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Introduction (1)

Multi-Agent Path Finding:

given an undirected graph (without weights of edges),

given a set of agents, each with a starting and goal vertex,

find a collision-free plan that is optimal wrt. given cost function.
▶ E.g. makespan—number of hops of the longest path of all agents.

Agents are modeled as discs with the same radius.

Examples:

T. Kolárik, S. Ratschan, P. Surynek Multi-Agent Path Finding with Continuous Time Using SMT(LRA) 2 / 11



Introduction (1)

Multi-Agent Path Finding:

given an undirected graph (without weights of edges),

given a set of agents, each with a starting and goal vertex,

find a collision-free plan that is optimal wrt. given cost function.
▶ E.g. makespan—number of hops of the longest path of all agents.

Agents are modeled as discs with the same radius.

Examples:
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Introduction (2)

Multi-Agent Path Finding with Continuous Time:

given an undirected graph with rational weights of edges,

given a set of agents, each with a starting and goal vertex,

find a collision-free plan that is optimal wrt. given cost function
of weights of the used edges (not just hops).

Agents are modeled as discs with possibly different radia,
and they move with possibly different constant velocity.

Examples:

demo . . .

T. Kolárik, S. Ratschan, P. Surynek Multi-Agent Path Finding with Continuous Time Using SMT(LRA) 3 / 11



Introduction (2)

Multi-Agent Path Finding with Continuous Time:

given an undirected graph with rational weights of edges,

given a set of agents, each with a starting and goal vertex,

find a collision-free plan that is optimal wrt. given cost function
of weights of the used edges (not just hops).

Agents are modeled as discs with possibly different radia,
and they move with possibly different constant velocity.

Examples: demo . . .
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Discussion

There may be a lot of collisions of the agents.

State-of-the-art algorithms are usually based on searching the shortest
paths of particular agents, and on resolving the conflicts separately.

→ Optimization from below.

Finding the exact optimum can be needlessly difficult.
▶ Especially in the case of continuous time.
▶ The models are still far away from being precisely realistic (!)

Our approach

We use SAT for efficient handling of mutual exlusions of agents.

We use SMT(LRA) for efficient handling of timing constraints.

We use simulations for evaluation of conflict intervals of agents.

We relax the problem to finding bounded suboptimal plans.
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Linear Real Arithmetic

Satisfiability Modulo Theories (SMT) is a general framework
that is based on Boolean satisfiability (SAT).

A theory T is a parameter of the framework → SMT(T ).

An example of a theory:

LRA: Linear Real Arithmetic

Handles linear constraints on rational variables.
▶ Not enough for modeling conflicts of agents (with continuous time).

Efficient algorithms (e.g. solving systems of linear equations).

How we exploit LRA
We use LRA only for modeling time constraints of the agents.

We incrementally add conflict interval constraints in a lazy fashion.

→ Efficient avoidance of discovered conflicts.
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Conflict Reasoning

Conflict clause:

¬
(

blue.V [1]

≠=

5

∧∨

blue.V [2]

≠=

8

∧∨

green.V [1]

≠=

7

∧∨

green.V [2]

≠=

2

∧∨

blue.T [1]− green.T [1]

<≥ 31

.743

− 2

∧∨

green.T [1]− blue.T [1]

<≥ 31

.310

− 2
)
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T. Kolárik, S. Ratschan, P. Surynek Multi-Agent Path Finding with Continuous Time Using SMT(LRA) 6 / 11



Conflict Reasoning

Conflict clause:

¬
(

blue.V [1]

=

̸= 5

∧

∨ blue.V [2]

=

̸= 8

∧

∨ green.V [1]

=

̸= 7

∧

∨ green.V [2]

=

̸= 2

∧

∨ blue.T [1]− green.T [1]

<

≥

3

1.743

− 2

∧

∨ green.T [1]− blue.T [1]

<

≥

3

1.310

− 2
)
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Simulation of Conflicts

It is possible to model everything (including conflicts) in NRA . . .
▶ Very difficult even to formalize.

Instead: simulation of conflicts.
▶ Floating-point computation.
▶ It is necessary to properly convert to/from rational numbers ( 13 ?!).
→ Overapproximation of the time intervals.

Principle:

1 Find a plan ignoring new conflicts (obeying the already learned ones).

2 Simulate motions of agents and estimate conflict intervals
via binary search.

3 Overapproximate the intervals using rational numbers
via simple continued fractions.

→ Fast and extensible to more complicated and realistic motions.
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Bounded Suboptimal Plans

Given a user-specified coefficient ω > 1,
find a plan with a cost at most ω-times worse than the optimum.

→ The result is not optimal, but is guaranteed*
not to exceed given relative bound.

Safe-but-not-optimal plans are available soon (“better than nothing”).

→ Optimization from above.

Giving up on precise optimality allows some flexibility of plans.

▶ Offline planning vs. online execution.
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▶ Offline planning vs. online execution.
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More Demos . . .
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Future Work

Modeling dynamic phenomena of agents.

Allowing trajectories of agents not to be just straight lines.
▶ For example roadmaps with curves.

. . .
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Questions?

MAPFR

https://gitlab.com/Tomaqa/mapf_r

https://github.com/Tomaqa/mapf_r-visualizer

UN/SOT: UN/SAT modulo ODEs Not SOT

https://gitlab.com/Tomaqa/unsot

tomaqa@gmail.com
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