
Input-based verification and control-flow inference for
machine-code systems

Jan Onderka

Czech Technical University in Prague
Faculty of Information Technology

2023-09-13

Jan Onderka Control flow & inputs 2023-09-13 1 / 15

Introduction

Three basic levels of digital system descriptions
▶ Source code
▶ Machine code
▶ Hardware description

All can be transformed to general automata, but verification
techniques and formalisms diverge

Goals of this presentation
▶ Relate the levels via control flow in three-valued abstraction
▶ Show how inputs become important within model-checking when

abstraction refinement is used

Jan Onderka Control flow & inputs 2023-09-13 2 / 15

Reminder: Machine code
Source code for processor ATmega328P

#inc l u d e <av r / i o . h>
i n t main (vo id) {

DDRC = 0x07 ;
wh i l e (1) {

u i n t 8 t r e a d v a l = PIND ;
u i n t 8 t w r i t e v a l = ∼r e a d v a l ;
PORTC = w r i t e v a l & 0x07 ;

}
}

is compiled into machine code

0C9434000C943E000C943E000C943E00
. . .
0C943E000C943E000C943E000C943E00
0C943E000C943E0011241FBECFEFD8E0
DEBFCDBF0E9440000C9447000C940000
87E087B989B18095877088B9FBCFF894
FFCF

The processor executes the machine code according to its datasheet
Today, we will only use the concept in comparison with other digital
systems

Jan Onderka Control flow & inputs 2023-09-13 3 / 15

Control flow in digital systems

Jan Onderka Control flow & inputs 2023-09-13 4 / 15

Viewpoint & terminology

Imperative source code viewpoint

Hardware descriptions and machine code can be transformed
to a virtual-machine source-code program:

i n t main (vo id) {
s e tup () ;
wh i l e (1) {

// −> v e r i f y he r e
p e r f o rm on e c y c l e () ; // or i n s t r u c t i o n

}
}

Assignment = basic unit of imperative code

Control flow = order in which assignments are executed (determined
by blocks, loops, conditions. . .)

Trivial control flow = as in the above program where setup() and
perform one cycle() are replaced with a sequence of assignments

Source-code programs can be transformed to trivial control flow by
introducing a program counter

Jan Onderka Control flow & inputs 2023-09-13 5 / 15

Control flow in digital systems

Source code
▶ Full control flow corresponding to the programmer’s reasoning

Machine code
▶ Control flow exists only within execution of one instruction
▶ Inference of full control flow is hard

⋆ disassembly, machine-code translation (Apple Rosetta etc.). . .

Hardware description
▶ Inherently parallel, control flow does not exist on this level
▶ In virtual-machine source code, trivial control flow

Jan Onderka Control flow & inputs 2023-09-13 6 / 15

Imbalance induced by control flow

Imperative source code control flow uses an implicit program counter
▶ The program counter is “special” compared to other variables
▶ Control-flow-based techniques are closely aligned to it

But different descriptions have different amounts of control flow. . .

We may try to balance them by
▶ Inferring more control flow
▶ Converting to trivial control flow

Let’s choose a formalism for control flow first

A “control flow graph” does not tell us how to verify

Let’s look at things from the point of view of model checking with
three-valued abstraction

▶ Can verify full propositional µ-calculus (including CTL*, CTL, LTL. . .)

Jan Onderka Control flow & inputs 2023-09-13 7 / 15

Control flow as a Kripke modal transition structure
(KMTS)

PC0 : boo l a = 0 ;
PC1 : boo l b = 0 ;
whi le (1) {

PC2 : i f (i n pu t ()) {
PC3 : a = 1 ;

}
}
PC4 : b = 1 ;

Let’s demonstrate verification

EF PC = 2 holds

AF PC = 2 holds

AG PC ̸= 4 holds

EF PC = 3 unprovable

AG PC ̸= 3 unprovable

Jan Onderka Control flow & inputs 2023-09-13 8 / 15

Control flow as a Kripke modal transition structure
(KMTS)

PC0 : boo l a = 0 ;
PC1 : boo l b = 0 ;
whi le (1) {

PC2 : i f (i n pu t ()) {
PC3 : a = 1 ;

}
}
PC4 : b = 1 ;

Let’s demonstrate verification

EF PC = 2 holds

AF PC = 2 holds

AG PC ̸= 4 holds

EF PC = 3 unprovable

AG PC ̸= 3 unprovable

Jan Onderka Control flow & inputs 2023-09-13 8 / 15

Control flow as a Kripke modal transition structure
(KMTS)

PC0 : boo l a = 0 ;
PC1 : boo l b = 0 ;
whi le (1) {

PC2 : i f (i n pu t ()) {
PC3 : a = 1 ;

}
}
PC4 : b = 1 ;

Let’s demonstrate verification

EF PC = 2 holds

AF PC = 2 holds

AG PC ̸= 4 holds

EF PC = 3 unprovable

AG PC ̸= 3 unprovable

Jan Onderka Control flow & inputs 2023-09-13 8 / 15

Control flow as a Kripke modal transition structure
(KMTS)

PC0 : boo l a = 0 ;
PC1 : boo l b = 0 ;
whi le (1) {

PC2 : i f (i n pu t ()) {
PC3 : a = 1 ;

}
}
PC4 : b = 1 ;

Let’s demonstrate verification

EF PC = 2 holds

AF PC = 2 holds

AG PC ̸= 4 holds

EF PC = 3 unprovable

AG PC ̸= 3 unprovable

Jan Onderka Control flow & inputs 2023-09-13 8 / 15

Control flow as a Kripke modal transition structure
(KMTS)

PC0 : boo l a = 0 ;
PC1 : boo l b = 0 ;
whi le (1) {

PC2 : i f (i n pu t ()) {
PC3 : a = 1 ;

}
}
PC4 : b = 1 ;

Let’s demonstrate verification

EF PC = 2 holds

AF PC = 2 holds

AG PC ̸= 4 holds

EF PC = 3 unprovable

AG PC ̸= 3 unprovable

Jan Onderka Control flow & inputs 2023-09-13 8 / 15

Control flow as a Kripke modal transition structure
(KMTS)

PC0 : boo l a = 0 ;
PC1 : boo l b = 0 ;
whi le (1) {

PC2 : i f (i n pu t ()) {
PC3 : a = 1 ;

}
}
PC4 : b = 1 ;

Let’s demonstrate verification

EF PC = 2 holds

AF PC = 2 holds

AG PC ̸= 4 holds

EF PC = 3 unprovable

AG PC ̸= 3 unprovable

Jan Onderka Control flow & inputs 2023-09-13 8 / 15

Subsuming a variable in control flow

PC0 : /∗ boo l a = 0 ; ∗/ goto PC1A0 ;
PC1A0 : boo l b = 0 ; goto PC2A0 ;
PC1A1 : boo l b = 0 ; goto PC2A1 ;
whi le (1) {

PC2A0 : i f (i n pu t ()) {goto PC3A0
} e l s e {goto PC2A0} ;

PC2A1 : i f (i n pu t ()) {goto PC3A1
} e l s e {goto PC2A1} ;

PC3A0 : /∗ a = 1 ; ∗/ goto PC2A1 ;
PC3A1 : /∗ a = 1 ; ∗/ goto PC2A1 ;

}
PC4A0 : b = 1 ;
PC4A1 : b = 1 ;

We can now verify on values of a, e.g.
▶ AF a = 0 holds
▶ AG (a = 1 ⇒ AG a = 1) holds

However, e.g. AG a = 0 is unknown

We would need to split input()

Jan Onderka Control flow & inputs 2023-09-13 9 / 15

Inferring control flow

Abstraction refinement can be used to determine variables to
subsume

▶ Machine-code systems: start with Program Counter register, subsume
everything else as needed (branch condition variables, call return
addresses. . .)

▶ Hardware: no starting point

Problematic: state space explosion, too complex inferred flow. . .

If disassembly tools are available for the given platform, it may be
best to use them

Is this really what we need?
▶ We don’t actually care about control flow, but verification
▶ Let’s try this the other way, getting rid of non-trivial control flow

Jan Onderka Control flow & inputs 2023-09-13 10 / 15

Trivial control flow & importance of inputs

Jan Onderka Control flow & inputs 2023-09-13 11 / 15

Trying out trivial control flow

Non-trivial control flow: branching on abstracted values
▶ Corresponds to multiple may-transitions and zero must-transitions in

KMTS
▶ Leads to a much more compact structure than the state space

Trivial control flow contains the same may-transitions and
must-transitions

▶ Variables can be still abstracted away
▶ Can be formalized by partial Kripke structures (PKS)
▶ Same expressivity as KMTS

How to generate and refine the PKS?
▶ We cannot split states, would lead to different may-transitions and

must-transitions
▶ We can split inputs, because every input is possible

Jan Onderka Control flow & inputs 2023-09-13 12 / 15

Abstraction refinement with partial Kripke structure (PKS)

PC0 : boo l a = 1 ;
PC1 : boo l b = 1 ;
whi le (1) {

PC2 : i f (i n pu t ()) {
PC3 : a = 0 ;

}
}
PC4 : b = 0 ;

Note: the branch would be actually replaced

with branchless equivalent

Starting with minimum precision

EF PC = 3 unknown

Caused by PC[2,3]

PC[2,3] caused by PC2 input()

EF PC = 3 holds after
refinement

Jan Onderka Control flow & inputs 2023-09-13 13 / 15

Abstraction refinement with partial Kripke structure (PKS)

PC0 : boo l a = 1 ;
PC1 : boo l b = 1 ;
whi le (1) {

PC2 : i f (i n pu t ()) {
PC3 : a = 0 ;

}
}
PC4 : b = 0 ;

Note: the branch would be actually replaced

with branchless equivalent

Starting with minimum precision

EF PC = 3 unknown

Caused by PC[2,3]

PC[2,3] caused by PC2 input()

Let’s refine. . .

EF PC = 3 holds after
refinement

Jan Onderka Control flow & inputs 2023-09-13 13 / 15

Abstraction refinement with partial Kripke structure (PKS)

PC0 : boo l a = 1 ;
PC1 : boo l b = 1 ;
whi le (1) {

PC2 : i f (i n pu t ()) {
PC3 : a = 0 ;

}
}
PC4 : b = 0 ;

Note: the branch would be actually replaced

with branchless equivalent

Starting with minimum precision

EF PC = 3 unknown

Caused by PC[2,3]

PC[2,3] caused by PC2 input()

EF PC = 3 holds after
refinement

Jan Onderka Control flow & inputs 2023-09-13 13 / 15

Input-based verification using model checking
Model checking: formalisms based on Kripke structures

Unlike general automatons, Kripke structures do not feature inputs

Lack of inputs is fine for model-checking, but not abstraction
refinement

We can sidestep the problem while maintaining compatibility
▶ Express the system as an automaton, model-check without inputs
▶ Find the state-input combination to be refined in the automaton

Advantages of input-based three-valued abstraction refinement:
▶ Simple algorithms, small soundness-critical core
▶ All digital systems and propos. µ-calculus properties can be verified
▶ Good behaviour in machine-code systems

⋆ Many unused or unimportant registers
⋆ Mixing bitwise and arithmetic operations

Disadvantages
▶ Control-flow techniques cannot be used
▶ Constructs like countdown loops unroll to large state spaces

Subject of an upcoming paper

Jan Onderka Control flow & inputs 2023-09-13 14 / 15

Conclusion

Digital system descriptions differ in the amount of control flow

Inferring control flow for machine-code systems is problematic

Proceeding with trivial control flow poses fewer dangers of
exponential explosion, and offers simple formalization capable of
verifying µ-calculus properties
Conventional model-checking formalisms do not feature inputs, which
poses problems for refinement

Is the formalism you use simple and expressive enough?
▶ In source-code verification, the abstract state space and control flow

can share the formalism
▶ Not considering inputs in the formalism may lead to

non-correspondence of theory and tool implementations

Jan Onderka Control flow & inputs 2023-09-13 15 / 15

Bonus: input-based verification scheme

Description of system
under verification

Generating
automaton Kripke structure

Property specification Boolean verification
result

a)

Description of system
under verification

Generating
automaton

Partial Kripke
structure

Property specification Three-valued
verification result

b)

Abstract generating
automaton

Refinement
configuration

abstract

use for verification

create / use for
refinement

transcribe

generate

use for verification

verify

re
fin

e
if

un
kn

ow
n

transcribe

verify

generate

Jan Onderka Control flow & inputs 2023-09-13 1 / 1

	Control flow in digital systems
	Trivial control flow & importance of inputs
	Appendix

