
Making IP = PSPACE Practical: Efficient
Interactive Protocols for BDD Algorithms

Published at CAV 2023

Philipp Czerner1
collaboration with

Eszter Couillard1, Javier Esparza1, Rupak Majumdar2
1Department of Informatics, TU Munich

2Max Planck Institute for Software Systems

September 11, 2023

Outline

bonus

certification

IP = PSPACE BDDs

our result

evaluation

2

Is this formula satisfiable?

(x ∨ y ∨ ¬z)
∧ (¬x ∨ ¬z ∨ w)
∧ (¬z ∨ ¬w)
∧ (¬y ∨ z ∨ ¬w)
∧ (¬x ∨ z)
∧ (x ∨ y ∨ ¬w)
∧ (x ∨ y ∨ z ∨ w)
∧ (z ∨ w)
∧ (x ∨ ¬y ∨ ¬z ∨ w)

No... at least my SAT-solver says so!

3

Is this formula satisfiable?

(x ∨ y ∨ ¬z)
∧ (¬x ∨ ¬z ∨ w)
∧ (¬z ∨ ¬w)
∧ (¬y ∨ z ∨ ¬w)
∧ (¬x ∨ z)
∧ (x ∨ y ∨ ¬w)
∧ (x ∨ y ∨ z ∨ w)
∧ (z ∨ w)
∧ (x ∨ ¬y ∨ ¬z ∨ w)

No...

at least my SAT-solver says so!

4

Is this formula satisfiable?

(x ∨ y ∨ ¬z)
∧ (¬x ∨ ¬z ∨ w)
∧ (¬z ∨ ¬w)
∧ (¬y ∨ z ∨ ¬w)
∧ (¬x ∨ z)
∧ (x ∨ y ∨ ¬w)
∧ (x ∨ y ∨ z ∨ w)
∧ (z ∨ w)
∧ (x ∨ ¬y ∨ ¬z ∨ w)

No... at least my SAT-solver says so!

5

Certification

Certification

▶ Automated reasoning tools are complicated → correctness?

▶ Use certification – each answer comes with a
machine-checkable certificate

▶ It suffices to ensure correctness of the certificate checker

7

Certification

▶ Automated reasoning tools are complicated → correctness?
▶ Use certification – each answer comes with a

machine-checkable certificate

output

certificate
instance solver

▶ It suffices to ensure correctness of the certificate checker

8

Certification

▶ Automated reasoning tools are complicated → correctness?
▶ Use certification – each answer comes with a

machine-checkable certificate

checker

output

certificate
instance solver

▶ It suffices to ensure correctness of the certificate checker

9

SAT – boolean satisfiability

(x ∨ ¬y) ∧ (¬x ∨ z)instance

solver

10

SAT – boolean satisfiability

SAT

assignment

(x ∨ ¬y) ∧ (¬x ∨ z)instance

solver

11

SAT – boolean satisfiability

extended
resolution

proof

UNSATSAT

assignment

(x ∨ ¬y) ∧ (¬x ∨ z)instance

solver

12

QBF – quantified boolean satisfiability

∃x∀y (x ∨ ¬y) ∧ (¬x ∨ z)

extended
resolution

proof

SAT

extended
resolution

proof

UNSAT

instance

solver

This talk applies to QBF as well.

13

Extended Resolution Proofs

▶ Used for (UN)SAT, QBF

▶ Essentially a list of clauses, each of which is implied by the
previous clauses

▶ Properties:
▶ “efficiently” checkable
▶ long (exponential in size of the input)

▶ Certificates can be many terabytes (!) in size
▶ e.g. 200 TiB in [Heule,Kullmann,Marek 2016] to solve the boolean

Pythagorean Triples problem

14

Extended Resolution Proofs

▶ Used for (UN)SAT, QBF
▶ Essentially a list of clauses, each of which is implied by the

previous clauses

▶ Properties:
▶ “efficiently” checkable
▶ long (exponential in size of the input)

▶ Certificates can be many terabytes (!) in size
▶ e.g. 200 TiB in [Heule,Kullmann,Marek 2016] to solve the boolean

Pythagorean Triples problem

15

Extended Resolution Proofs

▶ Used for (UN)SAT, QBF
▶ Essentially a list of clauses, each of which is implied by the

previous clauses
▶ Properties:

▶ “efficiently” checkable

▶ long (exponential in size of the input)
▶ Certificates can be many terabytes (!) in size

▶ e.g. 200 TiB in [Heule,Kullmann,Marek 2016] to solve the boolean
Pythagorean Triples problem

16

Extended Resolution Proofs

▶ Used for (UN)SAT, QBF
▶ Essentially a list of clauses, each of which is implied by the

previous clauses
▶ Properties:

▶ “efficiently” checkable
▶ long (exponential in size of the input)

▶ Certificates can be many terabytes (!) in size
▶ e.g. 200 TiB in [Heule,Kullmann,Marek 2016] to solve the boolean

Pythagorean Triples problem

17

Extended Resolution Proofs

▶ Used for (UN)SAT, QBF
▶ Essentially a list of clauses, each of which is implied by the

previous clauses
▶ Properties:

▶ “efficiently” checkable
▶ long (exponential in size of the input)

▶ Certificates can be many terabytes (!) in size
▶ e.g. 200 TiB in [Heule,Kullmann,Marek 2016] to solve the boolean

Pythagorean Triples problem

18

The problem

▶ Huge resolution proofs are difficult to handle

▶ In some cases, it can take even longer to verify the proof than
to solve the instance (!)

19

The problem

▶ Huge resolution proofs are difficult to handle
▶ In some cases, it can take even longer to verify the proof than

to solve the instance (!)

20

Polynomial-time
certification?!

No.

However...

No. However...

Interactive Protocols – Summary

We sacrifice:

▶ certainty
▶ non-interactivity

24

Interactive Protocols – Summary

We sacrifice:
▶ certainty
▶ non-interactivity

25

Interactive Protocols – Summary

We sacrifice:
▶ certainty
▶ non-interactivity

Altar

26

Interactive Protocols – Summary

We sacrifice:
▶ certainty
▶ non-interactivity

polynomial-time
certification

We gain:

Altar

27

Interactive Protocols – Summary

We sacrifice:
▶ certainty
▶ non-interactivity

polynomial-time
certification

We gain:

Altar

28

A breakthrough

▶ IP = PSPACE [Lund,Fortnow,Karloff,Nisan 1990], [Shamir 1992]

▶ famous breakthrough in complexity theory
▶ demonstrates that efficient certification is possible via

interactive protocols, for any PSPACE problem
▶ i.e. SAT, QBF, model counting, ...

29

A breakthrough

▶ IP = PSPACE [Lund,Fortnow,Karloff,Nisan 1990], [Shamir 1992]
▶ famous breakthrough in complexity theory

▶ demonstrates that efficient certification is possible via
interactive protocols, for any PSPACE problem

▶ i.e. SAT, QBF, model counting, ...

30

A breakthrough

▶ IP = PSPACE [Lund,Fortnow,Karloff,Nisan 1990], [Shamir 1992]
▶ famous breakthrough in complexity theory

▶ demonstrates that efficient certification is possible via
interactive protocols, for any PSPACE problem

▶ i.e. SAT, QBF, model counting, ...

31

A breakthrough

▶ IP = PSPACE [Lund,Fortnow,Karloff,Nisan 1990], [Shamir 1992]
▶ famous breakthrough in complexity theory

▶ demonstrates that efficient certification is possible via
interactive protocols, for any PSPACE problem

▶ i.e. SAT, QBF, model counting, ...

32

Interactive Protocols

ProverVerifier

33

Interactive Protocols

ProverVerifier

polynomially time-bound

34

Interactive Protocols

ProverVerifier

polynomially time-bound

randomised

35

Interactive Protocols

ProverVerifier

polynomially time-bound

randomised

checks answer

36

Interactive Protocols

ProverVerifier

polynomially time-bound

randomised

checks answer

computationally unbounded

37

Interactive Protocols

ProverVerifier

polynomially time-bound

randomised

checks answer

computationally unbounded

untrusted

38

Interactive Protocols

ProverVerifier

polynomially time-bound

randomised

checks answer

computationally unbounded

untrusted

must convince Verifier

39

Interactive Protocols
ProverVerifier

Instance

Claim

φ = ¬x ∧ y

UNSAT

40

Interactive Protocols

Challenge

Response

ProverVerifier

Instance

Claim

φ = ¬x ∧ y

UNSAT

41

Interactive Protocols

Challenge

Response

Challenge

Response

ProverVerifier

Instance

Claim

φ = ¬x ∧ y

UNSAT

42

Interactive Protocols

▶ One-sided error

▶ If the claim is correct, Prover can always convince Verifier, if it
follows the protocol

▶ If the claim is incorrect, with high probability Prover cannot
convince Verifier, regardless of Prover’s behaviour

▶ “with high probability” means 1 − 2−n, where n is the size of
the input → negligible in practice

▶ IP is the class of problems that admit such a protocol

43

Interactive Protocols

▶ One-sided error
▶ If the claim is correct, Prover can always convince Verifier, if it

follows the protocol

▶ If the claim is incorrect, with high probability Prover cannot
convince Verifier, regardless of Prover’s behaviour

▶ “with high probability” means 1 − 2−n, where n is the size of
the input → negligible in practice

▶ IP is the class of problems that admit such a protocol

44

Interactive Protocols

▶ One-sided error
▶ If the claim is correct, Prover can always convince Verifier, if it

follows the protocol
▶ If the claim is incorrect, with high probability Prover cannot

convince Verifier, regardless of Prover’s behaviour

▶ “with high probability” means 1 − 2−n, where n is the size of
the input → negligible in practice

▶ IP is the class of problems that admit such a protocol

45

Interactive Protocols

▶ One-sided error
▶ If the claim is correct, Prover can always convince Verifier, if it

follows the protocol
▶ If the claim is incorrect, with high probability Prover cannot

convince Verifier, regardless of Prover’s behaviour
▶ “with high probability” means 1 − 2−n, where n is the size of

the input

→ negligible in practice
▶ IP is the class of problems that admit such a protocol

46

Interactive Protocols

▶ One-sided error
▶ If the claim is correct, Prover can always convince Verifier, if it

follows the protocol
▶ If the claim is incorrect, with high probability Prover cannot

convince Verifier, regardless of Prover’s behaviour
▶ “with high probability” means 1 − 2−n, where n is the size of

the input → negligible in practice

▶ IP is the class of problems that admit such a protocol

47

Interactive Protocols

▶ One-sided error
▶ If the claim is correct, Prover can always convince Verifier, if it

follows the protocol
▶ If the claim is incorrect, with high probability Prover cannot

convince Verifier, regardless of Prover’s behaviour
▶ “with high probability” means 1 − 2−n, where n is the size of

the input → negligible in practice
▶ IP is the class of problems that admit such a protocol

48

Interactive Protocols – Summary

We sacrifice:
▶ certainty
▶ non-interactivity

polynomial-time
certification

We gain:

Altar

49

Why do we want this?

▶ Make certification faster

▶ Leverage computational asymmetry between parties
▶ e.g. a cloud provider offers a QBF-service

▶ Split performance-critical and trusted parts of software

50

Why do we want this?

▶ Make certification faster
▶ Leverage computational asymmetry between parties

▶ e.g. a cloud provider offers a QBF-service

▶ Split performance-critical and trusted parts of software

51

Why do we want this?

▶ Make certification faster
▶ Leverage computational asymmetry between parties

▶ e.g. a cloud provider offers a QBF-service
▶ Split performance-critical and trusted parts of software

52

From theory to practice

▶ Why has IP = PSPACE not already been used for
certification?

▶ The result constructs an interactive protocol for QBF
▶ While Verifier is efficient ...
▶ ... Prover is naive; best-case exponential-time (!)

▶ iterating over all assignments
▶ completely impractical!

▶ In practice, SAT and QBF are solved using advanced data
structures and heuristics

▶ e.g. DPLL, CDCL for SAT; QCDCL, BDDs for QBF

Problem: how do we generate interactive certificates with practical
approaches?

53

From theory to practice

▶ Why has IP = PSPACE not already been used for
certification?

▶ The result constructs an interactive protocol for QBF

▶ While Verifier is efficient ...
▶ ... Prover is naive; best-case exponential-time (!)

▶ iterating over all assignments
▶ completely impractical!

▶ In practice, SAT and QBF are solved using advanced data
structures and heuristics

▶ e.g. DPLL, CDCL for SAT; QCDCL, BDDs for QBF

Problem: how do we generate interactive certificates with practical
approaches?

54

From theory to practice

▶ Why has IP = PSPACE not already been used for
certification?

▶ The result constructs an interactive protocol for QBF
▶ While Verifier is efficient ...

▶ ... Prover is naive; best-case exponential-time (!)
▶ iterating over all assignments
▶ completely impractical!

▶ In practice, SAT and QBF are solved using advanced data
structures and heuristics

▶ e.g. DPLL, CDCL for SAT; QCDCL, BDDs for QBF

Problem: how do we generate interactive certificates with practical
approaches?

55

From theory to practice

▶ Why has IP = PSPACE not already been used for
certification?

▶ The result constructs an interactive protocol for QBF
▶ While Verifier is efficient ...
▶ ... Prover is naive; best-case exponential-time (!)

▶ iterating over all assignments
▶ completely impractical!

▶ In practice, SAT and QBF are solved using advanced data
structures and heuristics

▶ e.g. DPLL, CDCL for SAT; QCDCL, BDDs for QBF

Problem: how do we generate interactive certificates with practical
approaches?

56

From theory to practice

▶ Why has IP = PSPACE not already been used for
certification?

▶ The result constructs an interactive protocol for QBF
▶ While Verifier is efficient ...
▶ ... Prover is naive; best-case exponential-time (!)

▶ iterating over all assignments
▶ completely impractical!

▶ In practice, SAT and QBF are solved using advanced data
structures and heuristics

▶ e.g. DPLL, CDCL for SAT; QCDCL, BDDs for QBF

Problem: how do we generate interactive certificates with practical
approaches?

57

From theory to practice

▶ Why has IP = PSPACE not already been used for
certification?

▶ The result constructs an interactive protocol for QBF
▶ While Verifier is efficient ...
▶ ... Prover is naive; best-case exponential-time (!)

▶ iterating over all assignments
▶ completely impractical!

▶ In practice, SAT and QBF are solved using advanced data
structures and heuristics

▶ e.g. DPLL, CDCL for SAT; QCDCL, BDDs for QBF

Problem: how do we generate interactive certificates with practical
approaches?

58

From theory to practice

▶ Why has IP = PSPACE not already been used for
certification?

▶ The result constructs an interactive protocol for QBF
▶ While Verifier is efficient ...
▶ ... Prover is naive; best-case exponential-time (!)

▶ iterating over all assignments
▶ completely impractical!

▶ In practice, SAT and QBF are solved using advanced data
structures and heuristics

▶ e.g. DPLL, CDCL for SAT; QCDCL, BDDs for QBF

Problem: how do we generate interactive certificates with practical
approaches?

59

From theory to practice

▶ Why has IP = PSPACE not already been used for
certification?

▶ The result constructs an interactive protocol for QBF
▶ While Verifier is efficient ...
▶ ... Prover is naive; best-case exponential-time (!)

▶ iterating over all assignments
▶ completely impractical!

▶ In practice, SAT and QBF are solved using advanced data
structures and heuristics

▶ e.g. DPLL, CDCL for SAT; QCDCL, BDDs for QBF

Problem: how do we generate interactive certificates with practical
approaches?

60

BDDs

BDDs

▶ Reduced Ordered Binary Decision
Diagrams (BDDs)

▶ Unique encoding of boolean functions
with efficient boolean operations

▶ Are used effectively for QBF, CTL model
checking (and many other problems)

▶ not as good for SAT, though

x ∧ (y ⊕ z)
∨ ¬x ∧ y ∧ ¬z

y

x

y

zz

1

62

BDDs

▶ Reduced Ordered Binary Decision
Diagrams (BDDs)

▶ Unique encoding of boolean functions
with efficient boolean operations

▶ Are used effectively for QBF, CTL model
checking (and many other problems)

▶ not as good for SAT, though

x ∧ (y ⊕ z)
∨ ¬x ∧ y ∧ ¬z

y

x

y

zz

1

63

BDDs

▶ Reduced Ordered Binary Decision
Diagrams (BDDs)

▶ Unique encoding of boolean functions
with efficient boolean operations

▶ Are used effectively for QBF, CTL model
checking (and many other problems)

▶ not as good for SAT, though

x ∧ (y ⊕ z)
∨ ¬x ∧ y ∧ ¬z

y

x

y

zz

1

64

Our result

Our result

▶ We give an interactive protocol:

Theorem. Let φ denote a QBF instance with n variables.
1. Verifier executes in time O(n2|φ|), with negligible failure

probability, and
2. Prover takes O(T) time to solve φ and answer Verifier’s

challenges,
where T is the time the BDD algorithm takes to solve φ.

(constants in practice)

66

Our result

▶ We give an interactive protocol:

Theorem. Let φ denote a QBF instance with n variables.

1. Verifier executes in time O(n2|φ|), with negligible failure
probability, and

2. Prover takes O(T) time to solve φ and answer Verifier’s
challenges,

where T is the time the BDD algorithm takes to solve φ.

(constants in practice)

67

Our result

▶ We give an interactive protocol:

Theorem. Let φ denote a QBF instance with n variables.
1. Verifier executes in time O(n2|φ|), with negligible failure

probability, and

2. Prover takes O(T) time to solve φ and answer Verifier’s
challenges,

where T is the time the BDD algorithm takes to solve φ.

(constants in practice)

68

Our result

▶ We give an interactive protocol:

Theorem. Let φ denote a QBF instance with n variables.
1. Verifier executes in time O(n2|φ|), with negligible failure

probability, and
2. Prover takes O(T) time to solve φ and answer Verifier’s

challenges,

where T is the time the BDD algorithm takes to solve φ.

(constants in practice)

69

Our result

▶ We give an interactive protocol:

Theorem. Let φ denote a QBF instance with n variables.
1. Verifier executes in time O(n2|φ|), with negligible failure

probability, and
2. Prover takes O(T) time to solve φ and answer Verifier’s

challenges,
where T is the time the BDD algorithm takes to solve φ.

(constants in practice)

70

Our result

▶ We give an interactive protocol:

Theorem. Let φ denote a QBF instance with n variables.
1. Verifier executes in time O(n2|φ|) ≈ 0, with negligible failure

probability ≈ 10−10, and
2. Prover takes O(T) ≈ 3T time to solve φ and answer

Verifier’s challenges,
where T is the time the BDD algorithm takes to solve φ.

(constants in practice)

71

Evaluation

Evaluation

▶ We implement our approach as blic, a certifying QBF solver
▶ We compare against state-of-the-art QBF solvers CAQE,

DepQBF and PGBDDQ

▶ DepQBF and PGBDDQ are certifying as well, using extended
resolution proofs

▶ Benchmarks are taken from the crafted instances track of the
QBF Evaluation 2022

73

Evaluation

▶ We implement our approach as blic, a certifying QBF solver
▶ We compare against state-of-the-art QBF solvers CAQE,

DepQBF and PGBDDQ
▶ DepQBF and PGBDDQ are certifying as well, using extended

resolution proofs
▶ Benchmarks are taken from the crafted instances track of the

QBF Evaluation 2022

74

10 3 10 1 101

Time: other (s)

10 3

10 1

101
Ti

m
e:

 b
lic

 (s
)

qchecker/PGBDDQ
QRPcheck/DepQBF

Time to verify certificate (Verifier / external specialised checkers)
75

10 3 10 1 101

Time: other (s)

10 3

10 1

101
Ti

m
e:

 b
lic

 (s
)

qchecker/PGBDDQ
QRPcheck/DepQBF

Time to verify certificate (Verifier / external specialised checkers)
76

Verification time is negligible
median 250 times (!) faster

10 2 10 1 100 101 102

Time: other (s)

10 2

10 1

100

101

102
Ti

m
e:

 b
lic

 (s
)

PGBDDQ
CAQE
DepQBF

Time to solve instance and certify solution
77

10 2 10 1 100 101 102

Time: other (s)

10 2

10 1

100

101

102
Ti

m
e:

 b
lic

 (s
)

PGBDDQ
CAQE
DepQBF

Time to solve instance and certify solution
78

Solving time is competitive
blic solves 96/172, others 98, 91, 87

Conclusions

First practical approach with polynomial-time certificate
verification!

▶ Checking time of the interactive certificate are negligible
(median 250 times faster!)

▶ Competitive performance (blic solves 96 of 172 benchmarks,
others 98, 91 and 87)

▶ Generating interactive certificates is low-overhead (factor ∼3)
▶ Error probability is negligible (at most 10−10 here)
▶ Can be applied to any BDD algorithm

79

Conclusions

First practical approach with polynomial-time certificate
verification!
▶ Checking time of the interactive certificate are negligible

(median 250 times faster!)

▶ Competitive performance (blic solves 96 of 172 benchmarks,
others 98, 91 and 87)

▶ Generating interactive certificates is low-overhead (factor ∼3)
▶ Error probability is negligible (at most 10−10 here)
▶ Can be applied to any BDD algorithm

80

Conclusions

First practical approach with polynomial-time certificate
verification!
▶ Checking time of the interactive certificate are negligible

(median 250 times faster!)
▶ Competitive performance (blic solves 96 of 172 benchmarks,

others 98, 91 and 87)

▶ Generating interactive certificates is low-overhead (factor ∼3)
▶ Error probability is negligible (at most 10−10 here)
▶ Can be applied to any BDD algorithm

81

Conclusions

First practical approach with polynomial-time certificate
verification!
▶ Checking time of the interactive certificate are negligible

(median 250 times faster!)
▶ Competitive performance (blic solves 96 of 172 benchmarks,

others 98, 91 and 87)
▶ Generating interactive certificates is low-overhead (factor ∼3)

▶ Error probability is negligible (at most 10−10 here)
▶ Can be applied to any BDD algorithm

82

Conclusions

First practical approach with polynomial-time certificate
verification!
▶ Checking time of the interactive certificate are negligible

(median 250 times faster!)
▶ Competitive performance (blic solves 96 of 172 benchmarks,

others 98, 91 and 87)
▶ Generating interactive certificates is low-overhead (factor ∼3)
▶ Error probability is negligible (at most 10−10 here)

▶ Can be applied to any BDD algorithm

83

Conclusions

First practical approach with polynomial-time certificate
verification!
▶ Checking time of the interactive certificate are negligible

(median 250 times faster!)
▶ Competitive performance (blic solves 96 of 172 benchmarks,

others 98, 91 and 87)
▶ Generating interactive certificates is low-overhead (factor ∼3)
▶ Error probability is negligible (at most 10−10 here)
▶ Can be applied to any BDD algorithm

84

More Power!

Using this one simple trick...

More Power!
Using this one simple trick...

Resets

ProverVerifier
Challenge

Response

88

Resets

Reset

ProverVerifier
Challenge

Response

89

Resets

Challenge

Response

Reset

ProverVerifier
Challenge

Response

90

Resets

Challenge

Response

Prover
cannot
retain
information

Reset

ProverVerifier
Challenge

Response

91

Resets

▶ Consider a Prover with a “reset”-button

▶ Equivalent to having multiple non-interacting provers
▶ This increases the power to NEXP
▶ Seems reasonable in practice

92

Resets

▶ Consider a Prover with a “reset”-button
▶ Equivalent to having multiple non-interacting provers

▶ This increases the power to NEXP
▶ Seems reasonable in practice

93

Resets

▶ Consider a Prover with a “reset”-button
▶ Equivalent to having multiple non-interacting provers
▶ This increases the power to NEXP

▶ Seems reasonable in practice

94

Resets

▶ Consider a Prover with a “reset”-button
▶ Equivalent to having multiple non-interacting provers
▶ This increases the power to NEXP
▶ Seems reasonable in practice

95

Use-case 1: Avoid memory overhead
▶ Current approach needs to persist intermediate BDDs to disk

▶ Essentially, computation is bottom-up, while certification is
top-down

▶ With a reset-button, we can run the certification on-the-fly

96

Use-case 1: Avoid memory overhead
▶ Current approach needs to persist intermediate BDDs to disk
▶ Essentially, computation is bottom-up, while certification is

top-down

▶ With a reset-button, we can run the certification on-the-fly

97

Use-case 1: Avoid memory overhead
▶ Current approach needs to persist intermediate BDDs to disk
▶ Essentially, computation is bottom-up, while certification is

top-down
▶ With a reset-button, we can run the certification on-the-fly

98

Use-case 2: Resolution proofs
▶ Let φ be a boolean formula and Φ a resolution proof of φ

▶ Goal: given an interactive protocol where

▶ Verifier needs poly(|φ|) time
▶ Prover needs poly(|Φ|) time

▶ With a reset-button, this seems possible

99

Use-case 2: Resolution proofs
▶ Let φ be a boolean formula and Φ a resolution proof of φ

▶ Goal: given an interactive protocol where
▶ Verifier needs poly(|φ|) time

▶ Prover needs poly(|Φ|) time
▶ With a reset-button, this seems possible

100

Use-case 2: Resolution proofs
▶ Let φ be a boolean formula and Φ a resolution proof of φ

▶ Goal: given an interactive protocol where
▶ Verifier needs poly(|φ|) time
▶ Prover needs poly(|Φ|) time

▶ With a reset-button, this seems possible

101

Use-case 2: Resolution proofs
▶ Let φ be a boolean formula and Φ a resolution proof of φ

▶ Goal: given an interactive protocol where
▶ Verifier needs poly(|φ|) time
▶ Prover needs poly(|Φ|) time

▶ With a reset-button, this seems possible

102

Conclusions

First practical approach with polynomial-time certificate
verification!
▶ Checking time of the interactive certificate are negligible

(median 250 times faster!)
▶ Competitive performance (blic solves 96 of 172 benchmarks,

others 98, 91 and 87)
▶ Generating interactive certificates is low-overhead (factor ∼3)
▶ Error probability is negligible (≤ 10−10)
▶ Can be applied to any BDD algorithm

Thank you for your attention! Questions?

103

