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Requirements

Requirement R1
”The airbag must deploy within 50.0 milliseconds of detecting a
collision.”

• Requirements are often written in natural language, making
them prone to errors.

• With automatic requirements analysis, we can check a set of
requirements for generic properties to uncover defects.
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Scalable Analysis of Real Time Requirements

• Each requirement is formalised and translated into a Phase
Event Automaton (PEA).

• A program that encodes the simultaneous execution of all the
PEAs is constructed.

• Generic properties are encoded in the program as error
locations.

• A reachability check for the error locations is performed.
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Application

• Problem: Given two requirements R0 and R1, is R1 redundant?
• In other words: Does R0 already cover the system behavior
characterised by R1 such that R1 can be discarded?

• L(AR0) ∩ L(AR1)
C ?
= ∅

• If the above intersection results in the empty set, we can discard
R1.
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AR1

Requirement R1
”The airbag must deploy within 50.0 milliseconds of detecting a
collision.”
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Location Change, Configurations and Runs

• Location Change: Once a location’s state or clock invariants are
no longer satisfied, a transition to another location has to be
taken. If none are enabled, the PEA is stuck.

• Configuration: Tuple that represents the state of the PEA

(`, β, γ, t)

• Run: Feasible sequence of configurations

6



Location Change, Configurations and Runs

• Location Change: Once a location’s state or clock invariants are
no longer satisfied, a transition to another location has to be
taken. If none are enabled, the PEA is stuck.

• Configuration: Tuple that represents the state of the PEA

(`, β, γ, t)

• Run: Feasible sequence of configurations

6



Location Change, Configurations and Runs

• Location Change: Once a location’s state or clock invariants are
no longer satisfied, a transition to another location has to be
taken. If none are enabled, the PEA is stuck.

• Configuration: Tuple that represents the state of the PEA

(`, β, γ, t)

• Run: Feasible sequence of configurations

6



PEA Semantics - Accepted Words

Example
Run r:

r = 〈(`0, {collision = false,airbag = false}, {c0 = 0}, t = 15),
(`1, {collision = true,airbag = false}, {c0 = 0}, t = 30),
(`0, {collision = false,airbag = true}, {c0 = 30}, t = 15)〉

Corresponding word w:

w = 〈({collision = false,airbag = false}, t = 15),
({collision = true,airbag = false}, t = 30),
({collision = false,airbag = true}, t = 15)〉 ∈ L(AR1)
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PEA Semantics - Discarded Words

Example
Non feasible sequence of configurations r∗:

r∗ = 〈(`0, {collision = false,airbag = false}, {c0 = 0}, t = 15),
(`1, {collision = true,airbag = false}, {c0 = 0}, t = 500)〉

Corresponding word w∗:

w∗ = 〈({collision = false,airbag = false}, t = 15),
({collision = true,airbag = false}, t = 500)〉 ∈ L(AR1)

C
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Complementation Algorithm

Given: Any deterministic PEA A that accepts the language L(A).

1. Make PEA A total and obtain PEA Atotal with L(A) = L(Atotal)

(Totalisation).
2. Swap the terminal locations of Atotal with its non-terminal
locations and obtain Acomp.

The resulting PEA Acomp should accept the complement language of
A, L(Acomp) = L(A)C .
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Totalisation

• Capture the sequences of configurations that are not runs in a
sink location `sink that is not terminal.

• Each location has a sink transition (`,gsink, ∅, `sink) to the sink
location `sink that is only enabled when no other outgoing
transition is.

Result: PEA Atotal, that is total and deterministic: at any point in time
and for any valuation of the state variables and clocks, there is
exactly one transition enabled.
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Correctness

For non-strict PEAs (clock invariants contain only non-strict clock
constraints):

• Correct.
�

For strict PEAs (clock invariants can contain strict clock constraints):

• Theoretically not correct... but still useful in practice!
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Conclusion

Our approach to complement PEAs...

... is proved to be correct for non-strict PEAs.

... can help us find redundancies in a set of requirements and
thus helps to keep a set of requirements clear, concise and
unambiguous.
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Locations with Strict Clock Constraints
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Why is this not correct?

• The set of words

W = {〈(β0, t0), ...({B = true}, 5), ..., (βn, tn)〉 | t0, ..., tn ∈ R}

is in L(Btotal), but not in L(B).
• For PEAS that have locations which include strict clock
constraints in their invariants, it holds that

L(B) 6= L(Btotal)

and

L(B)C 6= L(Bcomp).


	Appendix

