Complementation of Phase Event Automata

Lena Funk, Vincent Langenfeld, Nico Hauff, Andreas Podelski 11.09.2023

University of Freiburg, Chair of Software Engineering

Requirement *R*₁

"The airbag must deploy within 50.0 milliseconds of detecting a collision."

- Requirements are often written in natural language, making them prone to errors.
- With automatic requirements analysis, we can check a set of requirements for generic properties to uncover defects.

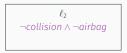
- Each requirement is formalised and translated into a Phase Event Automaton (PEA).
- A program that encodes the simultaneous execution of all the PEAs is constructed.
- Generic properties are encoded in the program as error locations.
- A reachability check for the error locations is performed.

- Problem: Given two requirements R_0 and R_1 , is R_1 redundant?
- In other words: Does R_0 already cover the system behavior characterised by R_1 such that R_1 can be discarded?
- $\cdot \ \mathfrak{L}(\mathcal{A}_{R_0}) \cap \mathfrak{L}(\mathcal{A}_{R_1})^{\mathcal{C}} \stackrel{?}{=} \emptyset$
- If the above intersection results in the empty set, we can discard $R_{1.}$

Requirement R₁

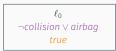
"The airbag must deploy within 50.0 milliseconds of detecting a collision."

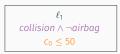
ℓ₁



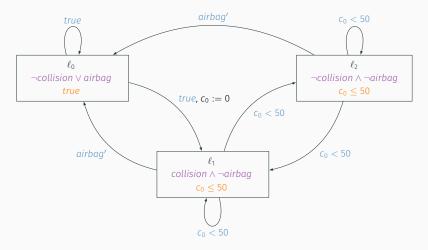
 ℓ_1 collision $\land \neg$ airbag

State invariant $s(\ell_i)$ over the state variables

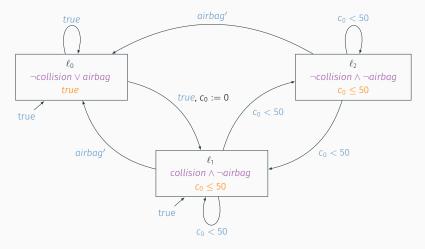




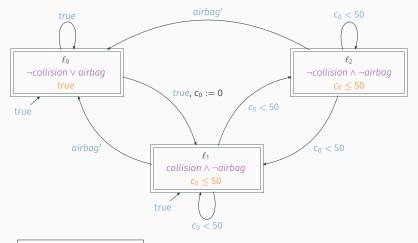
Clock invariant $I(\ell_i)$ over the clock variable c_0



Transitions (ℓ, g, X, ℓ')



Initial transitions (g, ℓ)



Terminal locations

• *Location Change*: Once a location's state or clock invariants are no longer satisfied, a transition to another location has to be taken. If none are enabled, the PEA is stuck.

- *Location Change*: Once a location's state or clock invariants are no longer satisfied, a transition to another location has to be taken. If none are enabled, the PEA is stuck.
- Configuration: Tuple that represents the state of the PEA

 (ℓ,β,γ,t)

- *Location Change*: Once a location's state or clock invariants are no longer satisfied, a transition to another location has to be taken. If none are enabled, the PEA is stuck.
- Configuration: Tuple that represents the state of the PEA

 (ℓ, β, γ, t)

• *Run*: Feasible sequence of configurations

Example

Run r:

 $\begin{aligned} r &= \langle (\ell_0, \{ \text{collision} = \text{false}, \text{airbag} = \text{false} \}, \{ \textbf{c}_0 = 0 \}, t = 15), \\ (\ell_1, \{ \text{collision} = \text{true}, \text{airbag} = \text{false} \}, \{ \textbf{c}_0 = 0 \}, t = 30), \\ (\ell_0, \{ \text{collision} = \text{false}, \text{airbag} = \text{true} \}, \{ \textbf{c}_0 = 30 \}, t = 15) \rangle \end{aligned}$

Corresponding word w:

$$\begin{split} w &= \langle (\{ \text{collision} = \text{false}, \text{airbag} = \text{false} \}, t = 15), \\ &(\{ \text{collision} = \text{true}, \text{airbag} = \text{false} \}, t = 30), \\ &(\{ \text{collision} = \text{false}, \text{airbag} = \text{true} \}, t = 15) \rangle \in \mathfrak{L}(\mathcal{A}_{R_1}) \end{split}$$

Example

Non feasible sequence of configurations r^* :

$$\begin{aligned} r^* &= \langle (\ell_0, \{ \text{collision} = \text{false}, \text{airbag} = \text{false} \}, \{ \textbf{C}_0 = 0 \}, t = 15), \\ (\ell_1, \{ \text{collision} = \text{true}, \text{airbag} = \text{false} \}, \{ \textbf{C}_0 = 0 \}, t = \textbf{500}) \end{aligned}$$

Corresponding word *w**:

$$\begin{split} w^* &= \langle (\{ \text{collision} = \text{false}, \text{airbag} = \text{false} \}, t = 15), \\ (\{ \text{collision} = \text{true}, \text{airbag} = \text{false} \}, t = 500) \rangle \in \mathfrak{L}(\mathcal{A}_{\mathsf{R}_1})^{\mathsf{C}} \end{split}$$

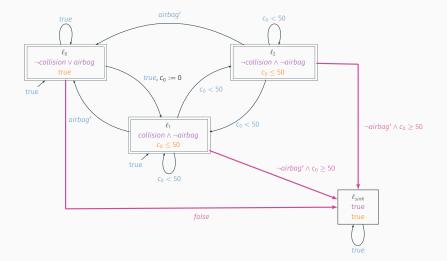
Given: Any deterministic PEA \mathcal{A} that accepts the language $\mathfrak{L}(\mathcal{A})$.

- 1. Make PEA A total and obtain PEA A_{total} with $\mathfrak{L}(A) = \mathfrak{L}(A_{total})$ (Totalisation).
- 2. Swap the terminal locations of A_{total} with its non-terminal locations and obtain A_{comp} .

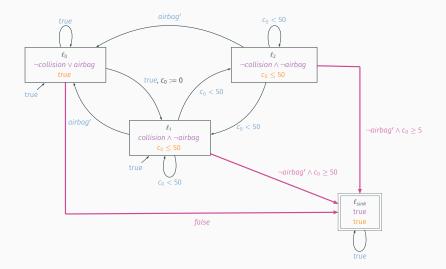
The resulting PEA \mathcal{A}_{comp} should accept the complement language of $\mathcal{A}, \mathfrak{L}(\mathcal{A}_{comp}) = \mathfrak{L}(\mathcal{A})^{C}$.

- Capture the sequences of configurations that are *not* runs in a *sink location* ℓ_{sink} that is not terminal.
- Each location has a sink transition $(\ell, g_{sink}, \emptyset, \ell_{sink})$ to the sink location ℓ_{sink} that is only enabled when no other outgoing transition is.

Result: PEA A_{total} , that is total *and* deterministic: at any point in time and for any valuation of the state variables and clocks, there is *exactly one* transition enabled.



 $\mathcal{A}_{R_1,comp}$



For non-strict PEAs (clock invariants contain only non-strict clock constraints):

• Correct.

For strict PEAs (clock invariants can contain strict clock constraints):

• Theoretically not correct... but still useful in practice!

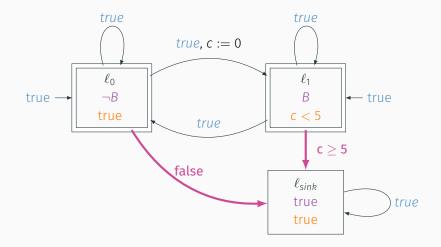
Our approach to complement PEAs...

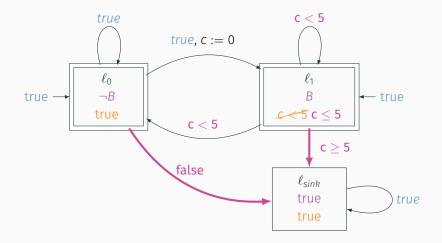
... is proved to be correct for non-strict PEAs.

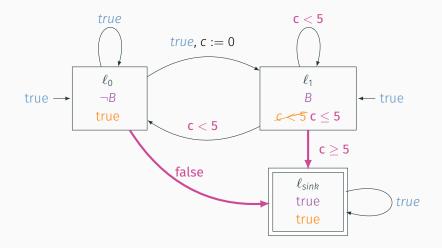
... can help us find redundancies in a set of requirements and thus helps to keep a set of requirements clear, concise and unambiguous.

Bonus Slides!

Locations with Strict Clock Constraints







Why is this not correct?

 \cdot The set of words

 $W = \{ \langle (\beta_0, t_0), ... (\{B = true\}, 5), ..., (\beta_n, t_n) \rangle \mid t_0, ..., t_n \in \mathbb{R} \}$

is in $\mathfrak{L}(\mathcal{B}_{total})$, but not in $\mathfrak{L}(\mathcal{B})$.

• For PEAS that have locations which include *strict* clock constraints in their invariants, it holds that

 $\mathfrak{L}(\mathcal{B}) \neq \mathfrak{L}(\mathcal{B}_{total})$

and

 $\mathfrak{L}(\mathcal{B})^{\mathsf{C}} \neq \mathfrak{L}(\mathcal{B}_{comp}).$