

Budapest University of Technology and Economics Department of Measurement and Information Systems Critical Systems Research Group

Verification of Timed Systems by Model Checking

Real-time software-intensive systems

- Complex timed behaviors and computations with external data (sensor inputs)
- System models specified by higher-level formalisms, e.g.,
 - XTA composite models
 - Block diagrams and timed statecharts from systems engineering tools
- Examples: railway communication protocols, safety-critical automotive subsystems

Verification of Timed Systems by Model Checking

Verification of Timed Systems by Model Checking

Challenges of Verifying Timed Systems

Running example: simplified model of redundant automotive sensor

- 1) Data variables:
 - State space explosion

- 2) Clock variables:
 - Continuous variables
 - Reasoning with an uncountably infinite set of states

Abstraction, Abstract Reachability Graph

Abstraction-based methods:

- An abstract state may represent multiple concrete states
- State space exploration:
 abstract reachability graph (ARG)
 of abstract states and transitions

Abstract Domains

Explicit value abstraction

Predicate abstraction

Zone abstraction

Abstract Domain for Time Abstraction

Zone abstraction

A set of clock valuations

The same set of clock valuations as a set of clock constraints

$$c_{1} \leq 7$$

$$c_{1} \geq 1$$

$$c_{2} < 4$$

$$c_{2} \geq 0$$

$$c_{2} - c_{1} < 1$$

$$c_{1} - c_{2} < 5$$

(CounterExample-Guided Abstraction Refinement)

(CounterExample-Guided Abstraction Refinement)

Initial precision **Builds the ARG** Refined with given precision precision build Refiner **Abstractor** prune Abstract counterexample

Precision

e.g. a set of predicates

Precision

(CounterExample-Guided Abstraction Refinement)

e.g. a set of predicates

(CounterExample-Guided Abstraction Refinement)

Precision

e.g. a set of predicates

Lazy abstraction

Time abstraction

Requires defining precision

inefficient refinement
techniques

Efficient abstraction and refinement techniques

Data abstraction

Efficient, supports a wide set of expressive abstractions

Either inefficient refinement techniques, or has limited expressiveness

Lazy abstraction

Time abstraction

Requires defining precision

inefficient refinement
techniques

Efficient abstraction and refinement techniques

Data abstraction

Efficient, supports a wide set of expressive abstractions

Either inefficient refinement techniques, or has limited expressiveness

Running example: simplified model of redundant automotive sensor

Loc.	measure
	{p}
P C.	$c \ge 0$
	$\land c \leq 0.15$
PA.	$c \ge 0$

Running example: simplified model of redundant automotive sensor

Precision: $\pi = \{p\}$ p = (crossCheck == angle) Running example: simplified model of redundant automotive sensor

Loc.

(P) C.

check

 $\{\neg p\}$

c > 0.05

 \wedge $c \leq 0.5$

 $c \geq 0$

 $c \ge 0$

(P) A.

Running example: simplified model of redundant automotive sensor

measure <	$c \leq 0.15$	
	c > 0.05] /	[0
	c(angle)	havo
	≤ angle]	_
	$e \leq 360$	[angl

 $c \leq 0.5$

havoc(crossCheck) $[-360 \le crossCheck]$ $[crossCheck \le 360]$ [crossCheck == angle] reset(c)

angle := 0

crossCheck := 0

LOC.	measure
	{ <i>p</i> }
C.	$c \ge 0$
	$\land \ c \leq 0.15$
(P)A.	$c \ge 0$

check

Evaluation of the Combined Algorithm

Summary

