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Introduction (1)

Multi-Agent Path Finding:
@ given an undirected graph (without weights of edges),

@ given a set of agents, each with a starting and goal vertex,
o find a collision-free plan that is optimal wrt. given cost function.
» E.g. makespan—number of hops of the longest path of all agents.

@ Agents are modeled as discs with the same radius.

Examples:
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Introduction (2)

Multi-Agent Path Finding with Continuous Time:
@ given an undirected graph with rational weights of edges,
@ given a set of agents, each with a starting and goal vertex,

@ find a collision-free plan that is optimal wrt. given cost function
of weights of the used edges (not just hops).

@ Agents are modeled as discs with possibly different radia,
and they move with possibly different constant velocity.

Examples:
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Introduction (2)

Multi-Agent Path Finding with Continuous Time:
@ given an undirected graph with rational weights of edges,
@ given a set of agents, each with a starting and goal vertex,

@ find a collision-free plan that is optimal wrt. given cost function
of weights of the used edges (not just hops).

@ Agents are modeled as discs with possibly different radia,
and they move with possibly different constant velocity.

Examples: demo ...
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Discussion

@ There may be a lot of collisions of the agents.

@ State-of-the-art algorithms are usually based on searching the shortest
paths of particular agents, and on resolving the conflicts separately.

— Optimization from below.
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— Optimization from below.

@ Finding the exact optimum can be needlessly difficult.

» Especially in the case of continuous time.
» The models are still far away from being precisely realistic (!)

Our approach
@ We use SAT for efficient handling of mutual exlusions of agents.
o We use SMT(LR.A) for efficient handling of timing constraints.
@ We use simulations for evaluation of conflict intervals of agents.

@ We relax the problem to finding bounded suboptimal plans.
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Linear Real Arithmetic

Satisfiability Modulo Theories (SMT) is a general framework
that is based on Boolean satisfiability (SAT).

A theory T is a parameter of the framework — SMT(T).
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Linear Real Arithmetic

Satisfiability Modulo Theories (SMT) is a general framework
that is based on Boolean satisfiability (SAT).

A theory T is a parameter of the framework — SMT(T).

An example of a theory:

LRA: Linear Real Arithmetic

@ Handles linear constraints on rational variables.
Not enough for modeling conflicts of agents (with continuous time).

o Efficient algorithms (e.g. solving systems of linear equations).

How we exploit LR.A

o We use LRA only for modeling time constraints of the agents.

@ We incrementally add conflict interval constraints in a lazy fashion.
— Efficient avoidance of discovered conflicts.
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Conflict Reasoning
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Conflict Reasoning

Conflict clause:
ﬂ(blue. V[1] =5 A blue.V[2] =8 A green.V[1] =7 A green.V[2] =2
A blue.T[1] — green.T[1] < 3.743 — 2
N green.T[1] — blue. T[1] < 3.310 — 2)
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Simulation of Conflicts

e It is possible to model everything (including conflicts) in NRA ...
» Very difficult even to formalize.
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Simulation of Conflicts

e It is possible to model everything (including conflicts) in NRA ...
» Very difficult even to formalize.
@ Instead: simulation of conflicts.

» Floating-point computation.
> It is necessary to properly convert to/from rational numbers (3 ?!).
— Qverapproximation of the time intervals.

Principle:
@ Find a plan ignoring new conflicts (obeying the already learned ones).

@ Simulate motions of agents and estimate conflict intervals
via binary search.

© Overapproximate the intervals using rational numbers
via simple continued fractions.

— Fast and extensible to more complicated and realistic motions.
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Bounded Suboptimal Plans

@ Given a user-specified coefficient w > 1,
find a plan with a cost at most w-times worse than the optimum.
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Bounded Suboptimal Plans

@ Given a user-specified coefficient w > 1,
find a plan with a cost at most w-times worse than the optimum.

— The result is not optimal, but is guaranteed*
not to exceed given relative bound.

e Safe-but-not-optimal plans are available soon (“better than nothing”).
— Optimization from above.

@ Giving up on precise optimality allows some flexibility of plans.
» Offline planning vs. online execution.
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More Demos . ..
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Future Work

@ Modeling dynamic phenomena of agents.
@ Allowing trajectories of agents not to be just straight lines.
» For example roadmaps with curves.
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Questions?

MAPFgr

https://gitlab.com/Tomaqa/mapf_r
https://github.com/Tomaqga/mapf_r-visualizer

UN/SOT: UN/SAT modulo ODEs Not SOT
https://gitlab.com/Tomaga/unsot

tomaga@gmail.com
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