QUANTUM STATES

A quantum state $|s\rangle$ is a unit vector of dimension n in a Hilbert space.

For some basis of this Hilbert space

$$
B=\{|0\rangle,|1\rangle, \cdots,|n-1\rangle\}
$$

we can write $|s\rangle$ as a linear combination of the vectors in B

$$
|s\rangle=\sum_{i=0}^{n-1} \alpha_{i}|i\rangle \quad \alpha_{i} \in \mathbb{C}
$$

QUANTUM COMPUTING OVERVIEW

QUANTUM STATE IN
A WELL DEFINED \qquad STATE

ERRORS IN QUANTUM COMPUTING

Bit flips

Phase flips

Resets

Decoherence

Phase + Bit flips
Measurement Errors

PARTIAL INFORMATION GAMES

A partial information game is a tuple $G=\left\langle L, l_{0} \Sigma, \Delta, \mathcal{O}, \gamma\right\rangle$ where

EXAMPLE OF A PARTIAL INFORMATION GAME GRAPH

- L is a finite set of states
- $l_{0} \in L$ is an initial vertex
- Σ is a finite alphabet
- Δ is a labeled transition function
- \mathcal{O} is a finite set of observables
- $\gamma: \mathcal{O} \rightarrow L$ is a function that maps observables

Taken from [1] to states.

QUANTUM CHANNELS

PRECISION	H0	X0	C×01	C×02	C $\times 12$
2	0	0	4	4	4
3	2	2	6	8	6
4	2	2	8	8	8
5	2	2	8	8	8

Precision	T	Avg. Acc.	Avg. Ins.
$\mathbf{2}$	0.8	0.88	3.47
	0.85	0.88	3.47
	0.9	0.88	3.46
	0.95	0.92	4.47
	1.0	0.93	4.47
$\mathbf{3}$	0.8	0.88	3.46
	0.85	0.88	3.46
	0.9	0.92	4.49
	0.95	-	-
	1.0	-	-
	0.8	0.88	3.46
	0.85	0.88	3.46
	0.9	-	-
$\mathbf{5}$	0.95	-	-
	1.0	-	-
	0.8	0.88	3.46
	0.85	0.88	3.46
	0.9	-	-

```
Algorithm 4 Parity Measurement: Traditional Algorithm
    1: CX \(02 \quad \triangleright\) CX gate controlled on qubit 0
2: CX \(12 \quad \triangleright\) CX gate controlled on qubit 1
3: b \(=\) MEAS 2
\(\triangleright\) Measure qubit 2
4: if \(b==1\) then
5: \(\quad \mathrm{X} 0\)
\(\triangleright \mathrm{X}\) gate to qubit 0
    end if
    return 0
```

```
Algorithm 5 Parity Measurement: Example of a Johannesburg Algorithm
1: CX 12 
    H 0
    CX 0 }
    b = MEAS 2
    if b==0 then
        return 0 \triangleright Pr (\tau)=0.945
    else
        X 0
        return 0
    end if
```

```
Algorithm 6 Parity Measurement: Example of a Jakarta Algorithm
    \(1:\) CX \(02 \quad \triangleright\) CX gate controlled on qubit 0
2: CX 12
    \(\triangleright\) CX gate controlled on qubit 1
    b0 \(=\) MEAS 2
    if \(b 0==0\) then
        \(\mathrm{b} 1=\) MEAS 2
        if \(b 1==0\) then
            return 0
        else
            \(\mathrm{b} 2=\) MEAS 2
            if \(b 2==0\) then
                    return 0
            else
                    return 1
            end if
        end if
    else
        \(\mathrm{b} 3=\) MEAS 2
        if \(b 3==0\) then
            \(\mathrm{b} 4=\) MEAS 2
            if \(b 4==0\) then
                    return 0
            else
            return 1
            end if
        else
            X 0
            return 0
        end if
    end if
```


BIBLIOGRAPHY

[1] Krishnendu Chatterjee, Laurent Doyen, Thomas A Henzinger, and JeanFrançois Raskin. 2007. Algorithms for omega-regular games with imperfect information. Logical Methods in Computer Science 3 (2007).

