
A Journey Towards Efficient Profiling

Alpine Verification Meeting 2023

Jǐŕı Pavela

E-mail: ipavela@fit.vutbr.cz
Github: https://github.com/JiriPavela/

Perun Github: https://github.com/Perfexionists/perun/

Paper Demo VM: 10.5281/zenodo.6783242

Brno University of Technology, Faculty of Information Technology

Supported by:

Red Hat, Inc.

Czech Science Foundation Project 20-07487S

Czech Science Foundation Project 23-06506S

JCMM PhD Talent Scholarship Programme

mailto:ipavela@fit.vutbr.cz
https://github.com/JiriPavela/
https://github.com/Perfexionists/perun/
10.5281/zenodo.6783242

Motivation:

Why Care About Performance?

Performance Bugs Are Everywhere

• Software performance bugs are an omnipresent problem1:

• Cluster computing engine may freeze after an update!

• Cloud services may crash!

• Parsers may experience significant slowdown!

• An internal check for uniqueness

→ hanging effectively forever for large job batch.

• A regular expression for stripping whitespaces

→ 34 minutes long outage.

• One of Chrome’s parsers

→ noticeable slowdown for long lines.

1Source: https://accidentallyquadratic.tumblr.com/

A Journey Towards Efficient Profiling Motivation 1/28

https://accidentallyquadratic.tumblr.com/

Performance Bugs Are Everywhere

• Software performance bugs are an omnipresent problem1:

• Cluster computing engine may freeze after an update!

• Cloud services may crash!

• Parsers may experience significant slowdown!

• An internal check for uniqueness

→ hanging effectively forever for large job batch.

• A regular expression for stripping whitespaces

→ 34 minutes long outage.

• One of Chrome’s parsers

→ noticeable slowdown for long lines.

1Source: https://accidentallyquadratic.tumblr.com/

A Journey Towards Efficient Profiling Motivation 1/28

https://accidentallyquadratic.tumblr.com/

Performance Bugs Are Everywhere

• Software performance bugs are an omnipresent problem1:

• Cluster computing engine may freeze after an update!

• Cloud services may crash!

• Parsers may experience significant slowdown!

• An internal check for uniqueness

→ hanging effectively forever for large job batch.

• A regular expression for stripping whitespaces

→ 34 minutes long outage.

• One of Chrome’s parsers

→ noticeable slowdown for long lines.

1Source: https://accidentallyquadratic.tumblr.com/

A Journey Towards Efficient Profiling Motivation 1/28

https://accidentallyquadratic.tumblr.com/

Performance Bugs Are Everywhere

• Software performance bugs are an omnipresent problem1:

• Cluster computing engine may freeze after an update!

• Cloud services may crash!

• Parsers may experience significant slowdown!

• An internal check for uniqueness

→ hanging effectively forever for large job batch.

• A regular expression for stripping whitespaces

→ 34 minutes long outage.

• One of Chrome’s parsers

→ noticeable slowdown for long lines.

1Source: https://accidentallyquadratic.tumblr.com/

A Journey Towards Efficient Profiling Motivation 1/28

https://accidentallyquadratic.tumblr.com/

Performance Bugs Are Everywhere (yes, even in your code)

• O(n2) space implementation of C# constant folding

→ compiler runs out of memory.

• O(n2) pattern matching algorithm in Elasticsearch

→ up to 1
2 CPU-time spent in Regex.simpleMatch.

• Array used for tags lookup in Vim

→ O(n2) complexity in the number of matches.

• Godoc source code parsing

→ O(n2) loop for Go structs definitions.

• Such bugs usually manifest only under certain conditions.

• Highly granular analysis may detect them sooner!

A Journey Towards Efficient Profiling Motivation 2/28

Performance Bugs Are Everywhere (yes, even in your code)

• O(n2) space implementation of C# constant folding

→ compiler runs out of memory.

• O(n2) pattern matching algorithm in Elasticsearch

→ up to 1
2 CPU-time spent in Regex.simpleMatch.

• Array used for tags lookup in Vim

→ O(n2) complexity in the number of matches.

• Godoc source code parsing

→ O(n2) loop for Go structs definitions.

• Such bugs usually manifest only under certain conditions.

• Highly granular analysis may detect them sooner!

A Journey Towards Efficient Profiling Motivation 2/28

How Do We Find The Bugs?

• Numerous static and dynamic analysis approaches:

• Worst-case resource bounds analysis.

• Anti-patterns detection and log analysis.

• Performance testing and benchmarking.

• Profiling (event-based tracing).

+ Possible formal guarantees.

+ Soundness/Completeness.

+ Often the only possibility for

safety-critical software.

– High skill/tool barrier.

– Scaling issues.

– The analysis may fail for

complex cases.

A Journey Towards Efficient Profiling Motivation 3/28

How Do We Find The Bugs?

• Numerous static and dynamic analysis approaches:

• Worst-case resource bounds analysis.

• Anti-patterns detection and log analysis.

• Performance testing and benchmarking.

• Profiling (event-based tracing).

+ Possible formal guarantees.

+ Soundness/Completeness.

+ Often the only possibility for

safety-critical software.

– High skill/tool barrier.

– Scaling issues.

– The analysis may fail for

complex cases.

A Journey Towards Efficient Profiling Motivation 3/28

How Do We Find The Bugs?

• Numerous static and dynamic analysis approaches:

• Worst-case resource bounds analysis.

• Anti-patterns detection and log analysis.

• Performance testing and benchmarking.

• Profiling (event-based tracing).

+ Easier tools adoption.

+ Usually scales well.

– Few formal guarantees.

– High-level coarse analysis.

A Journey Towards Efficient Profiling Motivation 3/28

How Do We Find The Bugs?

• Numerous static and dynamic analysis approaches:

• Worst-case resource bounds analysis.

• Anti-patterns detection and log analysis.

• Performance testing and benchmarking.

• Profiling (event-based tracing).

+ Well-established approach

and easy adoption.

+ Good CI/CD support.

+ Scales reasonably well.

– No formal guarantees.

– Typically coarse analysis.

– Garbage in, garbage out.

A Journey Towards Efficient Profiling Motivation 3/28

How Do We Find The Bugs?

• Numerous static and dynamic analysis approaches:

• Worst-case resource bounds analysis.

• Anti-patterns detection and log analysis.

• Performance testing and benchmarking.

• Profiling (event-based tracing).

+ Well-established approach

and easy adoption.

+ Good CI/CD support.

+ Scales reasonably well.

– No formal guarantees.

– Typically coarse analysis.

– Garbage in, garbage out.

A Journey Towards Efficient Profiling Motivation 3/28

How Do We Find The Bugs?

• Numerous static and dynamic analysis approaches:

• Worst-case resource bounds analysis.

• Anti-patterns detection and log analysis.

• Performance testing and benchmarking.

• Profiling (event-based tracing).

+ Well-established approach.

+ Good data granularity.

+ Suitable for finding root causes

of performance issues.

– No formal guarantees.

– Insufficient CI/CD support.

– Potentially significant

overhead.

A Journey Towards Efficient Profiling Motivation 3/28

How Do We Find The Bugs?

• Numerous static and dynamic analysis approaches:

• Worst-case resource bounds analysis.

• Anti-patterns detection and log analysis.

• Performance testing and benchmarking.

• Profiling (event-based tracing).

+ Well-established approach.

+ Good data granularity.

+ Suitable for finding root causes

of performance issues.

– No formal guarantees.

– Insufficient CI/CD support.

– Potentially significant

overhead.

A Journey Towards Efficient Profiling Motivation 3/28

How Do We Find The Bugs?

• Numerous static and dynamic analysis approaches:

• Worst-case resource bounds analysis.

• Anti-patterns detection and log analysis.

• Performance testing and benchmarking.

• Profiling (event-based tracing).

+ Well-established approach.

+ Good data granularity.

+ Suitable for finding root causes

of performance issues.

– No formal guarantees.

– Insufficient CI/CD support.

– Potentially significant

overhead.

A Journey Towards Efficient Profiling Motivation 3/28

How Do We Find The Bugs?

• Numerous static and dynamic analysis approaches:

• Worst-case resource bounds analysis.

• Anti-patterns detection and log analysis.

• Performance testing and benchmarking.

• Profiling (event-based tracing).

+ Well-established approach.

+ Good data granularity.

+ Suitable for finding root causes

of performance issues.

– No formal guarantees.

– Insufficient CI/CD support.

– Potentially significant

overhead.

A Journey Towards Efficient Profiling Motivation 3/28

How Do We Find The Bugs?

• Numerous static and dynamic analysis approaches:

• Worst-case resource bounds analysis.

• Anti-patterns detection and log analysis.

• Performance testing and benchmarking.

• Profiling (event-based tracing).

+ Well-established approach.

+ Good data granularity.

+ Suitable for finding root causes

of performance issues.

– No formal guarantees.

– Insufficient CI/CD support.

– Potentially significant

overhead.

A Journey Towards Efficient Profiling Motivation 3/28

How Do We Find The Bugs?

• Numerous static and dynamic analysis approaches:

• Worst-case resource bounds analysis.

• Anti-patterns detection and log analysis.

• Performance testing and benchmarking.

• Profiling (event-based tracing).

+ Well-established approach.

+ Good data granularity.

+ Suitable for finding root causes

of performance issues.

– No formal guarantees.

– Insufficient CI/CD support.

– Potentially significant

overhead.

A Journey Towards Efficient Profiling Motivation 3/28

The Roots of Profiling Inefficiency

Too Much Overhead

• High granularity of performance data.

⇒ Easier identification of performance bugs root causes.

⇒ Significant time (and possibly memory) overhead.

• Can we somehow reduce the overhead?

1. Reduce the granularity.

• We risk reaching the benchmarking territory precision-wise.

2. Optimize the instrumentation.

• Typically tailored only for a specific language or environment.

3. General profiling optimization techniques.2

⇒ The idea: Limit high granularity to where it actually matters.

2Disclaimer: publication of the following concepts and ideas is a work in progress.

A Journey Towards Efficient Profiling The Roots of Profiling Inefficiency 4/28

Too Much Overhead

• High granularity of performance data.

⇒ Easier identification of performance bugs root causes.

⇒ Significant time (and possibly memory) overhead.

• Can we somehow reduce the overhead?

1. Reduce the granularity.

• We risk reaching the benchmarking territory precision-wise.

2. Optimize the instrumentation.

• Typically tailored only for a specific language or environment.

3. General profiling optimization techniques.2

⇒ The idea: Limit high granularity to where it actually matters.

2Disclaimer: publication of the following concepts and ideas is a work in progress.

A Journey Towards Efficient Profiling The Roots of Profiling Inefficiency 4/28

Too Much Overhead

• High granularity of performance data.

⇒ Easier identification of performance bugs root causes.

⇒ Significant time (and possibly memory) overhead.

• Can we somehow reduce the overhead?

1. Reduce the granularity.

• We risk reaching the benchmarking territory precision-wise.

2. Optimize the instrumentation.

• Typically tailored only for a specific language or environment.

3. General profiling optimization techniques.2

⇒ The idea: Limit high granularity to where it actually matters.

2Disclaimer: publication of the following concepts and ideas is a work in progress.

A Journey Towards Efficient Profiling The Roots of Profiling Inefficiency 4/28

Too Much Overhead

• High granularity of performance data.

⇒ Easier identification of performance bugs root causes.

⇒ Significant time (and possibly memory) overhead.

• Can we somehow reduce the overhead?

1. Reduce the granularity.

• We risk reaching the benchmarking territory precision-wise.

2. Optimize the instrumentation.

• Typically tailored only for a specific language or environment.

3. General profiling optimization techniques.2

⇒ The idea: Limit high granularity to where it actually matters.

2Disclaimer: publication of the following concepts and ideas is a work in progress.

A Journey Towards Efficient Profiling The Roots of Profiling Inefficiency 4/28

Too Much Overhead

• High granularity of performance data.

⇒ Easier identification of performance bugs root causes.

⇒ Significant time (and possibly memory) overhead.

• Can we somehow reduce the overhead?

1. Reduce the granularity.

• We risk reaching the benchmarking territory precision-wise.

2. Optimize the instrumentation.

• Typically tailored only for a specific language or environment.

3. General profiling optimization techniques.2

⇒ The idea: Limit high granularity to where it actually matters.

2Disclaimer: publication of the following concepts and ideas is a work in progress.

A Journey Towards Efficient Profiling The Roots of Profiling Inefficiency 4/28

Too Much Overhead

• High granularity of performance data.

⇒ Easier identification of performance bugs root causes.

⇒ Significant time (and possibly memory) overhead.

• Can we somehow reduce the overhead?

1. Reduce the granularity.

• We risk reaching the benchmarking territory precision-wise.

2. Optimize the instrumentation.

• Typically tailored only for a specific language or environment.

3. General profiling optimization techniques.2

⇒ The idea: Limit high granularity to where it actually matters.

2Disclaimer: publication of the following concepts and ideas is a work in progress.

A Journey Towards Efficient Profiling The Roots of Profiling Inefficiency 4/28

Too Much Overhead

• High granularity of performance data.

⇒ Easier identification of performance bugs root causes.

⇒ Significant time (and possibly memory) overhead.

• Can we somehow reduce the overhead?

1. Reduce the granularity.

• We risk reaching the benchmarking territory precision-wise.

2. Optimize the instrumentation.

• Typically tailored only for a specific language or environment.

3. General profiling optimization techniques.2

⇒ The idea: Limit high granularity to where it actually matters.

2Disclaimer: publication of the following concepts and ideas is a work in progress.

A Journey Towards Efficient Profiling The Roots of Profiling Inefficiency 4/28

Too Much Overhead

• High granularity of performance data.

⇒ Easier identification of performance bugs root causes.

⇒ Significant time (and possibly memory) overhead.

• Can we somehow reduce the overhead?

1. Reduce the granularity.

• We risk reaching the benchmarking territory precision-wise.

2. Optimize the instrumentation.

• Typically tailored only for a specific language or environment.

3. General profiling optimization techniques.2

⇒ The idea: Limit high granularity to where it actually matters.

2Disclaimer: publication of the following concepts and ideas is a work in progress.

A Journey Towards Efficient Profiling The Roots of Profiling Inefficiency 4/28

Too Much Overhead

• High granularity of performance data.

⇒ Easier identification of performance bugs root causes.

⇒ Significant time (and possibly memory) overhead.

• Can we somehow reduce the overhead?

1. Reduce the granularity.

• We risk reaching the benchmarking territory precision-wise.

2. Optimize the instrumentation.

• Typically tailored only for a specific language or environment.

3. General profiling optimization techniques.2

⇒ The idea: Limit high granularity to where it actually matters.

2Disclaimer: publication of the following concepts and ideas is a work in progress.

A Journey Towards Efficient Profiling The Roots of Profiling Inefficiency 4/28

Too Much Overhead

• High granularity of performance data.

⇒ Easier identification of performance bugs root causes.

⇒ Significant time (and possibly memory) overhead.

• Can we somehow reduce the overhead?

1. Reduce the granularity.

• We risk reaching the benchmarking territory precision-wise.

2. Optimize the instrumentation.

• Typically tailored only for a specific language or environment.

3. General profiling optimization techniques.2

⇒ The idea: Limit high granularity to where it actually matters.

2Disclaimer: publication of the following concepts and ideas is a work in progress.

A Journey Towards Efficient Profiling The Roots of Profiling Inefficiency 4/28

Recency

• Recency is important: it pays off to discover bugs quickly.

• Recently introduced bugs, as opposed to dormant bugs3,

• take on average less time to fix;

• can be fixed by less experienced developers;

• the fix is generally smaller.

• Hence, new bugs should be discovered as soon as possible.

• Already commonly utilized for testing the project’s functionality.

3T.-H. Chen et al.: An empirical study of dormant bugs

A Journey Towards Efficient Profiling The Roots of Profiling Inefficiency 5/28

Recency

• Recency is important: it pays off to discover bugs quickly.

• Recently introduced bugs, as opposed to dormant bugs3,

• take on average less time to fix (5 vs. 8 days);

• can be fixed by less experienced developers;

• the fix is generally smaller.

• Hence, new bugs should be discovered as soon as possible.

• Already commonly utilized for testing the project’s functionality.

3T.-H. Chen et al.: An empirical study of dormant bugs

A Journey Towards Efficient Profiling The Roots of Profiling Inefficiency 5/28

Recency

• Recency is important: it pays off to discover bugs quickly.

• Recently introduced bugs, as opposed to dormant bugs3,

• take on average less time to fix (5 vs. 8 days);

• can be fixed by less experienced developers;

• the fix is generally smaller.

• Hence, new bugs should be discovered as soon as possible.

• Already commonly utilized for testing the project’s functionality.

3T.-H. Chen et al.: An empirical study of dormant bugs

A Journey Towards Efficient Profiling The Roots of Profiling Inefficiency 5/28

Recency

• Recency is important: it pays off to discover bugs quickly.

• Recently introduced bugs, as opposed to dormant bugs3,

• take on average less time to fix (5 vs. 8 days);

• can be fixed by less experienced developers;

• the fix is generally smaller (10 vs. 19 LoC).

• Hence, new bugs should be discovered as soon as possible.

• Already commonly utilized for testing the project’s functionality.

3T.-H. Chen et al.: An empirical study of dormant bugs

A Journey Towards Efficient Profiling The Roots of Profiling Inefficiency 5/28

Recency

• Recency is important: it pays off to discover bugs quickly.

• Recently introduced bugs, as opposed to dormant bugs3,

• take on average less time to fix (5 vs. 8 days);

• can be fixed by less experienced developers;

• the fix is generally smaller (10 vs. 19 LoC).

• Hence, new bugs should be discovered as soon as possible.

• Already commonly utilized for testing the project’s functionality.

3T.-H. Chen et al.: An empirical study of dormant bugs

A Journey Towards Efficient Profiling The Roots of Profiling Inefficiency 5/28

Recency

• Recency is important: it pays off to discover bugs quickly.

• Recently introduced bugs, as opposed to dormant bugs3,

• take on average less time to fix (5 vs. 8 days);

• can be fixed by less experienced developers;

• the fix is generally smaller (10 vs. 19 LoC).

• Hence, new bugs should be discovered as soon as possible.

• Already commonly utilized for testing the project’s functionality.

3T.-H. Chen et al.: An empirical study of dormant bugs

A Journey Towards Efficient Profiling The Roots of Profiling Inefficiency 5/28

Recency in Profiling

• Profiling is usually only done late in the project development.

⇒ The idea: Automated profiling throughout the development process.

• Profiling tools generally ignore project and profiling history.

• Yet, past profiles coupled with version history are valuable.

⇒ The idea: Reuse profiling data when possible.

A Journey Towards Efficient Profiling The Roots of Profiling Inefficiency 6/28

Recency in Profiling

• Profiling is usually only done late in the project development.

⇒ The idea: Automated profiling throughout the development process.

• Profiling tools generally ignore project and profiling history.

• Yet, past profiles coupled with version history are valuable.

⇒ The idea: Reuse profiling data when possible.

A Journey Towards Efficient Profiling The Roots of Profiling Inefficiency 6/28

Recency in Profiling

• Profiling is usually only done late in the project development.

⇒ The idea: Automated profiling throughout the development process.

• Profiling tools generally ignore project and profiling history.

• Yet, past profiles coupled with version history are valuable.

⇒ The idea: Reuse profiling data when possible.

A Journey Towards Efficient Profiling The Roots of Profiling Inefficiency 6/28

Recency in Profiling

• Profiling is usually only done late in the project development.

⇒ The idea: Automated profiling throughout the development process.

• Profiling tools generally ignore project and profiling history.

• Yet, past profiles coupled with version history are valuable.

⇒ The idea: Reuse profiling data when possible.

A Journey Towards Efficient Profiling The Roots of Profiling Inefficiency 6/28

Meet Perun:

Performance Version System

Perun: Beyond Mere Profiling

Perun4 = Complex Solution for Performance Analysis and Testing

=

= Collects performance data

*

+ Creates performance models

• Constant c, linear an + b, . . .

+ Integrates VCS

• Access to project history.

+ Detects performance changes

• Degradations, optimizations.

+ Visualizes performance

*

Tracer

Collectors

Fuzzing

Generators

Profile
and

Runners

GIT

SVN

VCS

Regression
Analysis

Filter

Postprocess

By Average

By Statistics

Detection

By Complexity

Scatter Plot

Flame Graph

Interpretation

CLI

Collect

Call

Calls

Generate
Workload

Uses

Generates

Call

Uses

Call

Interacts
with

Bounds

PERUN

Interact
with

Least Squares

Regressogram

Kernel Estimate

Loopus

Cost

SystemTap

eBPF

* Often the only steps done by traditional profilers.

4T. Fiedor, J. Pavela, A. Rogalewicz and T. Vojnar: Perun: Performance Version

System, in Proc. of ICSME’22

A Journey Towards Efficient Profiling Perun: Performance Version System 7/28

Perun: Beyond Mere Profiling

Perun4 = Complex Solution for Performance Analysis and Testing =

= Collects performance data

*

+ Creates performance models

• Constant c, linear an + b, . . .

+ Integrates VCS

• Access to project history.

+ Detects performance changes

• Degradations, optimizations.

+ Visualizes performance

*

Tracer

Collectors

Fuzzing

Generators

Profile
and

Runners

GIT

SVN

VCS

Regression
Analysis

Filter

Postprocess

By Average

By Statistics

Detection

By Complexity

Scatter Plot

Flame Graph

Interpretation

CLI

Collect

Call

Calls

Generate
Workload

Uses

Generates

Call

Uses

Call

Interacts
with

Bounds

PERUN

Interact
with

Least Squares

Regressogram

Kernel Estimate

Loopus

Cost

SystemTap

eBPF

* Often the only steps done by traditional profilers.

4T. Fiedor, J. Pavela, A. Rogalewicz and T. Vojnar: Perun: Performance Version

System, in Proc. of ICSME’22

A Journey Towards Efficient Profiling Perun: Performance Version System 7/28

Perun: Beyond Mere Profiling

Perun4 = Complex Solution for Performance Analysis and Testing =

= Collects performance data

*

+ Creates performance models

• Constant c, linear an + b, . . .

+ Integrates VCS

• Access to project history.

+ Detects performance changes

• Degradations, optimizations.

+ Visualizes performance

*

Tracer

Collectors

Fuzzing

Generators

Profile
and

Runners

GIT

SVN

VCS

Regression
Analysis

Filter

Postprocess

By Average

By Statistics

Detection

By Complexity

Scatter Plot

Flame Graph

Interpretation

CLI

Collect

Call

Calls

Generate
Workload

Uses

Generates

Call

Uses

Call

Interacts
with

Bounds

PERUN

Interact
with

Least Squares

Regressogram

Kernel Estimate

Loopus

Cost

SystemTap

eBPF

* Often the only steps done by traditional profilers.

4T. Fiedor, J. Pavela, A. Rogalewicz and T. Vojnar: Perun: Performance Version

System, in Proc. of ICSME’22

A Journey Towards Efficient Profiling Perun: Performance Version System 7/28

Perun: Beyond Mere Profiling

Perun4 = Complex Solution for Performance Analysis and Testing =

= Collects performance data

*

+ Creates performance models

• Constant c, linear an + b, . . .

+ Integrates VCS

• Access to project history.

+ Detects performance changes

• Degradations, optimizations.

+ Visualizes performance

*

Tracer

Collectors

Fuzzing

Generators

Profile
and

Runners

GIT

SVN

VCS

Regression
Analysis

Filter

Postprocess

By Average

By Statistics

Detection

By Complexity

Scatter Plot

Flame Graph

Interpretation

CLI

Collect

Call

Calls

Generate
Workload

Uses

Generates

Call

Uses

Call

Interacts
with

Bounds

PERUN

Interact
with

Least Squares

Regressogram

Kernel Estimate

Loopus

Cost

SystemTap

eBPF

* Often the only steps done by traditional profilers.

4T. Fiedor, J. Pavela, A. Rogalewicz and T. Vojnar: Perun: Performance Version

System, in Proc. of ICSME’22

A Journey Towards Efficient Profiling Perun: Performance Version System 7/28

Perun: Beyond Mere Profiling

Perun4 = Complex Solution for Performance Analysis and Testing =

= Collects performance data

*

+ Creates performance models

• Constant c, linear an + b, . . .

+ Integrates VCS

• Access to project history.

+ Detects performance changes

• Degradations, optimizations.

+ Visualizes performance

*

Tracer

Collectors

Fuzzing

Generators

Profile
and

Runners

GIT

SVN

VCS

Regression
Analysis

Filter

Postprocess

By Average

By Statistics

Detection

By Complexity

Scatter Plot

Flame Graph

Interpretation

CLI

Collect

Call

Calls

Generate
Workload

Uses

Generates

Call

Uses

Call

Interacts
with

Bounds

PERUN

Interact
with

Least Squares

Regressogram

Kernel Estimate

Loopus

Cost

SystemTap

eBPF

* Often the only steps done by traditional profilers.

4T. Fiedor, J. Pavela, A. Rogalewicz and T. Vojnar: Perun: Performance Version

System, in Proc. of ICSME’22

A Journey Towards Efficient Profiling Perun: Performance Version System 7/28

Perun: Beyond Mere Profiling

Perun4 = Complex Solution for Performance Analysis and Testing =

= Collects performance data

*

+ Creates performance models

• Constant c, linear an + b, . . .

+ Integrates VCS

• Access to project history.

+ Detects performance changes

• Degradations, optimizations.

+ Visualizes performance

*

Tracer

Collectors

Fuzzing

Generators

Profile
and

Runners

GIT

SVN

VCS

Regression
Analysis

Filter

Postprocess

By Average

By Statistics

Detection

By Complexity

Scatter Plot

Flame Graph

Interpretation

CLI

Collect

Call

Calls

Generate
Workload

Uses

Generates

Call

Uses

Call

Interacts
with

Bounds

PERUN

Interact
with

Least Squares

Regressogram

Kernel Estimate

Loopus

Cost

SystemTap

eBPF

* Often the only steps done by traditional profilers.

4T. Fiedor, J. Pavela, A. Rogalewicz and T. Vojnar: Perun: Performance Version

System, in Proc. of ICSME’22

A Journey Towards Efficient Profiling Perun: Performance Version System 7/28

Perun: Beyond Mere Profiling

Perun4 = Complex Solution for Performance Analysis and Testing =

= Collects performance data*

+ Creates performance models

• Constant c, linear an + b, . . .

+ Integrates VCS

• Access to project history.

+ Detects performance changes

• Degradations, optimizations.

+ Visualizes performance*

Tracer

Collectors

Fuzzing

Generators

Profile
and

Runners

GIT

SVN

VCS

Regression
Analysis

Filter

Postprocess

By Average

By Statistics

Detection

By Complexity

Scatter Plot

Flame Graph

Interpretation

CLI

Collect

Call

Calls

Generate
Workload

Uses

Generates

Call

Uses

Call

Interacts
with

Bounds

PERUN

Interact
with

Least Squares

Regressogram

Kernel Estimate

Loopus

Cost

SystemTap

eBPF

* Often the only steps done by traditional profilers.

4T. Fiedor, J. Pavela, A. Rogalewicz and T. Vojnar: Perun: Performance Version

System, in Proc. of ICSME’22

A Journey Towards Efficient Profiling Perun: Performance Version System 7/28

Perun Workflow: Overview

• Four major steps: Repository → Profiles → Models → Detection

PerunVCS

(.perun)

Run

Collection Postprocessing

...

Degradation Detection

New Project Version Runnable Profile Postprocessed Profile Performance Changes

Checkout

Target Models

Performance
Degradation

Performance
Optimization

Unknown

Phase

Result

Development

Code Diff

Working Directory

Loading Baseline Profiles

Check

@@ -2,29 +2,37 @@
 #include <random>
- #include "../structures/SLList.h"
+#include "../structures/skiplist.h"

...
- for(int i = 0; i < list_max_size; i++) {
- SLList_insert(&list, i);
+ for(int i = 0; i < skiplist_max_size; i++) {
+ skiplistInsert(mylist, dis(gen));
+ skiplist_size++;
...

10
11
12

44
45
48
49
50

HEAD

HEAD~1

(.git)

y = b1f(x) + b0

Binary Collector 1 Profile Postprocess 1 Postprocess m

Target Models

y = b1f(x) + b0

Collector n Profile Postprocess 1 Postprocess mBinary

...
...

...
...

...
...

...

Baseline Models

y = b1f(x) + b0

A Journey Towards Efficient Profiling Perun: Performance Version System 8/28

Perun Workflow: Repository

Phase

Result

Development

Code Diff

Working Directory

@@ -2,29 +2,37 @@
 #include <random>
- #include "../structures/SLList.h"
+#include "../structures/skiplist.h"

...
- for(int i = 0; i < list_max_size; i++) {
- SLList_insert(&list, i);
+ for(int i = 0; i < skiplist_max_size; i++) {
+ skiplistInsert(mylist, dis(gen));
+ skiplist_size++;
...

10
11
12

44
45
48
49
50

1. We create the project’s working directory.

2. We initialize a VCS (e.g., Git) for project versioning.

3. We initialize Perun in the repository alongside the VCS.

A Journey Towards Efficient Profiling Perun: Performance Version System 9/28

Perun Workflow: Repository

Checkout

VCS

New Project Version

Phase

Result

Development

Code Diff

Working Directory

@@ -2,29 +2,37 @@
 #include <random>
- #include "../structures/SLList.h"
+#include "../structures/skiplist.h"

...
- for(int i = 0; i < list_max_size; i++) {
- SLList_insert(&list, i);
+ for(int i = 0; i < skiplist_max_size; i++) {
+ skiplistInsert(mylist, dis(gen));
+ skiplist_size++;
...

10
11
12

44
45
48
49
50

HEAD

HEAD~1

(.git)

1. We create the project’s working directory.

2. We initialize a VCS (e.g., Git) for project versioning.

3. We initialize Perun in the repository alongside the VCS.

A Journey Towards Efficient Profiling Perun: Performance Version System 9/28

Perun Workflow: Repository

Checkout

VCS

New Project Version

Phase

Result

Development

Code Diff

Working Directory

@@ -2,29 +2,37 @@
 #include <random>
- #include "../structures/SLList.h"
+#include "../structures/skiplist.h"

...
- for(int i = 0; i < list_max_size; i++) {
- SLList_insert(&list, i);
+ for(int i = 0; i < skiplist_max_size; i++) {
+ skiplistInsert(mylist, dis(gen));
+ skiplist_size++;
...

10
11
12

44
45
48
49
50

HEAD

HEAD~1

(.git)

1. We create the project’s working directory.

2. We initialize a VCS (e.g., Git) for project versioning.

3. We initialize Perun in the repository alongside the VCS.

A Journey Towards Efficient Profiling Perun: Performance Version System 9/28

Perun Workflow: Profiles

PerunVCS

Run

Collection

...

New Project Version Runnable Profile

Checkout

HEAD

HEAD~1

(.git)

Binary Collector 1 Profile

Collector n ProfileBinary

...
...

4. We measure project’s performance and obtain profiles.

• Profiles are stored within Perun and linked to the corresponding VCS

version (e.g., commit).

A Journey Towards Efficient Profiling Perun: Performance Version System 10/28

Perun Workflow: Profiles

PerunVCS

Run

Collection

...

New Project Version Runnable Profile

Checkout

HEAD

HEAD~1

(.git)

Binary Collector 1 Profile

Collector n ProfileBinary

...
...

4. We measure project’s performance and obtain profiles.

• Profiles are stored within Perun and linked to the corresponding VCS

version (e.g., commit).

A Journey Towards Efficient Profiling Perun: Performance Version System 10/28

Perun Workflow: Models

Perun
Collection Postprocessing

Profile Postprocessed Profile

Target Models

y = b1f(x) + b0

Profile Postprocess 1 Postprocess m

Target Models

y = b1f(x) + b0

Profile Postprocess 1 Postprocess m

...
...

...
...

...
...

5. We create performance models from profiles using postprocessors.

• Models are stored within Perun alongside the profiles.

A Journey Towards Efficient Profiling Perun: Performance Version System 11/28

Perun Workflow: Models

Perun
Collection Postprocessing

Profile Postprocessed Profile

Target Models

y = b1f(x) + b0

Profile Postprocess 1 Postprocess m

Target Models

y = b1f(x) + b0

Profile Postprocess 1 Postprocess m

...
...

...
...

...
...

5. We create performance models from profiles using postprocessors.

• Models are stored within Perun alongside the profiles.

A Journey Towards Efficient Profiling Perun: Performance Version System 11/28

Perun Workflow: Detection

(.perun)

Postprocessing Degradation Detection

Postprocessed Profile Performance Changes

Target Models

y = b1f(x) + b0

Target Models

y = b1f(x) + b0

...
...

Baseline Models

y = b1f(x) + b0

Performance
Degradation

Performance
Optimization

Unknown
Check

No Change

6. We detect performance changes using models or directly profiles.

• Target refers to the current version.

• Baseline refers to the previous version used for comparison.

A Journey Towards Efficient Profiling Perun: Performance Version System 12/28

Perun Workflow: Detection

(.perun)

Postprocessing Degradation Detection

Postprocessed Profile Performance Changes

Target Models

y = b1f(x) + b0

Target Models

y = b1f(x) + b0

...
...

Baseline Models

y = b1f(x) + b0

Performance
Degradation

Performance
Optimization

Unknown
Check

No Change

6. We detect performance changes using models or directly profiles.

• Target refers to the current version.

• Baseline refers to the previous version used for comparison.

A Journey Towards Efficient Profiling Perun: Performance Version System 12/28

Perun Demonstration:

Finding Performance Changes

CPython: Issue #92356

• CPython: Reference C implementation of a Python interpreter.

• Issue #923565: A performance regression in ctypes module.

• ≈ 8% higher function call overhead (py3.11.0a7 vs. py3.10.4).

• Replicated using the pyperformance ctypes benchmark.

• Fixed soon after the report.

• Discovering such issues and finding their root cause is the hard part.

• Can Perun help us here?

5Reported by user mdboom: https://github.com/python/cpython/issues/92356

A Journey Towards Efficient Profiling Finding Performance Changes 13/28

https://github.com/python/cpython/issues/92356

CPython: Issue #92356

• CPython: Reference C implementation of a Python interpreter.

• Issue #923565: A performance regression in ctypes module.

• ≈ 8% higher function call overhead (py3.11.0a7 vs. py3.10.4).

• Replicated using the pyperformance ctypes benchmark.

• Fixed soon after the report.

• Discovering such issues and finding their root cause is the hard part.

• Can Perun help us here?

5Reported by user mdboom: https://github.com/python/cpython/issues/92356

A Journey Towards Efficient Profiling Finding Performance Changes 13/28

https://github.com/python/cpython/issues/92356

CPython: Issue #92356

• CPython: Reference C implementation of a Python interpreter.

• Issue #923565: A performance regression in ctypes module.

• ≈ 8% higher function call overhead (py3.11.0a7 vs. py3.10.4).

• Replicated using the pyperformance ctypes benchmark.

• Fixed soon after the report.

• Discovering such issues and finding their root cause is the hard part.

• Can Perun help us here?

5Reported by user mdboom: https://github.com/python/cpython/issues/92356

A Journey Towards Efficient Profiling Finding Performance Changes 13/28

https://github.com/python/cpython/issues/92356

CPython: Issue #92356

• CPython: Reference C implementation of a Python interpreter.

• Issue #923565: A performance regression in ctypes module.

• ≈ 8% higher function call overhead (py3.11.0a7 vs. py3.10.4).

• Replicated using the pyperformance ctypes benchmark.

• Fixed soon after the report.

• Discovering such issues and finding their root cause is the hard part.

• Can Perun help us here?

5Reported by user mdboom: https://github.com/python/cpython/issues/92356

A Journey Towards Efficient Profiling Finding Performance Changes 13/28

https://github.com/python/cpython/issues/92356

CPython: Setup and Baseline

Using Perun, we could handle the issue #92356 as follows:

1. We initialize a CPython repository with Perun.

2. We store a profile for CPython v3.10.4 ctypes benchmark in Perun.

• We denote this profile as baseline.

• Perun handles the profile-commit link internally.

Perun commands

perun init

A Journey Towards Efficient Profiling Finding Performance Changes 14/28

CPython: Setup and Baseline

Using Perun, we could handle the issue #92356 as follows:

1. We initialize a CPython repository with Perun.

2. We store a profile for CPython v3.10.4 ctypes benchmark in Perun.

• We denote this profile as baseline.

• Perun handles the profile-commit link internally.

Perun commands

perun init

A Journey Towards Efficient Profiling Finding Performance Changes 14/28

CPython: Setup and Baseline

Using Perun, we could handle the issue #92356 as follows:

1. We initialize a CPython repository with Perun.

2. We store a profile for CPython v3.10.4 ctypes benchmark in Perun.

• We denote this profile as baseline.

• Perun handles the profile-commit link internally.

Perun commands

perun init

A Journey Towards Efficient Profiling Finding Performance Changes 14/28

CPython: Setup and Baseline

Using Perun, we could handle the issue #92356 as follows:

1. We initialize a CPython repository with Perun.

2. We store a profile for CPython v3.10.4 ctypes benchmark in Perun.

• We denote this profile as baseline.

• Perun handles the profile-commit link internally.

Perun commands

perun init

A Journey Towards Efficient Profiling Finding Performance Changes 14/28

CPython: Detecting Changes

3. CPython v3.11.0a7 rolls out.

4. We profile the ctypes benchmark for CPython v3.11.0a7.

• We denote the resulting profile as target.

5. We compare the baseline and target profiles.

• Perun supports multiple comparison algorithms.

• For this particular issue, we used Exclusive-Time Outliers.

Perun commands

perun collect -c <py3.11.0a7> -a <benchmark> trace -b <files>

perun add <target>

perun check -f profiles <baseline> <target>

A Journey Towards Efficient Profiling Finding Performance Changes 15/28

CPython: Detecting Changes

3. CPython v3.11.0a7 rolls out.

4. We profile the ctypes benchmark for CPython v3.11.0a7.

• We denote the resulting profile as target.

5. We compare the baseline and target profiles.

• Perun supports multiple comparison algorithms.

• For this particular issue, we used Exclusive-Time Outliers.

Perun commands

perun collect -c <py3.11.0a7> -a <benchmark> trace -b <files>

perun add <target>

perun check -f profiles <baseline> <target>

A Journey Towards Efficient Profiling Finding Performance Changes 15/28

CPython: Detecting Changes

3. CPython v3.11.0a7 rolls out.

4. We profile the ctypes benchmark for CPython v3.11.0a7.

• We denote the resulting profile as target.

5. We compare the baseline and target profiles.

• Perun supports multiple comparison algorithms.

• For this particular issue, we used Exclusive-Time Outliers.

Perun commands

perun collect -c <py3.11.0a7> -a <benchmark> trace -b <files>

perun add <target>

perun check -f profiles <baseline> <target>

A Journey Towards Efficient Profiling Finding Performance Changes 15/28

CPython: Detecting Changes

3. CPython v3.11.0a7 rolls out.

4. We profile the ctypes benchmark for CPython v3.11.0a7.

• We denote the resulting profile as target.

5. We compare the baseline and target profiles.

• Perun supports multiple comparison algorithms.

• For this particular issue, we used Exclusive-Time Outliers.

Perun commands

perun collect -c <py3.11.0a7> -a <benchmark> trace -b <files>

perun add <target>

perun check -f profiles <baseline> <target>

A Journey Towards Efficient Profiling Finding Performance Changes 15/28

CPython: Detecting Changes

3. CPython v3.11.0a7 rolls out.

4. We profile the ctypes benchmark for CPython v3.11.0a7.

• We denote the resulting profile as target.

5. We compare the baseline and target profiles.

• Perun supports multiple comparison algorithms.

• For this particular issue, we used Exclusive-Time Outliers.

Perun commands

perun collect -c <py3.11.0a7> -a <benchmark> trace -b <files>

perun add <target>

perun check -f profiles <baseline> <target>

A Journey Towards Efficient Profiling Finding Performance Changes 15/28

CPython: Regression Detected

Location Result T∆ [ms] T∆ [%]

ctypes init fielddesc NotInBaseline 77.95 5.23

ctypes get fielddesc SevereDegradation 52.9 3.55

ctypes callproc Degradation 2.84 0.19

. . .

ctypes.cpython-311 TotalDegradation 136.92 9.19

? T∆: exclusive-time delta of target − baseline.

• Root cause of the issue: repeated calls of an init function.

Function ctypes get fielddesc

if (! initialized) {

_ctypes_init_fielddesc ();

}

A Journey Towards Efficient Profiling Finding Performance Changes 16/28

CPython: Regression Detected

Location Result T∆ [ms] T∆ [%]

ctypes init fielddesc NotInBaseline 77.95 5.23

ctypes get fielddesc SevereDegradation 52.9 3.55

ctypes callproc Degradation 2.84 0.19

. . .

ctypes.cpython-311 TotalDegradation 136.92 9.19

? T∆: exclusive-time delta of target − baseline.

• Root cause of the issue: repeated calls of an init function.

Function ctypes get fielddesc

if (! initialized) {

_ctypes_init_fielddesc ();

}

A Journey Towards Efficient Profiling Finding Performance Changes 16/28

CPython: Regression Detected

Location Result T∆ [ms] T∆ [%]

ctypes init fielddesc NotInBaseline 77.95 5.23

ctypes get fielddesc SevereDegradation 52.9 3.55

ctypes callproc Degradation 2.84 0.19

. . .

ctypes.cpython-311 TotalDegradation 136.92 9.19

? T∆: exclusive-time delta of target − baseline.

• Root cause of the issue: repeated calls of an init function.

Function ctypes get fielddesc

if (! initialized) {

_ctypes_init_fielddesc ();

}

A Journey Towards Efficient Profiling Finding Performance Changes 16/28

CPython: Hotfix

6. We create a new hotfix branch and fix the issue.

Fixing ctypes get fielddesc

if (! initialized) {

+ initialized = 1;

_ctypes_init_fielddesc ();

}

1. We Profile the CPython hotfixed version.

• We denote the resulting profile as hotfix.

2. We compare the baseline and hotfix profiles.

Perun commands

perun collect -c <py3.11.0a7-fix> -a <benchmark> trace <...>

perun add <hotfix>

perun check -f profiles <baseline> <hotfix>

A Journey Towards Efficient Profiling Finding Performance Changes 17/28

CPython: Hotfix

6. We create a new hotfix branch and fix the issue.

Fixing ctypes get fielddesc

if (! initialized) {

+ initialized = 1;

_ctypes_init_fielddesc ();

}

1. We Profile the CPython hotfixed version.

• We denote the resulting profile as hotfix.

2. We compare the baseline and hotfix profiles.

Perun commands

perun collect -c <py3.11.0a7-fix> -a <benchmark> trace <...>

perun add <hotfix>

perun check -f profiles <baseline> <hotfix>

A Journey Towards Efficient Profiling Finding Performance Changes 17/28

CPython: Hotfix

6. We create a new hotfix branch and fix the issue.

Fixing ctypes get fielddesc

if (! initialized) {

+ initialized = 1;

_ctypes_init_fielddesc ();

}

1. We Profile the CPython hotfixed version.

• We denote the resulting profile as hotfix.

2. We compare the baseline and hotfix profiles.

Perun commands

perun collect -c <py3.11.0a7-fix> -a <benchmark> trace <...>

perun add <hotfix>

perun check -f profiles <baseline> <hotfix>

A Journey Towards Efficient Profiling Finding Performance Changes 17/28

CPython: Hotfix

6. We create a new hotfix branch and fix the issue.

Fixing ctypes get fielddesc

if (! initialized) {

+ initialized = 1;

_ctypes_init_fielddesc ();

}

1. We Profile the CPython hotfixed version.

• We denote the resulting profile as hotfix.

2. We compare the baseline and hotfix profiles.

Perun commands

perun collect -c <py3.11.0a7-fix> -a <benchmark> trace <...>

perun add <hotfix>

perun check -f profiles <baseline> <hotfix>

A Journey Towards Efficient Profiling Finding Performance Changes 17/28

CPython: Issue Fixed!

Location Result ∆ [ms] ∆ [%] ∆old [ms] ∆old [%]

· · ·
ctypes get fielddesc MaybeDegradation 0.89 0.06 52.9 3.55

ctypes init fielddesc NotInBaseline 0.02 0.00 77.95 5.23

ctypes.cpython-311 TotalDegradation 23.45 1.70 136.92 9.19

? ∆: exclusive-time delta of hotfix−baseline.
? ∆old : exclusive-time delta of target−baseline.

• The ctypes get fielddesc ∆ has improved significantly.

• The ctypes init fielddesc ∆ is now negligible.

⇒ Perun leverages VCS and Recency to successfully discover and help

locate performance issues in new project versions as soon as possible.

A Journey Towards Efficient Profiling Finding Performance Changes 18/28

CPython: Issue Fixed!

Location Result ∆ [ms] ∆ [%] ∆old [ms] ∆old [%]

· · ·
ctypes get fielddesc MaybeDegradation 0.89 0.06 52.9 3.55

ctypes init fielddesc NotInBaseline 0.02 0.00 77.95 5.23

ctypes.cpython-311 TotalDegradation 23.45 1.70 136.92 9.19

? ∆: exclusive-time delta of hotfix−baseline.
? ∆old : exclusive-time delta of target−baseline.

• The ctypes get fielddesc ∆ has improved significantly.

• The ctypes init fielddesc ∆ is now negligible.

⇒ Perun leverages VCS and Recency to successfully discover and help

locate performance issues in new project versions as soon as possible.

A Journey Towards Efficient Profiling Finding Performance Changes 18/28

CPython: Issue Fixed!

Location Result ∆ [ms] ∆ [%] ∆old [ms] ∆old [%]

· · ·
ctypes get fielddesc MaybeDegradation 0.89 0.06 52.9 3.55

ctypes init fielddesc NotInBaseline 0.02 0.00 77.95 5.23

ctypes.cpython-311 TotalDegradation 23.45 1.70 136.92 9.19

? ∆: exclusive-time delta of hotfix−baseline.
? ∆old : exclusive-time delta of target−baseline.

• The ctypes get fielddesc ∆ has improved significantly.

• The ctypes init fielddesc ∆ is now negligible.

⇒ Perun leverages VCS and Recency to successfully discover and help

locate performance issues in new project versions as soon as possible.

A Journey Towards Efficient Profiling Finding Performance Changes 18/28

CPython: Issue Fixed!

Location Result ∆ [ms] ∆ [%] ∆old [ms] ∆old [%]

· · ·
ctypes get fielddesc MaybeDegradation 0.89 0.06 52.9 3.55

ctypes init fielddesc NotInBaseline 0.02 0.00 77.95 5.23

ctypes.cpython-311 TotalDegradation 23.45 1.70 136.92 9.19

? ∆: exclusive-time delta of hotfix−baseline.
? ∆old : exclusive-time delta of target−baseline.

• The ctypes get fielddesc ∆ has improved significantly.

• The ctypes init fielddesc ∆ is now negligible.

⇒ Perun leverages VCS and Recency to successfully discover and help

locate performance issues in new project versions as soon as possible.

A Journey Towards Efficient Profiling Finding Performance Changes 18/28

Efficient Profiling Techniques

Core Concepts of Efficient Profiling

Observation 1

A subset of profiled functions is responsible for sizable portion of the

overhead while producing uninteresting performance models, e.g.:

• Hundreds of millions of times called O(1) functions.

• Functions with constant-like runtime behaviors.

⇒ Such functions usually need not be profiled but their (possibly

indirect) callers should.

Observation 2

Even performance-wise significant functions that are to be profiled

may generate substantial amount of records and thus cause significant

time and space overhead.

⇒ Only a subset of the total data may be captured at the cost of

profiling precision.

A Journey Towards Efficient Profiling Efficient Profiling Techniques 19/28

Core Concepts of Efficient Profiling

Observation 1

A subset of profiled functions is responsible for sizable portion of the

overhead while producing uninteresting performance models, e.g.:

• Hundreds of millions of times called O(1) functions.

• Functions with constant-like runtime behaviors.

⇒ Such functions usually need not be profiled but their (possibly

indirect) callers should.

Observation 2

Even performance-wise significant functions that are to be profiled

may generate substantial amount of records and thus cause significant

time and space overhead.

⇒ Only a subset of the total data may be captured at the cost of

profiling precision.

A Journey Towards Efficient Profiling Efficient Profiling Techniques 19/28

Core Concepts of Efficient Profiling

Observation 1

A subset of profiled functions is responsible for sizable portion of the

overhead while producing uninteresting performance models, e.g.:

• Hundreds of millions of times called O(1) functions.

• Functions with constant-like runtime behaviors.

⇒ Such functions usually need not be profiled but their (possibly

indirect) callers should.

Observation 2

Even performance-wise significant functions that are to be profiled

may generate substantial amount of records and thus cause significant

time and space overhead.

⇒ Only a subset of the total data may be captured at the cost of

profiling precision.

A Journey Towards Efficient Profiling Efficient Profiling Techniques 19/28

Core Concepts of Efficient Profiling

Observation 1

A subset of profiled functions is responsible for sizable portion of the

overhead while producing uninteresting performance models, e.g.:

• Hundreds of millions of times called O(1) functions.

• Functions with constant-like runtime behaviors.

⇒ Such functions usually need not be profiled but their (possibly

indirect) callers should.

Observation 2

Even performance-wise significant functions that are to be profiled

may generate substantial amount of records and thus cause significant

time and space overhead.

⇒ Only a subset of the total data may be captured at the cost of

profiling precision.

A Journey Towards Efficient Profiling Efficient Profiling Techniques 19/28

Recency: Diff Tracing

• We identify functions that have changed since the last profiling.

⇒ Such functions must be profiled.

• Challenge: how to define and detect a changed function with

respect to performance metrics?

F

G

I J

NM

H

K L

RQPO

No change

A Journey Towards Efficient Profiling Efficient Profiling Techniques 20/28

Recency: Diff Tracing

• We identify functions that have changed since the last profiling.

⇒ Such functions must be profiled.

• Challenge: how to define and detect a changed function with

respect to performance metrics?

F

G

I J

NM

H

K L

RQPO

No change

Change

A Journey Towards Efficient Profiling Efficient Profiling Techniques 20/28

Recency: Diff Tracing

• We identify functions that have changed since the last profiling.

⇒ Such functions must be profiled.

• Challenge: how to define and detect a changed function with

respect to performance metrics?

F

G

I J

NM

H

K L

RQPO

No change

Change

A Journey Towards Efficient Profiling Efficient Profiling Techniques 20/28

Code Structure: Call Graph Projection

Call Graph Observation

The number of calls of a function from a given call site often grows

with the length that the call stack has upon reaching the call site.

• Backed by experiments on CCSDS and CPython projects (87–96 %).

• We do not profile functions below certain Call Graph depth.

• Challenge: how to define the Call Graph Depth with respect to the

Call Graph Observation?

F

G

I J

NM

H

K L

RQPO

Kept functions

A Journey Towards Efficient Profiling Efficient Profiling Techniques 21/28

Code Structure: Call Graph Projection

Call Graph Observation

The number of calls of a function from a given call site often grows

with the length that the call stack has upon reaching the call site.

• Backed by experiments on CCSDS and CPython projects (87–96 %).

• We do not profile functions below certain Call Graph depth.

• Challenge: how to define the Call Graph Depth with respect to the

Call Graph Observation?

F

G

I J

NM

H

K L

RQPO

Kept functions

Pruned functions

A Journey Towards Efficient Profiling Efficient Profiling Techniques 21/28

Code Structure: Call Graph Projection

Call Graph Observation

The number of calls of a function from a given call site often grows

with the length that the call stack has upon reaching the call site.

• Backed by experiments on CCSDS and CPython projects (87–96 %).

• We do not profile functions below certain Call Graph depth.

• Challenge: how to define the Call Graph Depth with respect to the

Call Graph Observation?

F

G

I J

NM

H

K L

RQPO

Kept functions

Pruned functions

A Journey Towards Efficient Profiling Efficient Profiling Techniques 21/28

Expected Performance: Performance Baseline

• Static:

We do not profile functions below certain complexity.

• Dynamic:

We do not profile functions with constant-like behavior.

• Challenge: How to compute function complexity and identify

constant-like behavior?

F

G

I J

NM

H

K L

RQPO

A Journey Towards Efficient Profiling Efficient Profiling Techniques 22/28

Expected Performance: Performance Baseline

• Static: We do not profile functions below certain complexity.

• Dynamic:

We do not profile functions with constant-like behavior.

• Challenge: How to compute function complexity and identify

constant-like behavior?

F

G

I J

NM

H

K L

RQPO

A Journey Towards Efficient Profiling Efficient Profiling Techniques 22/28

Expected Performance: Performance Baseline

• Static: We do not profile functions below certain complexity.

• Dynamic: We do not profile functions with constant-like behavior.

• Challenge: How to compute function complexity and identify

constant-like behavior?

F

G

I J

NM

H

K L

RQPO

Constant-like

A Journey Towards Efficient Profiling Efficient Profiling Techniques 22/28

Expected Performance: Performance Baseline

• Static: We do not profile functions below certain complexity.

• Dynamic: We do not profile functions with constant-like behavior.

• Challenge: How to compute function complexity and identify

constant-like behavior?

F

G

I J

NM

H

K L

RQPO

Constant-like

A Journey Towards Efficient Profiling Efficient Profiling Techniques 22/28

Profiling Process Refining: Sampling Control

• Only a subset of performance data are necessary for sufficiently

precise models.

⇒ We record only every Nth function call.

• Challenge: how to identify suitable functions to sample and

estimate the N?

F

G

I J

NM

H

K L

RQPO

Unsampled

A Journey Towards Efficient Profiling Efficient Profiling Techniques 23/28

Profiling Process Refining: Sampling Control

• Only a subset of performance data are necessary for sufficiently

precise models.

⇒ We record only every Nth function call.

• Challenge: how to identify suitable functions to sample and

estimate the N?

F

J

N

H

K

QPO

Unsampled

Sampled

I

M Q R

L

G

A Journey Towards Efficient Profiling Efficient Profiling Techniques 23/28

Profiling Process Refining: Sampling Control

• Only a subset of performance data are necessary for sufficiently

precise models.

⇒ We record only every Nth function call.

• Challenge: how to identify suitable functions to sample and

estimate the N?

F

J

N

H

K

QPO

Unsampled

Sampled

I

M Q R

L

G

A Journey Towards Efficient Profiling Efficient Profiling Techniques 23/28

Optimization Pipelines

• Key idea: combine the aforementioned approaches.

• Each technique may be enabled/disabled.

• Each technique has its own set of parameters guiding the

optimization strength.

F

G

I J

NM

H

K L

RQPO

Unaffected

A Journey Towards Efficient Profiling Efficient Profiling Techniques 24/28

Optimization Pipelines

• Key idea: combine the aforementioned approaches.

• Each technique may be enabled/disabled.

• Each technique has its own set of parameters guiding the

optimization strength.

F

G

I J

NM

H

K L

RQPO

Unaffected

A Journey Towards Efficient Profiling Efficient Profiling Techniques 24/28

Optimization Pipelines

• Key idea: combine the aforementioned approaches.

• Each technique may be enabled/disabled.

• Each technique has its own set of parameters guiding the

optimization strength.

F

G

I J

NM

H

K L

RQPO

Unaffected

Changed

A Journey Towards Efficient Profiling Efficient Profiling Techniques 24/28

Optimization Pipelines

• Key idea: combine the aforementioned approaches.

• Each technique may be enabled/disabled.

• Each technique has its own set of parameters guiding the

optimization strength.

F

G

I J

NM

H

K L

RQPO

Unaffected

Changed

Removed

A Journey Towards Efficient Profiling Efficient Profiling Techniques 24/28

Optimization Pipelines

• Key idea: combine the aforementioned approaches.

• Each technique may be enabled/disabled.

• Each technique has its own set of parameters guiding the

optimization strength.

F

G

I J

NM

H

K L

RQPO

Unaffected

Changed

Removed

A Journey Towards Efficient Profiling Efficient Profiling Techniques 24/28

Optimization Pipelines

• Key idea: combine the aforementioned approaches.

• Each technique may be enabled/disabled.

• Each technique has its own set of parameters guiding the

optimization strength.

F

G

I J

NM

H

K L

RQPO

Unaffected

Changed

Removed

Sampled

A Journey Towards Efficient Profiling Efficient Profiling Techniques 24/28

Optimization Pipelines

• Key idea: combine the aforementioned approaches.

• Each technique may be enabled/disabled.

• Each technique has its own set of parameters guiding the

optimization strength.

F

G

I J

NM

H

K L

RQPO

Profiled

Not profiled

Sampled

A Journey Towards Efficient Profiling Efficient Profiling Techniques 24/28

Preliminary Experimental Evaluation

• So far, we have conducted two case studies (more in progress):

1. (RQ1) How significant is the impact of the individual optimizations

on the profiling process?

2. (RQ2) How significant is the impact of the optimisation pipelines for

different degrees of strength on the profiling process?

• Optimization strength: 10 %, 25 %, 50 %, 75 %, 90 %.

open122 CPython Gedit emacs vim

LoC 10,000 500,000 35,000 400,000 480,000

|FP | 83 1,883/1,227 569 1,826 4,382

branch 2984883 3.8/2.7 3-36 2.71 8.2

runsopt 5/10 0/1 2/3 2/3 2/3

runsπ 5/10 0/1 5/5 5/5 5/5

A Journey Towards Efficient Profiling Efficient Profiling Techniques 25/28

Preliminary Experimental Evaluation

• So far, we have conducted two case studies (more in progress):

1. (RQ1) How significant is the impact of the individual optimizations

on the profiling process?

2. (RQ2) How significant is the impact of the optimisation pipelines for

different degrees of strength on the profiling process?

• Optimization strength: 10 %, 25 %, 50 %, 75 %, 90 %.

open122 CPython Gedit emacs vim

LoC 10,000 500,000 35,000 400,000 480,000

|FP | 83 1,883/1,227 569 1,826 4,382

branch 2984883 3.8/2.7 3-36 2.71 8.2

runsopt 5/10 0/1 2/3 2/3 2/3

runsπ 5/10 0/1 5/5 5/5 5/5

A Journey Towards Efficient Profiling Efficient Profiling Techniques 25/28

Preliminary Experimental Evaluation

• So far, we have conducted two case studies (more in progress):

1. (RQ1) How significant is the impact of the individual optimizations

on the profiling process?

2. (RQ2) How significant is the impact of the optimisation pipelines for

different degrees of strength on the profiling process?

• Optimization strength: 10 %, 25 %, 50 %, 75 %, 90 %.

open122 CPython Gedit emacs vim

LoC 10,000 500,000 35,000 400,000 480,000

|FP | 83 1,883/1,227 569 1,826 4,382

branch 2984883 3.8/2.7 3-36 2.71 8.2

runsopt 5/10 0/1 2/3 2/3 2/3

runsπ 5/10 0/1 5/5 5/5 5/5

A Journey Towards Efficient Profiling Efficient Profiling Techniques 25/28

Results: CPython

Python3

Pipeline Total [s] Data [MiB] |FP | CovH [%] δH UFP
[%] OFP

[%]

no-opt 39,304.19 164,022.73 53,360.00

π10 14,514.99 56,907.35 39,981.00 40.00 1.00 2.02 3.38

π25 3,847.49 11,482.11 28,741.00 20.00 1.00 2.56 5.59

π50 3,425.64 9,339.42 26,826.00 20.00 1.00 2.79 6.34

π75 2,647.76 5,602.77 24,419.00 20.00 1.00 3.55 6.43

π90 1,683.27 1,572.93 5,471.00 20.00 1.00 0.00 3.85

no-prof 577.58

Python2

Pipeline Total [s] Data [MiB] |FP | CovH [%] δH UFP
[%] OFP

[%]

no-opt 43,568.59 171,842.30 34,356.00

π10 20,704.52 73,768.39 25,432.00 50.00 1.00 2.42 3.57

π25 11,421.38 37,963.51 18,833.00 40.00 1.00 3.41 4.63

π50 8,674.45 26,793.04 15,300.00 40.00 1.00 2.96 4.77

π75 5,270.95 12,825.88 6,969.00 30.00 1.00 2.74 0.00

π90 3,345.23 4,800.91 3,180.00 20.00 1.00 0.00 0.00

no-prof 527.19

A Journey Towards Efficient Profiling Efficient Profiling Techniques 26/28

Conclusion

Conclusion

• Perun = Complex Performance Analysis and Testing Solution.

• Integrates VCS.

• Collects performance data.

• Derives performance models.

• Detects performance changes.

• Visualises performance.

⇒ Not just mere profiling!

• We believe profiling efficiency can be significantly improved.

• Reuse of historic profiling data when possible.

• General profiling optimizations and their combinations.

• Ongoing and Future work:

• Further improving the efficiency, granularity and precision.

• Support for more languages, performance metrics, existing tools.

A Journey Towards Efficient Profiling Conclusion 27/28

Conclusion

• Perun = Complex Performance Analysis and Testing Solution.

• Integrates VCS.

• Collects performance data.

• Derives performance models.

• Detects performance changes.

• Visualises performance.

⇒ Not just mere profiling!

• We believe profiling efficiency can be significantly improved.

• Reuse of historic profiling data when possible.

• General profiling optimizations and their combinations.

• Ongoing and Future work:

• Further improving the efficiency, granularity and precision.

• Support for more languages, performance metrics, existing tools.

A Journey Towards Efficient Profiling Conclusion 27/28

Conclusion

• Perun = Complex Performance Analysis and Testing Solution.

• Integrates VCS.

• Collects performance data.

• Derives performance models.

• Detects performance changes.

• Visualises performance.

⇒ Not just mere profiling!

• We believe profiling efficiency can be significantly improved.

• Reuse of historic profiling data when possible.

• General profiling optimizations and their combinations.

• Ongoing and Future work:

• Further improving the efficiency, granularity and precision.

• Support for more languages, performance metrics, existing tools.

A Journey Towards Efficient Profiling Conclusion 27/28

Conclusion

• Perun = Complex Performance Analysis and Testing Solution.

• Integrates VCS.

• Collects performance data.

• Derives performance models.

• Detects performance changes.

• Visualises performance.

⇒ Not just mere profiling!

• We believe profiling efficiency can be significantly improved.

• Reuse of historic profiling data when possible.

• General profiling optimizations and their combinations.

• Ongoing and Future work:

• Further improving the efficiency, granularity and precision.

• Support for more languages, performance metrics, existing tools.

A Journey Towards Efficient Profiling Conclusion 27/28

Conclusion

• Perun = Complex Performance Analysis and Testing Solution.

• Integrates VCS.

• Collects performance data.

• Derives performance models.

• Detects performance changes.

• Visualises performance.

⇒ Not just mere profiling!

• We believe profiling efficiency can be significantly improved.

• Reuse of historic profiling data when possible.

• General profiling optimizations and their combinations.

• Ongoing and Future work:

• Further improving the efficiency, granularity and precision.

• Support for more languages, performance metrics, existing tools.

A Journey Towards Efficient Profiling Conclusion 27/28

Acknowledgements

• In no particular order:

• Tomáš Fiedor, Tomáš Vojnar, Adam Rogalewicz, Jan Fiedor, Viktor

Maĺık, Martin Hruška, Hanka Šimková, Peter Močáry, Onďrej Mı́chal,

Vojta Hájek, Vladiḿır Hucovič, Šimon Stupinský, Matúš Lǐsčinský,

Martina Grzybowská, Radim Podola, Petr Müller, Jǐŕı Hladký Jan

Zelený, Michal Kotoun, and many more.

• Supported by:

• Red Hat, Inc.

• Czech Science Foundation Project 20-07487S

• Czech Science Foundation Project 23-06506S

• JCMM PhD Talent Scholarship Programme

A Journey Towards Efficient Profiling Conclusion 28/28

A Journey Towards Efficient Profiling

Alpine Verification Meeting 2023

Jǐŕı Pavela

E-mail: ipavela@fit.vutbr.cz
Github: https://github.com/JiriPavela/

Perun Github: https://github.com/Perfexionists/perun/

Paper Demo VM: 10.5281/zenodo.6783242

Brno University of Technology, Faculty of Information Technology

Supported by:

Red Hat, Inc.

Czech Science Foundation Project 20-07487S

Czech Science Foundation Project 23-06506S

JCMM PhD Talent Scholarship Programme

mailto:ipavela@fit.vutbr.cz
https://github.com/JiriPavela/
https://github.com/Perfexionists/perun/
10.5281/zenodo.6783242

Perun Workflow: Models Example

• Models in Perun are mathematical functions of the input size or

statistical summaries describing the main features of the profile.

• For example, in regression analysis:

• the curve is described using function y = b1f (x) + b0,

• and the model quality as coefficient of determination R2.

A Journey Towards Efficient Profiling

Perun Workflow: Models Example

• Models in Perun are mathematical functions of the input size or

statistical summaries describing the main features of the profile.

• For example, in regression analysis:

• the curve is described using function y = b1f (x) + b0,

• and the model quality as coefficient of determination R2.

A Journey Towards Efficient Profiling

Perun Workflow: Models Example

• Models in Perun are mathematical functions of the input size or

statistical summaries describing the main features of the profile.

• For example, in regression analysis:

• the curve is described using function y = b1f (x) + b0,

• and the model quality as coefficient of determination R2.

A Journey Towards Efficient Profiling

Perun Workflow: Models Example

• Models in Perun are mathematical functions of the input size or

statistical summaries describing the main features of the profile.

• For example, in regression analysis:

• the curve is described using function y = b1f (x) + b0,

• and the model quality as coefficient of determination R2.

A Journey Towards Efficient Profiling

Perun Workflow: Detection Example

• Multiple detection algorithms are implemented in Perun:

• Best Model Order Equality

• Integral Comparison

• . . .

• Exclusive-Time Outliers

• Exclusive-Time Outliers:

• Based on per-function comparison of exclusive-time deltas ∆.

• Exclusive-time (self): time spent exclusively in a function.

• A hierarchy of outlier detection methods determines the severity:

• Modified Z-score yi = xi−X̃

k·median(|xi−X̃ |)
• IQR multiple Q1 − k · IQR < x < Q3 + k · IQR

• Standard deviation multiple X − k · σ < x < X − k · σ

A Journey Towards Efficient Profiling

Perun Workflow: Detection Example

• Multiple detection algorithms are implemented in Perun:

• Best Model Order Equality

• Integral Comparison

• . . .

• Exclusive-Time Outliers

• Exclusive-Time Outliers:

• Based on per-function comparison of exclusive-time deltas ∆.

• Exclusive-time (self): time spent exclusively in a function.

• A hierarchy of outlier detection methods determines the severity:

• Modified Z-score yi = xi−X̃

k·median(|xi−X̃ |)
• IQR multiple Q1 − k · IQR < x < Q3 + k · IQR

• Standard deviation multiple X − k · σ < x < X − k · σ

A Journey Towards Efficient Profiling

Perun Workflow: Detection Example

• Multiple detection algorithms are implemented in Perun:

• Best Model Order Equality

• Integral Comparison

• . . .

• Exclusive-Time Outliers

• Exclusive-Time Outliers:

• Based on per-function comparison of exclusive-time deltas ∆.

• Exclusive-time (self): time spent exclusively in a function.

• A hierarchy of outlier detection methods determines the severity:

• Modified Z-score yi = xi−X̃

k·median(|xi−X̃ |)
• IQR multiple Q1 − k · IQR < x < Q3 + k · IQR

• Standard deviation multiple X − k · σ < x < X − k · σ

A Journey Towards Efficient Profiling

Perun Workflow: Detection Example

• Multiple detection algorithms are implemented in Perun:

• Best Model Order Equality

• Integral Comparison

• . . .

• Exclusive-Time Outliers

• Exclusive-Time Outliers:

• Based on per-function comparison of exclusive-time deltas ∆.

• Exclusive-time (self): time spent exclusively in a function.

• A hierarchy of outlier detection methods determines the severity:

• Modified Z-score yi = xi−X̃

k·median(|xi−X̃ |)

• IQR multiple Q1 − k · IQR < x < Q3 + k · IQR

• Standard deviation multiple X − k · σ < x < X − k · σ

A Journey Towards Efficient Profiling

Perun Workflow: Detection Example

• Multiple detection algorithms are implemented in Perun:

• Best Model Order Equality

• Integral Comparison

• . . .

• Exclusive-Time Outliers

• Exclusive-Time Outliers:

• Based on per-function comparison of exclusive-time deltas ∆.

• Exclusive-time (self): time spent exclusively in a function.

• A hierarchy of outlier detection methods determines the severity:

• Modified Z-score yi = xi−X̃

k·median(|xi−X̃ |)
• IQR multiple Q1 − k · IQR < x < Q3 + k · IQR

• Standard deviation multiple X − k · σ < x < X − k · σ

A Journey Towards Efficient Profiling

Perun Workflow: Detection Example

• Multiple detection algorithms are implemented in Perun:

• Best Model Order Equality

• Integral Comparison

• . . .

• Exclusive-Time Outliers

• Exclusive-Time Outliers:

• Based on per-function comparison of exclusive-time deltas ∆.

• Exclusive-time (self): time spent exclusively in a function.

• A hierarchy of outlier detection methods determines the severity:

• Modified Z-score yi = xi−X̃

k·median(|xi−X̃ |)
• IQR multiple Q1 − k · IQR < x < Q3 + k · IQR

• Standard deviation multiple X − k · σ < x < X − k · σ

A Journey Towards Efficient Profiling

	Motivation
	The Roots of Profiling Inefficiency
	Perun: Performance Version System
	Finding Performance Changes
	Efficient Profiling Techniques
	Conclusion
	Appendix

