Statistical Monitoring of
Stochastic Systems

(with focus on Algorithmic Fairness)
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Online Monitoring.

More information, but less time.




Example.

Too many cowmns.
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How ‘“fair’ is this process?

Multiple interpretations.
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Static Fairness

The offline perspective.
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Dynamic Fairness

The runtime perspective.
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Inherently Runtime.

Specification is w.r.t. the observed trace.
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Generalisation.

What are we getting at?
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Difficult to compute...

...with the model.
But what if the only thing you have is...
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...a Black Box?



...a Black Box?

and only a finite realisation of the
stochastic process.
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...a Black Box?

and only a finite realisation of the
stochastic process.
(...and some assumptions)
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Well...you estimate.

At least you try to.
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Projects:

Monitoring Algorithmic Fairness (CAV23)
Runtime Monitoring of Dynamic Fairness Properties (FAccT23)
Monitoring Algorithmic Fairness under Partial Observations (RV23)
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Projects:

Runtime Monitoring of Dynamic Fairness Properties (FAccT23)
Monitoring Algorithmic Fairness under Partial Observations (RV23)
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Monitoring
Algorithmic Fairness

under Partial Observations (RV23)




Example.

A stimple resource allocation problem.
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Problem Statement.

What are we trying to do?
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Properties.

Arithmetic expressions over

E(AX ) forf: E" = R
andanyt > 0.

54



p ([E( X, ) e Qi(ft)) >1-6
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Assumptions.

The system s a
stationary, aperiodic, labelled Markov chain

with known mixang time 7, .
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Stationarity.

...the distribution over states
does not change.
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Mixing Time.

...first time the total varation distance
from stationarity distribution drops

below e&.
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Algorithm.

A sketch.
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(X1, %5, X3).
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E(f(X) = E(AX ,,.)

Unbiased



X, and X; differ only in position i

. N
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Lipschitz continuous
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McDiarnud's inequality for MCs
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Experiments.

3D-Hypercube (1.e. a cube).

D’Amour et al. 2020. Fairness is not static: deeper understanding of long term fairness via simulation studies
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Runtime Monitoring

of Dynamuc Fairness Properties (FAccT23)
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Example.

Dynamic Lending Problem
(D Amour 2020).

D’Amour et al. 2020. Fairness is not static: deeper understanding of long term fairness via simulation studies
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Time 1 Time 2 TimeT

Estimate the current disparity in average credit scores
between Group Red and Group Blue
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Problem Statement.

What are we trying to do?

02



Properties.

Arithmetic expressions over

E(A(X) |

—

O, () forsomef: 2 — R
andany t > 0.
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Assumptions.

Knowledge about how the
expected value changes

(and that X, 1s sub-exponential).
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Eo(Xiq | Bt) = Eg(X;| 5t—l) + A(o,)
1

Change Function




Customer:
repay

or

default

. . |
Ep(Xiy110) = Ep(X,|0,_1) ——
Np

97



Algorithm.

A sketch.




Estimate

Eo(X,|y,z,0,_;) foreach group G.

99



Estimate Es(X,|y,,z.0,_;) foreach group G.

Compute confidence interval of estimates.
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Estimate Es(X,|y,,z.0,_;) foreach group G.
Compute confidence interval of estimates.

Push confidence intervals through f( - ).
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Estimate

Eo(X,|y,z,0,_;) foreach group G.

Compute confidence interval of estimates.

Push confidence intervals through f( - ).

Apply union bound (and interval arithmetic)

to compute confidence interval of the property.
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Confidence Interval.

Doob-Martingales and Azuma’s Inequality
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E\(3,) = Z Z A(3))

Estimator accounts for the shift
E(X,.,|0,)—-EX |0, = Ao,
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E(E,(0) = E(X))

Unbiased
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Doob-Martingale
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Experiments.

Lending and Attention
(D Amour 2020).

D’Amour et al. 2020. Fairness is not static: deeper understanding of long term fairness via simulation studies 111
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Related Work.

What has been done so far?
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Static verification of algorithmic fairness

Albarghouthi, et al. "Fairsquare: probabilistic verification of program fairness.” OOPSLA 2017.
Bastani et al. "Probabilistic verification of fairness properties via concentration.” OOPSLA 20109.
Ghosh et al. “Justicia: A stochastic sat approach to formally verify fairness.” AAAI 2021.

Sun, et al. "Probabilistic verification of neural networks against group fairness." FM 2021.
Ghosh, et. al. "Algorithmic fairness verification with graphical models." AAAI 2022.

Monitoring algorithmic fairness

Albarghouthi and Vinitsky. "Fairness-aware programming." FAccT 20109.

Henzinger et al. “Monitoring Algorithmic Fairness.” CAV 2023.

Henzinger et al. "Runtime Monitoring of Dynamic Fairness Properties." FAccT 2023.
Henzinger et al. “Monitoring Algorithmic Fairness under Partial Observations.” RV 2023.
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Summary.

Main points.
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Interested in monitoring “distributional” properties,
e.g. conditional expectation, of stochastic processes.

Leverage tools from non-asymptotic statistics to
provide valid guarantees for each time step.

We focused on monitoring Algorithmic Fairness,
but those techniques have wide applicability.
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