Search and Explore: Symbiotic Policy Synthesis in POMDPs

Roman Andriushchenko¹ Alexander Bork² Milan Češka¹ Sebastian Junges³ Joost-Pieter Katoen² **Filip Macák¹**

¹Brno University of Technology, Brno, Czech Republic

²RWTH Aachen University, Aachen, Germany

³Radboud University, Nijmegen, The Netherlands

Published in CAV'23

Based on my master's thesis: "Improving Synthesis of Finite State Controllers for POMDPs Using Belief Space Approximation"

Introduction

Partially-observable Markov decision processes (POMDPs)

- prominent model for sequential decision-making under uncertainty and limited observability
- observations states with the same observation are indistinguishable
- observation-based polices are required

observations: exit crashed near obstacle other

Specification:

- minimise the number of steps to reach the exit
- keep the probability of crashing below 1%

Introduction

Partially-observable Markov decision processes (POMDPs)

- prominent model for sequential decision-making under uncertainty and limited observability
- observations states with the same observation are indistinguishable
- observation-based polices are required

Specification:

- minimise the number of steps to reach the exit
- keep the probability of crashing below 1%

Many practical applications:

- planning of autonomous agents and robotics
- games with imperfect information (e.g texas holdem)
- medical treatment strategies (e.g heart disease)

Problem Formulation

Find the optimal policy for the given indefinite-horizon specifications

- no discounting much harder than finite-horizon problems
- important for long-term planning and sparse-rewards problems
- in general **undecidable** policy may require infinite memory

Problem Formulation

Find the optimal policy for the given indefinite-horizon specifications

- no discounting much harder than finite-horizon problems
- important for long-term planning and sparse-rewards problems
- in general undecidable policy may require infinite memory

We aim at compact, verifiable and easy-to-execute strategies

• finite-state controller (FSC) based on Mealy machines

Problem Formulation

Find the optimal policy for the given indefinite-horizon specifications

- no discounting much harder than finite-horizon problems
- important for long-term planning and sparse-rewards problems
- in general undecidable policy may require infinite memory

We aim at compact, verifiable and easy-to-execute strategies

• finite-state controller (FSC) based on Mealy machines

Anytime algorithm: in the given time, find the best FSC

SoTA I: Belief-based Methods

Belief - probability distribution over the states of a POMDP

Construct and analyse the reachable belief space (i.e. belief MDP)

- belief MDPs are typically huge or even infinite
- various approximations of the unexplored belief space: **cut-offs** (e.g. in Storm) and **point-based approximations** (e.g. in SARSOP)

SoTA I: Belief-based Methods

Belief - probability distribution over the states of a POMDP

Construct and analyse the reachable belief space (i.e. belief MDP)

- belief MDPs are typically huge or even infinite
- various approximations of the unexplored belief space: **cut-offs** (e.g. in Storm) and **point-based approximations** (e.g. in SARSOP)

Limitations:

- cut-offs may provide very imprecise bounds or do not reduce the belief-space sufficiently
- point-based methods typically perform poorly for long-term planning

SoTA II: Inductive Synthesis of FSCs

Symbolic representation and exploration of families of candidate FSCs

- fully-observable abstraction and counter-examples steer the exploration
- iterative expansion of the family by adding memory nodes
- implemented in the tool **PAYNT**

SoTA II: Inductive Synthesis of FSCs

Symbolic representation and exploration of families of candidate FSCs

- fully-observable abstraction and counter-examples steer the exploration
- iterative expansion of the family by adding memory nodes
- implemented in the tool **PAYNT**

Limitations:

- the family size grows exponentially with the memory
- if a lot of memory is needed or the POMDP is too large, exploration becomes computationally intractable

Already very non-optimal FSCs improve bounds provided by existing cut-offs techniques

Already very non-optimal FSCs improve bounds provided by existing cut-offs techniques Using reference policies from belief-space exploration to guide the inductive synthesis search

Already very non-optimal FSCs improve bounds provided by existing cut-offs techniques Using reference policies from belief-space exploration to guide the inductive synthesis search

Already a very shallow exploration of the belief-space is useful for prioritising the family exploration.

SAYNT - Novel Symbiotic Synthesis Algorithm

SAYNT is an iterative anytime synthesis algorithm

- closed loop integration of the inductive synthesis and the belief-space exploration
 - PAYNT provides cut-off FSCs for Storm,
 - Storm provides reference policies for PAYNT and suggest where to add the memory
- in each iteration two FSCs $F_{\mathcal{I}}$ and $F_{\mathcal{B}}$ are obtained

Wide range of benchmarks from AI and formal verification communities

Model	ISI	$\sum Act$	7	Snec	Over-	Model	ISI	$\sum Act$	7	Snec	Over-
wouch		ZACI	121	Spee.	approx.	Woder		ZACI	~	Spee.	approx.
4x3-95	22	82	9	R _{max}	≤ 2.24	Drone-4-2	1226	2954	761	P_{\max}	≤ 0.98
4x5x2-95	79	310	7	R _{max}	\leq 3.26	Drone-8-2	13k	32k	3195	P_{\max}	≤ 0.99
Hallway	61	301	23	R _{min}	≥ 11.5	Lanes+	2741	5285	11	R _{min}	\geq 4805
Milos-97	165	980	11	R _{max}	≤ 80	Netw-3-8-20	17k	30k	2205	R _{min}	\geq 4.31
Network	19	70	5	R _{max}	\leq 359	Refuel-06	208	565	50	P _{max}	≤ 0.78
Query-s3	108	320	6	R _{max}	≤ 600	Refuel-20	6834	25k	174	P _{max}	≤ 0.99
Tiger-95	14	50	7	R _{max}	≤ 159	Rocks-12	6553	32k	1645	R _{min}	≥ 17.8

Implemented in **PAYNT** https://github.com/randriu/synthesis

SAYNT vs. state-of-the-art tools (STORM and PAYNT)

SAYNT steadily outperforms both baselines

SAYNT vs. state-of-the-art tools (STORM and PAYNT)

The quality of improvements grows with the complexity of POMDPs and reaches up to 40%

Memory footprint

- SAYNT significantly reduces the memory usage of STORM
- This allows an efficient belief-space exploration of larger POMDPs

Memory footprint

FSC size comparison

- SAYNT significantly reduces the memory usage of STORM
- This allows an efficient belief-space exploration of larger POMDPs

• SAYNT produces more compact FSCs compared to STORM while achieving better values

FSC size refers to the encoding size.

- 1. Discounted vs. undiscounted specifications
 - How to properly compare the results for different specifications?
 - Can we use some of the algorithms built for discounted specifications to help our approach and vice versa?
- 2. Dec-POMDPs and partially-observable stochastic games
 - How to make our framework efficient in more difficult domains?
- 3. Combination with reinforcement learning approaches
 - Can we use results from RL to help formal methods scale better?
 - Can we formally guarantee the correctness of NN strategies?

Conclusions

Novel algorithm for POMDPs with indefinite-horizon specifications

- symbiotically integrates the belief-space exploration and the inductive synthesis
- outperforms state-of-the-art methods on a wide range of benchmarks
- strengthens the position of formal methods for the POMDP synthesis problem

See: Andriushchenko et al. Search and Explore: Symbiotic Policy Synthesis in POMDPs. In CAV'23.