPLL, CDCL for SAT; QCDCL, BDDs for QBF

From theory to practice

- Why has IP = PSPACE not already been used for certification?
- The result constructs an interactive protocol for QBF
- While Verifier is efficient ...
- ... Prover is naive; best-case exponential-time (!)
- iterating over all assignments
- completely impractical!
- In practice, SAT and QBF are solved using advanced data structures and heuristics
- e.g. DPLL, CDCL for SAT; QCDCL, BDDs for QBF

Problem: how do we generate interactive certificates with practical approaches?

BDDs

BDDs

$$
\begin{gathered}
x \wedge(y \oplus z) \\
\vee \neg x \wedge y \wedge \neg z
\end{gathered}
$$

- Reduced Ordered Binary Decision Diagrams (BDDs)

BDDs

$$
\begin{gathered}
x \wedge(y \oplus z) \\
\vee \neg x \wedge y \wedge \neg z
\end{gathered}
$$

- Reduced Ordered Binary Decision Diagrams (BDDs)
- Unique encoding of boolean functions with efficient boolean operations

BDDs

- Reduced Ordered Binary Decision Diagrams (BDDs)
- Unique encoding of boolean functions with efficient boolean operations
- Are used effectively for QBF, CTL model checking (and many other problems)
- not as good for SAT, though

$$
\begin{gathered}
x \wedge(y \oplus z) \\
\vee \neg x \wedge y \wedge \neg z
\end{gathered}
$$

Our result

Our result

- We give an interactive protocol:

Our result

- We give an interactive protocol:

Theorem. Let φ denote a QBF instance with n variables.

Our result

- We give an interactive protocol:

Theorem. Let φ denote a QBF instance with n variables.

1. Verifier executes in time $\mathcal{O}\left(n^{2}|\varphi|\right)$, with negligible failure probability, and

Our result

- We give an interactive protocol:

Theorem. Let φ denote a QBF instance with n variables.

1. Verifier executes in time $\mathcal{O}\left(n^{2}|\varphi|\right)$, with negligible failure probability, and
2. Prover takes $\mathcal{O}(T)$ time to solve φ and answer Verifier's challenges,

Our result

- We give an interactive protocol:

Theorem. Let φ denote a QBF instance with n variables.

1. Verifier executes in time $\mathcal{O}\left(n^{2}|\varphi|\right)$, with negligible failure probability, and
2. Prover takes $\mathcal{O}(T)$ time to solve φ and answer Verifier's challenges,
where T is the time the BDD algorithm takes to solve φ.

Our result

- We give an interactive protocol:

Theorem. Let φ denote a QBF instance with n variables.

1. Verifier executes in time $\mathcal{O}\left(n^{2}|\varphi|\right) \approx 0$, with negligible failure probability $\approx 10^{-10}$, and
2. Prover takes $\mathcal{O}(T) \approx 3 T$ time to solve φ and answer Verifier's challenges,
where T is the time the BDD algorithm takes to solve φ.
(constants in practice)

Evaluation

Evaluation

- We implement our approach as blic, a certifying QBF solver
- We compare against state-of-the-art QBF solvers CAQE, DepQBF and PGBDDQ

Evaluation

- We implement our approach as blic, a certifying QBF solver
- We compare against state-of-the-art QBF solvers CAQE, DepQBF and PGBDDQ
- DepQBF and PGBDDQ are certifying as well, using extended resolution proofs
- Benchmarks are taken from the crafted instances track of the QBF Evaluation 2022

Time to verify certificate (Verifier / external specialised checkers)

Time to verify certificate (Verifier / external specialised checkers)

Time to solve instance and certify solution

Time to solve instance and certify solution

Conclusions

First practical approach with polynomial-time certificate verification!

Conclusions

First practical approach with polynomial-time certificate verification!

- Checking time of the interactive certificate are negligible (median 250 times faster!)

Conclusions

First practical approach with polynomial-time certificate verification!

- Checking time of the interactive certificate are negligible (median 250 times faster!)
- Competitive performance (blic solves 96 of 172 benchmarks, others 98, 91 and 87)

Conclusions

First practical approach with polynomial-time certificate verification!

- Checking time of the interactive certificate are negligible (median 250 times faster!)
- Competitive performance (blic solves 96 of 172 benchmarks, others 98, 91 and 87)
- Generating interactive certificates is low-overhead (factor ~ 3)

Conclusions

First practical approach with polynomial-time certificate verification!

- Checking time of the interactive certificate are negligible (median 250 times faster!)
- Competitive performance (blic solves 96 of 172 benchmarks, others 98, 91 and 87)
- Generating interactive certificates is low-overhead (factor ~3)
- Error probability is negligible (at most 10^{-10} here)

Conclusions

First practical approach with polynomial-time certificate verification!

- Checking time of the interactive certificate are negligible (median 250 times faster!)
- Competitive performance (blic solves 96 of 172 benchmarks, others 98, 91 and 87)
- Generating interactive certificates is low-overhead (factor ~ 3)
- Error probability is negligible (at most 10^{-10} here)
- Can be applied to any BDD algorithm

More Power!

More Power!

Using this one simple trick...

Resets

Resets

Resets

Resets

Resets

- Consider a Prover with a "reset"-button

Resets

- Consider a Prover with a "reset"-button
- Equivalent to having multiple non-interacting provers

Resets

- Consider a Prover with a "reset"-button
- Equivalent to having multiple non-interacting provers
- This increases the power to NEXP

Resets

- Consider a Prover with a "reset"-button
- Equivalent to having multiple non-interacting provers
- This increases the power to NEXP
- Seems reasonable in practice

Use-case 1: Avoid memory overhead

- Current approach needs to persist intermediate BDDs to disk

Use-case 1: Avoid memory overhead

- Current approach needs to persist intermediate BDDs to disk
- Essentially, computation is bottom-up, while certification is top-down

Use-case 1: Avoid memory overhead

- Current approach needs to persist intermediate BDDs to disk
- Essentially, computation is bottom-up, while certification is top-down
- With a reset-button, we can run the certification on-the-fly

Use-case 2: Resolution proofs

- Let φ be a boolean formula and Φ a resolution proof of φ
- Goal: given an interactive protocol where

Use-case 2: Resolution proofs

- Let φ be a boolean formula and Φ a resolution proof of φ
- Goal: given an interactive protocol where
- Verifier needs poly $(|\varphi|)$ time

Use-case 2: Resolution proofs

- Let φ be a boolean formula and Φ a resolution proof of φ
- Goal: given an interactive protocol where
- Verifier needs poly $(|\varphi|)$ time
- Prover needs poly $(|\Phi|)$ time

Use-case 2: Resolution proofs

- Let φ be a boolean formula and Φ a resolution proof of φ
- Goal: given an interactive protocol where
- Verifier needs poly $(|\varphi|)$ time
- Prover needs poly $(|\Phi|)$ time
- With a reset-button, this seems possible

Conclusions

First practical approach with polynomial-time certificate verification!

- Checking time of the interactive certificate are negligible (median 250 times faster!)
- Competitive performance (blic solves 96 of 172 benchmarks, others 98, 91 and 87)
- Generating interactive certificates is low-overhead (factor ~ 3)
- Error probability is negligible ($\leq 10^{-10}$)
- Can be applied to any BDD algorithm

Thank you for your attention! Questions?

