
Complementation of Phase Event Automata

Lena Funk, Vincent Langenfeld, Nico Hauff, Andreas Podelski
11.09.2023

University of Freiburg, Chair of Software Engineering



Requirements

Requirement R1
”The airbag must deploy within 50.0 milliseconds of detecting a
collision.”

• Requirements are often written in natural language, making
them prone to errors.

• With automatic requirements analysis, we can check a set of
requirements for generic properties to uncover defects.

1



Scalable Analysis of Real Time Requirements

• Each requirement is formalised and translated into a Phase
Event Automaton (PEA).

• A program that encodes the simultaneous execution of all the
PEAs is constructed.

• Generic properties are encoded in the program as error
locations.

• A reachability check for the error locations is performed.

2



Application

• Problem: Given two requirements R0 and R1, is R1 redundant?
• In other words: Does R0 already cover the system behavior
characterised by R1 such that R1 can be discarded?

• L(AR0) ∩ L(AR1)
C ?
= ∅

• If the above intersection results in the empty set, we can discard
R1.

3



AR1

Requirement R1
”The airbag must deploy within 50.0 milliseconds of detecting a
collision.”

4



AR1

`0

¬collision ∨ airbag
true

`2

¬collision ∧ ¬airbag
c0 ≤ 50

`1

collision ∧ ¬airbag
c0 ≤ 50

true c0 < 50

c0 < 50

true, c0 := 0

airbag′

c0 < 50

c0 < 50

airbag′

5



AR1

`0
¬collision ∨ airbag

true

`2
¬collision ∧ ¬airbag

c0 ≤ 50

`1
collision ∧ ¬airbag

c0 ≤ 50

true c0 < 50

c0 < 50

true, c0 := 0

airbag′

c0 < 50

c0 < 50

airbag′

State invariant s(`i) over the state variables

5



AR1

`0
¬collision ∨ airbag

true

`2
¬collision ∧ ¬airbag

c0 ≤ 50

`1
collision ∧ ¬airbag

c0 ≤ 50

true c0 < 50

c0 < 50

true, c0 := 0

airbag′

c0 < 50

c0 < 50

airbag′

Clock invariant I(`i) over the clock variable c0

5



AR1

`0
¬collision ∨ airbag

true

`2
¬collision ∧ ¬airbag

c0 ≤ 50

`1
collision ∧ ¬airbag

c0 ≤ 50

true c0 < 50

c0 < 50

true, c0 := 0

airbag′

c0 < 50

c0 < 50

airbag′

Transitions (`,g, X, `′)

5



AR1

`0
¬collision ∨ airbag

true

true

`2
¬collision ∧ ¬airbag

c0 ≤ 50

`1
collision ∧ ¬airbag

c0 ≤ 50

true

true c0 < 50

c0 < 50

true, c0 := 0

airbag′

c0 < 50

c0 < 50

airbag′

Initial transitions (g, `)

5



AR1

`0
¬collision ∨ airbag

true

true

`2
¬collision ∧ ¬airbag

c0 ≤ 50

`1
collision ∧ ¬airbag

c0 ≤ 50

true

true c0 < 50

c0 < 50

true, c0 := 0

airbag′

c0 < 50

c0 < 50

airbag′

Terminal locations

5



Location Change, Configurations and Runs

• Location Change: Once a location’s state or clock invariants are
no longer satisfied, a transition to another location has to be
taken. If none are enabled, the PEA is stuck.

• Configuration: Tuple that represents the state of the PEA

(`, β, γ, t)

• Run: Feasible sequence of configurations

6



Location Change, Configurations and Runs

• Location Change: Once a location’s state or clock invariants are
no longer satisfied, a transition to another location has to be
taken. If none are enabled, the PEA is stuck.

• Configuration: Tuple that represents the state of the PEA

(`, β, γ, t)

• Run: Feasible sequence of configurations

6



Location Change, Configurations and Runs

• Location Change: Once a location’s state or clock invariants are
no longer satisfied, a transition to another location has to be
taken. If none are enabled, the PEA is stuck.

• Configuration: Tuple that represents the state of the PEA

(`, β, γ, t)

• Run: Feasible sequence of configurations

6



PEA Semantics - Accepted Words

Example
Run r:

r = 〈(`0, {collision = false,airbag = false}, {c0 = 0}, t = 15),
(`1, {collision = true,airbag = false}, {c0 = 0}, t = 30),
(`0, {collision = false,airbag = true}, {c0 = 30}, t = 15)〉

Corresponding word w:

w = 〈({collision = false,airbag = false}, t = 15),
({collision = true,airbag = false}, t = 30),
({collision = false,airbag = true}, t = 15)〉 ∈ L(AR1)

7



PEA Semantics - Discarded Words

Example
Non feasible sequence of configurations r∗:

r∗ = 〈(`0, {collision = false,airbag = false}, {c0 = 0}, t = 15),
(`1, {collision = true,airbag = false}, {c0 = 0}, t = 500)〉

Corresponding word w∗:

w∗ = 〈({collision = false,airbag = false}, t = 15),
({collision = true,airbag = false}, t = 500)〉 ∈ L(AR1)

C

8



Complementation Algorithm

Given: Any deterministic PEA A that accepts the language L(A).

1. Make PEA A total and obtain PEA Atotal with L(A) = L(Atotal)

(Totalisation).
2. Swap the terminal locations of Atotal with its non-terminal
locations and obtain Acomp.

The resulting PEA Acomp should accept the complement language of
A, L(Acomp) = L(A)C .

9



Totalisation

• Capture the sequences of configurations that are not runs in a
sink location `sink that is not terminal.

• Each location has a sink transition (`,gsink, ∅, `sink) to the sink
location `sink that is only enabled when no other outgoing
transition is.

Result: PEA Atotal, that is total and deterministic: at any point in time
and for any valuation of the state variables and clocks, there is
exactly one transition enabled.

10



AR1,total

`0
¬collision ∨ airbag

true

true

`2
¬collision ∧ ¬airbag

c0 ≤ 50

`1
collision ∧ ¬airbag

c0 ≤ 50

true

`sink
true
true

true c0 < 50

c0 < 50

true

true, c0 := 0

airbag′

c0 < 50

c0 < 50

airbag′

false

¬airbag′ ∧ c0 ≥ 50

¬airbag′ ∧ c0 ≥ 50

11



AR1,comp

`0
¬collision ∨ airbag

true

true

`2
¬collision ∧ ¬airbag

c0 ≤ 50

`1
collision ∧ ¬airbag

c0 ≤ 50

true

`sink
true
true

true c0 < 50

c0 < 50

true

true, c0 := 0

airbag′

c0 < 50

c0 < 50

airbag′

false

¬airbag′ ∧ c0 ≥ 50

¬airbag′ ∧ c0 ≥ 5

12



Correctness

For non-strict PEAs (clock invariants contain only non-strict clock
constraints):

• Correct.
�

For strict PEAs (clock invariants can contain strict clock constraints):

• Theoretically not correct... but still useful in practice!

13



Conclusion

Our approach to complement PEAs...

... is proved to be correct for non-strict PEAs.

... can help us find redundancies in a set of requirements and
thus helps to keep a set of requirements clear, concise and
unambiguous.

14



Bonus Slides!



Locations with Strict Clock Constraints

`0
¬B
true

true
`1
B

c < 5
true

`sink
true
true

true, c := 0

true

true true

true

false
c ≥ 5



Btotal

`0
¬B
true

true
`1
B

���c < 5 c ≤ 5
true

`sink
true
true

true, c := 0

c < 5

true c < 5

true

false

c ≥ 5



Bcomp

`0
¬B
true

true
`1
B

���c < 5 c ≤ 5
true

`sink
true
true

true, c := 0

c < 5

true c < 5

true

false

c ≥ 5



Why is this not correct?

• The set of words

W = {〈(β0, t0), ...({B = true}, 5), ..., (βn, tn)〉 | t0, ..., tn ∈ R}

is in L(Btotal), but not in L(B).
• For PEAS that have locations which include strict clock
constraints in their invariants, it holds that

L(B) 6= L(Btotal)

and

L(B)C 6= L(Bcomp).


	Appendix

